The Nef protein of human immunodeficiency virus type 1 (HIV-1) promotes virion infectivity through mechanisms that are yet ill defined. Some Nef is incorporated into particles, where it is cleaved by the viral protease between amino acids 57 and 58. The functional significance of this event, which liberates the C-terminal core domain of the protein from its membrane-associated N terminus, is unknown. To address this question, we examined the modalities of Nef virion association and processing. We found that although significant levels of Nef were detected in HIV-1 virions partly in a cleaved form, cell-specific variations existed in the efficiency of Nef proteolytic processing. The virion association of Nef was strongly enhanced by myristoylation but did not require other HIV-1-specific proteins, since Nef was efficiently incorporated into and cleaved inside murine leukemia virus particles. Substituting alanine for tryptophan57 decreased the efficiency of Nef processing, while mutating leucine58 had little effect. In contrast, replacing both of these residues simultaneously almost completely prevented this process. However, when the resulting mutants were compared with a wild-type control in viral infectivity assays, no correlation was found between the levels of cleavage and the ability to stimulate virion infectivity. Furthermore, simian immunodeficiency virus Nef, which lacks the sequence recognized by the protease and as a consequence is not cleaved despite its incorporation into virions, could stimulate the infectivity of a nef-defective HIV-1 variant as efficiently as HIV-1 Nef. On these bases, we conclude that the proteolytic processing of Nef is not required for the ability of this protein to enhance virion infectivity.