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Abstract

In this thesis we study the interplay between electronic correlations and geometry
in single-walled carbon nanotubes by microscopic model calculations. Electronic
correlations are expected to be strong because of the low dimensionality of carbon
nanotubes. Moreover the possibility of existing in different chiralities make them
an ideal model system to investigate this interplay.

After reviewing the band theory we discuss the magnitude and the scaling of
the single particle charge gap when electronic correlations are included. This is
done within a Hartree—Fock mean field calculation and with the help of a renor-
malization group argument. We predict that there is a correlation induced charge
gap of several meV. This result is especially important for carbon nanotubes of
armchair chirality where the band gap is always zero. We also observe that this
correlation gap is tunable with uniaxial strain.

In another chapter we study the electronic properties when a magnetic field
parallel to the tube axis is applied. The persistent currents show a strong de-
pendence on chirality. When we look at the diffusive limit by adding disorder
(impurities) we can exhibit the Altshuler-Aronov—Spivak effect.

The last two chapters are concerned with the question of superconductivity
in carbon nanotubes. We calculate the spingap in the Heisenberg model for the
smallest tubes by an exact quantum Monte Carlo method. We relate these results
to the RVB theory of superconductivity (mean—field and variational Monte Carlo)
which describes the system upon hole doping. We obtain chirality dependent RVB
superconducting order parameters. Compared to the two dimensional limit we
observe that superconductivity is enhanced and antiferromagnetism is reduced.

Wherever possible we try to put our results into relation with experimental
findings.
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Version abrégée

Nous avons étudié I'effet combiné des corrélations électroniques et de la géométrie
dans les nanotubes de carbone monoparois en utilisant des modeles microscopiques.
Du fait de la basse dimensionalité des nanotubes de carbone, on s’attend a ce que
les corrélations électroniques soient fortes. De plus comme ils peuvent exister
dans des chiralités différentes, ils forment un cadre idéal pour cette étude.

Apres une présentation de la théorie des bandes nous discutons la valeur du
gap de charge et son comportement en fonction du diametre, en incluant les
corrélations électroniques par un calcul de type Hartree—Fock et un argument
du groupe de renormalisation. Nous obtenons un gap de charge, induit par les
corrélations, de 'ordre du meV. Ce résultat est spécialement important pour
les tubes de chiralité “armchair” ou la théorie des bandes prédit toujours un
comportement métallique. Nous observons aussi que ce gap de corrélation est
ajustable en appliquant une tension axiale.

Dans un autre chapitre, nous étudions les propriétés électroniques des tubes
dans un champ magnétique longitudinal. Les courants permanents montrent
une dépendance importante en fonction de la chiralité. En ajoutant du désordre
(impuretés), nous considérons aussi la limite diffusive ot 'effet Altshuler-Aronov—
Spivak est observé.

Les deux derniers chapitres sont consacrés a la question de la supraconduc-
tivité dans les nanotubes de carbone. Nous déterminons le gap de spin dans le
modele de Heisenberg pour les tubes de plus petit diametre, par une méthode
de Monte Carlo quantique exacte. Nous mettons en relation ces résultats avec
la théorie RVB de la supraconductivité (champ moyen et Monte Carlo varia-
tionnel) qui décrit le systéme dopé. Les parametres d’ordre de la supraconduc-
tivité RVB dépendent de la chiralité. En comparaison avec la limite 2D, nous
observons que pres du demi-remplissage, la supraconductivité est renforcée et
Iantiferromagnetisme est réduit.

Nous avons essayé de mettre systématiquement nos résultats en relation avec
les expériences.
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Chapter 1

Introduction

Carbon nanotubes (CNT) are large cylindrical molecules which consist of carbon
atoms only.! Their structure is similar to graphite as each atom is covalently
bound to three nearest neighbours to form a honeycomb lattice. Whereas in
graphite two dimensional layers are stacked, CN'T are rolled up to sheets forming
a cylinder usually closed by spherical cups. One distinguishes two types of CNT:
The single-walled CNT (SWCNT) are made out of a single cylinder. In contrast
multiwalled CNT consist of several concentrically arranged tubes.

The discovery of CNT goes back to 1991 [4], Iijima observed multiwalled CNT,
when he analyzed carbon soot from an arc discharge by transmission electron
microscopy. In the arc—discharge method a large voltage is applied between two
electrodes of pure graphite until there is discharge through strong currents in an
inert gas between them. The temperatures involved are high (3000-4000 K) and
are close to the melting temperature of graphite. Multiwalled CN'T can then be
found in the soot that is produced on the negative electrode. SWCNT could
be produced two years later [5,6]. There it was shown that the arc discharge
method could also be used to produce SWCNT but a catalyst, e.g. cobalt, had
to be added at the anode.

There are two other methods for CNT production, the laser ablation technique
and the chemical vapor deposition (c¢f e.g. [2]). The latter is believed to be very
promising because controlled CN'T growth on surfaces is possible and the process
can also be scaled up. In the chemical vapor deposition acetylene gas is led into a
heated reactor which contains a transition metal catalyst. The CNT are produced
in high yields upon cooling to room temperature.

The typical tube diameters are a few nanometers for SWCNT and multiwalled
CNT have diameters up to 50 nm. The length is usually of several hundreds of
nm but can be as large as a few micrometers. However length and diameter are

Several textbooks about CNT were published: The book by Saito et al. [1] focuses on the
the tight binding description, the book edited by Dresselhaus et al. [2] gives a summary of the
state of knowledge at the beginning of 2001. A more recent monograph by Reich et al. [3]
concentrates on luminescence and Raman scattering.
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not the only parameter to characterize a perfect CNT. It was noticed right away
by lijima [4] that there are CNT with different chiralities, i.e. there is an angle
degree of freedom how a single graphite sheet can be rolled up into a cylinder.

In this thesis we will nearly exclusively be concerned with electronic properties
of SWCN'T. We will see that in a simple one—electron picture SWCN'T are either
metallic or semiconducting depending on chirality. Both types of SWCNT are
actually observed. The semiconducting SWCNT behave typically as a p-type
field—effect transistor at room temperature [7] whereas metallic CNT show only
very little gate dependence [8]. Scanning tunneling microscopy measurements
showed also metallic or semiconducting density of states [9,10]. At millikelvin
temperatures SWCN'T can behave as true quantum wires where electrons conduct
coherently over long distances through well separated channels [11]. In tunneling
experiments of SWCNT ropes, a power law behaviour in the density of states
is observed and therefore it was suggested that SWCNT would show Luttinger
liquid physics [12]. In 2001, it was achieved for the first time to attach very low—
ohmic contacts to SWCNT [13,14]. As a result, interference patterns of electrons
reflected at the contacts could be observed [13]. In the last few years there has
been growing evidence that besides proximity induced superconductivity, also
true intrinsic superconductivity could exist in ropes of SWCNT [15]. The critical
temperature is sample dependent and varies from 120 to 550 mK.

After the early CNT history told by Ebbesen [16], the same year but still be-
fore the discovery of CNT, a group of theorists asked the question “Are fullerene
tubules metallic?”. Apparently their paper was judged too speculative for publi-
cation, and could only be published after the discovery of CNT [17]. Since then a
huge number of theoretical investigations appeared. Most of them can be crudely
separated into two groups. The first group consists of papers which try to explain
the properties of CN'T with the help of band structure calculations (ab initio, tight
binding, etc.) where the typical energy scale is the eV. These calculations neglect
electron—electron interactions which are however strong in reduced dimensions.
On the other hand the second group tries to give a field theoretical description
for physical processes at the meV scale. In this continuous description the effect
of band structure is only taken into account by linearized bands around the two
Fermi points and one obtains a purely one-dimensional description where the
electrons have forgotten that they live on a two-dimensional surface. But it has
the advantage that many analytic methods from one—dimensional physics become
available which allow to treat electron—electron interaction.

Of course, the ultimate goal of a complete theory of CNT would be the unifi-
cation of the two approaches, i.e. to treat the true N'T topology and interactions
on the same footing. But needless to say that this is far beyond what can be done
by present methods, so the reader of this thesis has to be content with much more
modest goals. They are outlined in the next paragraph.



Goal of the thesis

The goal of this thesis is to explain a certain number of electronic properties
of carbon nanotubes. Most notably we are interested in effects where electron—
electron interaction plays an important role, this is where band theory alone is
insufficient to explain the observed phenomena. Our working method consists of
analyzing microscopic models analytically or numerically, always with the goal
to gain a better understanding of experimental findings, or to make some new
predictions which can be tested experimentally.
The following questions have been addressed:

e Can we clarify the value and scaling of the single particle charge gap. Or
in other words, can clean SWCNT be metallic 7 (chapter 3)

e How does uniaxial strain change the electronic properties of CNT 7
(section 3.8)

e What effect has an applied longitudinal magnetic field on the properties of
CNT ? In particular, can we explain the oscillations (fast and slow) in the
resistivity versus applied magnetic flux measurements ? (chapter 4)

e How does the spin gap depend on chirality ? (chapter 5)

e What can we say about superconductivity in CNT 7 And more generally,
what phases can appear when we dope CNT ? (chapter 6)



CHAPTER 1. INTRODUCTION



Chapter 2

Tight binding band structure of
SWCNT

2.1 Summary

The determination of the band structure of SWCNT is an important starting
point of all subsequent theoretical studies in this work. The simplest way to get
an idea of the band structure of SWCN'T is to use the tight-binding energy band
due to the graphene p, orbitals, determined originally by Wallace in 1947 [18], and
then to impose the appropriate periodic boundary condition which reflects the
cylindrical shape of the CNT. This calculation was done first in the references
[19,20] and helped to find a suitable classification scheme for CNT, using the
chiral vector Cy. This chapter is mainly based on the book by Brandt et al. on
graphite [21] and the book by Dresselhaus et al. on CNT [2]. Below we derive
the tight-binding band structure of SWCNT and we discuss its validity reviewing
the results obtained by ab initio calculations.

2.2 Graphene

The neutral carbon atom contains six electrons in a 1s225?2p? configuration. The
ground state of a free carbon atom is 3P, i.e. with total spin S = 1 and total
orbital angular momentum L = 1. The variety of carbon materials, ranging from
0 to 3 dimensional structures (cf table 2.1), is due to the special character of the
bonds between carbon atoms. The energy difference between the ground state
and the first excited state of the free carbon atom (1s?2s2p?/°S) is about 4 eV
which is small compared to the interatomic binding energy of about 7.4 eV [21].
This fact makes it very often energetically favorable to excite a 2s electron into
the p shell to form bondings with other carbon atoms. Now the four electrons
can mix with each other to enhance the binding energy with other carbon atoms.
This mixing is called hybridization, more precisely, the mixing of one 2s electron

5
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dimension 0d 1d 2d 3d
isomer Ceo nanotube graphite diamond
fullerene amorphous
hybridization || sp? sp? sp? sp?
density 1.72 1.2-2.0 2.26 3.515
g/cm? 2-3

bond length || 140 (C =C) | 1.44 (C=0C) |142(C=C) | 154 (C—C)
A 1.46 (C — C)

electronic semiconductor | metal or semimetal insulating
properties E,=19¢eV semiconductor E, =547 eV

Table 2.1: Some carbon isomers (This table was taken from reference [1])

with n 2p electrons is called sp™ hybridization.

We call graphene a single layer of graphite. It forms a two dimensional hexagonal
structure, called honeycomb lattice (cf figure 2.1). In this lattice the carbon atoms
form three equivalent bonds. One 2s electron and two 2p electrons form o—bonds
through sp? hybridization. The o-bonds are coplanar and make angles of 120°
between them. The spatial electronic density of the fourth valence 2p electron
is orthogonal to the plane of c—bonds. These 2p electrons of neighboring atoms
overlap to form m—bonds. In this model each carbon atom is bounded to three
other carbon atoms by one m—bond and three o—bonds. The resulting honeycomb
lattice with its unit cell and its reciprocal lattice with the first Brioullin zone is
shown in figure 2.1.

We determine the band structure in the tight-binding calculation. We content
ourselves with the calculation of the 7—bands since they are responsible for most
of the electronic properties of graphene. The o—-bands are completely filled and
do not mix with the 7—bands due to symmetry. In a tight-binding calculation
the m—bands are formed from orbitals with p, character. Each lattice site in the
honeycomb lattice has three nearest—neighbours. For graphene one expects that
all nearest—neighbour hopping matrix elements are the same for all these three
bonds. However for later convenience we chose different hopping integrals ¢, #y,
and ty for each nearest-neighbour bond.! Thus the auxiliary equation for the
graphene tight—binding energy bands €y is:

—€9q t. + t1||€zk-a1 —+ t2”€zk-a2

. . =0 2.1
.+ t1||€7lk'al + t2\|€72k'a2 —€2¢ (2.1)

'In the language of Slater and Koster the ¢’s are nothing else than the V,,, interatomic
matrix elements (c¢f p. 481 of reference [22]).
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Figure 2.1: The figure on the left hand side shows the two-dimensional honeycomb
lattice. Its unit cell contains two carbon atoms and has the shape of a rhombus. The
basis vectors are chosen to be a; = a/2(v/3,1) and az = a/2 (3, —1) where a = 2.46
, the lattice constant of graphene. This distance is slightly modified for CNT where
a =249 . t;, 1y and ¢y are the hopping integrals corresponding to different hopping
directions. On the right hand side the reciprocal lattice is shown. The shaded region
corresponds to the first Brioullin zone and I', K and M indicate the high symmetry
points. The reciprocal basis vector are by = 27/a (1//3,1) and by = 27/a (1/v/3, —1).

Setting k = oy /27 by + ay /271 bs we get for the energy dispersion of graphene

= =+ (ti + tf” + t%H + 2t 1ty cosaq + 2t ty) cos o
1/2
+2t1) o) cos(ar — a)) 2 (2.2)

We finish this section by giving an idea of the band structure of graphene using
the dispersion relation (2.2). In figure 2.2 we plotted the bands along the high
symmetry lines (¢f figure 2.1). We note that close to half-filling only the states
near the K points are forming the Fermi surface. But at this electron fillings the
density of states is very low, and even vanishing exactly as e — 0. This explains
the semimetallic behaviour of graphite. We also observe van Hove singularites in
the density of states at energies + 1¢ which correspond to fillings of 3/s and 5/s
respectively.

2.3 Classification of Carbon Nanotubes

We are going to think about SWCNT as a rectangular graphene layer rolled up
into a cylinder. In a first approximation we do not consider differences in the
hopping integrals due to bending, i.e. ¢t = £, = t;) = ty). Thus forming a
SWCNT consists just in imposing the appropriate periodic boundary conditions
on the graphene layer. A classification of all SWCNT can be given with the help
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0.8

0.6¢

0.4r

p(e)

0.2r

r M K r ’3 2 10 1 2 3
Figure 2.2: At the left hand side we show the tight binding bandstructure of a single
graphene layer along the lines of high symmetry. At the right hand side the corre-
sponding single particle density of states p(€) = —Z-Im > xp Gplk, e +id) is plotted
(p is the band index and L is the total number of sites). We recall that G (k,iw)

is the single particle Green’s function which is for non—interacting systems given by
Gp(k,iw) = % The van Hove singularities are found at energies & ¢ which corre-
w—E€

spond to fillings of 3/8 and 5/8 respectively.

of the so called chirality vector Cy. As it is done in figure 2.3 we can choose two
sites s; and sg on the honeycomb lattice to define the chirality vector

Ch = S — 81 = naj + mas. (23)

Then the lattice is cut along Cy and lines perpendicular to it passing through s;
and sp respectively. Folding up the resulting rectangle gives the nanotube, more
precisely a SWCNT of type (n,m). For symmetry reasons it is exhaustive to
consider only tubes with n > m. Up to the length, the chirality vector classifies
completely all the carbon nanotubes. The angle # between Cy, and a; is called
chiral angle (cf figure 2.3) and it is given by tan = v/3m/(2n + m). There are
two limiting cases which are of particular interest:

1. The (n,0) “zig-zag” CNT with a chiral angle of 0°.

2. The (n,n) “armchair” CNT with a chiral angle of 30°.

We will apply periodic boundary conditions not only along Cy, but also along the
CNT. Thus the length of a tube is not arbitrary. The CNT must be a multiple
of the one dimensional unit cell. The one dimensional unit cell is defined by Cy
and a vector T perpendicular to Cy,. The vector T has to be able to join two
equivalent sites of the honeycomb lattice, thus its lentgth is defined by the first
occurrence of an equivalent site in this direction (¢f figure 2.3). It is easy to see
that T is given by

T = tia + teas with (24)
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Figure 2.3: We show how we can contruct SWCNT from the honeycomb lattice of
graphite and we classify them with the help of the chirality vector Cp. The tube axis
is along T. The rectangle defined by Cy and T defines the one-dimensional unit cell.
The tube constructed in the figure corresponds to Cyp, =4 a; +2az = (4,2).

2m+n d i 2n+m

= anu = —
1 dr 2 dr
where dp is the greatest common divisor of 2m + n and 2n + m. We define the
length of a CNT by an integer N in units of ||T||. Usually all the quantities are
calculated in the limit of a very long tube, i.e. N is large. In this case they should

not depend on the particular boundary conditions chosen along the tube.

(2.5)

2.4 Band Structure

In this section we determine the tight binding band structure of CNT. We start
from the band structure of graphene which is given by the dispersion relation
(2.2) and the two-dimensional first Brioullin zone (c¢f figure 2.1). We have seen
in the previous section that we can obtain the CNT structure from graphene by
imposing periodic boundary conditions:

NT-k = 2mq g€N (2.6)
Cn-k = 27p peN

As we are working with a very long tube, there is a quasi—continous set of wavevec-
tors, indexed by ¢, which are inequivalent. Thus these two conditions select Nyp
lines in the two—dimensional first Brillouin zone of graphene. The number N
is given by the number of hexagons in the one—dimensional unit cell defined by
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(5,5) armchair CNT (8,0) zig-zag CNT

3 3
2 2
1 ' 1
<0 <0
-1 1
_2 -2r

-3 L i -3 . ]

—n/T 8 /T —n/T 8 /T

Figure 2.4: The tight-binding energy bands for a metallic (5,5) armchair CNT and a
semiconducting (8,0) zig—zag CNT are plotted. The energies are given in units of the
hopping amplitude tp.

Cy and T which is

T (2.8)

This discrete set of lines which defines the first Brioullin zone for CNT can be
parametrized by two integers, say p and ¢:

k=1/Np [(—th + %m) b; + <pt1 — %n) bz] (2.9)
p=0,...,Nip—1 qgq=0,...,N—1 (2.10)

In figure 2.4 we show two examples of CNT band structures where we have put
t1 =ty = ty. This approximation means that for instance we neglect the effect
of curvature on the hopping integrals. Within this approximation all CN'T which
have a chirality such that n — m is a multiple of 3 are metalic. Still within the
same approximations, the band gap of semiconducting CNT' is proportional to
the inverse of its diameter d;

2t0a
E,=—
! V34,

Thus typically, semiconducting CN'T have an energy gap of order 0.5 eV. This
behaviour has been tested in experiments [9,10] where the tube diameter and the
energy gap were extracted from scanning tunneling microscopy data. This data
could be fitted to equation (2.11) with reasonable values of ty = 2.5-2.7 eV.2 A

where d; = V¥ m?+ nm. (2.11)
™

2Essentially the same values are inferred from Raman scattering experiments (see reference
[23] and references therein). Ab initio calculations can also give an estimate for to and they
confirm the results mentioned before tg = 2.4-2.6 eV depending on chirality [23] and typ = 2.5
eV [17].
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typical bandstructure of metallic armchair CN'T' is shown at the left hand side of
figure 2.4. For clean CNT the Fermi level is at zero energy as we have a bipartite
lattice and one 7 electron per carbon atom (half-filling). At zero energy we have
two band crossings and the band dispersion is nearly linear. If one expands the
dispersion around k. = 1/3(by — bs) which are the K points in the first Brillouin
zone, one obtains

a
e2(kr +q) = 5\/5150 lqll. (2.12)

From this equation one can compute the density of states per carbon atom for
armchair CNT around the Fermi energy [24]

oo =23La (213)

2 to dt
which differs from the same quantity calculated for graphene

2 €
V3nty

In contrast to graphene where the density of states vanishes at the Fermi level
(cf figure 2.2), CNT have a finite density of states scaling as 1/d;.

The simple tight-binding description of the electronic band structure of SWCNT
which was shown here makes two approximations:

ple) = (2.14)

(a) The Hiickel approximation: We consider only the hopping ¢y between near-
est neighbours.

(b) The cylindrical geometry of the tubes induces a curvature to the graphene
layer. We neglect the change in the hopping integrals and possible hy-
bridization of o and 7 orbitals due to curvature.

In reference [25] the hopping terms up to third nearest neighbours have been
included into the tight-binding calculations to study the validity of approximation
(a) by comparing their results to ab initio calculations. They showed that the
nearest—neighbour tight—binding model does not reproduce the m graphene bands
over a large interval of the first Brillouin zone. Including third nearest—neighbour
hopping a much better agreement could be achieved. The conclusion of their work
was that the nearest-neighbour tight-binding model works well for the lowest
band but higher bands reproduce only qualitatively the real band structure and
it is dangerous to use it for quantitative comparison with experiments.

The effect of curvature was studied analytically [26,27] and also with the help
of ab initio calculations [17,25,28|. The analytical studies use a tight-binding
approach, including the fact that the 7 orbitals are not orthogonal to the tube
surface. These calculations suggest that all the CN'T, except the ones of armchair
type, have a curvature induced gap which scales as 1/d? with tube diameter. For
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formerly semiconducting tubes this gap adds to the primary gap which scales as
1/d; (cf equation (2.11)). A nearest-neighbour tight-binding calculation gives
for CNT with zero primary (n —m = 0 modulo 3) gap the following equation for
the curvature induced band gap [17]:

B

g = @to cos 30 (2.15)
¢

Again, from this equation we see that there is no curvature induced gap for
armchair CNT (# = 7/6) due to the symmetry ¢ = ty, and zig-zag CNT
(6 = 0) acquire a maximal curvature induced gap. This gap scales as 1/d?. Such
a scaling was also found by Kane and Mele using a k - p approximation [26].

The ab initio calculations confirm these results for the band gap only partially.
The 1/d; scaling of the gap of semiconducting CNT could be confirmed in [17]
with local-density functional calculations. But I could not find any confirmation
of the 1/d? scaling for the curvature induced gap in the literature of ab initio
calculations. But as the 1/d; scaling law (2.11) for semiconducting tubes, equation
(2.15) could also be tested experimentally [29] for meV gaps of zig-zag CNT with
to = 2.6 meV which is in agreement with the previous estimates. In references
[23,28] it was argued that curvature induced hybridization reduces strongly the
band gap of semiconducting tubes. However also these ab initio calculations
predict a band gap of at least of order 10 meV for all CNT except armchair CNT
and the smallest zig—zag CNT.



Chapter 3

The correlation gap in CNT

3.1 Summary

When one comes to think about a new class of materials a fundamental question
to ask is if one has to deal with a metal or an insulator. To answer this question
we apply the gap criterion (c¢f section 3.2), i.e. we investigate if there exist
charge carrying single—electron excitations of infinitesimal energy. In the previous
chapter we have seen that all CNT except armchair CNT are band insulators.
Thus from the band theory point of view armchair CNT seem to be perfect
one-dimensional metals. But very general arguments by Mott (cf section 3.3)
suggest that there should be a single—electron charge gap for one—dimensional
systems at half-filling due to electron—electron interaction. It has been argued by
Balents and Fisher [30] that this gap, although existent, is exponentially small
and thus negligible for all practical purposes in CN'T. Their argument is presented
in section 3.4. In the main part of this chapter we will argue that the Balents—
Fisher result should not be true for CNT at half-filling and that there is a finite
gap which cannot be neglected. As an application we show how our results can
be used for real CNT and that the gap can be tuned with elastic strain.

Obtained results:

e We predict the scaling law (3.26) of the correlation gap of armchair CNT
as a function of tube diameter and Hubbard on-site interactions strength
by two different methods (Hartree-Fock and renormalization group).

e We review the model parameters used in the literature for carbon isomers
and suggest values to use for CNT.

e We argue that the gap for small armchair CN'T could be as large as 10 meV.

e We show that the correlation gap is sensitive to uniaxial strain at a rate of
several meV/%.

13
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3.2 The gap criterion

This section follows closely the books by Gebhard [31] and by Mott [32]. The gap
criterion is introduced and we discuss under which assumptions it can be used.
An insulator and a metal can be distinguished by looking at its zero temperature
DC conductivity, i.e. the linear response function to a weak applied electrical
field

0w (1'=0) = Jim lim lim Re[oo; ()] (3.1)
where 044 is the conductivity tensor. Thus if 025 (I" = 0) = 0 we have an
insulator and otherwise we deal with a metal.

At low temperatures, the conductivity is usually dominated by impurity scat-
tering, other contributions (most importantly from phonons) vanish at 7' = 0 K.
Up to the scale of the Fermi temperature T = Ep/kp, the scattering from im-
purities gives a temperature independent contribution to the conductivity. This
can be shown from microscopic models® starting from a Kubo formula for the
current—current correlation function:

1 B

wliwn) = =35 | dre (T () - 50) (3.2)

The physically relevant retarded function 7. (w) is obtained by analytical con-
tinuation (iw, — w + id), which is connected to the DC conductivity by

(3.3)

7 can be computed, at least approximatively in the limit of small impurity densi-
ties, by diagrammatic summation where the important contributions come from
ladder diagrams [33]. As it is noted in Gebhard’s book [31] there are two condi-
tions which have to be met for a metallic ground state:

1. “Quantum-mechanical states for electron-hole excitations must be available
at energies immediately above the energy of the ground state since the
external field provides vanishingly small energy (w — 0).”

2. “These excitations must describe delocalized charges that can contribute to
transport over the macroscopical sample size.”

The gap criterion wants to relate the electric conductivity to the single—particle
excitation spectrum. To do this we have to make the assumption that there
is no correlation between the electron and the hole of the electron-hole excita-
tion. Technically speaking, this corresponds to a factorisation of the two—particle

1See for example, chapter 8 of reference [33].
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Green’s function into its one—particle components. Under this assumption the el-
ementary excitations of the system are the single-particle excitations and it per-
mits us to draw conclusions about the DC conductivity, a two—particle quantity,
from the one-particle spectrum: The zero-temperature gap for single—particle
charged excitations gives then a criterion to check if the ground state is metallic
or insulating. This is defined with the help of the zero—temperature chemical
potentials

pt o= Eo(N+1) = Ey(N),
po = Ey(N)—Ey(N —1),

the minimal energies needed to add an electron to the ground sate with N (re-
spectively (N — 1)) particles. Then the gap is given by

A= = p )ext (3.6)

The subscript ’ext’ indicates the new single—particle state has to be extended so
that it can carry current. Then the gap criterion says that we have an insulator
it A>0.

However there are some situations where this criterion evidently fails, for
instance when electrons, or electrons and holes form bound pairs as it the case in
BCS superconductors. Excitons in semiconductors are another example.

3.3 The Hubbard model and Mott’s argument

The gap criterion which was described in the previous section will be applied for
CNT using the Hubbard model. In this section we will define this model and we
reproduce Mott’s argument to show that it has all the necessary ingredients to
give an accurate evaluation of the gap (3.6) at half-filling.

The Hubbard model on a lattice is defined by the following Hamiltonian?:

H = Z (tijc}(,cj(, —+ hC) + UZTLZ'TTLN (37)

(i.g)o

o is the spin index and ¢, j sum over the sites of a lattice, the symbol (i, 7) indicates
that only terms where 7 and j are nearest neighbours are taken into account. CZT(,
are the fermion creation operators and n;, = c}acig. The first term describes the
nearest—neighbour hopping and wants the electrons to delocalise. The second
term is the on-site Hubbard repulsion (U > 0) which tends to correlate the
electronic motion and in some cases even to localise the electrons.

2The credits for the introduction and the recognition of its importance go to Gutzwiller,
Kanamori, Hubbard, Mott and Anderson, cf page 61 of reference [31].
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Now we want to give an argument that the short-range part of the correlations
plays the dominant role when it comes to calculating the correlation gap in half-
filled systems. This is most easily seen in the atomic limit where the hopping
integrals are assumed to be vanishingly small. So let us assume for a moment
that the system is described by the Hamiltonian:

H = UZTMTM + Z Vijnin; (3.8)
(6.4)

where n; = n;+n;y is the total density, and where V;; is the long-range part of the
repulsion that does not need to be specified. According to Mott’s prescription to
evaluate the gap [32], one has to compare the energy of a uniform configuration
with that of a configuration with a doubly occupied site and a hole far apart
from each other. The only difference comes from the energy of the electron that
has been moved, and the energy increase is precisely equal to U since it still
interacts with further neighbours in the same way. So, even in the presence of
long-range Coulomb repulsion, the value of the charge gap is controlled by the
on-site repulsion U in the atomic limit. Of course, away from the atomic limit, the
long-range part of the Coulomb interaction will play a role. To get a quantitative
estimate of the charge gap in that case is a very difficult problem though which
has not been solved even in the simplest case of a pure one-dimensional model,
but if anything the longer range part of the Coulomb repulsion is expected to
reinforce the tendency to localize the charge, hence to increase the charge gap.
So to use a simple Hubbard model with only on-site repulsion to calculate the
correlation gap of a half-filled system is a reasonable assumption, and the value
is probably an underestimate of the actual gap in the presence of the long-range
part of the Coulomb repulsion. For the present purpose this is all we need since
our main conclusion will be to argue that the gap might be larger than previously
assumed.

We finish this section with a summary of what is known about the gap (3.6)
in the half-filled Hubbard model for the simplest low—dimensional lattices with
uniform nearest-neighbour hopping ¢:

e For the one—dimensional chain, the correlation gap can be extracted from
the exact Bethe ansatz solution *:

16t2 Vy? —
A= —/ s1nh 27ryt/U) (3:9)

This expression can be used to get the first terms of the asymptotic expan-
sion for weak and strong interactions:

<
8t/m\/U/texp( 27rt£U for U <2t (3.10)
U—4t+81In(2)t*/U for U 2 4t

3See for example, chapter 4 of reference [31].
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Thus we see that a charge gap opens, inducing a Mott transition at zero
coupling.

e In two-dimensional lattices the behaviour of the correlation gap depends
strongly on the “topology” of the lattice.

— The square lattice is bipartite and its tight—binding dispersion has the
perfect nesting property

e(k) = —e(k+ Q) Vke 150 BZ (3.11)

with nesting vector Q = (m, 7). In two dimensions, this property has
the direct consequence that the non—interacting static susceptibility
Xo(Q) shows a logarithmic divergence. The RPA criterion for the onset
of the antiferromagnetic instability indicates that there is long range
magnetic order for infinitesimal interaction stregth?. A Hartree-Fock
(H-F) calculation (cf section 3.5) gives for small couplings [34]

A ~ texp(—2m\/t/U). (3.12)

Quantum Monte Carlo simulations confirmed the onset of this insta-
bility at infinitesimal U [34-37].

— The triangular lattice is frustrated and has no nesting in its dispersion.
Due to frustration the Monte Carlo simulations suffer from the sign
problem. Mean field calculations (cf e.g. [38] and references therein)
suggest that one deals with a “classic” Mott scenario [32] where the
magnetic instability and the metal-insulator transition are not at the
same U. These calculations give two phase transitions with increasing
U, first we go from a non-magnetic semi-metal to a metal with spin
density wave ordering, and second to an antiferromagnetic insulator.

— The honeycomb lattice is bipartite, as it is the case for the square
lattice, which implies perfect nesting at the Fermi surface. But the
Fermi surface of the honeycomb lattice consists of two points only,
and moreover, there the density of states vanishes. Thus yjg is not log-
arithmically divergent, and as for the triangular lattice, RPA suggests
a metal insulator transition at finite U. However, as a consequence
of the bipartite property, the two transitions of the triangular lattice
collapse into one, and one finds a direct transition from the semi—
metallic state to the antiferromagnetic insulator. One infers from a
H-F calculation [39]

for U <UHF =223t

0
A= { /32 (1/UEF —1JU) for U > UHF (3.13)

4This calculation is outlined in detail in appendix A for the honeycomb lattice.
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Figure 3.1: The energy bands near the Fermi level for armchair CNT at half-filling.

This scenario is supported by quantum Monte Carlo computations
[39-42]. There the gap could not be calculated, but the critical value
U., has been determined by looking at the development of magnetic
long-range order, and the value is around U,, = 3.6t.

e CNT are between one and two dimensions: Globally they form a one-
dimensional structure and therefore one expects a correlation gap for any
infinitesimal interaction strength, similar to equation (3.10). On the other
hand, one could also say that an electron sitting on the surface of the tube
sees it more as a two-dimensional object, the gap is therefore reduced.
In the following sections we will discuss this subject in detail and we will
try to quantify this reduction to answer the question if armchair CNT at
half-filling are effectively insulators or metals.

3.4 The Balents—Fisher result

Already a few years ago, in 1997, Balents and Fisher [30] considered the problem
of the correlation gap in half-filled (n,n) armchair carbon nanotubes. To put
the problem into a treatable form, they excluded all but the lowest band from
their calculation. Checking with figure 3.1, this seems to be a very reasonable
assumption, at least at first sight. The distance from the Fermi points to the
next band, A,, can be evaluated analytically from the dispersion relation (2.2)
with 2, =1 to be
7Tt0

A, = —, (3.14)

leading them to the following conclusion: “Below A, the mode structure is equiv-
alent to a 1D two band model independent of the nanotube size n.” The lowest
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i=1 ‘
i=2 ‘
|
Yy

Figure 3.2: Illustration of the relabeling which leads to the effective two—chain Hubbard
model. Due to the symmetry of armchair CN'T we have ¢, =ty = t. This figure was
taken from reference [30].

energy modes are given by the p = 0 band (¢f (2.9)) where the wave vectors are
given by
q
k=—T. 3.15
oN (3.15)
They are all parallel to the y axis. Thus the space of low—energy states is defined
by the states having k, = 0. Balents and Fisher have chosen the following basis
for this subspace (cf figure 3.2):

Y2 8y a2 6 n' even

G (1,y) = { g s =,66a/(2V/3) 3.16

(@) no 2 Oy,n'a/2 6w,(6€+1)a/(2\/§) n' odd ( )
Y2 6y a2 6 - n' even

Puwa(T,y) = { Ly R 6 2a/(2V3) (3.17)
Y% By a2 O 6+3)a/(2v3) T 0dd

These normalised states can be used to expand the field operators in the low—
energy sector:

C;'[U = Z ¢n’a(ri) CIL,OLO' (318)

With the help of these new operators we can rewrite the Hubbard Hamiltonian
for armchair CNT as the Hamiltonian of the two—chain Hubbard model with
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effective interaction U/n (cf figure 3.2):

H = Z {—t (CL,MCWHM + h.c.) —tL <CL,1gCn/20 + h.c.) }

n'ao

U
LS it 3.19)

n'a

The reduction of the interaction arises because the electrons have the possibility
to delocalise around the circumference of the NT. Effectively they occupy a site
i with probability 1/n. For this model it is known from renormalisation group
(RG) calculations (see [30] and references therein) that the functional dependence
of the gap A on U/n and ¢ is given by

A ~ texp[—ct/(U/n)] if U/n<t. (3.20)

The constant ¢ and the whole prefactor are unknown. Nevertheless such a be-
haviour would predict that (n,n) armchair CNT at half-filling with large enough
n are metallic for practical purposes since the correlation gap is exponentially
small.

In our work we question this conclusion and we argue that the scaling law
in equation (3.20) can only be valid, even for large n, if at the same time the
interaction strength U is not too large. This can already be seen from the 2D
limit, i.e. when n approaches infinity. As we have shown in the previous section
we expect in this limit a metal-insulator transition at some critical value U, of
the interaction strength. Even at finite n the gap will be exponentially small only
up to U, but will grow linearly for larger values of U. In the following we derive
the scaling law of the gap as a function of n and U. In section 3.5 we determine
the gap from a H-F calculation where we take into account all the bands. On
more qualitative grounds we show in section 3.6 that we can get the same results
from a RG argument.

3.5 The correlation gap from H—F calculations

Here we give a summary of the H-F approach which allows us to calculate the
correlation gaps in the Hubbard model (3.7) for CNT.” In contrast to Balents’
and Fisher’s calculation this approach includes all the bands. The details of the
calculations are outlined in appendix A. Since H-F neglegts completely quantum
fluctuations, this approximation will give very poor results in one dimension in
general. But when it comes to the correlation gap, H-F is known to reproduce

®Previously, similar calculations have been done by Lépez Sancho, Mufioz and Chico [43].
They predict a metallic ground state if U is smaller than some critical value. This result will
clearly be proved wrong from what follows in this work.
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correctly the exponential form of the Bethe ansatz solution (¢f equation (3.10)):
A = 16t exp(—2nt/U) (3.21)

The prefactor of the exponential is wrong and the gap is overestimated by a factor
2m4/t/U. This is only a problem for very small values of U/t, but we will see in
section 3.7 that this is not the range of interest. Thus we expect that H-F gives
the exact exponential form for CNT. The H-F value will be an uppper bound to
the real value, but of the same order of magnitude for not too small U.

The Hubbard H-F Hamiltonian for CN'T" at half-filling is

H =Y ticlcjo+he. + U [ni(nig) + (nir)nig — (nir)(ny,)]
(ird)o i

with the expectation values given by
(nig) = 1/2 (1 +m(—1)"\y0) (3.22)

where A\, = 1, \,_, = —1 and m = |(ns;) — (n;)|. This Hamiltonian can be
diagonalized by a Bogoliubov transformation and it yields the self-consistent H-F
equation for the sublattice magnetisation:

2 Z Um
kel B2 \/U2m2 + 4€%(k) ( )

L is the total number of sites and e(k) is the tight binding dispersion relation
(2.2). Finally the gap is obtained from the sublattice magnetisation:

A= mk’%n VU2m? + 4e2(k) = Um (3.24)

As it was discussed in chapter 2, the armchair CNT are of particular interest
since at half-filling they are the only CN'T' which are truly metallic in the non—
interacting electron approximation. We limit therefore our discussion to (n,n)
armchair CN'T and we put all nearest neighbour hoppings equal t,. Then we
note that for very small interaction strength, the main contribution to equation
(3.23) comes from k’s around the Fermi points (cf equation (2.12)) and it is
straightforward to show that

2
A x exp(——ﬂhvp n/U) for Uty < 1. (3.25)
a

In figure 3.3 the numerical results for the correlation gap are shown. We have
two parameters to vary, the tube diameter which is proportional to n and the
interaction strength U. We tried to fit the H-F results to cexp(—Aty/U) when
we varied U and to cexp(—An) for a variation of n. We see that these fits break
down at a critical value of the interaction strength UXF = 2.23t,. There is no
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Figure 3.3: Numerical results for the correlation gap: (a) The gap for a (5,5) tube

as a function of U. The solid line is the H-F result.

The dashed line is the fit to

cexp(—Atp/U) (¢, A are constants). (b) The gap as a function of the CNT size n at
U = 2ty. The H-F results (o) are fitted to cexp(—An) (solid line) (¢) The same plot
for U = UE = 2.23ty. The data fits the function c¢/n.
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exponential decay beyond UZ¥. In particular for U = UZ¥ we can fit the data
to ¢/n, a power law. Combining equation (3.25) and the numerical fits we can
write down the following scaling law

2
A/ty =c¢/n exp {—%hvp n(1/U — 1/U5F)} for U < UHEF (3.26)

with ¢ ~ 1.01 and 27/a hvp = 7v/3ty ~ 5.44ty. UZF is identical to the critical
value in the H-F approximation to open a gap in the two—dimensional honeycomb
lattice. We see that if U is approaching UX¥ the exponent is going to vanish and
we are left with a power law A = ¢ty /n.

The result of Balents and Fisher (3.20) is recovered in the limit U < UZF but
for values of the interaction strength close to U2 the gap is strongly enhanced,
even for large n.

3.6 RG—-argument

Now we apply an RG argument to show that the scaling law (3.26) is not just
an artefact of H-F theory. The basic ideas of the RG approach are developed in
appendix B and we are going to use them to find the scaling equation of the gap.
In the following we will adopt an even more extreme point of view than Balents
and Fisher: We describe CNT as a purely one-dimensional system with hopping
t and effective “on-site” repulsion U/(2n). The interaction is reduced since the
electrons can disperse around the circumference of the tube. The shortest way
around the circumference of a (n,n) armchair CNT passes by 2n sites. This
allows us to use the RG equations (B.57-B.59) with g;({ = 0) = U/(2n) > 0,
t = 1,...,4. In figure B.6 we see that the flow corresponding to these initial
couplings falls on the separatrix 2g, — g1 = |g3| and goes to strong coupling. As
we have noted there the charge sector and the spin sector completely decouple.
Here we are interested in the charge sector only. The g, interaction was dropped
with the remark that it only renormalises the Fermi velocity [44]:

g4

Vp — Ve = Up + 3h) (3.27)
Then (B.57-B.58) give one flow equation in the charge sector:
dgs a1 ,
— = — 3.28
A~ 7o (3.28)

By reducing the energy cutoff Ey(l) = Eye~', the flow equation scales towards
the strong coupling region. In this region the RG equations are no longer valid
and the flow has to be stopped. It has been shown by Larkin and Sak [45] for
the Hubbard chain that this should occur when the energy cutoff Ey(l) equals
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the energy scale of the charge gap A. Following this description, the flow of the
running coupling constant has to be stopped at the first relevant new energy scale
which enters when we lower the cutoff. In the usual one-band picture this energy
scale is just the kinetic energy ~ t. But in the present problem there is another
energy scale entering before: It is the gap to the next band which is of order
wt/n. Thus we set the boundary conditions to

gs(lo) = go=U/(2n) (3.29)
93(¢/xA/(hwe)) = g = 7t/n,
and we get
Inlg T 9o 1
_ / d (1n[E (1) Eo)) = "o, / dg ~. (3.31)
Infa/xA/(hvc)] a e g

Doing the integration and neglegting the prefactors we obtain

A~ exp[aliv. (—1/g0 +1/g.)]

~ exp[—2"/afivpn (1/U — 1/v)] (3.32)
with X
t a 1\
=———— ~ 14.87t. .
7 (27r 4 th> 87 (3:33)

Thus we find the same exponential form as in the H-F calculation. If one would
like to go further and wishes to determine the functional dependence of the pref-
actor and a more accurate estimate of v one would have to

1. include two-loop contributions [45] which account for the /U/t factor
present in the Hubbard chain.

2. determine the vertex corrections to the coupling constants, taking into ac-
count contributions coming from intra and inter band interactions [44].

To complete such a program is unfortunately very cumbersome.

3.7 Application to real CNT

In this section we want to discuss the application of the scaling law of the gap
A ~ exp[—2m/a hvpn (1/U — 1/Uy)] (3.34)

to real CNT. This scaling was obtained equally from a H-F (section 3.5) and
a RG (section 3.6) calculation. We recall that U, is identified with the critical
value of the interaction strength to open a gap in the two—dimensional honeycomb
lattice. The H-F value UHF = 2.23t; is a lower bound to the exact value since
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Figure 3.4: The correlation gap as a function of interaction strength for (5,5) CNT
(dot-dashed line), (10,10) (dashed line) and the 2D-limit (solid line).

H-F neglects all quantum fluctuations. Luckily enough, the Hubbard model on
the honeycomb lattice has been extensively studied by Monte Carlo simulations,
and although the gap could not be calculated, the critical value U, has been
determined by looking at the development of magnetic long-range order [39-41],
and the value is around U, = 3.6¢. This is clearly larger than the Hartree-Fock
result, but the order of magnitude is the same.

Figure 3.4 summarizes our results obtained from H-F calculations on the
correlation gap in armchair CN'T. We observe that there is an exponentially small
gap only if U < U,,, even for large n. U, is a critical value for the interaction
strength. For values U < U, the correlation gap follows an exponential scaling
law. For U > U,, the gap is growing linearly. Thus the actual value of the charge
gap in CNT depends crucially on the parameter U. What we need here is the
atomic value for carbon. The fact that graphite, a system of very weakly coupled
honeycomb planes, is a semi-metal and not an insulator just tells us that U does
not exceed U,... Besides, values often quoted for fullerenes are of no help since
they concern the molecule Cgy and not the atomic value for carbon.

As we have discussed in chapter 2, ty can be extracted from ab-initio calcu-
lation and experiments. It is known to be ) = 2.5-2.7 eV. The on-site repulsion
U of atomic carbon in CNT is difficult to estimate. The only values we can cite
are the ones used in model calculations for other carbon isomers to fit best the
experimental data available. In small conjugated molecules the Coulomb inter-
action between p, orbitals is unscreened and good results are obtained using the



26 CHAPTER 3. THE CORRELATION GAP IN CNT

Ohno potential [46]

U
Vi(r)= W (3.35)

with U = 11.13 eV and ao = 1.29 A. For larger systems screening will become
effective, and the effective on—site repulsion will diminish. For instance, in ref-
erence [47] values between 2 < U/ty < 3 were used for polyacetylene which is a
one-dimensional isomer. In the fullerene family, calculations for Cgy suggest val-
ues between 5-12 eV [48,49]. For graphite not much is known. In reference [50]
estimates between 6 eV < U < 8 eV are used. These estimates are based on cal-
culations done for coronene molecules [51] which can be considered as a fragment
of the graphite layer.

Considering all the values of the on-site repulsion quoted in the previous
paragraph, we believe that a value of U close to the critical value U, =~ 9 eV seems
plausible. This would mean that the exponential decay of the gap is strongly
suppressed. Let us estimate the gap from the H-F equation (3.26). As an example
we look at a (10,10) CNT assuming an interaction strength of U = 2¢. In this
case we obtain for the gap a value of 0.006¢, which corresponds to an energy of 15
meV and a temperature of 170 K. For smaller CNT the gap is even larger. Thus
a correlation gap of a few meV should be present and a gap of such magnitude
could in principle be observed experimentally.

Indeed gaps of order meV have been observed in scanning tunneling mi-
croscopy [29] and in two— [52] and four—contact [53] resistivity measurements.
These gaps were attributed to curvature effects (¢f chapter 2), and other tubes
were observed to stay metallic down to temparatures of 5 K. This apparant dis-
crepancy between experiments and our theory is resolved by noting that all the
currently available CNT seem to be heavily self-doped®. Of course our results
apply only for SWCNT at half-filling. Away from half-filling metallic behaviour
is expected.

3.8 Applying uniaxial strain

As an application of our scaling law (3.26), we calculate the change in the corre-
lation gap of armchair carbon nanotubes with uniaxial elastic strain. We predict
that such a stretching will enlarge the correlation gap for all carbon nanotubes
by a change that could be as large as several meV per percent of applied strain,
in contrast with pure band structure calculations where no change for armchair
carbon nanotubes is predicted.

6This experimental fact was brought to our attention by Lzl Forré. He believes that the
Fermi level is usually shifted quite far, so that several bands are crossed. See also references
[54,55].
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Figure 3.5: (a) Real space representation of a zigzag CNT and the dispersion relation
near the Fermi level. Solid lines show the tight-binding bands before and after stretch-
ing, respectively. (b) Experimental geometry for applying strain and gate voltage with
an AFM tip, and measuring conductance with gold contacts. Lg is the distance between
anchoring points; z is the distance the center of the CNT is displaced from the plane
of the anchoring points. Figure and caption are reproduced from reference [58].

Experiments show that CN'T' can sustain large mechanical strains and can be
deformed elastically up to bendings of order 19° which corresponds to a strain
along the tube of 5.5% [56]. Experiments and numerical calculations indicate
a large Young modulus of order 1TPa [57]. The interaction of mechanical and
electronic properties has been studied at room temperature in two experiments
[56,58] where it has been shown that uniaxial stress can change dramatically the
electronic structure of CNT. As it is shown in figure 3.5, in these experiments a
CNT has been suspended between two metal electrodes on SiO,/Si substrates. To
apply uniaxial stress along the tube the tip of an atomic force microscope (AFM)
was used. The tip was lowered to push at the center of the CNT. The AFM allows
to measure simultaneously the deflection and the conductance of the CN'T. The

strain can be defined as o = [\/422 + L3 — LO] /Lo where Lg is the suspended

length of the tube and z is its vertical deflection. In the first experiment [56] it
was shown that changing the strain from 0% to 3.2% let the conductance of a
metallic CN'T drop by two orders of magnitude. Both the mechanical and the
electronic properties were observed to be completely reversible. More recently it
was demonstrated [58] that not only metallic CNT become less conducting when
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applying stress but also inversely that some samples modified their behaviour from
semiconducting to metallic. These experiments show convincingly that uniaxial
stress applied to CNT changes their electronic properties.

Theoretically, the effect of strain on the electronic properties of CNT has been
studied in band structure calculations, either analytically, using a tight—binding
approach, or numerically by density functional theory [26,59-63]. In particular it
has been shown that, depending on chirality, uniaxial stress can increase, decrease
or not alter the band gap.

With the help of our previous results, we are able to include the effect of
electron—electron correlations in these calculations. We compute in detail the gap
as a function of applied strain and we compare our results to the one—electron
band structure calculations in the literature. Again we use the Hubbard model
with on-site interaction only, and the hopping integrals ¢;; are restricted to near-
est neighbors (¢f equation 3.7). In general the hopping integrals can have different
values in every direction, say ¢, t; and ty (cf figure 2.1). We make the reason-
able assumption that an applied strain will uniquely change the hopping integrals.
Then these three hopping amplitudes and the one—site interaction strength U are
the four parameters entering into the model. Choosing some values for them we
can determine the charge gap from the H-F equation (3.24) for a given (n,m)
CNT.

As discussed in chapter 2 armchair CNT is the only chirality where no band
gap opens. Further we will assume that, if there is no applied strain, all the
hopping amplitudes are equal to ty,. Of course this is only an approximation
since we neglect the curvature of the tube. But for armchair CNT the curvature
induces only two different hopping amplitudes, namely ¢, and | = ;) = {y.
Due to this symmetry, no gap is opened from the band point of view. However
we will show that there will be a gap induced from electron—electron correlation
effects for all CNT, even if they are of armchair type.

Following references [59,60] we use Harrison’s phenomenological law to relate
the hopping parameter ¢y of the undeformed CNT to the ones of the elastically
deformed ONT [22] t; = t, (r}/r;)* where r} and 7; respectively, are the bond
vectors before and after the deformation and ¢ =1, 1, 2. Projecting these
vectors along the directions of T' and C},, we can write for an elastic uniaxial
strain along the tube: rip = (1 + o)rip and ric, = (1 — vo)r}, where v is the
Poisson ratio. The Poisson ratio has been computed numerically [2] and measured
experimentally for graphite to be about v = 0.2 [64].

We verified that for (n,n) CNT with n = 5,...,30 and for an on—site repul-
sion in the interval [UXF — 0.7ty, UZ¥] the scaling law (3.26) is still valid when
uniaxial stress o is applied:

Eg/tH = c¢/n exp {—OéTL(tH/U — tH/UC}TIF)} (3.36)

The correlation gap, including the strain induced gap, is denoted by E,. The
prefactor ¢ varies only slightly from its original value ¢ = 1.01 when we change
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Figure 8.6: Numerical results for the dependence of the parameters a and UH Fin equa-

tion (3.36) on t, /t: (a) « is extracted from fitting the H-F results to the scaling law
(3.36). (b) UZE is calculated by evaluating xo = Jocode 2(| |), the bare staggered static
susceptibility, and where p(e) is the tight-binding density of states of the honeycomb
lattice. We have shown in appendix A that H-F theory gives Ul = Xo L
the ratio ¢, /t|. The variation of o and UX¥ on the applied strain is much
more significant and it is shown in figure 3.6. We observe that U/ increases
with applied strain. From equation (3.26) we can see that this would imply
that the charge gap diminishes since a U far from the critical value disfavours a
large gap. However the simultaneous decrease of the parameter a overcomes this
tendency and when both effects are taken into account, the charge gap increases
approximately linearly with the strain with a slope that depends on U. For small
applied strain

t/ty=14+¢ with <1, (3.37)

one can compute the change in the band structure around the Fermi points (cf
equation (2.12)):

esa(kp + q) = f 31 <||q||+s(qr|_||%)) +0E ) (3.38)

We see that this calculation still predicts a metal. Further one remarks that strain
does not give just a renormalisation of the Fermi velocity, but it deforms the cone
of dispersion. In the limit ¢, /t; — 0 we get the one-dimensional behaviour
where any infinitesimal electron—electron interaction can open a gap and « takes
its value known from the Bethe Ansatz solution, i.e. UM tends towards zero
and « to 2m. The other limiting point is ¢, /¢ = 2 where the two Fermi points
collapse into one and a band gap appears for values ¢, /t| > 2 which makes the
system insulating already for U = 0.
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Figure 3.7: The variation of the correlation gap for different (n,n) armchair CNT is
plotted when a strain of 1% is applied (U = 2t;3). The plot on the left shows the
variation of the gap Fy(o = 1%) — E4(0 = 0) as a function of n. n is proportional to
the tube diameter. The right hand side shows the same variation as a function of the
original correlation gap at zero applied strain Eg = Fy(0 = 0). Egy is calculated for
different armchair CNT, n =5, ..., 26.

To compare our results to experiments we plot the variation of the gap for
armchair CNT as a function of its size when a strain of 1% is applied (cf figure
3.7). The on-site interaction U is set to 2ty. As the hopping amplitude ¢y has a
large value of 2.5 eV neither the correlation gap at o = 0 of order 10 meV nor
its variation of order meV per percent of applied strain can be neglected. Taking
again the (10,10) CNT as an example, we can read off from figure 3.7 that the
energy gap at zero strain is 15 meV which corresponds to a temperature of 170
K and that a strain of 1% induces a rise of 4 meV in the gap.

How does this compare to the effect of strain to the band structure? For small
strains the following formula has been derived from a tight—binding calculation
[59]:

dE
d—g =sgn (2p + 1) 3ty (1 + v) cos 30 (3.39)
o

where p € {—1,0, 1} is defined by the equation n—m = 3¢+p (q is integer). This
formula has been used to interpret the experimental results in Ref. [58]. It follows
from it that the change of the band gap with applied stress can be either positive
or negative, depending on the value of ¢, or in other words the chirality. The
maximum variation is achieved for zig—zag CNT (chiral angle zero) and is about
+85 meV/%. The maximal variation of 85 meV /% is one or even two orders of
magnitude larger then the variation of 4 meV /% which we derived from electron—
electron correlation. However, for armchair CNT (0 = 7/6) equation (3.39) and
ab initio calculations predict that no gap opens up with applied strain. Then
correlation effects are the only reason why one should have a gap and this gap
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Figure 8.8: Minimal strain o,,;, necessary to open a gap of 50meV as a function of
the on-site repulsion U. The calculation was done for a (10, 10) armchair CNT.

increases by applying uniaxial strain at a rate of several meV/%. In our previous
example of the (10,10) CNT, we have seen that one percent of strain can change
the correlation gap by about 30% of its original value.

To summarize, for semiconducting CN'T' with large band gaps the electronic
structure at half filling is well described within band theory and correlation effects
give only small corrections. But for CNT with a small gap (of several meV or less)
correlation effects cannot be neglected. This is especially true for armchair CNT
where no band gap at all is predicted but they should develop a measurable gap,
induced from correlations alone, if sufficient pressure is applied. This conclusion
is illustrated in fig. 3.8. We plot the strain which is necessary to open a gap
of B, = 50meV as a function of the on-site repulsion U for a (10,10) armchair
CNT. We see that if U is not too far from U, this quite large gap would be
realisable experimentally and could be seen in low temperature data.
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Chapter 4

Aharonov—Bohm oscillations in
CNT

4.1 Summary

This chapter was initally motivated by the experimental observation of oscilla-
tions of unexplained periodicities in the magnetoresistance in CN'T when a strong
magnetic field parallel to the tube axis is applied [53,65-67]. First we will give
an overview of these experiments. Then we start to investigate this theoretically
by including a magnetic flux into the tight—binding model of chapter 2 which
allows us to exhibit the effects which are present in the one—electron picture.
This is done by calculating persistent currents and the conductivity stiffness in a
geometry (cf figure 4.3) not treated before which seems most relevant to us for
experiments which look at electronic transport in tubes with applied longitudinal
magnetic field. Successively we include disorder and we outline possible scenarios
how to treat electron—electron interactions.

Obtained results:

e In a tight binding calculation perfect tubes at half-filling show always in-
sulating behaviour when a magnetic field is applied longitudinally except
around some special fluxes where they become metallic. This happens at
¢p = 0 for armchair CNT and at ¢p = /3¢y, 2/3¢y for zigzag CNT be-
cause ¢p will shift the positions of the lines selected in k-space, and each
time such a line crosses a K point the bandgap closes. There are however
persistent currents around the circumference which are responsible for the
large orbital magnetic moment seen in experiments.

e When shifting the Fermi level below half-filling, the conductivity stiffness
is always finite (and therefore metallic). The behaviour of the conductivity
stiffness versus ¢p is non universal, i.e. depending strongly on the filling
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and also on chirality.

e Experiments show more universality, with resistivity maxima at zero and
¢o/2 flux, suggesting diffusive transport. We showed that disorder can
account for such a behaviour. We used the Anderson model to show that the
even harmonics of the persistent currents are highly suppressed (Altshuler—
Aronov-Spivak effect).

e No signs from the observed small period oscillations have been found. Thus
we believe that it should be an effect induced by electron—electron correla-
tions only.

4.2 Experimental overview

In the subsequent sections we will show theoretically that a magnetic field parallel
to the tube axis induces ¢y = h/e Aharonov—Bohm (AB) oscillations (section 4.3)
and ¢ /2 Altshuler—Aronov—Spivak (AAS, section 4.5) oscillations due to impurity
scattering. These oscillations have been observed experimentally for CN'T. The
pioneering work has been done by Bachtold et al. [65]. They achieved to contact
a single MWCNT to four electrodes to measure the magnetoresistance at low
temperatures as a function of the applied field. Their results are shown in figure
4.1. They interpreted their measurement as an observation of the AAS effect,
which is the “fundamental” period observed corresponding to ¢o/2. For all their
tubes the radius extracted from this period is in good agreement with the one
infered from AFM measurement. The authors concluded that this gives strong
support that only electrons in the outer shell contribute to conduction. Moreover
they observed a very puzzling feature: for some samples there are superimposed
oscillations with a much smaller period of about ¢/10, as it is shown in figure
4.1. They seem to be a characteristic feature in magnetoresistance measurements
in CNT, since similar further experiments show also fractional periodicity [66,67].
This effect does not seem to be restricted to MWCNT, Sagnes et al. [53] have
observed oscillations in SWCN'T in pulsed magnetic fields of strength up to 35 T.
These CNT had a diameter of 2 nm and thus the AAS period would correspond
to a field of 658 T, but the observed oscillations had a period of about 14 T.
Although this effect of fractional periodictiy shows up in quite a few experiments,
unfortunately, there exists no systematic study which clarify the dependance on
tube sizes or chiralities up to now. However the maxima in resistance seem to be
systematically at zero flux and ¢¢/2. This is observed in all experiments which
supports further the assumptions of diffusive transport and the AAS effect. And
as it should be, all the measurements are symmetric with respect to the sign
change of the magnetic field.

More recently Zaric et al. [68] have studied SWCNT in high longitudinal
fields (up to 45 T) by absorption and photoluminescence measurements. They
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Figure 4.1: “Magnetoresistance measured for a MWNT in a parallel magnetic field B.
The general decrease of the resistance from 0 T to ~9 T and the subsequent increase
to a possible second maximum (beyond the magnetic field range of the experiment),
is assigned to the fundamental oscillation of the AAS effect. In addition, a superim-
posed oscillation with a much smaller period is clearly visible. Positions of maxima in
resistance for this oscillation is periodic with period A Byg,g; = 1.8T. The peak positions
agree for both temperatures.” Caption and figure were taken from reference [65].
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advertise their results as the first verification of the modified Bloch’s theorem
(4.4). Further they show that their measurments agree with the field dependance
of the tight-binding energy gap (4.21-4.22).

At the same time Coskun et al. [69] observed Aharonov—Bohm ¢y = h/e os-
cillations in short MWCNT by means of differential conductance measurements.
Most excitingly they found an interconversion between semiconducting and metal-
lic states. They claim to succeed in explaining their results using a tight—binding
calculation of doped SWCNT (¢f section 4.4).

Another interesting experiment was done by Minot et al. [70]. They measured
the orbital magnetic moment of small diameter individual CNT in the presence of
a coaxial magnetic field. The observed moments are much larger than the Bohr
magneton due to circumferential persistent currents (cf section 4.3).

4.3 The Peierls phase and the tight—binding en-
ergy bands

Before discussing CNT in a magnetic field, let us start with some general remarks
about gauge invariance and the derivation of the (London-)Peierls phase'. Ignor-
ing lattice vibrations and relativistic corrections, the Hamiltonian for N electrons
in a crystal when a classical magnetic field is applied is given by:

~

N
H = (ps — eA(Fi, 1))

=1

Vo(7;) periodic potential of the lattice

_I_
M= ¥~

N
+ Z Vimp(7;)  interactions with impurities
i=1

N
+ Z Ve—e(?i — 7j)  electron—electron interactions (4.1)
7,7=1

We note that A is the vector potential of the magnetic field and such a Hamil-
tionian is gauge invariant, meaning that all physical quantities are independent
of the gauge x chosen:

A(r,t) = A(r,t)+ Vx(r,t) (4.2)
) = im0 ) (4.3)

!This phase factor was originally introduced by Peierls (Z. Physik 80, 763 (1933)) and
London (J. Phys. Radium 8, 397 (1937)). The derivation given here follows references [71]
and [1].
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Forgetting about impurities (which break the translational symmetry) until sec-
tion 4.5 and about electron—electron interactions until section 4.6 (which make
the problem infinitely more complicated), we will show how gauge invariance is
translated into the tight-binding model of chapter 2.

It was shown by Luttinger [71] that in a slowly varying magnetic field the
Bloch functions can be expressed as

U(k,r) = % gexp (zk: -R; + i%Gi(r)) o(r — R;) (4.4)

where R; is a lattice vector, L the total number of lattice sites, p(r — R;) a
localized “atomic orbital”, and G a magnetic flux phase factor defined by

Gi(r):£A-d§E/Old)\(r—Ri)-A(Ri—i-)\(r—Ri))- (4.5)

How does the Hamiltonian act on these new Bloch functions 7

exp (zk: -R; + i%Gi> o(r — R;)

N
N | 1. )
HY = \/E;Lm(p cA) —i—izzl%
N
(Bp—e(A-VG) +) V,

=1

1
2m

= % ;iexp (zk R+ i%@)

One would like that the phase factor G; cancels the vector potential. When one
computes VG;, as it was done in appendix I of reference [71], we see that this
happens partially:

VGi(r) = A(r) + /01 AMA(r — R) A H (R + \(r — R;)) (4.6)

To get rid of the second term we have to make the following two assumptions:
1. The magnetic field is slowly varying compared with the lattice constant a.
2. o(r — R;) is localized at 7 = R;.

Then we can write?

p(r—R;). (47

1

9
—p +§ 174
2m — P

2Citing Luttinger [71]:"Unfortunately it seems rather difficult within this formalism to make
an estimate of the error involved here, and therefore it is impossible to say exactly what the
conditions are under which equation (4.7) is valid.”

. 1 ) )
HY ~ ﬁ;iexp (zk-Ri—f—z%Gi)

p(r —

R))
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Now we are able to compute the tight—binding matrix elements:

Hyw = <\p(k) ‘H‘ \If(k:’)> - % S tijexp <—z' (k-Ri— k- R;) — z% (Gi — Gj))
R, R,

(4.8)
As a magnetic field breaks translational invariance, Bloch functions with different
k vectors are mixed.

Now we will concentrate on the experimental situation described in section
4.2, namely when a constant magnetic field is applied parallel to the tube axis.
We recall from chapter 2 that the vector T' lies along the tube axis and Cy
describes the circumference of the tube (c¢f figure 2.3). Then the vector potential
can be chosen to be

¢n

= ec
1G]l

where ec,, is the unit vector in the direction of Cy, and ¢p = [ B-do = § A-d€ is
the flux flowing through the tube. It follows immediately that all the longitudinal
modes (2.6) are unaffected. They correspond to the one-dimensional translation
and are therefore still good quantum numbers. By using the vector potential to
determine the flux phase we obtain

(4.9)

RS S AP _ 9 . _Ry.
Gilr) = ||Ch||2/0 (r=R)-Cyd = Els(r— R -G, (4.10)
and its difference

Gilr) = Gy(r) = T (B~ R - Cu (411

This phase can be absorbed by shifting all the transverse k modes (2.7) by a
constant value:
¢n

Ch-k=2mp+2n 4.12
" TCulléo (412
¢p is called the magnetic flur quantum and defined by
h
¢ = — = 4.1357 x 107+ Tm?. (4.13)
e

This shows that a constant longitudinal magnetic field can be included in a tight—
binding calculation just by shifting the transverse momenta and the tight—binding
matrix elements become very simple

. 2
Hkk:’ = ;tz] exp |:—Z <k7 + ||C7:T|Bq/)0 eCh) . (Rz — Rj):| 6k:,k:’- (414)

Thus the energy dispersion (2.2) is still valid but the transverse modes are now
selected by equation (4.12).
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Figure 4.2: A section of a CNT in real space. We put at each link ¢, or #y a flux
¢1 and at each link Zy a flux ¢. An electron which circulate completely once around
a hexagon picks up zero flux, ¢ by construction. ¢; and ¢o are determined by the
applied longitudinal field B and ¢, as shown in figure 4.3.

Of course, the gauge chosen in equation (4.9) is not the only possibility, in
the tight—binding model one can make any local gauge transformation on the
annihilation (and creation) operators of the form

¢; — ¢;exp(ig;) (4.15)
which satisfies two conditions:

1. Each time an electron moves around the circumference, it picks up a flux

Db

2. As the magnetic field is purely longitudinal, the flux passing through any
single hexagon ¢ stays zero.

In our calculation we will chose the gauge shown in figure 4.2: We put at each
link ¢, or ¢y a flux ¢; and at each link ¢, a flux ¢,. This gauge satisfies evidently
condition 2, and condition 1 can be written as

2ng1 +m (o1 — ¢2) = bp. (4.16)

There are two unknown phases ¢, and ¢,, and only one linear relation between
them. Therefore we still have some liberty how to chose them. We will use
this liberty in the next section to study persistent currents along the tube axis.
If we impose periodic boundary conditions the nanotube becomes a torus and
persistent currents will induce a flux ¢, through the hole (or vice versa) as it is
shown in figure 4.3. The flux ¢, will fix completely the phases ¢; and ¢,:
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Figure 4.83: Periodic boundary conditions transform the tube into a torus. B is the
longitudinal field inside the tube and ¢, is the flux inducing (respectively coming from)
persistent currents.

N (2t191 + t2 (p1 — ¢2)) = ¢, (4.17)

As before, we consider always the limit of very long tubes, 7.e. when N is large.
With these definitions the tight-binding calculations become trivial again, and
we can just use the result of chapter 2, in particular formula (2.2) is still valid if
we redefine the hoppings to

7. = tpexp(i2mpy/po),
T = t1|| exp(—i27r¢1/¢0), (418)
T = tg” exp(i27rq§2/q§0).

Then the tight—binding dispersion for graphene becomes

Egd(Oél, Ay, d)l; d)g) = :I:( ti + t%” + t%“ + 2tlt1“ COS(OZl — 47T¢)1)

+2t 1ty cos(ay + 27 (2 — ¢1))

1/2
+2t )ty cos(ay — oy — 27 (P1 + d)g))) . (4.19)

From this equation it is not clear that the energy will show Aharonov-Bohm
oscillations in the applied flux ¢p of period ¢y. But it can be seen when we apply
local gauge transformations. As an example let us consider (n,0) (zig—zag) CNT,
then the flux ¢, is given by 2n¢; = ¢p. For simplicity we put ¢, = 0 which
implies ¢o = 0 for zig-zag CNT. The series of local gauge transformation shown
in figure 4.4 will put the whole flux of 2n¢, at the last link of each zig-zag chain,
and all other links have zero flux. This is equivalent to imposing the following
boundary conditions for each chain:

Cioni1 = €—i27r¢>B/¢0 Cit (420)
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T

Figure 4.4: A sketch of succesive local gauge transformations c¢; —
cjexp(i2mjr/éB) j =1,...,2n where j indicates the site on a zig-zag chain. These
transformations are carried out on each chain.

Thus all quantities derived from the tight—binding Hamiltonian show Aharonov—
Bohm oscillations of period ¢g. As a manifestation of the Ahoronov—Bohm oscil-
lations we show in figure 4.5 the tight-binding band gap as a function of applied
magnetic flux ¢p for a (5,5) armchair and a (5,0) zig-zag CNT. We see that
the gap oscillates, as predicted, with a period of ¢y and there is a field induced
metal-insulator transition. This happens because ¢p will shift the positions of
the lines selected in k—space, and each time such a line crosses a K point the gap
closes. The tight-binding gap can be approximated by [72]

ty2Bels )< gp < ¢y)2
App) =14 Hum™ ™ 7 P5 < do/ (4.21)
tod—t(l_%) ¢0/2§¢B§¢0
if n —m = 3¢ (q integer) and
Wiall 95l (< gy < g2
R I 422
ot |5 — 52| /2 < dB < ¢o

if n —m = 3¢ & 1. Figure 4.5 shows that these formulae give very good results.

4.4 Persistent currents

We introduce the persistent current J and the conductivity stiffness D which will
be the central quantities of study in this chapter. They have the advantage that
one can include effects of quantum interference more satisfactory than in a per-
turbative calculation for the conductivity. The relation between these quantities
will be shown in equation (4.32). To fix the ideas let us consider the Hubbard
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Figure 4.5: The tight-binding energy band gap (solid line) is shown as a function of
magnetic flux ¢p passing inside the tube. The doted lines are the analytical estimates
given in equations (4.21) and (4.22).

model
H = Z <TijC;vrang —+ hC) + UZTLZ'TTLN (423)
(ij)o i
with the same parametrization of the magnetic flux as before by ¢; and ¢y (cf
figure 4.2 and equation (4.18)). For the moment we will only consider the per-
sistent, current induced along the tube by ¢, which is defined as the response of
the ground state energy to a finite flux®
~ dEp
~dg.’
We consider again the example of (n, 0) zig-zag CNT. For simplicity we set ¢p = 0
which gives us ¢; = 0 and ¢, = 2N ¢q:
J_ dEy d¢p 1 dEp
~ dgy dg, 2N dgy

For small ¢o we can develop the Peierls phase (4.18) and we find the perturbed
Hamiltonian

J (4.24)

(4.25)

H' = H(dy = 0) + 21y 1 <27T¢2

2
Wﬂﬁz 5 W) Ty + O(d)g) (4.26)

where

Jos = 11ty Z (C}gcwzn,(; — h-C-) (4.27)

(Gi42l),0

3cf e.g. reference [73], p. 225.
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and

T2|| = tQH Z (C;[UCH-QH,U + hC) . (428)
(i,i+2||),0

Now we calculate (H') = (0| H' |0) the average in the ¢, = 0 ground state |0). If
we assumme that (0| j, [0) = 0, we obtain

21,
o

D is the conductivity stiffness and in second order perturbation theory it is given

Fo(62) — Eo(és) = D ( ) 1O, (4.29)

by
Y 101 g, )]
D=|— 2 4.
() [sen-x =it a0
where T is the kinetic energy. Then for small ﬂux we can write
d?E,
D=—_ and J=2D® (4.31)
dP? .20

wher @ = 27¢,/py. Specifying ¢, to @2 exp(—iwt), one can use the Kubo for-
mula (3.2) to compute the small-w behaviour of the real (dissipative) part of the
conductivity [74,75]:

Re ()] = 22 [m( + (o )me 3 (B — B0 — %)

(4.32)
Thus D is a measure of the strength of the Drude peak in the conductivity.

As a first example of persistent currents in CN'T we plot in figure 4.6 the
currents induced by ¢p only. These are the currents around the circumference
responsible for large orbital magnetic moments predicted by theory [72,76] and
confirmed in experiments [70]. In figure 4.6 we recognize the difference in signs
of the currents in zig-zag and armchair CN'T. Small zig-zag CN'T show an extra
oscillation which is suppressed for larger tubes. Such circumferential persistent
currents have also been studied by Szopa et al. [77,78] and Sasaki et al. [79].
We will not further study these currents since we believe that the geometry most
relevant to magnetoresistance measurement is the one shown in figure 4.3 since
it enables us to study currents along the tube axis.

Persistent currents in CNT tori have also been investigated in references [80,
81] for the case ¢p = 0. These calculations are relevant to the experiment of
reference [82] where rings of SWCNT could actually be built and investigated.
But what we want to study here is slightly different. We are interested in the
dependence of the persistent currents parallel to the tube axis on the flux ¢pg
which passes through the tube. This persistent current is induced by a virtual
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Figure 4.6: We show persistent currents around the circumference of the tube induced
by a coaxial magnetic field for zig-zag (left) and armchair (right) CNT.

0.27F—— - R
0.12 s
g ©0) 026
i UURN (6,0)
0.08} 0.25
“ 0.06} 4 Co24
0.04}, 1 023 — 38 filling
0.02}. ' ----1/4 filling
' 0.22
% o2 08 1 0 02 08 1

04 06 04 06

Figure 4.7: We plot the conductivity stiffness D, as defined in equation (4.31), at
half-filling (left) and below half-filling (right).

flux ¢,. Thus the flux ¢, helps us to study currents along the tube axis which
would not have been present with ¢z only. It is straightforward to calculate
numerically the conductivity stiffness in the tight—binding model of the previous
section. The results are shown in figure 4.7. We discuss first the case of half-
filling shown on the left hand side. We see that the conductivity stiffness is only
non-zero if the tube is very close to a metallic state. For example the (7,0) CNT
is insulating at zero flux but becomes metalic at 1/3 ¢y and 2/3 ¢g. The (6,0) CNT
is only conducting at zero flux. This agrees perfectly with the previous results
shown in figure 4.5.

Such a behaviour has been observed in experiments only for very short tubes
and when the chemical potential could been tuned by a gate voltage [69]. In
all other experiments such an interconversion between metal and insulator has
not been observed. We noted already in chapter 3, and we note it here again,
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all available CNT seem to be heavily hole-doped. Therefore we show in the
right plot of figure 4.7 the conductivity stiffness of a (6,0) tube for two different
fillings below half-filling. We observe that its behaviour depends strongly on the
filling and also on chirality (not shown). This is a feature which is not observed
in experiments. Experimental investigations [65-67] show a somehow universal
behaviour with resistivity maxima at zero and ¢y/2 flux. We will show in the
next section how disorder can account for such a behaviour.

4.5 Disorder

The magnetoresistance measurements presented previously seem to be dominated
by diffuse tranport showing the Altshuler—Aronov—Spivak (AAS) effect [83]. The
AAS effect was originally introduced in 1981 using a diagrammatic perturbation
expansion in 1/(kgl) where [ is the mean free path. Now we want to give an
intuitive picture of this effect, based on a semi—classical argument by Larkin and
Khmelnitskii [84].

The semi-classical propagator* to go from a space point 1 to another point 2
is given by the following sum over classical paths j

Ap = Ajer¥ (4.33)
J

where S; is the classical action along the path j and the coefficients A; are due
to the gaussian quantum fluctuations. Then the probability to go from 1 to 2 is

Py = |Ap)* = Z |Ai|* + ZAZAJ- e (Si=S3), (4.34)
i i#j

The interference terms will usually cancel upon “impurity ensemble averaging”.
This corresponds to averaging over microscopic realizations of systems with the
same macroscopic properties (e.g average defect concentration). Of course in
real experiments there is only one realisation of the disorder, but in general it is
assumed that large enough systems are self-averaging themselves automatically.
However if we have time reversal symmetry, i.e. no applied magnetic field, there
is a large class of trajectories whose contributions do not vanish upon ensemble
averaging. These are the pairs of time reversed paths that start and end at the
same point. Since these pairs of amplitudes have the same phase they lead to
an enhanced probability to return to the initial point, hence implying smaller
diffusion and a negative correction to the conductivity. The application of a
magnetic field destroys time reversal symmetry and consequently destroys also
the phase coherence of the time reversed paths. This translates into a minimum
of the conductivity at ¢p = 0. In fact the interference between two time reversed

Lef reference [85] for details.
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paths leads to a phase factor of 4w¢yz/de. Thus the conductivity will oscillate
with the AAS period ¢,/2. If we have a disordered system of many rings (or a
cylinder) therefore one always expects to find oscillations of period ¢y/2 and the
harmonics corresponding to gy (¢ integer) to be suppressed®.

We will show that we can find evidence for the AAS effect in CNT from
microscopic model calculations. The model we use is the Anderson model [87]

H= Z <TijCIO.ng— + h.c.) + Z eiczgcw (4.35)

(i.)o io

which is the nearest neighbour tight—binding model studied previously and an
additional term due to disorder. The disorder is modeled by on-site energies ¢;
chosen randomly in the interval [-W/2, W/2]. This random energies destroy com-
pletely the translational invariance of the model and it has been argued already in
Anderson’s original paper, and confirmed afterwards in many calculations, that
large disorder (large W compared to the bandwith) would lead to localization
of the electronic states and eventually to a metal insulator transition at some
critical disorder strength W,.% This scenario happens in three space dimensions
but if we lower the dimensionality the effect of disorder on free electrons becomes
even more pronounced. In two dimensions it is predicted that free electrons are
always localized but the localization length can be very large [88]

Eloc ~ lexp(ngl) (436)

In contrast in one dimension the localization length is of the same order as the
mean free path [, i.e. the electrons become localized already after a few back
and forth scattering impacts. To summarize, in one dimension some simple back
and forth bumping leads to localization whereas in higher dimensions much more
subtle interference effects can occur. We discussed the AAS effect as an example.

CNT live between the one- and two dimensional world and we will try to
study the interference effects due to disorder here. The plots in figure 4.8 show
that for large enough disorder W the even harmonics of the Fourier decomposition
of the conductivity stiffness

D= Z D,, cos(n2mpp/do) (4.37)

n=0

are highly suppressed upon impurity ensemble averaging whereas the odd har-
monics tend to finite values. Moreover the conductivity stiffness for ¢ = 0 and

5Some references to non—CNT experiments demonstrating this effect can be found in Imry’s
book [86], section 3.2.

6Localization means that the wave functions decays exponentially with a characteristic
length scale &,.. For a general discussion and references on this topic see chapter 2 of Imry’s
book [86], and page 271 of Reference [73].
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Figure 4.8: We show the conductivity stiffness (4.31) for a (4,0) zig-zag CNT of length
N = 4 computed from the Anderson model (4.35) with disorder strength W = 5t
and at an electronic filling of 0.234. The different curves indicate different num-
bers of microscopic realizations which were used for the impurity ensemble averag-
ing. On the right hand side the first ten components of the Fourier decomposition
D =3>° Dy cos(n2mpp/¢o) are plotted.

¢p = 0.5 are negative and minimal, indicating a negative contribution to the per-
sistent current and therefore resistivity maxima for these fluxes as it was observed
in experiments. We investigated zig-zag CNT with different diameters and for
different fillings (below half-filling) and always this behaviour was observed for
large disorder srength of W = 5¢,. Some of these calculations are shown in figure
4.9. We have not done this calculations for other chiralities but we do not believe
that these results are sensitive to chirality if we consider strong disorder and fill-
ings far below half-filling such that the Fermi level cuts many bands. We mention
that the suppression of even harmonics has been observed in similar calculations
on the square lattice by Bouzerar and Poilblanc [89,90].

4.6 Electron correlations

Up to now, we did not find any trace of the “mysterious” fast period oscillations
which were observed in different experiments. Thus one is tempted to believe that
it is an effect induced by electron—electron correlations only.” Unfortunately one
has to be careful since, if disorder is important, it cannot be treated as a small
perturbation to interactions in general. But to treat disorder and interactions at
the same footing is an extremly difficult problem. We conclude this chapter with
an outline of possible (tractable?) approaches to the problem.

"We have to note that the cleanest experimental evidence comes from measurements in
MWCNT [65]. Although the ¢¢ oscillations are compatible with transport in the outer shell,
one cannot exclude “multi—wallness” as another source of additional oscillations.
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Figure 4.9: This figure shows the conductivity stiffness D for a (4,0) zig-zag CNT of
length N = 4. At the left hand side, D is plotted for different electronic fillings at a
disorder strength of W = btg. The right hand side shows the influence of the disorder
strength W at a filling of 0.23.

e Starting with a proposition from reference [53] to use a phenomenological
Luttinger-Liquid theory® which is believed to dominate the metallic phase
away from half-filling in CNT. In a Luttinger liquid spin and charge ex-
citations are completely decoupled and therefore they can propagate with
different velocities v, and v, repectively. At a semi—classical level one could
imagine that once injected at one end of the tube they make a different
number of loops around the circumference before arriving at the same time
at the other end of the tube. This could induce a fast period oscillations
depending on the ratio vs/v.. Jagla and Balseiro [91] have applied this phe-
nomenological Luttinger liquid theory to small one-dimensional rings with
two contacts. Indeed they found small period oscillations as a function of
flux passing through the hole of the ring if the velocities satisty vs/v. = p/q
where p and ¢ have to be small odd integers. Such an approach would be
possible to use for CNT.

e Aharonov-Bohm type oscillations of higher periods seem to be a well estab-
lished result in the one-dimensional hole-doped Hubbard model which was
found either by analyzing the Bethe ansatz equations [92] or doing exact
diagonalization studies [93]. However there are serious drawbacks to apply
these results to CN'T. None of these methods are generalizable to several
chains and moreover these oscillations appear uniquely for huge interactions
strengths.

e [f one believes that disorder and interactions play a crucial role and one
wants to do a microscopic model calculation, then again, the only tractable

8¢f chapter 3 of reference [73].
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approach to CNT seems to be a H-F approximation. This approach was
used previously for a square lattice rolled up to a cylinder [89,90]. The
authors showed that the second harmonic of the persistent current is en-
hanced by the interactions (of Hubbard and nearest neighbour type). Solv-
ing the self—consistent H-F theory is quite a heavy numerical calculations
and therefore one is restricted to lattices of the order ~ 100 sites.

At the moment no worked out solution can be presented to any of these propo-
sitions. Therefore no conclusive explanation on the origin of the fast period
oscillations is given in this thesis.
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Chapter 5

The spin gap in CNT

5.1 Summary

We study the isotropic Heisenberg model for CNT by quantum Monte Carlo
(QMC) simulations (¢f appendix C). As the honeycomb lattice is bipartite these
calculations do not suffer from the sign problem and many quantities can be cal-
culated exactly with relatively small statistical error bars, even in the limit of
low temperatures and large system sizes. In particular we calculate the spin gap
for the smallest CN'T (up to six legs) by two different methods: It can be deter-
mined either from a fit to the low—temperature magnetic susceptibility (section
5.3) or from the dynamical correlation function of the staggered magnetization
in imaginary time (section 5.4).

At the end of this chapter we discuss what implications our results could have
for real CN'T, especially for the observed superconductivity.

Obtained results:

e All CNT develop a spin gap which decreases fast with tube diameter.

e Rule of thumb: For a given diameter, armchair CNT have larger gaps than
zigzag CNT.

e The value of the gap correlates with the maximum difference in bond
strength.

o1
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5.2 Heisenberg ladders and CNT

In this chapter we study the antiferromagnetic Heisenberg model® for CN'T which
is defined by the Hamiltonian

(1:3)

H=1J)_ [S;s; + % (SfS; + SiSj)} —gusBY 7 (J>0). (51)
_ h %
Si-Sj

The first term is the sum of Ising and spin—flip terms. The second term consists
of an additional Zeeman term which couples the spins to a uniform external
magnetic field which lies in the z direction and has an amplitude B. g = 2 is the
gyromagnetic ratio and pg = % 5.8 eV/T the Bohr magneton.

The Heisenberg model can be viewed as the effective low energy model of
the Hubbard model (3.7) in the large U limit at halffilling (¢f also section 6.2).
The Heisenberg exchange coupling is related to the on—site interaction through
J = 4¢*/U. In this limit, there will be exactly one electron per site in the ground
state of the half-filled system as it is energetically very unfavorable to move a
charge to form a doubly occupied site. Therefore there are no low—energy charge
excitations and only the spin degrees of freedom are important. This brings
considerable simplification for numerical calculation as the number of states has
been reduced from four to two states per site. Consequently much larger systems
can be studied.

In chapter 3 we have discussed extensively how the charge gap develops from
one to two dimensions by increasing the tube diameter. Now we want to do the
same interpolation for the spin gap. That this could be a more subtle problem is
expected by analogy with the spin ladders which interpolate between the single
chain and the square lattice (with open boundary conditions in one direction).?
However this interpolation is far from being smooth in the case of spin ladders:
Ladders with an odd number of legs have no spin gap and are critical in the
sense that their spin—spin correlation functions decay with a power law. However
there is a finite spin gap if the number of legs is even and therefore the spin—
spin correlation functions decay exponentially with distance. This behaviour has
been verified numerically doing quantum Monte Carlo simulations [95] and can
be explained by field theoretical arguments using bosonization (cf e.g. [73], p.191
ff). Schulz [96] pointed out that the n leg ladders are intimately connected with
the spin S = n/2 chains. This is in good agreement with Haldane’s famous result
which says that integer spin chains develop a spin gap whereas half—integer ones
do not (cf e.g. [97]).

LA nice pedagogical introduction to the physics of the Heisenberg model can be found in
Fazekas’ book [94], chapter 6.

2References and an introduction to spin ladders, especially from a field theoretical point of
view, can be found in Giamarchi’s book [73], p. 188 ff.
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(a) ladders (b) CNT
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J1
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Ji
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PR Y

(1,1) armchair £ 2 legged ladder

Figure 5.1: We sketch the ground state of the antiferromagnetic Heisenberg model
in the limit J; > J)|. (a) In even legged ladders singlets can be formed on all the
rungs simultaneously. In odd legged ladder this is not possible, and one spin per rung
remains unbound. (b) CNT can always be covered with singlets since the unit cell of
the honeycomb lattice consists of two atoms. We note that the (1,1) armchair CNT is
nothing else than the two-legged ladder.

To get a simple grasp of what is going on in the two—legged spin 1/2 ladders we
look at the limit where the transverse coupling .J; on the rungs is much stronger
than the longitudinal coupling J; along the legs (cf figure 5.1 (a)). As J, is the
dominant coupling, the system will try to minimize the bond energy of the rungs:

Erung = JiS1-82=J./2[(S1+ S,)? — 82 S3)
= Ji/2(5:1+ 52)2 —J1S(S+1)

-~ { —3/1J, singlet state  (|Sy + Sa| = 0)

YaJ,  triplet state (|Sy + Sa| =1) (5.2)

The ground state is expected to be the product of singlet states on the rungs and
to have a gap towards triplet excitations of order J;. In this limit it is easy to
see that the three legged ladder has a qualtitatively very different behaviour: As
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it is impossible to form a singlet state out of three spins 1/2, two of the three
spins on each rung will be locked into a singlet and the third spin remains free.
This suggests that the physics of the three legged ladder will resemble the single
chain behaviour.

The situation for CN'T' will be quite different. The unit cell of the honeycomb
lattice contains two sites and therefore it is always possible to have a singlet
covering in the limit J; > J||, as it is shown exemplarily in figure 5.1 (b). Thus
an odd—even effect, which is present in the ladders, is not expected for CNT.? A
priori it is not clear what will happen if J; — Jj. This question and especially the
dependance of the spin gap on chirality will be studied in the subsequent sections.
However we should not forget that the behaviour in the two dimensional limit
is known: The ground state of the antiferromagnetic Heisenberg model on a
two dimensional bipartite lattice (such as the honeycomb or square lattice) has
Néel type long range order (c¢f e.g. [99]). This means that SU(2) symmetry is
spontaneously broken and for this reason Goldstone’s theorem predicts gapless
excitations with a linear dispersion.*

5.3 The spin gap from susceptibility

We determine the spin gap for the smallest CN'T from the uniform susceptibility
as it was done in reference [101] for spin ladders. The susceptibility is computed
using the stochastic series expansion QMC algorithm described in—depth in ap-
pendix C. The spin gap can be extracted from a fit at low temperatures. To see
how this works, we write down the free energy F' = —1/81nZ at low tempera-
tures, i.e. for kT < A. To evaluate the partition function at low temperatures,
we assume that the low energy excitations are given by collective triplet excita-
tions with dispersion € + oh, where 0 = —1,0,1. Then we obtain

F = —% In {1 +[1+ 2cosh(BR)] > e—ﬁfk} (5.3)

_% 1+ 2cosh(8h)] 3 P, (5.4)

k

&

As it was done for the spin ladders [95,101], we will assume that the dispersion
is quadratic around its minimum:

e =A+alk (5.5)

3Very recently Matsumoto et al. [98] have also studied spin CNT. They do not give numerical
values for the gap but they predict chirality dependent spin gaps for all CNT.
4cf e.g. the book by Peskin and Schroeder [100], p 351f.
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Figure 5.2: The uniform susceptibility x (in units of J(gup)?) as a function of temper-
ature from QMC simulations is plotted for the smallest armchair CNT in the upper left
corner. The upper right corner shows the same plot but compares the (3,0) zig—zag and
the (2,2) armchair CNT. Below we show the low temperature fit for the (2,2) armchair
CNT. The error bars are smaller than the symbols.

For low temperatures it is safe to replace the sum by an integral and to extend

the integration up to infinity:

Ze‘ﬁf’“ ~ L(aﬂ)_l/%_ﬂA (5.6)
2\/m

k

The uniform magnetic susceptibility is then given by

x 10

(9pp)? ~ L oh?

1

heo  2VTa

This formula will be used to fit the low temperature susceptibility obtained from
QMC simulations. Such a fitting procedure will give immediately the value of the
gap A. In figure 5.2 we show the susceptibilities for the smallest armchair CNT
and also that the behaviour of the susceptibility does not depend on chirality

(kpT) Y/2e=A/ksT) (5.7)
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but seems to be determined uniquely by the value of the gap. From table 5.1
we read off that the armchair (2,2) and the zig-zag (3,0) CNT have nearly the
same gap and its susceptibility versus temperature plots (figure 5.2) are close to
be indistinguishable, not only at low temperature but throughout the whole tem-
perature range. From the lower plot of figure 5.2 we see that the low temperature
behaviour can be fitted nicely to equation (5.7). The values for the energies per
site and the gaps for all CNT up to six legs are collected in table 5.1. In the
following section we show that the SSE algorithm allows to compute the spin
gap still by another method. Afterwards we will try to understand the chirality
dependence of this gap.

5.4 The spin gap from imaginary time correla-
tions

Here we present another method to compute the spin gap. We do this for two
reasons: first this allows us to confirm the values of the previous section, and
secondly the following method can give more precise results. It is however com-
putationally much more complicated, and one is restricted to smaller systems.

We have shown in appendix C that the SSE algorithm permits also to compute
dynamical correlation functions such as the staggered magnetization in imaginary
time:

LQB;/ dt ((—1)9157 (1) 53 (t + 7)) (5.8)

Now we want to exhibit the gap from this correlation function.> We do a formal
expansion of equation (5.8) in the eigenfunctions of the Hamiltonian H |¥,,) =
E, |¥,) which form a basis set of the Hilbert space (>, |V,) (¥,| = Id):

Clr) = L?ﬂz Z/ dtz (W] e (~1)9182 ()53 (¢ + 7) | 2)

2,j=1
1 L
= li—Jl —BH —tH @z tH
- LSy /dtZ(\Iln|e et G |y
LBZ 2,j=1 0 n,m

> <\Ifm| e*(t-f'T)HS;e(t-f'T)H |‘I’n>

— LZZZZ D)=l (0| S7 [, ><\1,m|5;|q;n>e—§(En+Em)

n,m t,j=1

x cosh[(T — g)(En — Ey)]

®Todo et al. [103] used this approach to calculate the gap in the S = 1,2,3 Heisenberg
chains.
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We note that the high energy contribution to C'(7) are suppressed by the term
e AE+ER)/2 and in the low temperature limit, 3 — oo, only the states with
the lowest energies contribute. Of course, the term with the lowest E,, + E,, is
obtained if |W,,) and |¥,,) equal the ground state. But in this case the sum over
i and j is just the square of the staggered magnetization [y .(—1)* (0] S7 |0)]?
which is zero because (0]S?|0) is zero at all sites. A non zero value of the
local magnetization (0| S? |0) would imply a spontanous breaking of the SU(2)
symmetry which is not possible in one dimensional systems. Thus the dominant
term comes from the lowest excitations and we can write

C(7) o cosh[A(T — 3/2)]. (5.9)

One could try to make a fit to equation (5.9) to extract the value of the gap A
but more accurate results can be obtained by using the so—called second— and
fourth-moment estimators [103]. To derive their expressions, we pass to the
Fourier space remembering that we are interested in the low—temperature limit
B < A

5 B
Clg) /0 dr cos(gr) cosh[A(r — B/2)]
. /0 " dr cos(qr) cosh[A(r — 6/2)]

-1 A ﬂ/2
IS / dr cos(qr) e A=A/
0

Bl o N
~ ePA/2 / dr cos(gr) e TA
0

A
_ BA/2
= e/AQH2 (5.10)
This gives us immediately .
C(0) ¢’
— =1+ = 5.11
C(q) A2 40

and thus it is easy to see that the gap can be expressed e.g. by the second—moment
estimator

1 8 [ Co
A 2n\ C@2r/B) b (>:12)

or the fourth-moment estimator

i_ﬂ¢3é@_a%w)_1 (5.13)

A A4r C~’(27r/5) — 6(47/5)

A detailed presentation of the QMC calculations is given at the end of appendix
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# of legs Aaurmcha,ir Azig—za,g Achira,l ‘
2 0.504(4) ][ 0.09(1)

3 - 0.12(1) ][ 0.15(1) 2,0
1 0.097(1) || 0.044(4) | < 0.035(2) (3,1)

Table 5.2: The spin gap as determined from the staggered magnetisation in imaginary
time. Finite size and finite temperature effects are smaller than the statistical error.

S~ commute

Jwap bonds

Figure 5.3: The (2,0) CNT can be viewed as coupled squares. In this representation it
becomes clear that there are additional commuting local symmetries. The symmetry
operations correspond to swap vertical bonds as it is shown.

C. Here, in table 5.2, we show only the extracted values of the gaps for CNT up
to four legs. By comparing the tables 5.1 and 5.2 we see that the values are in
excellent agreement except the one for the (2,0) CNT. For this zigzag CNT the
susceptibility fit gives a slightly smaller value of 0.070 .J for the spin gap compared
to 0.090 J obained with the second— and fourth-moment estimators. There are
several reasons to believe that the (2,0) CNT needs some special care: When
we extract the charge gap from the low temperature susceptibility the fit works
usually up to temperatures of kg1 ~ A. This can be seen in figure 5.2 for the
(2,2) tube. The fit for the (2,0) chirality shows already significant deviations at
kT = 0.3J although the gap extracted from the fit is 0.070 J. We believe that
the breakdown of assumption (5.5) is responsible for this abnormal behaviour.
There we have assumed a quadratic dispersion for triplet excitations. The (2,0)
CN'T consists effectively of coupled squares as it is shown in figure 5.3. In this
figure we have indicated that there is a macroscopic number of additional local
symmetry operations which commute with each other. We believe that this will
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Bond 1|| | Bond 2|| | Bond L | max. difference
(1,1) ladder |-0.351 |-0.351 | -0.455 | 0.104
(2,0) squares | -0.412(1) | -0.302(1) | -0.412(1) || 0.110
2.1) 20-373(1) | -0.339(1) | -0.392(1) || 0.053
(3,0) "0.374(1) | -0.354(1) | -0.374(1) || 0.020
(2.2) 20-360(1) | -0.360(1) | -0.376(1) || 0.016
(3.1) 20.366(1) | -0.359(1) | -0.371(1) | 0.012
(4,0) 20.367(1) | -0.356(1) | -0.369(1) || 0.013

Table 5.3: The bond strength 3 X <SiZS; > for the three inequivalent bonds of the
smallest nanotubes. The last column shows the maximal difference between two such
bond strengths. Finite size and finite temperature effects are smaller than the statistical
€rror.

flatten considerable the dispersion relation of the low-lying spin excitations.

5.5 Spin gap phenomenology

We tried to get a simple physical picture for the differences in the spin gap of
CNT. Unfortunately it has turned out to be a quite subtle task and we are only
able to enumerate some very rudimentary observations. Quite generally one can
say that for a given number of legs armchair CNT have the biggest and zigzag
CNT the smallest spin gap. However we have observed one exception which is
the (3,1) tube which has a smaller gap than the (4,0) zig—zag tube.

We also calculated the bond strengths, ¢.e. 3 x <Sij>, for the three inequiv-
alent bonds in CNT. The values are given in table 5.3. We see that L bond (¢f
figure 5.1 (b)) is enforced whereas for the zigzag CNT two bonds, namely 1 || and
L, are enforced. The relative difference between the bond strengths of a given
tube can be reproduced by a simple counting argument. We imagine that the
system wants to build up resonances along the shortest path around the circum-
ference. For a given chirality this path consists always of fixed numbers of the
three bond types (L, 1 ||, 2 ||). For example the shortest path in the (2,1) tube
goes through three | bonds, two 1 || bonds and one 2 || bond. That order is also
followed by the bond strength. This observation is true for all CNT. Another
interesting point is that the value of the gap seems to correlate with the maximal
difference of bond strength (c¢f figure 5.4). The only exceptation is the (2,0) tube
whose particularities were already discussed in the previous sections.

Now we will shortly discuss how these results could be applied to real CNT.
Although clean CNT have a charge gap (c¢f chapter 3) and are insulating we do not
believe that the on-site interaction is as strong that CN'T' live in the Heisenberg
limit where the charge degrees of freedom are neglected completely. However we
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Figure 5.4: We show a scatter plot of the spin gap (table 5.2) versus the maximal
difference in bond strength (table 5.3).

think that our results could be pertinent to the question of superconductivity
in CNT. Quite recently intrinsic superconductivity has been observed in ropes
of SWCNT [15]. The critical temperature is sample dependent varying between
120 and 550 mK. If the tendency to superconductivity depends on chirality this
would explain different behaviours between samples. In this chapter we found
that the spin gap depends strongly on chirality and also on the tube diameter.
Anderson’s resonating-valence bond theory (RVB) [104] suggests that a large spin
gap favours superconductivity. The RVB theory of superconductivity is discussed
and applied to CNT in chapter 6.
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Chapter 6

Resonating—valence bond theory
on the honeycomb lattice

6.1 Summary

In consideration of the results on the spin gap in the previous chapter we will treat
now explicitly the question of superconductivity in CN'T. With the help of the
t—J model we explore the resonating—valence bond theory for superconductivity
on the two-dimensional honeycomb lattice. After a general introduction to RVB
theory (section 6.2) we formulate an RVB mean field theory on the honeycomb
lattice (subsection 6.3.1). Complementary insight is gained by variational Monte
Carlo simulations (subsection 6.3.2). They allow us to study the competition
between different phases for the ground-state as a function of doping. At the end
of this chapter we discuss the implications of RVB theory for CNT (section 6.4).

Obtained results:

e Determination of the ground-state phase diagram of the t-J model on the
honeycomb lattice upon hole doping 6: RVB + antiferromagnetism (0 <
d < 1/8), spin density wave (/s < < 0.25), ferromagnetism (6 2 0.25)

e We write down a mean field theory for the RVB phase on the honeycomb
lattice:

— The singlet order parameter is of the form A;; = |Ale® -7 with 0, =
2/371', 01” = 4/37T', 92” =0.

— The spinon excitation spectrum is gapped for 0 < § < /s and gapless
at 0 =0 and /s.

e In the (2,2) and (3,0) CNT superconductivity is enhanced compared to the
honeycomb lattice. The RVB order parameters depend on chirality and
antiferromagnetism is reduced in all CNT.

63
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e The Gutzwiller projected BCS state reproduces nicely the bond strengths
of the Heisenberg model in CNT (calculated in chapter 5).

6.2 The idea of RVB theory

The RVB state describes a “lightly doped spin liquid! of spin singlets. Rather
than forming a fixed array of singlets (or dimers), strong quantum fluctuations
could favor a liquid in which different configurations of singlets resonate.” [105]
The system needs strong quantum fluctuations to favor such a state, therefore it
was initially introduced by Anderson and Fazekas in the seventies [106, 107] to
describe the physics of the antiferromagnetic Heisenberg model in low dimensions
on the triangular lattice.?

Very shortly after the discovery of high T, superconductors Anderson sug-
gested that this RVB state should be the key player in the underlying micro-
scopic mechanism [104]. All the high 7. materials have in common that they
are formed out of weakly coupled two—dimensional layers. Further they are Mott
insulators if they are undoped (i.e. at commensurate filling). An RVB theory
for the insulating state hopes to predict that the preexisting singlet pairs become
superconducting pairs when the insulator is doped sufficiently [104]. Therefore
the superconductivity would be driven by the strong electron correlations. An-
derson’s paper generated a huge number of theoretical studies which investigate
the RVB theory in the t—J model on the square lattice.®> The ¢—J model can be
derived from a large U/t expansion of the Hubbard model (3.7). In this limit
doubly occupied sites are energetically very unfavorable and one seeks to per-
form a unitary transformation which eliminates all processes which create doubly
occupied sites. These are the hopping terms which change the total number of
doubly occupied sites and thus they are those which have to be eliminated. By
computing the unitary transformation

Hy j=¢"He™ = H+i[S,H] - 1/2[S,[S, H]] + . .. (6.1)
which does this job up to second order in #/U, one obtains*

Hyy =T+ H; + H} ™' (6.2)

LA liquid is defined as a state where all correlation functions decay exponentially fast with
distance.

2 Actually the idea goes back to Pauling. It is described in chapter IV entitled “The resonance
of molecules among several valence—bond structures” of his book: The nature of the chemical
bond, Cornell University Press, Ithaca, New York (1945).

3¢f reference [105] for a review.

1A detailed derivation of the t—J model can be found in chapter 5 of Fazekas’ book [94].
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T =ty (e +he) (6.3)
(i

Hy = JY (88— 1) (6.4)
(0.7
. J
e = ST (T o — 8ot o the) . (65)
(i.4,k)o

J = 4t?JU, (i, j, k) denotes a three—site term, with i # k being nearest neigh-
bours of j, and the spin operators on site ¢ are given by S; = 1/2%"__ c}LUO'MI Cio'
where o is a vector containing the Pauli matrices. The projected operators
Civ = Cio(1 — n;_,) assure that this Hamiltonian acts only in the subspace of
no doubly occupied sites. At half-filling the —J model reduces to the antiferro-
magnetic Heisenberg model (5.1). The three-site hopping term H2™*' is system-
atically neglected in the literature. One could argue that this term is effectively
of order 0.J/4, where § is the number of holes (empty sites) per lattice site. Thus
close to half-filling and for small J it should be small compared to the two site
hopping (of order 6¢) and to the exchange term (of order J). In the following we
will appeal to common practice and neglect this three—site term.

It was noted by Anderson [104] that it is neither easy to calculate with RVB
states nor to represent them. Following Rice and Joynt he proposed to use a
representation in terms of Gutzwiller projected BCS states:

IRVB) = PyP|BCS) (6.6)
IBCS) = H (uk_'_UkCchTCT—ki) |0) (6.7)

The operator P projects out completely double occupancy and Py is also a pro-
jection operator but which extracts the states with a fixed particle number N.
It is convenient to use the ¢—J model in conjunction with these states since the
Gutzwiller projection operators P appear already naturally in the Hamiltonian.
Sometimes a real space representation of the RVB states is more suggestive:

IRVB) o PyPexp (ZZ—iCLTCT_k¢> 10) (6.8)

k

= PyPexp (Z a(i,j)c}}c}l) |0) (6.9)

2
N/2
x P(Za(z’,j)c}TcL) 10) (6.10)
2

where a(i, j) = 3, pc ™R R). Therefore this state can be viewed as a linear
superposition of configurations consisting of singlet pairs and empty sites as one
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would expect for an RVB state. The singlet bonds correspond to preformed pairs
and the empty sites to holes which were introduced upon doping.

Within the framework of the t—J model and Gutzwiller projected states there
are roughly speaking two complementary approaches available: Formulating a
mean field theory or doing a variational Monte Carlo (VMC) calculation. The
latter approach can be used to examine the ground-state energy by plugging
in various trial states. It has the advantage that the Gutzwiller projection can
be evaluated exactly. Thus VMC can show if the RVB state really gives the
lowest energy ground-state, but unfortunately it gives only information about
the ground-state and limits in the system size of the numerical calculation can
be a problem. Alternatively a mean field theory, although it needs to introduce
a rough approximation to perform the Gutzwiller projection, can in principle
give a more complete theory where we can study quasiparticle—excitations and
thermodynamics. In this chapter these two approaches are applied to investigate
the idea of RVB on the honeycomb lattice and in the special case of CNT.

6.3 Results for the 2D honeycomb lattice

6.3.1 Mean field theory

The most systematic approach up to date to formulate an RVB mean field theory
is based on the slave boson representation [108] which factorizes the electron
operators into charge and spin parts ¢, = f] b; called holons and spinons. The
charged boson operator b; destroys an empty site (hole) and f;g is a fermionic
creation operator which carries the spin of the physical electron. The constraint of
no doubly occupied site can now be implemented by requiring > fl figtblb; =1
at each site. In the slave boson formalism the ¢t—J model becomes [109]

H = —t Z <f:gf]gb;[bl + hC) — Mo an
(ixj)o i

+JZ(SZSJ— nl4n]> +Z)\z <Zf;fw+bzbz_1> (611)

(4,3

where §; =123, fiTUO'W/ fiorandn; =% fjg fjo- This Hamiltonian is gauge in-
variant by simultaneous local transformation of the holon and spinon f;, — fi,€'%
and b, — bj,€'?. Now one can make a mean field approximation by a decoupling

in a series of expectation values y;; = >, <fi]:,fj(,>, Nij = >, (firfi — firfir)
and B; = <bj > Further one sets all the Lagrange multipliers \; equal to a single

value which replaces the local constraints by one global constraint. Following
references [105,110] we present the basic results for the square lattice in figure
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Figure 6.1: The mean field phase diagram on the square lattice without (left hand
side) and including (right hand side) phase fluctuations. The region A # 0 and B =0
is called “spin gap phase” since the mean field theory gives an anisotropic gap in the
single particle excitation spectrum with maxima at k = (£m,0). However this gap
is annihilated in some regions of the Brillouin zone. These diagrams can be found in
references [105,110].

6.1 (left hand side). To have a superconducting state in the slave boson represen-
tation it is not sufficient that the fermions form Cooper pairs but also the bosons
need to be in a coherent state of a Bose condensate. On the square lattice one
finds that the particle—particle expectation values have d—wave symmetry, i.e.
A, = —A,. The mean field phase diagram suggests some phase transitions, how-
ever x;;, Aij, and B; cannot be true order parameters since they are not gauge
invariant. In fact Ubbens and Lee [110] have shown that gauge fluctuations de-
stroy completely these phases and only a d—wave superconducting dome is left
over (¢f the right hand side of figure 6.1). Moreover these fluctuations diminish
also the tendency for superconductivity and seem to destroy it completely near
half-filling where they believe that it is unstable towards more complicated phases
such as a staggered flux phase. However it is not clear up to what temperature
these results are valid.

In this section we will use a simplified version of the previously mentioned
RVB theory. Despite of its simplicity this theory should nevertheless predict
the correct symmetry of the superconducting order parameter and be able to
make some predictions about the spinon excitations. In fact this simplified RVB
theory predicts d—wave superconductivity on the square lattice [109] and was
also applied to the Shastry—Sutherland [111] and triangular lattice [112]. It is
based on a decoupling of the superexchange term in singlet operators. Given the
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identity
Si . Sj - nfj - _EBT(ZJJ)B(ZJJ) (612)
where B(i,j) = firfj, — firfirs (6.13)

a decoupling in A;; = (B(i,j)) seems to be the natural choice. To handle the
bosons one assumes that all the )\; are equal to a single value A which plays the
role of the boson chemical potential. We replace the boson operators by a static

value which is chosen such that <b§bj> = 0 for all ¢, j [109-112]. Thus in this

approximation the effect of the slave bosons (or equivalently of the Gutzwiller
projection) is included in a very simplified way which effectively multiplies the
kinetic energy of the spinons by the hole concentration ¢ and redefines their
chemical potential p — pp + A:

HY = =t Y (fhfe +he) =D om (6.14)

33T (B 0,0)) BG.g) + BG.3) (BG. ) — (B1(0,9)) (BG. )
(6.4)

In addition we make a simple ansatz for the RVB order parameter A;;: In the
honeycomb lattice each site has three nearest neighbour bonds L, 1 ||, 2 || (¢f
figure 2.1). We assume that the amplitude is uniform, i.e. |A;;| = A but each
bond is allowed his own phase 6, 6y, 0. Of course, only relative phases matter
and we choose to set 0y = 0. We show the analytic diagonalization of the
mean field Hamiltonian in appendix D. The mean field solution is obtained by
minimizing the resulting free energy density

3

Oo=—pn+ ZJA2 — %kzj <€j(k) + %ln[ + exp(—pe,(k ))]> (6.15)

with respect to A, 0., 6 and under the conservation of particle number con-
straint

9% _ N :__Z‘%J <*3€j2(k)>. (6.16)

o L

¢j=+(k) are the dispersions of the single particle spinon excitations above the
ground-state. They are given by

e+(k) = \/u2 + J2[B(k)[* + 0% (k)[* & 2<5\/JZ|B(1<)I2 (Im £(K))* + p2l¢ (k)|
(6.17)
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Figure 6.2: The mean field energy density (¢ at zero temperature) as a function of the
phases 0, 0y in the singlet order parameter associated with two different bonds in the
honeycomb unit cell.

where  £(k) =t (") 4 e 4 1) | (6.18)
and  B(k) = A/2 (e " cos(az — 1) + € Pt cosas + 1), (6.19)

Again we have used the projections on the reciprocal basis vectors: k = a; /27 by +
ay /27 ba.

Let us discuss the solutions of this mean field theory. The first information we
would like to get out is the symmetry of the mean field order parameter, ¢.e. what
values of 0, and 6, give the lowest ground-state energy. We find that the phases
0. =237, 0y = 437 give the lowest energy. We checked this for J/t = 0.2, 0.4,
0.8 and all possible hole dopings. Of course one can interchange ¢, and ¢y and
also add or subtract 27 to each of these phases and still having the same energy.
All this is shown in figure 6.2. These values were also found in the triangular
lattice [112] which has hexagonal symmetry as well. In figure 6.3 we plot the
RVB mean field expectation value A as a function of hole doping. We want to
emphasize that A is not the superconducting order parameter which is actually

given in our approximation by <CITCL> = <bifi‘}bjf}¢> ~ (b;b;) <fiTTf]T¢>. At zero
temperature we have <CITCL> ~ 0A. As it is shown in figure 6.3, A decreases

with doping and we obtain the famous superconducting dome (¢f figure 6.1) as
a generic feature of the RVB mean field theory.
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Figure 6.3: The mean field order parameter A and the spinon excitation gap Aex =
2ming e_ (k) as a function of hole doping.

We turn now to the excitation spectra. Two of them are shown in figure 6.4
with the corresponding density of states for J = 0.8t and hole doping of § = 0.1
and 0.2 respectively. They are exemplary for the two possible regimes which one
can obtain. At low doping the spinon spectrum is gapped whereas at dopings
above the van Hove singularity at 0 = 1/s (¢f figure 2.2) the spectrum has gapless
single—quasiparticle excitations on the 'K line. This point is further illustrated
in figure 6.3 where the spinon excitations gap A, = 2ming e_(k) is plotted as a
function of doping for J/t = 0.8 and 0.4. A, can survive maximally up to the
doping corresponding to the van Hove singularity. For small values (J < 0.4¢)
the rapidly decreasing singlet order parameter A kills it already before that point.
A remarkable fact is that this gap is zero at half-filling and rises up (this rise
seems to be independent of the J value) to a maximum value of approximatively
0.15 ¢t and decreases to zero again. For comparison we note that the gap is always
zero in the square lattice, in the triangular lattice it is finite at any doping except
at half-filling. Whereas the Shastry—Sutherland lattice has a spinon gap at half-
filling which decreases to zero with doping. For all these lattices one recovers the
correct behaviour at half-filling, as it is known the square, the triangular, and
the honeycomb lattices have gapless spin excitations but a spin gap shows up in
the Shastry—-Sutherland model.

The van Hove singularity at § = /s does not only kill the spin gap, but on
quite general grounds one expects that a Kanamori ferromagnetic state® is favored
over the RVB state for § > 1/s. This and other instabilities of the ground-state
are studied in the next subsection by variational Monte Carlo simulations.

®The Kanamori criterion consists of correcting the Stoner criterion Up(er) = 1 for large
U/t, ¢f reference [94] p. 423.
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Figure 6.4: The two plots on the left show the spinon dispersion 1 (given by equation
(6.17)) along the high symmetry lines for two different values of hole doping § = 0.1,
0.2 and J = 0.8¢. The right hand side shows the corresponding density of states.
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6.3.2 Variational Monte Carlo calculation

The variational Monte Carlo (VMC) method allows to evaluate numerically the
Gutzwiller projection P of some product state |Wy) which is in general defined
as the ground-state of a mean field Hamiltonian.® The expectation value of an
operator A in |[¥) = PPs. Py |¥,) 7 can be brought quite easily into a form which
is susceptible of a MC evaluation:

(W] A[w)

(A) = W (6.20)
(0] 416) (B19) \ [{al )
Z<Z (a]0) ) ) (6:21)
Q@ N B N——
fE;) pe)

|a) (respectively |5)) belongs to a basis set which allows to calculate easily («|¥)
and A |«). In practice often one uses

@) =l el el el 10) (6.22)

p(a) satisfies the requirements of a probability density and therefore (A) can be
evaluated by a random walk through configuration space using the Metropolis
algorithm (see e.g. [115]), and one has

(A) = — > fl) (6.23)

where Ny is the total number of MC measurements.

The VMC method is now used to examine which trial states have the lowest
energy in the t—J model on the honeycomb lattice as a function of hole doping.
The variational wave functions are built out of the ground-states of the following
mean field like Hamiltonian:

HY =t 3 (i +he) + 0 (AiBli,j) + hie)
(iaj>a‘7 <17]>
+ Z hz . Sz — uan (624)

This Hamiltonian is slightly more general than the previously studied Hamil-
tonian (6.14) as it contains also a decoupling in the particle hole channel. We
have considered the following class of variational wave functions to study the
honeycomb lattice:

6For a nice introduction to VMC one can consult references [113] and [114].

"For technical reason and because total electron number and total S* are exact quantum
numbers of the —J Hamiltonian one projects also on states with fixed particle number and on
the sector with S% = 0.
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Figure 6.5: Nlustration of the Q—-SDW phase: On the left hand side we show the first
Brillouin zone and the vector Q which connects two of the M points. It is at the M
points where the van Hove singularity occurs. On the right hand side we draw a real
space representation of this instability. It corresponds to ferromagnetic stripes. The
stripes itself align antiferromagnetically.

lattice Fermi sea Best VMC exact
triangular | —0.3547(2) | —0.533(1) [116] | —0.5458(1) [117]

square —0.4270(2) | —0.664(1) [118] | —0.6693(1) [119]
honeycomb | —0.5275(2) —0.5430(2) —0.545(1) [102]

Table 6.1: Comparison of the ground-state energy estimation for the Heisenberg model
on different lattices. The first column is just the expectation value of the Gutzwiller
projected Fermi sea, the second column shows the best VMC result, and the last column
is obtained by QMC or exact diagonalization. All energies are given in units of J.

e Our reference state is the Fermi sea: A;; =0 and h; =0

e A staggered antiferromagnetic order (AF): A;; =0 and h; = (=1)'h

e A superconducting phase (RVB): A;; as studied in the subsection 6.3.1 and
h; =0.

e A ferromagnetic state (F): A;; =0 and h; = h

e A commensurable spin density wave (SDW) of wave vector Q = 1/2(by —
bz) = 2m/a (0,1) (see figure 6.5): A;; =0 and h; = hcos(Q - R;)

Before discussing the VMC phase diagram we note that in the Heisenberg
model on the honeycomb lattice the Gutzwiller projected Fermi sea gives already
a ground-state energy which is very close to the exact value. As it is shown in
table 6.1, the difference is about 0.017 J. This value is very small compared to the
ones in the square and triangular lattices. Even smaller are therefore the energy
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Figure 6.6: On the left hand side we plot the condensation energies (in units of £), i.e.
the energy gain with respect to the Gutzwiller projected Fermi sea. The inset shows
the ferromagnetic polarization divided by the saturation value. The right hand side is
a sketchy representation of the resulting zero temperature phase diagram as a function
of doping. All VMC results presented in this chapter were obtained from a 144 site
cluster at J = 0.4 t. Results on a 72 site lattice with the same geometry showed no
significant difference.

gains which can be obtained from the various trial states. They are plotted on
the left hand side of figure 6.6. Close to half-filling a mixed phase of an RVB
and an antiferromagnetic state is stabilized. The RVB state is killed at the van
Hove singularity and the antiferromagnetic correlations disappear slightly earlier.
We have already discussed previously that at a doping of 1/s the Fermi surface
touches the M points. These are the points where the van Hove singularity occurs
and the Fermi surface is partially nested with wave vector Q@ = 27/a (0,1) (¢f
figure 6.5). Close to 0 = 1/s a SDW phase with this wave vector is stabilized. But
at dopings of 0 2 0.25 the ferromagnetic state wins.

The VMC simulations confirm the results of the RVB mean field theory. The
minimization of the RVB state gives the same symmetry of A;; in both methods:
A;; has the same magnitude on the three links and the phases are 6, = /3,
01 = 43w, By = 0. Once one has found the best RVB state, VMC makes it
possible to evaluate the singlet superconducting order parameters S, 5 [116]

-'- -
525— hmz<\lf‘B iyi+ ) (z+r,z+r+ﬁ)“l’>

where o and 3 are chosen from the three links L, 1 ||, 2 ||. Actually we found
that
= |S2 5| € t08) (6.26)

and that ‘Sgﬁ‘ is independent of the choice of @ and (. In figure 6.7 we plot
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Figure 6.7: We show the singlet superconducting order parameter (6.25) in the RVB
+ AF wave function.

|Sap| = ,/‘Siﬁ‘ as a function of hole doping and we obtain a superconducting

dome which is characteristic of the RVB theory. The maximal amplitude of S, g
is rather small, e.g. it is about four times smaller than in the square lattice.

6.4 CNT

In the previous section we have studied the ground—state phase diagram of the
t—J model on the honeycomb lattice upon hole doping. Between half-filling and
the van Hove singularity at 6 = 1/s we found that a mixture between an RVB
and an antiferromagnetic state gives the best variational ground-state energy. In
this section we study also this region for CNT. This investigation is motivated
by the experimentally observed intrinsic superconductivity in ropes of SWCNT.?
SWOCNT are one-dimensional systems and therefore no continuous symmetry can
be broken. This is however necessary for superconductivity (broken U(1)) and
also for antiferromagnetism and the spin density wave (broken SU(2)). Although
these phases cannot form the true ground-state, the fluctuations around them
can still be important for determining its physics. For example one could imagine
that such fluctuations stabilize a superconducting state in ropes of SWCNT.
In consideration of this argument we believe that it is pertinent to study the
tendency of superconductivity in SWCNT.

After the discussion of section 3.7 on the microscopic parameters for CNT in
the Hubbard model, we expect quite a large exchange coupling of J ~ t. However
we decided to set it again to J = 0.4¢ which gives us the possibility to make a
comparison with the previous results. We believe that the conclusions will not
depend on the exact value, but a larger value of J will enforce the tendency to

8¢f reference [15] and section 5.5.
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lattice e VMC e QMC Mup AQH,Q” 92“ 91” 0,
2D —0.5430(1) | —0.545(1) | 0.330(2) | 0.0016(4) | 0 27/3 4/3
(3,0) | —0.5458(1) | —0.5498(1) | 0.290(2) | 0.0032(4) | 0 | ~37w/2 | =~
(2,2) | —0.5435(1) | —0.5482(1) | 0.290(2) | 0.0032(4) | 0 | ~57/4| =~
(4,0) | —0.5425(1) | —0.5468(1) | 0.320(2) | 0.0008(4) | 0 | ~b7/4 | ~ /4
(2,1) | —0.5475(1) | —0.5529(1) | 0.240(2) | 0.0016(4) | 0 | ~b7/4 | ~ /4

Table 6.2: Heisenberg energy and staggered magnetization extrapolated to the thermo-
dynamic limit for the 2D lattice and some CNT in the Heisenberg limit (half-filling).
Also the maximal values (as a function of doping) of the superconductivity order pa-
rameters are depicted. The values were obtained for J = 0.4¢.
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Figure 6.8: We show the superconducting order parameters for CNT at J = 0.4¢. Their
definition is given in equation 6.25.

superconductivity.

The results of the VMC calculation of the RVB + AF phase in CNT are
listed in table 6.2, which contains also a comparison with the 2D honeycomb
results. We observe that the antiferromagnetic correlations are slightly reduced.
We note also that the phases of the singlet order parameters depend on chirality
and more importantly also the amplitudes. For the (2,2) and (3,0) CNT super-
conductivity is enhanced considerably compared to the 2D honeycomb lattice,
whereas it is reduced substantially for the (4,0) chirality. This seems to suggest
a relation between superconductivity and the Heisenberg spin gap (c¢f table 5.2).
Unfortunately the (2,1) tube does not fit into this picture, it has a larger spin
gap than (2,2) and (3,0) but the tendency to superconductivity is weaker. The
superconducting order parameters are further illustrated in figure 6.8 where the
real and the imaginary parts of Si’ﬂ are plotted for all investigated CN'T. We see
that superconductivity in the (4,0) zigzag CNT is not only reduced in magnitude,
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Fermi sea RVB RVB + AF  exact
(2,2) Bond 1| -0.368 -0.349 -0.356 -0.360
Bond 2| -0.360 -0.350 -0.360 -0.360
Bond L -0.316 -0.379 -0.372 -0.376
(3,0) Bond 1| -0.362 -0.377 -0.373 -0.374
Bond 2| -0.330 -0.336 -0.348 -0.354
Bond L -0.360 -0.374 -0.369 -0.374
(4,0) Bond 1| -0.376 -0.386 -0.370 -0.369
Bond 2| -0.310 -0.313 -0.351 -0.356
Bond L -0.370 -0.372 -0.364 -0.367
(2,1) Bond 1| -0.355 -0.353 -0.359 -0.373
Bond 2| -0.264 -0.308 -0.329 -0.339
Bond L -0.434 -0.430 -0.410 -0.392

honeycomb -0.360

Table 6.3: Comparison of the bond strengths 3 x <SZZS]Z> in the Heisenberg model as
evaluated by VMC and SSE QMC (c¢f chapter 5).

but it already disappears at very low doping ¢ ~ 0.05.

At half-filling we can compare the VMC results to the exact SSE QMC cal-
culations of chapter 5. From table 6.2 we can read off that the energy densities
follow the exact values quite closely with the correct relative order. As it is
shown in table 6.3 it reproduces also quite nicely the bond strengths for all chi-
ralities we looked at. The necessary ingredients to obtain these results are the
exact Gutzwiller projection and the BCS type mean field state. In contrast, the
Gutzwiller projected Fermi sea is not able to reproduce these results as it gives
wrong values for the (2,2) armchair CNT. Because of this agreement with the
exact QMC simulations we are confident that our RVB trial state gives a good
description of the physics near half-filling.
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Chapter 7

Conclusion

In this thesis we have studied CNT with an emphasis on the interplay between
electronic correlations and chirality which has been considered in a variety of
situations:

e Hubbard model — charge gap (chapter 3)

tight—binding model

Anderson model } — persistent current, charge stiffness (chapter 4)

e Heisenberg model — spin gap (chapter 5)
e {—J model — RVB superconducting order parameter (chapter 6)

We are not going to repeat the details of our results here as they are outlined in
the summaries at the beginning of each chapter. But we would like to place our
results within a broader context.

More generally speaking we challenged the two most common theoretical ap-
proaches to CN'T which consists of either completely neglecting the electronic cor-
relations in a band structure calculation or including it perturbatively in a weak
coupling theory in the continuous limit of the honeycomb lattice. We have seen in
chapter 3 that neither of these two approaches can be used when it comes to the
computation of the charge gap. In one dimensional systems strong correlations
are expected and a single particle charge gap should be present at half-filling. It
was argued by Balents and Fisher [30] and subsequently used by many others that
in CNT correlations were strongly reduced as the electrons can delocalize around
the circumference. Consequently CNT with a large enough diameter could be
treated as a weakly interacting system. We showed that this is however not the
case as one cannot neglect the effects of the higher one dimensional bands. This
is an example of the complicated interplay between the detailed lattice structure
and strong correlations. Other examples are the spin gap (chapter 5) and the
RVB theory of superconductivity (chapter 6). In chapter 4 we could exhibit some
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effects of chirality on the persistent currents when a magnetic field is applied.
But the role of correlations is still an open question in this context.

To summarize, we are convinced that CNT have to be considered as materials
where electronic correlations are strong. At the moment not many experimental
results are available to test our predictions. But there are are ongoing experi-
mental efforts to produce SWCNT in a better and better controlled way, and low
temperature experimental investigations on SWCN'T start to make observations
in the meV regime. Thus we are confident that soon the conclusions of this thesis
can be tested experimentally.



Appendix A

The Hartree—Fock approximation
for the repulsive Hubbard model

A.1 Summary

In this appendix we expose in detail the H-F results used in chapter 3. We
derive the self-consistency equation for the antiferromagnetic order parameter
in an unfrustrated bipartite lattice at half-filling. We also calculate the spin
susceptibility within this approximation.

A.2 The method

The H-F theory was originally introduced as a variational method to get ap-
proximate ground states for atoms, which is a many—-body problem due to the
Coulomb interaction. In the variational procedure one restricts the Hilbert space
(where the Hamiltonian H acts) to a tractable subspace F = {¥;} and one looks
for a minimum of the following functional

(| H ;) (A1)
(W] ;)
which is an upper bound to the true ground state energy FEj, i.e.
By < int i H L) (A.2)
(W] ;)

The H-F states Fyp are the determinants of one-particle orbitals ¢;(x;, 0;),

1
Uyp = W det [¢j(Ii; Uz’)]1g¢,j§N (4.3)
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where x; are the space and o; the spin variables, and NV is the number of particles.
It is clear that these states conserve the particle number, but they are not neces-
sarily eigenstates of other conserved quantities such as the total spin or the total
angular momentum. In the following we consider the repulsive Hubbard model,
in this case the H-F states are sufficient to describe the mean-field! physics of
this hamiltionian. In the attractive case however they are not general enough
since one has to allow bound states, where the particle number is not conserved,
a famous example is the BCS theory of superconductivity. A more general H-
F theory can be formulated in terms of the one-particle density matrix which
overcomes this restriction and allows to treat the attractive and the repulsive
Hubbard model on equal footing [120].

We will specialize the discussion to the repulsive Hubbard model on a lattice
with nearest neighbour hopping, as described in chapter 3. The H-F theory gives
the following effective single particle Hamiltonian [31]:

HHF = Z <tijCIngg + hC) + VHF (A4)
(i.g)o
The Hubbard interaction term is split into a direct (Hartree) term and an ex-
change (Fock) term

Varp = Vi4 Ve (A.5)
vt = UZ[”iT<”ii>+<”iT>”ii_<”iT><”i¢>] (A.6)
Ve = U D[SHST) +S(ST) = (STHST)] (A7)

where S;" = CITCN and S;" = c}lcﬁ = (S;)T. Although the H-F Hamiltonian has
the form of a single electron problem, it is still a tough problem to solve in general,
since it depends on the expectation values (n;,), (S;") and (S;) which have to be
determined self-consistently. Thus in principle, one has to determine the minimal
free energy in the space of all self-consistent solutions. For the Hamiltionian (A.4)
there are two rigorous results which are exact within H-F theory [31,120]:

1. For U/t = oo the ground state is always fully ferromagnetically polarized if
we are below half-filling.

2. If we are at half-filling and on a bipartite lattice with non—frustrated hop-
ping, the H-F theory gives always anti—ferromagnetic ordering for any value
of the interaction strength U/t. In particular the expectation values are
given by

(nig) =1/2 (1 + m(—l)i)\T(,) ’ (A.8)

where A\, =1, Ay = —1 and m = [(ns) — (ny)|.

!The mean—field Hamiltonian is obtained by the most general decoupling of the interaction
term(s) compatible with Wick’s theorem.
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The second statement implies that the spin in the z direction is conserved, and
thus one can chose the axis of quantization in such a way that the exchange term
(A.7) vanishes. In the following we derive the self-consistent equation for the
case where this applies.

A.3 The self-consistency equation on a bipar-
tite lattice at half-filling

We consider now in more detail the case of a bipartite lattice at half-filling and
where the hopping is unfrustrated. We have seen in the previous section that
in this special case the exchange term (A.7) vanishes and the expectation values
are given by (A.8). We replace these expection values into the H-F Hamiltonian
(A.4) and we obtain

Hyp = Z <tijC;vrang + hC) + UTm Z (—1)Z )\TU N + % (1 + m2) L]AI (Ag)
(i.g)o i
We have denoted by L the total number of lattice sites. As we are on a bipartite
lattice we can separate our lattice into two sublattices A and B where all the
nearest neighbours of every site of lattice A belong to the sublattice B and vice
versa. Then to diagonalize the Hamiltonian (A.9) we treat the two sublattices
independently by defining new fermionic operators for each sublattice:

o —ik-(R+v)
al = Z (A.10)
\/ 2 Rea
W o= g~k (Rotu) o1 A1l
L= T A

It is straightforward to obtain the expressions for the hermitian conjugates ax and
bx. k belongs to the first Brioullin zone. The unit cell contains two atoms, one

u/\ﬂ
B A o A
v
a
A B A B
az
B A B A

Figure A.1: The two sublattices A and B are shown. The basis vectors are as before
a; = a/2(V/3,1) and az = a/2(v/3,—1). The vectors connecting the sublattices are
u=a/Vv3(1/2,V/3/2) and v = a/+/3(1,0). O is the origin from which the positions
R are measured.



84 APPENDIX A. THE HARTREE-FOCK APPROXIMATION

of sublattice A and one of sublattice B, thus the number of different k-vectors is
L/2. With the help of these new operators we go to the reciprocal space:

Hyr = Z [(Z tijeik(Ri-f'VRju)) aLgbka +h.c
i

ko

Um U .
5 %; Mo (alptir = Wb ) + 7 (1+m?) LT (A12)

We define the new operators

. Zl tl 'eik(Ri-f-V*iju)
o = DT s
where ¢(k) = Ztijeik(Ri+v_Rj_“) : (A.14)

Clearly the sums over 7 are independent of R; because of the translation invariance

of t;;. Let us express this hamiltonian with the help of the operators ELO:

Higp = 3 (k) (albo + Vi )+ o S Mo (s — o ) 47 (14 m7) L
ko

4
(A.15)
This Hamiltonian can be diagonalized by a Bogoliubov transformation of the
following form:

ko

a, = —singreof, +cos fufy, (A.16)
bLa = cos d)k(,osz + sin Py, BI‘LO (A.17)

To cancel the non—diagonal terms the ¢y, have to satisfy

2¢(k)
Um ’

tan (2¢kg) = )\Tg (A18)

and we obtain the H-F Hamiltonian in it’s diagonal form

[U%m?
HHF = Z 4 + 62(1{) <BlTﬁkT —+ CYLLChq)
k

U?m?
4

+ 62(1{) (Bliiﬁki + O‘ITqO‘kT)]

~

+— (14 m?) LL (A.19)
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This Hamiltonian depends on one self—consistent parameter, the sublattice mag-
netisation m. Using equation (A.18) we can write down an implicit equation for
m. By definition:

m = % (Z [(nit) — (niy)| — Z [(nit) — <”z¢>|> (A.20)

_ %Z((ahakﬁ—(aLTak¢>—(bhbk¢>+(b£¢bk¢>) (A.21)

For the ground state we have

(BL,Br) = (o) =1, (A.22)

whereas all other expectation values are zero. Then we can evaluate the sublattice
magnetisation when the system is in the ground state:

m = % Z (cos® i, — sin® gyt + cos” Pir + sin® Py, ) (A.23)
k
= % Z (cos(2¢ks) + cos(2¢x,)) (A.24)
k
1 1
= A
L kzg V1 + tan?(2¢y,) (4.25)
(A.18)

2 Um
L zk: VUZm? + 4é2 (k) (4.26)

This is the central equation of the presented H-F theory.

A.4 The RPA susceptibility

Now we want to determine at which value of U the antiferromagnetic instability
(A.8) sets in. We expect that at the onset of antiferromagnetism the static
staggered spin susceptibility will diverge. To calculate this susceptibility in H-
F theory we have to couple the electrons to an external staggered field by an
additional Zeeman term

Hp = gup Yy _(—1)'BS;, (A.27)

g = 2 is the gyromagnetic ratio, up = % «» 5.8 eV/T the Bohr magneton and
B the amplitude of the applied staggered field. The Hamiltonian (A.9) becomes
(neglecting the constant terms):

Hyp = Z (tijcggcjg + h.c.) + Um—;ﬂ Z (—1)" Mo o (A.28)

(i,j>0’ o
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We see that the results from the previous section are still valid when Um is
replaced by Um + gugB. Then the self-consistency equation (A.26) reads

Um + g,LLBB ﬁrst order 2 1
Um + gupB
E:VWﬁn+mwB )2 + 4¢%(k) ( 'T Z2|()|
X0
(A.29)
and we get the magnetisation in first order in the applied field
X0
= B——— A.30
= 9B (A.30)

The staggered static susceptibility is defined at zero temperature for small fields
by the following partial derivative of the ground state energy FEj:

1 0%E,
XTT oB?

(A.31)

B=0

As we do not know the exact ground state energy of the original Hamiltonian
(3.7) we evaluate it in the H-F ground state:

1 0 gupB ;
— | (HF|H |HF HF|(-1)'S? |HF
! m B=0
(A.30) 2 Xo
= = — A.32
XRPA (9p) 1— Uxy ( )
We see that the susceptibility diverges if

UHE o = 1. (A.33)

This equation determines the onset of the antiferromagnetic instability in the
H-F approximation.



Appendix B

Weakly interacting fermions in
one dimension

B.1 Summary

This appendix has two goals. First it should give an introduction to the very
special physics of one-dimensional systems. This is an extreme view of a CNT but
it is expected that many signatures of this physics should actually be observed in
CNT ! and on a practical level, it has the advantage that all the technical tools of
one-dimensional physics are then available. A huge amount of work is published
on CNT from this point of view mainly to study correlation effects. Some of them
are cited in this thesis. Secondly in chapter two I make use of a renormalization
group equation for the one—dimensional Hubbard model to compute the charge
gap for a CN'T. The derivation of this equation is given below.

B.2 The g—ology model

This section follows closely the review article by Sélyom [121]. We want to define
an effective low—energy model for electrons of spin one half on a one—dimensional
chain of length ¢ and lattice spacing a interacting via the Coulomb interaction.
We start from a tight-binding description of the problem ignoring the Coulomb
interaction:

Hy= -2t Z cos(ak) ¢l cro (B.1)

ko

In the following we make the assumption that the interaction can be regarded as
“weak”, 7.e. we consider only electrons which lie near the Fermi surface. Under
this assumption we are allowed to linearize the dispersion relation around the
Fermi points £k;. We will impose a cutoff on the bandwidth by restricting the

1See e.g. section 10.3 of [73] and the references given there.
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—kp ke
2FLUFI€0

Figure B.1: The two branches of the linearized tight-binding band with a finite band-
width cutoff Ey = 2hvrpky.

summation on the wave vector. Then the dispersion is split into two branches,
the left moving electrons with negative momenta and the right moving ones with
positive momenta as it is shown in figure B.1. The lattice spacing a can serve
as a natural cutoff for the wave vector ky ~ 1/a which leads to a bandwith
cutoff £y = 2vpky. Using this cutoff the wave vectors for the left branch take
values in the interval [—kp — ko, —kp + ko] and for the right branch in the interval
[kr — ko, kr + ko). Noting the operators of the left moving electrons by by, and
respectively by ay, the right moving ones, the tight—binding hamiltonian becomes

Hy =Y vp(k - kp) af,as + Y vp(—k — kp) bl bgo. (B.2)
ko ko
€a(k) ep(k)

Now we want to analyze which interaction processes dominate the low—energy
physics of one—dimensional electrons within the model with bandwith cutoff.
Electrons interact via the Coulomb interaction which can be written as [33]

1
_ § T T
Hmt - 2/ V(q) Ck+QUCk’fqa’Ck’0’Cka- (B3)

qkk'oo’

As it is shown in figure B.2, all scattering processes which act close to the Fermi
surface can be classified into four groups. The first ones are the backscattering
processes. They exchange electrons from one branch to another, thus the momen-
tum transfer involved is 2kp. The associated coupling constant is denoted by g;.
The coupling constants g, and g4 correspond to forward scattering, the momen-
tum exchange is small (¢ & 0). The umklapp process g3 scatters two fermions,
initially on the same branch, to the opposite one. This process does not conserve
momentum. In fact the difference in momentum between the incoming and the
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ko k+q—2kro ko k+qo ko k+q—2kro ko k+qo
- > - -
-——> - > - - -> - -

ko k' —qo’ ko' k' —q+2kyr —Go' k'o’ k' —qo’

MLA N A\ G
© ST v

g1 =V(q~ 2kr) g2 =V(g=0) g3 = V(g = 4kr) ga=V(g=0)

Figure B.2: We show the four different types of low energy processes. A full (dashed)
line stands for a rightmoving (leftmoving) electron. We note by g; the associated
coupling constants.

outgoing particles is 4kr. Such a process gives a non-zero contribution if 4kp
equals a vector of the reciprocal lattice. In one dimension, it is only the case for
halffilling.

Further we note a process with coupling constant g; if the spins of the scattering
electrons are equal and by g¢;, if they are opposite. Then the Coulomb interaction
can be written as follows

1
Hy,y = Z Z (gl||6mr’ +glJ_(Sg,fa’)a;rcgb]t/g/ak’—lﬂkp—%—qa’bk72kpfq(r
qkk' oo’

1
Topf
+5 D (920000 + 92000, -01) Ol Dlrgr Vi 0o
qkk' oo’
1
57 Z (g3H6aa’ +g3l60',70") (a/]‘t;a'a/LIOJbk’*sz+q0—,bk+2kF7q7G0'

20
qkk'oo’

+ b]tgbzlg—/ak’—l—Qkp—f—qo"ak*kafq—%GO')
+2_£ (g4H6aa’ + g4L60,7(r’) (a]tgazlg'ak’—l—qa’aqua
qkk'oo’
+ b]TCO'bL’O"bk"“qU’bk_qU) : (B4)
This is the most general two—body interaction for weakly interacting fermions

in one dimension. However, in the following we assume that our hamiltonian
respects spin rotation invariance and consequently we can write g; = g;1 = g



90 APPENDIX B. WEAKLY INTERACTING FERMIONS IN 1D

k, iwp, k, iwp,
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k—q, twy,, — iw,gb) —k +q, —twp1 + iwgb)

Figure B.3: The diagrams for the bare Peierls (left) and Cooper (right) susceptibilities.
As before, a solid line corresponds to a rightmoving electron and a dashed line to a
leftmoving one.

B.3 Perturbation Theory

The main line of argument of this section is based on the book by Giamarchi [73].
Usually, systems with weak interactions are treated by perturbation theory. How-
ever in one dimension its correct computation is a difficult problem. The difficulty
is due to the fact that in one dimension it leads to logarithmic singularities si-
multaneously in the Peierls (particle-hole) and in the Cooper (particle-particle)
channel. The elementary diagrams of these two channels are shown in figure B.3.
The Peierls channel describes the density fluctuations around a charge density
wave with wavevector 2kp 2

Oveierts (4 = 2k, iwl)) = D bl o (i, — iw? )i (iwn, ). (B.9)

k,ni,o

2Here we work in the Fourier-Matsubara space, e.g:

_ B
bl (iw,) = /0 dr et bl (1) (B.5)

IA)Z:(T) — €TH0b1];€_THO — eTeb(k)bLbkb};e_Teb(k)bLbk — e—Teb(k)b}; (B6)
The fermionic Matsubara frequencies are defined by

2n+ D)
B

wich reflect the anticommutation relations of fermions. In equation B.9 and the following

e =1 or w,= (B.7)

expressions one has to keep in mind that w,, and the sums w,, £ wg’) have to be fermionic

frequencies. This is only possible if wg’) is a bosonic frequency:

2nm
Wy, .

For more details one can consult for example reference [33], pages 110ff.
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The Cooper channel stands for the pair fluctuations around

Ocooper (=0, i) = Y obg_o(—iwn, +iw?) g (iwn,). (B.10)
k,ni,0=%x1/2

The corresponding susceptibilities are given by

1
X)) = =23 (0,0l iwl?)). (B.11)
The non—interacting contributions can be found by evaluating the diagrams in fig-
ure B.3 3. For example the contribution to the Peierls channel from this diagram
is

n

2
xp(iw®) = @ZGgo’(k—sz,mm — iwGO (k,iw,,)  (B.12)

k,n1
2 1 1
~ Bl . (B.13)
pt ; iwn, — iwd) — ey(k — 2kp) Wa, — €alk)

There is a straightforward procedure to evaluate quite generally sums over Mat-
subara frequencies (fermionic or bosonic). Restrict ourselves to the fermionic case
where we want to calculate a sum of the form

%Z d(iwy) (B.14)

where ¢(z) is a meromorphic function with simple poles only in z = z and
residual r;. Further we assume that the poles do not coincide with the Matsubara
frequencies. We note that the Fermi—Dirac distribution, analytically continued
to the complex plane,

1

fivl2) = 1+ ef?

(B.15)

has its poles at the fermionic Matsubara frequencies, and the same residual —1/3
for all poles. We apply the residual theorem to the integral

lim % frp(2)6(2) (B.16)

R—~00 [, 2T
where the contour C is chosen to be a circle of radius R around the origin which
gives

%Z Bin) = 3 rifun(a). (B.17)

l

3cf e.g. [122], p. 3004
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This formula can directly be applied to our sum:
, €.k ek — 2k —i—iw,(lb)
i) — Z fFD)< ©) ., fro(ell = 2k ik
l —iw? — (k= 2kp)  e(k — 2kp) + iw — eq(k)

fFD €a — fep(e(k — 2kp))
Z il o €a(]€) —e(k — 2kp) (B.18)

The measurable quantity is however the retarded susceptibility which is obtained
by analytic continuation iw() — hw + id 4

fro(€a(k)) — frp(e(k — 2kg))
Z hw+6a —Gb(l{}—2kF)+7:(5 (Blg)

In a completely analogous way one obtains the non—-interacting retarded suscep-
tibility for the Cooper channel

Z frp( izea L _fi];((_/g)(-p @;) (B.20)

We observe that the one dimensional dispersions €, (k) and €,(k) defined in equa-

tion (B.2) have the two following properties which are uniquely due to time
reversal symmetry

eo(—k) = ealk), (B.21)

ek —2kp) = —eu(k). (B.22)

These relations have drastic consequences on the behavior of the susceptibilities®:

Re X;et (w) = —% tanh(eﬂazz()k)ﬂ) (B.23)
Eo/2 anh (e
tzo0 /_E , dep(e) M (B.24)

We remind that Ej is the energy cutoff introduced in section B.2 and p(e) is
the density of states per unit volume where the factor 2 comes from the spin
degeneracy. If the density of states does not vanish at the Fermi level (e = 0) we
have a logarithmic singularity at wave vector 2k, regularized by the temperature:

. —kpl/2 1 Eo/2 1
Rexo (2kp) ~ —p(0) [ — / de— + / de— (B.25)
k

—Eg/2 € BT/2 €

= —p(0) In(EyB) (B.26)

Yef e.g. [33], p. 121.
SHere we show the real part only. However the imaginary part can always be obtained using
the Kramers—Kronig relations, cf e.g. [33] p. 360.
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Figure B.4: In the RPA approximation we sum up the bubble diagrams for the Peierls
channel and the ladder diagrams for the Cooper channel.

Here the temperature acts as a regulator but one could also use a finite fre-
quence w, or a momentum k slightly different from 2k and In(Ey/kgT) should
be replaced by In(Ey/ max(kpT, hvpk, iw)). The same calculation for the Cooper
channel leads to

Re X" (0) = p(0) In(Eyp3). (B.27)

We have shown that the elementary diagrams in figure B.3 have logarithmic singu-
larities. Consequently these singularities will appear in all orders of perturbation
theory when we include interactions. This is in general not a major problem be-
cause it is possible to sum up all these divergencies to all orders. This is achieved
by the evaluation of the diagrammatic series shown in figure B.4. The n'® order
contribution for these diagrams is then just

Xu(@w) [=xu(g, W)V ()], (B.28)

which can be summed up for each channel separately as a geometric series

RPA - Xu((bw)
e (@9) = T SV (B.29)

The approximation to restrict the summation to this particuliar subsets of bubble
(ladder) diagrams is called RPA (random phase approximation) and it is com-
pletely equivalent to the calculation which was done in appendix A. We observe
that the RPA cures the singularity in the susceptibility if one has x, — oo. How-
ever it diverges when x,(q,w)V(q) = —1. As it was discussed in appendix A the
later divergence indicates a phase transition to an ordered state. Since x, has
different signs for the Peierls and the Cooper channels, a divergence can occur
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in only one channel for a given sign of V(¢). In higher dimensions the RPA has
proven to be a nice tool to put many phase transitions on microscopic grounds.
In one dimension however RPA clearly fails to produce correct predictions since a
one dimensional system cannot have a finite temperature phase transition. This
is already true at a classical level [123] and quantum fluctuation will prevent even
more such a phase transition. Thus in one dimension the bubbles and ladders
in figure B.4 cannot be summed up separately and mixed diagrams have to be
considered. This was done in 1966 by Bychkov et al. [124] by the summation of
the so—called parquet diagrams. We will not continue this line and we present a
much more convenient way to treat the logarithmic singularities wich is shown in
the next section.

B.4 The Kadanoff-Wilson renormalization group

B.4.1 The method

In this section we present a method to treat in a convenient and systematic way
the singularities met in the previous section. The present description follows a
review article by Bourbonnais et al. [125]. A more detailed introduction can be
found in the book by Peskin and Schroeder [100].

The goal of an renormalization group (RG) approach is that starting from a given
theory (e.g. a Lagrangian) one wants to construct a new theory (most preferably
simpler to solve) which has the same low energy behaviour as the original theory
but the high—energy degrees of freedom are “integrated out”. This means that we
are interested in the long distance behaviour of the problem only. The complexity
of the new theory depends crucially on how the low— and high—energy degrees of
freedom are coupled together. The RG—procedure is most easily implemented in
the euclidean path integral formulation using fermion coherent states [85]:

7= ] / Dz, (k) / Dy (F) e~ 451 (B.30)

We have introduced for each mode defined by the numbers p (left or right moving
fermions), k = (k,iw,) (Fourier-Matsubara space), o (spin) a Grassmann vari-

able z,,(k). After the discussion in the previous section, the action for weakly
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interacting electrons in one dimension is given by

s = 35 [600] 5 @b

pal?;
hvpg

pt =

hmvpgs -

Bl

Z (0o, + 0g,—07) ZZG’(IZ:)ZZO',(I,%)ZGOJ(I,%, + (2kr, 0) + q)zba(% — (2kr,0) — q)

+ IS N Sy + G (z;g(k)z;g,(k)z,,a,(k — 2k, 0) + §) 20 (F — (2kr, 0) — §)

2¢
kk'G

ok (B) 2 (F) 2aor (B + (2K, 0) + §)2a0 (k + (2kp, 0) — q)) .

All the couplings are expressed in units of fivpm/a. As it is usually done in the
literature, one neglects the contributions from g4, assuming that their only effect
is a renormalization of Fermi velocities.® Then the parameter space for the RG
procedure is given by

Hs = (Gg,gl,gz,gg)- (B.32)
Now we want to integrate out the momenta far from kgr. These are the momenta
corresponding to the energy shell 1/2F(l)dl on both sides of the Fermi level (c¢f
figure B.1) where [ counts the number of succesive iterations of this procedure and
Ey(l) = Ege!. In other words, the reduction of the bandwith is parametrized by
I. The RG scheme is implemented by separating the integration variables z,, (k)
in an inner and an outer shell:

= zepe(k) for 2Rwpk € [—Eo(1)(14dl), —Ey(1)]
2o (k) ‘{ wone(B) for 2hopk € [Eo(l), Eo(1)(1 + di)] (B.33)

We would like to find after the integration over the outer shell an expression of
the following form

Z — eA(l)/Dzz/DZ< es[zz’z<}</DZ;/DZ> 65[Z27Z<,Z;,Z>]dl
eA(Hdl)/Dzz/Dk eSSl

So that this procedure of reducing the cut—off becomes a continuous transforma-
tion of the action S(l) and the free energy density A(l) in the limit d/ < 1. The
RG transformation will generate a flow in the parameter space

RGdl[,u(l)] == ,U,S(l + dl)

(B.34)

(B.35)

bcf e.g. reference [121].

(B.31)
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where

us(l) = (2()G,, z1(1) g1, z2(1)g2, z3(1)gs) (B.36)
and there is nothing which forbids the RG transformation to generate new inter-
action terms which were not contained in the original action.

After each RG step the energy cut—off is changed by the factor s = ¢4 > 1 and
the energies are rescaled to be

€ S€p,

= Swy. (B.37)

S8

W

The fields are rescaled in such a way that Sy is a fixed point of the transformation

2 (k) = 27125712, (k). (B.38)

po

Then the coupling constants g; transform as
g =giziz* i=1,2,3. (B.39)

In general one is not able to implement the RG equations exactly but one tries
to set up a perturbative scheme for small coupling constants. To do so, first one
decomposes the action in a contribution from the inner shell only plus the rest

S[Z*,Z] :S[ZZ,Z<]<+S[22,Z<,Z;,Z>] (B40)

where )

Sl2%, 2, 2%, 25] = Sol2%, 25] + Z Sralel, z2<, 25, 25 (B.41)
i=1
and S;,¢ having ¢ 24 in the outer momentum shell. “Integrating out” the low
energy modes can then be done perturbatively with respect to Sp[2%, 2] using
the linked cluster theorem” :

4
7z = eA(l)/DzZ/Dz< es[zz’z<]</Dz;/Dz> e%ol#57>] eXP{ZSI,i[22>Z<>Z;>Z>]}
i=1
00 1 4 n
= eA(l)/Dzi/Dz< exp S[zi,z<]<+za<(ZSI,i[zz,zQz;,@]) >
n=1 0>,c

=1

)

It tells us that the exponential function is developped using the average over the
outer momentum shell corresponding to all connected diagrams

(Vose = Zsd / D= / Dz (..)eSolsa] (B.42)

In the next section the contribution from the one-loop diagrams are computed,
these are the terms coming from 1/2 <(SI,2)2>0> o

"See e.g. reference [85], p. 96f.
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B.4.2 One-loop calculations
Incommensurate band filling

At incommensurate filling one can neglegt umklapp scattering g3 and to calculate
the RG flow equations in the running coupling constants up to one—loop level we
write S7o as a sum over different channels where typical terms are shown:

Sie = Sia+ S+ 50, (B.43)
Stz € ZiosZestbo<as< +CC.
Sty & 2 < ZbosZar< T CC.

S?,g S ZaosZho<Pbo<Zas> T Zag< PbosFbo>Zaos<
As it was mentioned previously the g, channel does not give logarithmic contri-
butions and at the one—loop level it only readjusts the chemical potential. The

flow equations for g; and gy (neglecting g4) are computed from the diagrams in
figure B.5:

a(dl) = 1=2g()Ip(dl) + go(1) [Ip(dl) + Ic(dD)] (B.44)
2(dl) = 1+ fgg Ie(dl) + g2 (1) [1,(dl) + I (dl)] (B.45)

The contribution e.g. from the Peierls channel can be evaluated in exactly the
same way as in the previous section:

(B12) hrop

Ip(dl) V= o 3" GOk = 2kp, iwn, — iwP)GO (K, iwn,)
k> ,n1
—Eo(1+dl)/2 Eo(l)/2
B.24 tanh(fe/2
(ro0) (B.24) hrop (/ +/ ) de p(e) #
—Eo(l)/2 Eo(l+dl)/2 €
1
= di+ O(dr?) (B.46)

The density of states for a linear dispersion in one dimension equals the constant
1/(hmvp) which cancels the prefactor in the second equation. We know from the
previous calculation that

Ip(dl) = —Ic(dl). (B.47)
This allows us to write down the flow equations at the one—loop level
4 (20— 1) = 0. (5.49)

The first equation can be integrated:
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+
_>__
ga(l+dl) = g2(1) + a0 91()
I I ->= >-
g92(1) g92(1) + 0 g92(1)
S>> > > >-

Figure B.5: The one loop diagrams for the flow equations of the Cooper and the Peierls
channel. The slashed propagator lines refer to a particle or hole in the outer shell.
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From this solution one sees that if g;(0) is repulsive g; scales to zero, what
means that backward scattering is marginally irrelevant. If ¢;(0) is attractive,
g1 flows to the strong coupling region and diverges eventually, indicating that g,
is marginally relevant and the system should develop a spin gap®. Although the
divergence is an artefact of the one-loop calculation, the flow to strong coupling
is believed to be preserved to all orders. A good reason to believe that this is
true comes from the fact that the system can be solved exactly by bosonization
at the Luther-Emery line wich is at g,(lpg) = —6/5. This calculation confirms
the existence of a spin gap [126].

Two other important properties or the one—dimensional electron gas can be de-
duced from the flow equations. First the combination 2¢g; — ¢; is invariant under
the flow. It has been shown [127] that this is a consequence of particle conser-
vation on each branch separately in the absence of umklapp scattering processes
g3. Moreover the two equations are completely decoupled. It has been noted by
Dzyaloshinskii and Larkin that the interaction terms of the action for ¢, and g
can be rewritten as [128]

Stlek, 2<]i = —hmvp(2g2(1) an —q)+hmvpg (1 ZS S_,(—4q)
pi

(B.51)
where n, is the particle density and S, the spin density at cut-off { > 0

D) = 3 37 3 e+ D) (B.52)

0k<

S,(0) — \f S 2 (et Do (B). (B.53)

00’k<

One deduces that the long wavelength spin degrees of freedom are independent
of their charge counter part. This property is true to all orders and it is not
restricted to perturbation theory. It is known as spin—charge separation in a
Luttinger liquid®.

8The reason for this expectation is most easily seen using bosonization. From the bosonized
Hamiltonian one can argue that in the limit g; — oo the system is locked in one of the classical
minima, and hence all the excitations of the bosonic fields are massive, i.e. there is a gap in
the spectrum. A pedagogical description on this subject can be found in reference [73], p. 63 f.

9Bosonization can give complementary insight to the phenomenon of spin—charge separation
in one—dimensional systems, c.f. p. 50 ff in reference [73]. The notion of a Luttinger liquid
refers to the breakdown of the Fermi liquid picture of quasi—particles excitations [129]. One
shows quite generally for one—dimensional systems [73] that the density of states vanishes as a
power law at the Fermi level

ple) oc e[ T4 (B.54)
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Halffilling

As we have shown previously, the g5 umklapp scattering processes become possible
at half-filling. The additional contributions to Sy, are:

S??Z A ZZG’>ZZO'<ZbG'>ZbO'> + c.c.
S Zae>Zao>Pbo<Pbo< T Zgp<Zar< Fbo>Zbo> T C.C. (B.56)
Only the first line gives logarithmic corrections at the one-loop level and the

same analysis as for the case of incommensurate filling gives the following flow
equations:

= o (B.57)
429, —g1) =93 (B.58)
4 — g3 (292 — 1) (B.59)

One observes that the umklapp scattering influences only the charge sector, and
the spin sector stays completely uncoupled. Umklapp scattering changes right—
moving electrons into left-moving ones (and vice versa) and the associated rate
of change is shown in the second flow equation. If one injects the third equation
into the second one, one obtains

d d
(292 - 91) & (292 - 91) - 93&93 =0 (B-GO)

which says that the flow follows hyperbolae given by
C = (29, — 91)° — g2 (B.61)

The possible flows are shown in figure B.6. We see that if g; — 290 > |gs]|, g3
scales to zero. Otherwise g; — g9 and g3 flow to strong coupling and one expects
an energy gap towards charge excitations.

where the exponent is controlled by the Luttinger liquid parameter K, defined by

_ [1+91— (292 —g1)/2
P14+ 292 —g1)/2]

(B.55)

The interpretation of this result needs some care as the vanishing single—particle density does
not indicate that there are no states available close to the Fermi level. It shows “only” that
there are no low—energy single—particle excitations but the system is actually a metal due to
collective excitations only!
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N

g1 — 292

e

Figure B.6: A contour sketch of the flow equations in the charge sector.
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Appendix C

Stochastic series expansion: a
QMC algorithm

C.1 Summary

In chapter 5 we study numerically the Heisenberg model on the honeycomb lattice
for CNT. This is done using quantum Monte Carlo (QMC) techniques. Here we
give the technical details of the algorithm used there, namely the stochastic series
expansion (SSE) representation with directed loops updates.

We start this appendix with a short and very sketchy introduction to QMC
methods and we reference to the ALPS project which makes available an efficient
SSE code as open source. Then we describe the SSE representation and subse-
quently the update scheme used, followed by a discussion about how to evaluate
observables such as total energy, susceptibility, and imaginary time correlation
functions. At the end, one can find supplementary data of our MC simulations
presented in chapter 5.

However we do not give an introduction to MC simulation in general as this
can be found in countless textbooks. A nice and concise introduction can be
found in the book by Hammersley and Handscomb [115], ¢f in particular chapter
9. For the elementary mathematical background one can consult chapter XV in
Feller’s book [130].

The subsequent descriptions of the SSE representation and the update schemes
follow closely reference [131].

103



104 APPENDIX C. STOCHASTIC SERIES EXPANSION

C.2 Overview of QMC representations and SSE
update schemes

We give an overview of the most common QMC algorithms which are concerned
with the evaluation of the partition function

Z =Trexp (—,Bﬁ) (C.1)

for a quantum mechanical Hamiltonian H. To bring this expression into a
tractable form one needs to find a mapping which reduces the problem to the
evaluation of a classical partition function. Following Wessel [132], three differ-
ent routes to such a mapping are known

e The world line representation is based on the mapping of spin—1/2 systems
onto a classical Ising model. It can only be used to a very limited number of
systems (e.g. isotropic Heisenberg model) but it gives usually very efficient
algorithms.

e The path integral method is a continous time representation based on the
perturbative expansion of the path integral using the Trotter—Suzuki for-
mula. This reprenstation can be used quite generally and gives good effi-
ciency if the diagonal terms are large compared to the off-diagonal terms.
However its implementation is often quite complicated and very system
dependent.

e The SSE representation is discrete in time and is a high-temperature series
expansion of the partition function. This representation is most widely used
nowadays. This is due to its universal applicability, its good efficiency, and
its relatively easy implementation.

Here we will only describe the SSE representation. This method was introduced
in 1991 by Sandvik and Kurkijérvi [133,134] by generalizing an old method due to
Handscomb!. In the original formulation of the method, local MC updates were
used. These updates suffer from critical slowing down near phase transitions
and give rise to long autocorrelation times of observables?. These issues were
improved considerably by Sandvik’s non-local operator—loop update [135]. More
recently it was realized that the operator—loop udate is just one possibility out of
a whole class of update algorithms. This lead to the even more efficient directed
loop algorithm [131,136, 137].

Yef p. 124 of reference [115].

2Defintion of the autocorrelation time: We note by A(t) the measurement of the observable
A at the MC step ¢t. The autocorrelation time 74 depends on the observable and it is defined
from the expression (A¢Asyr,) — (A)? o exp (—70/74) for 7o > 1.
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To obtain the results of chapter 5 we used and modified the ALPS? SSE code
which was written by Alet and Troyer. This code implements the generalized
directed loop method [131] and can be used for unfrustrated spin systems. A
description of the SSE representation and the generalized directed loop updates
follows in the subsequent sections.

C.3 SSE representation

The starting point of the SSE method is the high temperature series expansion
of the partition function

Z = iz%w (—H)”|a> (C.2)

where {|a)} is an orthonormal basis set of the Hilbert space in which the Hamil-
tionian H acts. The SSE algorithm outlined below can be applied quite generally,
e.g. to systems with multiple particle exchange or long-range interactions. How-
ever in this appendix we will limit the discussion to lattice Hamiltonians with
two—particle short range interactions and we will consider the isotropic spin 1/2
Heisenberg model (defined in equation 5.1) as an example. Such Hamiltonians
can be written as a sum over single-bond terms only

M
H=-) H, (C.3)
b=1

where M is the number of different operators H, where each of them associated
with one of the lattice bonds B. We define B = (i(b), j(b)) as the bond connecting
sites ¢ and j. For the Heisenberg model such a decomposition is easily done, a
bond Hamiltonian H, can be either non-diagonal in the S* basis

J + - - + 0
Hy == (850 + SwSin) =1 (C-4)
or diagonal

3ALPS stands for Algorithms and Libraries for Physics Simulations and it is “an open
source effort aiming at providing high-end simulation codes for strongly correlated quantum
mechanical systems as well as C++ libraries for simplifying the development of such code.
ALPS strives to increase software reuse in the physics community.” A description of this project
is given in F. Alet et al., cond-mat/0410407 and M. Troyer, B. Ammon and E. Heeb, Lecture
Notes in Computer Science, Vol. 1505, p. 191 (1998). The source code can be obtained at
http://alps.comp-phys.org/.
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Therefore the number of bond Hamiltonians M is twice the total number of bonds
in the Heisenberg model. We rewrite equation (C.2) using the bond operators

o0

Z=32. 2 ,H p)| iy, a(p — 1)) (C.6)

n=0{Sn} a(0),....,a(n)

where {S,} is the set of all operator strings which are the concatenations of n
bond Hamiltonians. Basis sets {|a(p))} have been inserted between each pair
of bond Hamiltonians. Therefore the state |«(p)) can be regarded as the p—step
propagated state from the initial state:

)) = HHbj |(0)) (C.7)

As we are evaluating a trace, we have to assure periodicity, i.e. |a(n)) = |a(0)).
In practice the infinite sum over n is truncated at a value of order L3, where L
is the number of lattice sites. The exact value is determined and adjusted during
equilibration of the simulation. After equilibration the cut—off is fixed.
In order to facilitate implementation, it is desirable to work with operator
strings of constant length A. This is achieved by inserting (A —n) unity operators.

There are < 2 > = ——+— different ways to do this. If we define Hy = Id, the

n’(

truncated highftemperature expansion can be written as

Z= ZZ Z 5( DT (0o) Hyy lap — 1)) (C8)

n= O{SA, } ..... a(A) p=1

where n now denotes the number of non—unity operators in the operator string
Sa = (b1,...,ba), with 0 < b, < M, p=1,...,A. In figure C.1 we consider a
very simple example of an operator string in the four site Heisenberg model as
an illustration. From equation (C.8) we deduce that the weight associated to a
configuration is given by

W(a(0). Sy, = ZEZ o 0) [T o, 0(0)). (©9)

A MC importance sampling is however only possible if we can interpret the as-
sociated weights as probabilities, i.e. all the matrix elements of bond operators
should be positive. Negative diagonal matrix elements can be cured just by
adding a positive constant C' = Cy + €, where Cj is the minimal value for which
all diagonal matrix elements are positive. In our example of the Heisenberg model

= |J|/4. € > 0 is an additional offset which can influence the efficiency of the
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Figure C.1: We consider the example of the four site Heisenberg model and we
give a graphical representation (after reference [135]) of the operator string Sy, =

(Hgl 2),HE’3 4),Id, HE’3 4),H(dl 2)> where we have set the cutoff A to 5. The horizontal

axis is used to show the different sites and the vertical axis represents the propagation
index. The initial state is chosen as |a(0)) = |}11)). Solid (dashed) vertical lines
indicate up (down) spin states. Diagonal non—unity operators are drawn as a single
horizontal line, whereas non—diagonal operators are drawn as a double line.

SSE algorithm?. Unfortunately there exists no general strategy to get rid of neg-
ative off-diagonal matrix elements. This is known as the “sign problem” in QMC.
A solution is however possible for bosonic models, ferromagnetic spin models,
and antiferromagnetic models on bipartite lattices (e.g. the Heisenberg model on
the honeycomb lattice). In the case of antiferromagnetically coupled spins on a
bipartite lattice the simple remedy is to perform a local gauge transformation on
one sublattice only:

S — (-1)'SF (C.10)

)

J)2 (SFS7 +575F) — —J/2(S7S; +S7S}) (C.11)

Once we have a model and a basis set where we can guarantee the positivity
of all matrix elements, we have to generate new configurations from an initial
one to evaluate stochastically the partition function. In practice an algorithm
which generates new configurations has to be ergodic (all configurations can be
obtained in a finite number of MC steps from any other configuration) and to
satisfy detailed balance®, i.e. the transition probabilities P to go from a state

Lef references [136] and [131] for details.

°In the mathematical literature (cf e.g. references [130] and [115]) instead of “ergodicity
one would read “irreducible, aperiodic Markov chain” and the detailed balance condition (e.g.
equation (9.3.8) in reference [115]) is a somewhat stronger condition what is actually needed to
prove the convergence theorem for Markov chains but a very useful one in applications.

7
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(a(0), San) to a new state (a/(0),5} /) have to satisfy

P [(a(0),S0) > (@(0) Sy)] _ WEO80)
P [(/(0), S} ) = ((0),880)]  W((0),S4) '

In the next two sections we will describe such update algorithms: the operator
loop and the directed loop updates.

C.4 Operator loop updates

A MC step in Sandvik’s SSE algorithm with operator loop updates [135] in the
operator string consists of two parts. First one attemps to insert or remove
identity operators into the operator string and secondly to make non-local worm
updates which will change the initial state and the operator string but with-
out affecting the expansion order. During the diagonal updates one proposes
to insert, respectively to remove, unity operators. Evidently such substitutions
changes the expansion order n. This diagonal update are done by traversing the
whole operator string Sy ,.(p), p=1,..., A. If Sp,(p) is a unity operator Hy it is
replaced by a bond Hamiltonian with a probability compatible with detailed bal-
ance given below. The reverse process is the substitution of a bond Hamiltionian
Hy, by a unity operator. Such an update is only meaningful if H,, is diagonal,
i.e. Hy, does not change the propagated state (|a(p)) = |a(p —1))), otherwise
the associated weight is zero.

As mentioned before the acceptance probabilities have to verify detailed bal-
ance. As there are M possible choices for H,, we have

P(Ho — pr) MW(O[, SA,n+1)

= ) C.13
P(pr — Ho) W(O[, SA,n) ( )

For such updates it is possible to use the Metropolis algorithm

M H -1
P(Hy — H,,) = min {1, flap)| Hy, |a(p )>} , (C.14)

v A—n
. (A—n+1ﬁmwmmﬂq

P(H,, — Hy) = min |1, : C.15
(i, = o) Ry (©19)

which always satisfies detailed balance by construction.

Now we come to the second part of the update procedure: We modify the
configuration obtained from the preceding local update by a fixed number of non—
local, so—called operator loop updates. During these updates the expansion order
n is constant and it has been shown to be useful to employ a new representation
of the operator string in terms of linked vertices. We associate a vertex (c¢f figure
C.2) with each non—unity operator (i.e. Hy, # Hp) in the operator string. This
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lo(3)) = ‘(1’,7(},]7)(17)> lo(4)) = |aj(b,,)(p>>
pr
TAVAVAVAVAVAVA
o(1)) = \ﬂ’r,'(bp)(P -1)) lo(2)) = |C“j(1,p)(17 -1))
Site i(bp) Site j(bp)

Figure C.2: The vertex state X, is equal to the direct product of the local states on its
four legs: 3, = |0(1))®|0(2))®|0(3))®|o(4)). This figure is taken from reference [131].

means that each horizontal wiggly line in figure C.1 corresponds to a vertex. More
precisely a vertex consists of a non—unity bond Hamiltonian H,, and four legs.
The two lower legs (1 and 2) carry the local states |a;(,)(p—1)) and |a;@,)(p—1))
before the action of H,, and the upper legs (3 and 4) carry these states when
propagated by Hy,, as it is shown in figure C.2. Let us define the vertex state by

), =|o(1)) ® 0(2)) © |0(3)) @ [o(4)), (C.16)
and at each bond the weight of this vertex is given by
Wby, ) = (0(3)] @ (0(4) ) Hy, (o (1)) ® 9(2))), (C.17)

where H, is the restriction of the bond Hamiltonian Hj to the states at sites i(b)
and j(b). Therefore the vertex weights equal the matrix elements in equation
(C.8)

Wby, £p) = (a(p)|Hy, a(p — 1)), (C.18)

To summarize, the operator string can be represented conveniently as a list of
vertices X, 0 < p < n —1. To understand this representation better we mention
that in a programming language the vertex list would be represented by two
one—dimensional containers [136]:

e vix[pl, p=0,...,n—1
This list gives the type of the operator Hy, for each vertex.

o link[j], j =0,...,4n — 1
link[4p+i] (p=0,...,n—1;7=0,1,2,3) gives the link (an integer referring
to another element in link[ |) for the leg i+1 of vertex p. This list is double—
linked, i.e. link[a] = b < link[b] = a.

The basic idea of the operator—loop update is to make changes in this vertex
list along closed loops defining a new operator string S} ,, and new initial state
|a/(0)). The closed operator-loop is contructed with the help of a worm.
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Inserting the worm: A worm is created by the insertion of the product of two
operators, Ay and its hermitian conjugate A(T), at a random leg [; in the vertex
list. The state at leg [; is denoted by |s1). One of the two operators will represent
the head of the worm and the other one the tail. In general the head and the
direction of propagation will be selected by two random choices:

1. Choose between insertion of A} Ay or AgAJ.

2. Choose either A or Ag to be the head. If the first operator in the product is
chosen the propagation is in positive direction of propagation (increasing p),
and if the second operator is chosen the direction of propagation is negative
(decreasing p).

Only the head of the worm will move as the tail is kept fixed. Actually the head
will be moved until it comes back to the insertion leg [;. Then the construction
of the worm is terminated and the worm annihilates. During its way, the worm
has updated all vertices where it passed by. Let us say we have choosen A (= Ay
or Al) to be the head of the worm. The head will act on the state |s;) by an
operator TO which gives again a normalized state

Ty |51>

Ty [s1) = T s 1| (C.19)

where the operator Ty is given by

T { At for positive direction of propagation,
0 =

A, for negative direction of propagation. (C.20)

Figure C.3 illustrates this transformation. In general a worm is inserted with a
certain probability Pisert (70, s1). In our example of a spinf% model® we always
insert a worm, because we define the following insertion probabilities

Rnsert(siam) = 6m,q:1/2- (021)

Mowing the worm up to annihilation: According to the direction of propaga-
tion the worm enters the first vertex V; on the entrance leg [;. Before the arrival
of the worm, the leg [, carries the state |s;). This state will be transformed to
Ty |s1) by the worm. Then the worm chooses an exit [}, one of the four legs of
vertex V4, with probabilities compatible with detailed balance. This probabilities
are defined in the next section. We note that the direction of propagation can be
inverted, depending on what leg is chosen. The new operator A; on the head is:

A} = Ay, no inversion of direction of propagation

. . . . . C.22
A= A(T), inversion of direction of propagation ( )

Following the vertex list, the worm will enter next into vertex V5 on leg [y =

6Other models are discussed on page 9 of reference [131].
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Figure C.3: The two possibilities of moving the worm after insertion of an initial
pair ABAO. (a) The operator Ay is moved upwards in propagation direction. As a
result, the transformation induced on the state s is Ty = Ag; (the new state is Ty(s) =
gg(s)) (b) The operator AI) is moved downwards in negative propagation direction.
The transformation induced on the state s is again Ty = AS (the new state being
To(s) = gg(s)) Dashed horizontal lines indicate where the operators were before they
were moved. Figure and caption are taken from reference [131].

s« State of the leg I/

before tl st t
T . tore the worm's transr
T; : New operator carried petore the wo !
o St £l by the worm’s head
Leg l; before the worn Al= Ti(s}) : State of the leg I/

after the worm’s transit

AWaAV . WaWaWaW 4
VAVAVAVAVAV)
\

Leg I;

State of the leg I;
before the worm's transit . Vertexi
sitting on bond type b;

3, : Current legs’ states
(before worm'’s sit)

W(b;, ;) : Vertex weight

. Vertex
sitting on bond type b;

$, : Current legs’ states
(after worm'’s transit)
W (b, &) : Vertex weight

T;—1 : Operator carried
by the worm’s head

Ti—1(si) : State of the leg [;

after the worm'’s transit

Figure C.4: Worm entering (left hand side) and leaving (right hand side) the i-th vertex
during its construction. The figures were taken from reference [131].
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I'. Again the state |s,) carried by the leg Iy is transfered to T} |s,) and the
worm continuous through exit leg [}, to another vertex. This procedure of worm
propagation is shown in figure C.4 and it is continued until the worm returns to
its initial leg. Then the worm is closed and the operator loop update is finished.

In the next section we discuss what probabilities have to be assigned to an
exit leg to get an efficient algorithm which satisfies detailed balance.

C.5 GGeneralized directed loops

C.5.1 Worm weights and local detailed balance
As previously discussed, we still have to determine the conditional probability

Py (3;,T;—y — T;,1; — 1)) of exiting on leg I}, knowing the worm has entered on
leg 1. Originally Sandvik [135] proposed

where X; is the vertex after the passage of the worm. This choice is often called
heat—bath solution and it is generic for all models. However it suffers from serious
efficiency problems due to bounce processes [136] which are processes where the
worm enters and exits through the same leg, ¢.e. I; = [.. Therefore Syljuasen and
Sandvik looked for probability assignments which minimize bounces [136, 137].
In particular they showed that it is sufficient to assure detailed balance at each
vertex separately

W (bi, S0 Py, (B4, Ti—y — Ty, s = 1) = W (b, ) Py, (26, T — T 10— 1))
(C.24)
to fulfill detailed balance for the operator loop update. Evidently equation (C.23)
satisfies this condition. Alet, Wessel and Troyer generalized equation (C.24) by
adding an additional weight factor which is the worm’s head matrix element

F(T,s) = (T(s)|T)s) = (s|T'Ts). (C.25)
Their local detailed balance condition then writes

F(Tiey, si)W (b, X)) Py, (X, T2 — T3, 1; = 1)) =
P Ti(8))W (bi, ) Py, (B0, T] — T 1 — 1) : (C.26)

The proof that this condition implies detailed balance is reproduced in the next
section. Before we come to this point let us make some remarks:

e The condition which is actually needed to prove detailed balance is
F(TT(s)) = £(T,5) (C.27)
which is satisfied by the choice (C.25), due to TtTTHT = TTTTTT = TH1dT.
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e The generalized directed loop equations (C.26) are a true generalization
of equations (C.24). They can be recovered by setting f(7,s) = 1 which
satisfies (C.27) equally.

e Minimizing the bounce probabilities under the restriction of local detailed
balance will lead to a linear programming problem, discussed in section
C.5.3.

e The worm weights in our example are

F(SE,m)=(m+1|S%m) = /3/a—m(m+1) m=41 (C.28)

C.5.2 Proof of detailed balance

We start with the probability to create a worm w, which comes back to initial
position by passing through exactly N vertices:

N
P" = Puiy - Prngens(To, 51) - [ [ P (B0, Tim = T3, 1 — 1)) (C.29)

=1

Pt denotes the uniform probability of choosing the insertion leg. The antiworm
w is inserted at the same leg as w but it will pass the /N vertices in reverse order:

Pu_] = Linit * Plnsert TNaTN SN H-Pb _> TT lal; — l) (030)

Then the detailed balance condition can be expressed as

N

pv W(b;, X
1 (bi, 2i)

— 2y (C.31)
P LW (b, )

Now we want to show that detailed balance is a consequence of equations (C.26)
and (C.27):

P’ Puen(Ty5) ﬁ PuBoTi 2 Tulhi = 1) )
pPv Pinsert(T]]:fa TN(S,N)) i=1 Pb' (227 TT — T'T—IJ l; — ll)
(C-:%) Rnsert TO; 51 H f i—1> SZ (blv 2) (C 33)
Plnsert(TNaTN SN i=1 TT ))W(b“ 2 )
(0-227) Pinsert (T07 51) H (b27 3 ) (C 34)

Pinsert(T;(fa j\:’N(S,N)) i=1 (b“ 2 )
Thus we have detailded balance if

Rnsert (TO; 51) - Pinsert (T]J{[; TN(SIN)) (035)
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When the worm returns to the initial leg [y, T;, equals either 1j, i.e. the worm
reenters [; from vertex Vy = Vi, or equals Tg if Viy # V1. In the first case we have
Tl = Tj and Ty |sy) = |s1) and therefore eqation (C.27) tells us that (C.35) is
always satisfied. If Ty = T, we have |sy) = |s1) and we need to impose on the
insertion probabilities that

Pinsert (T(;r; j\:’0 (51)) - Rnsert (TO; 51) . (036)

We note that the trivial insertion probabilities (C.21) which we defined for spin—3
models satisfy this condition.

C.5.3 Exit probabilities

We finish the description of the SSE algorithm by outlining how one computes the
minimal bounce probabilities. This is achieved by constructing 4 x 4 “scattering”
matrices P for all different types of possible vertices, with elements

There are three constraints on these matrix elements:

1. They are probabilities: 0 < P, <1

4
2. A worm always leaves the vertex: Y Py =1
k=1

3. local detailed balance (C.26)

The quantity we want to minimize is Tr P. The minimization of a linear equation
subjected to linear constraints defines a linear programming problem which can
be solved numerically without difficulty prior to the simulation using the simplex
algorithm [138].

C.6 Observables

The internal energy is related to the partition function by £ = —% In Z. Evalu-
ating this expression in the SSE representation (C.8) we obtain directly

E=—-1/p(n) + C - #(diag. matrix elements). (C.38)

We recall that C' is the energy offset which was added to render all diagonal
matrix elements positive.

In the following we restrict the discussion to observables which are diagional in
the basis |«) but all the forumulae can be generalized to non—diagonal observables
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[133,134]. The thermal expectation value of a diagonal observable A can be
written in the SSE representation as

(A) = Tr {Aexp (—B[:I)} (C.39)
@ LI5S Y @i, ee-1)  ©o
n=0 {Sn} a(0),a(n)  p=1

0 2248, 2aa() U (0)]W (a(0), Sy)

R S S A TR (4

= (a[a(0)]) (C.42)
where A |a(0)) = aa(0)] |a(0)) and W (a, S,) = i—r,z (al [I)=; Hy, |a). The statis-
tics can be improved by taking

m>=<%§jamwn>. (C.43)

p=1

Further we will have to evaluate time dependent correlation functions (A;(7)A2(0))
for two diagonal operators A; and A,. It was shown in the references [133,134]
that they are given by a binomial distribution of time propagation Ap in the
correlator

C'12 AP

3|'—‘

Z ai[a(p + Ap)las|a(p)] : (C.44)

(A (1) A5(0)) = <A§O< A”p ) (%)Ap (1 - %)Mp Clg(Ap)> (C.45)

As it is done in these formulae one has to ignore the unity operators in the
operator string when making measurements. But it has been argued by Dorneich
and Troyer [139] that the identity operators were uniformly distributed and would
not influence the mapping from index to imaginary time. We have verified this
claim when we calculated the staggered magnetization correlation function. The
results in table C.2 are obtained by summing over the whole operator string
(including the identity operators) whereas table C.1 was obtained with the non—
unity operators only. The results are identical within statistical uncertainties.
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C.7 Detailed MC simulation data for CNT

APPENDIX C. STOCHASTIC SERIES EXPANSION

# of sites MCS energy density Ao Ay
(1,1) o4 20 1.2x10° -0.57807(5) 0.5027(14) 0.5001(27)
128 20 5 x 10°(SKIP 20) -0.5781(1) 0.502(8) 0.498(14)
(2,2) 256 20 2.3 x 10* *(SKIP 20) -0.5479(1) 0.1131(7) 0.1116(8)
512 20 2.3 x 10* *(SKIP 20) -0.5479(1) 0.112(1) 0.110(2)
512 50  3486*(SKIP 20) -0.5481(1) 0.100(2) 0.099(3)
768 50  1742*(SKIP 20) -0.5480(1) 0.093(3) 0.093(4)
(2,0) 512 20  (SKIP 20) -0.5612(2) 0.132(2) 0.120(2)
256 40  (SKIP 20) -0.5616(2) 0.089(3) 0.081(3)
512 40  (SKIP 20) -0.5617(2) 0.098(4) 0.093(5)
512 50  4008*(SKIP 20) -0.5618(1) 0.090(2) 0.084(2)
512 60  2746*(SKIP 20) -0.5616(1) 0.091(3) 0.088(3)
512 70 1044*(SKIP 20) -0.5617(2) 0.087(5) 0.084(7)
768 50  1825*(SKIP 20) -0.5618(1) 0.094(3) 0.089(4)
(3,0) 96 50 -0.5500(2) 0.135(1) 0.134(2)
384 50  3822*(SKIP 20) -0.5499(1) 0.119(3) 0.117(4)
576 50  2699*(SKIP 20) -0.5495(3) 0.121(4) 0.121(6)
768 50  1676*(SKIP 20) -0.5498(3) 0.125(5) 0.127(8)

Tuble C.1: Idem table C.2 except that these values were calculated by evaluating the

correlator C1o as it is given in equation (C.44), i.e.
identity operators.

summing over S, without the
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# of sites [ MCS energy density A, Ay
(1,1) 64 20 5.8 x10° -0.57802(2) 0.50309(65) 0.5019(12)
64 40 1.9 x 10°*(SKIP 50) -0.57803(4) 0.491(11) 0.445(37)
128 20 4 x 10°*(SKIP 50) -0.57808(3) 0.5056(26) 0.5055(48)
(2,2) 128 20 2.8 x10° -0.54797(3) 0.12454(10) 0.12275(12)
128 50 3.9 x 10° -0.54818(2) 0.11124(10) 0.11080(13)
128 75 58 x10° -0.54822(3) 0.11109(36) 0.11093(58)
128 80 2x10* 0.1121(22) 0.1131(18)
256 50 4 x 10**(SKIP 50) -0.54809(4) 0.09960(66) 0.09930(90)
512 50 2.3 x 10**(SKIP 50) -0.54817(4) 0.0965(9) 0.0960(12)
1024 50  3872*(SKIP 50) -0.54817(7) 0.0967(19) 0.0967(25)
(2,0) 64 20 5x 106 -0.56172(3) 0.16757(10) 0.15922(12)
(3,0) 96 20 1.3 x 106 -0.54971(5) 0.14674(18) 0.14465(20)
96 50 1.5 x 10° 0.14002(74) 0.1389(11)
96 80 4.9 x 10* 0.1355(23) 0.1315(40)
192 50 2.4 x10* 0.1250(16) 0.1251(21)
768 50 1872 * (SKIP 100) -0.54984(12) 0.1145(42) 0.1126(58)
(4,0) 128 20 2.8 x 10° -0.54663(3) 0.10654(8) 0.10440(10)
128 50 3.5 x 108 -0.54691(2) 0.08748(8) 0.08689(10)
128 75 1 x 10° -0.54690(2) 0.08659(18) 0.08645(25)
512 50 2000 * (SKIP 100) -0.54651(13) 0.0530(12) 0.0522(14)
512 100 1584 * (SKIP100) -0.54675(11) 0.0470(14) 0.0469(18)
1024 50 1632 *(SKIP100) -0.54700(12) 0.0497(12) 0.0484(14)
1024 100 332 * (SKIP100) -0.54648(17) 0.0440(36) 0.0431(45)
(2,1) 112 50 6.4 x10° 0.16338(50) 0.16060(79)
112 80 2x10° 0.1625(19) 0.1605(44)
224 50 1.2 x 10° 0.1574(10) 0.1548(15)
224 80 1.2 x 10* 0.1582(66) 0.154(15)
448 50 2000 * (SKIP 100) -0.55287(13) 0.1498(71) 0.141(11)
(3,1) 104 50 1 x 106 0.10153(22) 0.09985(29)
156 50 6.6 x 10° 0.07755(20) 0.07580(25)
208 50 1.2 x 10° 0.06574(28) 0.06366(33)
520 50 2000 * (SKIP 100) -0.54717(13) 0.0481(11) 0.0462(13)
520 80 2000 * (SKIP 100) -0.54729(11) 0.0388(9) 0.0370(11)
1040 50 944 * (SKIP 100) -0.54702(25) 0.0469(14) 0.0455(16)
1040 80 520 * (SKIP 100) -0.54724(14) 0.0356(17) 0.0339(22)

Table C.2: Following Todo and Kato [103] we estimate the spin gap by A, =

lim

where 57

stands respectively for the second— and forth—moment estima-

Lf—oo ¢ln e’

) _ 8 [ 0w ) £ [y CoCern
= 5\ corgy — L and & Can/B)—Can/B) !

C(w) is the Fourier transform of the correlation function of the staggered magnetization

LQﬁZ/ dt

i,j=1
obtained by summing over the fixed sized operator string Sy ;, with identity operators.

tors which are given by 59

in imaginary time C(7 1)l=ls7 (¢ t)S5(t + 7')> . These results are
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Appendix D

Resonating valence bond mean
field calculation

In this appendix we outline the details of the diagonalisation of the RVB mean
field Hamiltonian (6.14) used in chapter 6

HYY = 6 Z Lij (fi]:,fj(, +h.c.> — uZni (D.1)
(i.5)o i

_% Z <<BT(i,j)> (fufir — fanfin) + (BG,5)) (fL AL — ijJ%)) _ ZLJAZ

(1,4

where we have set (B(i, j)) = Aei. This calculation follows the same lines as the
Hartree—Fock calculation in appendix A. Therefore we transform our Hamiltonian
into reciprocal space again by equations (A.10) and (A.11). This has already be
done in appendix A for the first two terms of HMF and the exchange term can
be transformed by exactly the same manipulations. Then the Hamiltonian (D.1)
can be written in reciprocal space as

Y = 53 (M)a, b +he ) = > (a0 + b, b )
ko ko

—1/23" Bk (albl i + 6 g, ) +he] - ZLJAQ (D.2)
k

¢(k) and B(k) are given in equations (6.18) and (6.19). Their explicit expres-
sions are not needed here. Following reference [111] we rewrite this Hamilto-

a'kT

and a row vector
ka

nian with the help of a column vector ¥or(k) = (

119
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Uii(—k) = (a_k, boxy):

Ak)

N

Ve

HYE =" Te[T(~k)] + (‘I’ET(k), ‘I’RT(—k)) ( gt((klg) —DT(E{IZ) ) ( \II‘IE;E(—I{IZ) > _ZLJAZ

(D.3)
A(k) is a symplectic and hermitian 4 by 4 matrix where

D(k) = < B*(Ek) B*O(k) ) and  T(k) = ( fj(ﬁ) 5‘5_(5) ) (D.4)

Hermitian implies that the eigenvalues are real and from symplectic follows that
they come in pairs of +¢. Doing now the algebra to find the eigenvalues of A:
We write the eigenvalue equation in simplified notations:

(D)0 2= w

This gives the following system of matrix equations

T¢+D® = ¥, (D.6)
D'V -T® = & (D.7)

which can be solved e.g. for ¥ to give:

(e —T)¥ =D(+T) 'D'Ww (D.8)
= e—T = J?|B]* (c“(c + T)o*)) "
= (¢4 0°To%)(e —T) = J*BJ? (D.9)

But T is nothing else than
T =—p+dRe(§)o” + 01Im(&)o? (D.10)

and therefore
o"To® =TT, (D.11)

Now we can evaluate equation (D.9):
(e + 0"To")(e = T) = ( + T')( = T) = J2|B?
e? — i — (6€")? —6E(e — ) + 06" (e +p) \
( —08" (e — p) + 0&(e + ) €2 — 12 — (6€)? ) =J°|B]>  (D.12)

= = (06" = PIBP —0€(e — ) + 06" + ) | _
= det ( _55*(5 - H) + 55(6 + ,u) g2 — MZ _ (55)2 o J2|B|2 ) =0 (D.13)
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= (22— = 2Bl = &IEP)" = 40 (12l + 2Bl (m€)?]  (D.14)

And finally we obtain the expressions for the four eigenvalues of A:

& = p2+ J|BP + 8|6 £ 25/ P[EF + S2IBR(ImE)? (D.15)

Coming back to the mean-field Hamiltonian, it reads in diagonalized form

Hy = ) ek — (k) BB — L+ 3/2LJ A?
K,j—+
= 3 &) (vmg + Bl,8) — Lu+3/2LIA% (D.16)
k,j==+

Now we can get the mean field free energy density ¢ by:
e P = Trexp (—BHY") (D.17)
= H Z <{n')’kj}7 {n')’kj}‘ exp (_BH%IF) Hnm}a {n')’kj}>

k] n»yk]. =0,1
anj =0,1

= Hexp [—ﬁ <—M +3/4JA% — Zgj’ (k,))

kl,jl

[1+exp (—fg;(k)))*

= ¢ =—p+3/4JA° = {e;(k) +2/BIn [l +exp (—fBe;(k))]}  (D.18)

k,j

The mean field parameters A, 6;;, and p are obtained by finding the minimum
in the free energy function under the constraint of fixed particle density:

0 N 65] Be;(k
%Z_f = 6_1——: Z ( 2( )> (D.19)
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