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Abstract

Strontium barium niobate (SrxBa1−xNb2O6, shortly SBN) is a solid solution system

with tetragonal tungsten bronze crystal structure. It exhibits a ferroelectric phase

with only one polar axis and a transition temperature depending on the Sr/Ba ratio.

This thesis studies the growth of SBN thin films, in order to obtain a ferroelectric thin

film model system for the study of 180◦ domain switching close to the ferroelectric

phase transition. SBN has been chosen not only because uniaxial, but because it is

possible to tune the temperature of phase transition varying the Sr/Ba ratio. It is thus

possible to study electric properties of the phase transition close to room temperature,

where conduction phenomena related to defects are normally lower.

Thin films of SBN were grown by Pulsed Laser Deposition in a vacuum system con-

structed during this thesis work. For the formulation of a model it is desirable to have

a system as close as possible to a single crystal. Therefore deposition parameters have

been optimized to grow SBN thin films with the polar axis oriented perpendicular to

the film plane. The films are integrated in parallel plate capacitor structures, in order

to measure dielectric properties.

The stability of the ferroelectric phase is found to be sensitive to impurities; contami-

nants with concentration below 1% induce a lowering of the transition temperature of

about 100◦C. Strain as well has influence on the phase transition; in the case of sub-

strate with thermal expansion coefficients different from the SBN ones, the SBN film

is under stress. A 0.6% tensile strain induces a lowering of the transition temperature

of about 100◦C, this is the case of silicon single crystal substrate. Grown on strontium

titanate single crystals (STO), whose thermo-mechanical properties are close to the

one of SBN, the films exhibit a phase transition temperature compatible with the one

measured on single crystals.

The obtained films suffer from leakage that is reduced by thermal treatment in oxygen

rich atmosphere. The oxygen vacancies, created during the deposition process, are

considered to be responsible of leakage. Vacancies recovery upon annealing does not



eliminate the problem, and measurement of polarization at room temperature is diffi-

cult. However, piezoelectric measurements performed on individual grains, with atomic

force microscope, prove that these have ferroelectric properties; by these experiment

has been proved that it is possible to switch the polarization. Films with a disordered

structure of grains are much less leaky than the ones with columnar grains spanning

the whole cross section. These observations lead to the conclusion that conduction

goes trough the grain boundaries.

On STO single crystals, SBN grows epitaxial in Volmer-Weber mode. With a suitable

preparation of the substrate surface, it is possible to induce the growth of films with

different orientations of the polar axis: in the film plane, perpendicular to it or inclined

of 45◦. A model is proposed, explaining the epitaxial relation with the substrate on

the basis of the perovskite kernel contained in the unit cell of the tetragonal tungsten

bronze structure. The film grows from the nucleation of the perovskite structure that

rules the orientation of the film; the high temperature at which the substrate is kept

during the deposition, assure the necessary mobility for the arriving atoms to organize

in the SBN structure around these nuclei. The study of literature data allows to state

that such a model is valid not only for substrates with perovskite structure, but can

be extended to substrates with a cubic crystal structure, like magnesium oxide.
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Riassunto

Il Niobato di Stronzio e Bario è una soluzione solida di formula SrxBa1−xNb2O6, (nel

seguito SBN), e struttura cristallina tetragonale. Questo composto ha una fase fer-

roelettrica con asse polare unico e la temperatura di transizione dipende dal rapporto

tra concentrazione di Stronzio e di Bario.

In questa tesi viene studiata la crescita di film sottili di SBN; lo scopo è di ottenere un

sistema modello per lo studio dell’inversion di polarità in domini a 180◦, in prossimità

della transizione di fase, per l’appunto in film sottili. SBN è stato scelto non solo

per l’unicità dell’asse polare ma anche per la possibilità di variare la temperatura di

transizione cambiando il rapporto tra stronzio e bario. Questo permette di effettuare

lo studio delle proprietà elettriche in intervalli di temperatura non lontani dalla tem-

peratura ambiente. Uno dei vantaggi, oltre a quelli legati alla praticità sperimentale,

è la minimizazione dei fenomeni di conduzione.

I film per queso studio sono ottenuti con la tecnica nota come "Pulsed laser deposi-

tion", abbreviata PLD e il sistema di deposizione è stato costruito durante il lavoro

di tesi. Dal punto di vista della modellizzazione è desiderabile avere un sistema il piu

possibile prossimo a un monocristallo. Per questo motivo i parametri di deposizione

sono ottimizzati per la deposizione di film con l’asse cristallino [001], coincidente con

l’asse polare, perpendicolare al piano del film. I campioni cosi ottenuti sono integrati in

condensatori a faccie piane e parallele, per mezzo di tecniche standard di foto-litografia.

La stabilità della fase ferroelettrica nei film di SBN, risulta essere sensibile alle impu-

rità; la presenza di contaminanti in concentrazione inferiore all’ 1% e sufficiente per

indurre un abbassamento della temperatura della transizione fase di circa 100◦. An-

che le deformazioni hanno un influenza sulla transizone di fase; a causa dell’elevata

temperatura di deposizione, quando la costante di dilatazione termica del substrato è

molto diversa da quella di SBN, in prossimità della temperatura ambiente il film di SBN

risulta sottoposto ad una deformazione. Deformazioni di 0.6% inducono variazioni della

transizione di fase di circa 100◦. È questo il caso dei substrati di silicio monocristallino.



Cresciuti su substrati monocristallini di Titanato di Stronzio (STO nel seguito), il cui

comportamento termo-meccanico è prossimo a quello di SBN, i film possiedono una

temperatura di transizione compatibile con quella misurata nei monocristalli.

I film ottenuti sono affetti da perdite elettriche. Questo fenomeno è ridotto da un trat-

tamento termico in atmosfera di ossigeno, dunque una delle cause è da trovarsi nelle

di lacune di ossigeno che si formano nel processo di deposizione. L’incorporazione di

ossigeno tramite ricottura non elimina completamente il problema, e la misura della po-

larizzazione a temperatura ambiente risulta difficoltosa. Tuttavia, misure di piezoelet-

tricità, effettuate con il microscopio a forza atomica su singoli grani del film, provano

che questi ultimi hanno proprieta ferroelectriche in quanto è possibile invertire il verso

della polarizzazione. Questa osservazione porta alla conclusione che la conduzione sia

confinata ai bordi di grano.

Su cristalli di STO, SBN cresce epitassiale secondo il processo Volmer-Weber. Con

l’opportuna preparazione della superficie del substrato, è possibile indurre la crescita

di film di SBN con differenti direzioni dell asse polare. In questo modo film con l’asse

polare nel piano del film, perpendicolare ad esso e inclinato di 45◦ sono ottenuti. Il

modello di crescita proposto spiega la fenomenologia di crescita, orientazione e forma

dei grani, considerando il ruolo del nucleo con struttura cristallina di perovskite, con-

tenuto nella struttura tetragonale di SBN. Il film di SBN nuclea formando la struttura

perovskite, che determina l’orientazione finale. L’elevata temperature di deposizione

assicura agli atomi in arrivo, la mobilità necessaria per formare la struttura di SBN

attorno a questi nuclei. Lo studio della letteratura permette di affermare che tale

modello non è valido solamente nel caso di substrati con struttura perovskite, ma puo

essere applicato ugualmente nel caso di substrati a struttura cubica come l’ossido di

magnesio.
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Chapter 1

Introduction

1.1 Motivation and primary goal of the work

Strontium barium niobate (SrxBa1−xNb2O6, shortly SBN) is a very interesting mate-

rial from the point of view of both fundamental research and application.

Single crystals of SBN show strong piezo,1 and pyroelectricity,2 a large spontaneous

polarization and high linear electro-optical coefficients.3 SBN undergoes a ferroelectric

phase transition in the temperature range from 60 to 250◦C, depending on the Sr con-

tent. SBN is a uniaxial ferroelectric and shows relaxor behavior for x>0.5. Owing to its

intrinsic charge disorder, and to the unique polarization direction, strontium barium

niobate is considered a model system for the three-dimensional ferroic random field

Ising model.4

The relatively low critical temperature of SBN allows to operate devices near to them

and thus to profit from enhanced properties such as high pyroelectric coefficients. SBN

with x=0.5 (critical temperature 120◦C), is one of the classical crystalline materials

applied in pyroelectric uncooled infrared detectors. Doping with rare earth is another

fruitfully and widely employed possibility to tune the properties of SBN.

All the previously mentioned reasons motivated the effort in production and charac-

terization of SBN single crystals, starting from the early work of Jamieson and Glass

in 1968.2,5 Recently, production of defect free crystals has been triggered mainly by
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the realization of optical applications; they are investigated for optical memory, optical

frequency conversion and wave guide applications. The high costs and the difficulties

related to the production of big and defect free crystals, stimulated the research on

SBN ceramics. Down scaling of devices and on chip integration motivated research

on thin films. Potential applications are: infrared detectors, optical memories, optical

switches, and surface acoustic waveís devices. While pyroelectric applications work

well with polycrystalline c-axis textured films, electro-optic applications require mono-

crystalline epitaxial films. There is thus some interest to study integration onto Si

based microsystems as well as in epitaxial growth on single crystals substrate.

As will be shown in the following literature review, the knowledge in SBN thin film

growth and resulting properties is still rudimentary. This work is devoted to the growth

and characterization of SBN thin films by pulsed laser deposition (PLD). The first aim

was to fabricate SBN capacitors structures, integrated on silicon, by growing polycrys-

talline SBN films on suitable electrode films withstanding the high growth temperature.

The second goal was to understand growth mechanisms governing film orientation and

texture, through the study of epitaxial growth. The third goal was to investigate

fundamental properties of the obtained films and capacitors.

1.2 SBN: structural and physical properties

1.2.1 Crystal structure

The strontium barium niobate solid-solution series crystallize in the tetragonal tung-

sten bronze (TTB) structure. At room temperature it has the symmetry of the space

group P4bm for 0.25 < x < 0.75. It belongs to the 4mm point group in the ferroelectric

phase and changes to the 4/mmm when in the paraelectric phase. The full formula

per unit cell is: (Sr, Ba)5Nb10O30. The unit cell lattice parameters are a=b=1.245

nm c=0.395 nm. It consists of a framework of ten oxygen octahedra linked in such

a manner as to form three different types of tunnels running through the structure

parallel to the four fold axis (c-axis). The tunnels are delimited by octahedra chains

8



that resemble those in the perovskite structure (figs.1.1,1.2).

Of the six available sites for Sr and Ba, only five are actually occupied. That leads to

a) b)

Figure 1.1: SBN50 unit cell: two possible configurations for the distrib-

ution of Sr/Ba atoms. The octahedra have oxygen atoms at the vertices

and a Nb atom is sitting in the center, they are actually tilted along the

c-axis and the splitting of vertices in the picture indicate the two possible

position of oxygen.

a certain degree of disorder responsible for the dielectric behavior of SBN. The Ba+2

cations, being substantially larger than Sr+2 (Ba 1.75, Sr 1.58), find place in the bigger

tunnels with pentagonal cross-section, which have a total occupancy probability of 88%

for all x. The Sr+2 cations can be in both the pentagonal and squared cross-secion

tunnels, the latter have an occupancy of 71-72%, increasing with Sr content. The broad

channels are statistically occupied by both Ba and Sr, the Sr atoms are displaced from

the symmetry planes mxy while the Ba atoms occupy the symmetric position5 (fig.1.1).
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The triangular cross-section tunnels are empty and Nb+5 cations occupy the central

site of the octahedra. In the Nb-octahedron the apical oxygen atoms, located in the

planes of Sr and Ba atoms, are statistically disordered over two positions with a prob-

ability of 0.5. The distances between the split positions increase monotonically with

an increase in the strontium content, giving a wider tilting of oxygen octahedra along

the c axis. In other words, the planes statistically occupied by Sr and Ba atoms also

contain statistically arranged apical oxygen atoms of the Nb-octahedra.6–9 Upon heat

treatment at high temperature super-lattice structures due to ordering in the octahedra

tilt and in the occupation of pentagonal and squared cavities, has been observed.10,11

Because of the structural complexity, a wide range of cationic substitutions can be ac-

commodated. The presence of impurities, as well as non-stoichiometry, does not induce

conduction in SBN but strongly affect its ferroelectric properties. Therefore doping is

widely used in this sense to improve the characteristic of the material for specific ap-

plications. The main effects of doping are the decrease of the transition temperature

and the enhancement of the relaxor behavior.

Figure 1.2: SBN unit cell view along the a or b axis
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1.2.2 Growth of single crystals

The growth of SBN single crystals is relatively easy for the only congruent melting

composition SBN6112(here and in the following the number after SBN indicate the Sr

content, e.g. x=0.61→61). Crystals of 2-3 cm diameters are obtained13,14 for SBN50 as

well. The crystals grow as cylinders and develop natural facets. The direction of growth

occurs regularly along the polar axis. Since SBN has a unique polar axis, problems of

90◦C twins growth do not occur. However other problems are encountered:15

• because of the high melting temperature (1500◦C), volatilization and oxidation-

reduction problems are common.

• the low thermal conductivity makes it difficult to keep the temperature uniform

during cooling

• distribution of Sr and Ba in the five and four fold tunnels is strongly sensitive to

cooling rate variation and causes striations

• striations are very difficult to suppress in doped crystals

Ce-doped SBN:60 have been developed with minimum or no striation.

A complete review of the chronological development of SBN in terms of crystals growth

and applications, can be found in the paper of Neurgaonkar et al.16

1.2.3 Properties of SBN

Polarization in the tungsten bronze structure arises from the displacement, in the same

direction, of all the metal atoms, from the nearest mean plane of oxygen atoms. This

direction determines the ferroelectric polarization axis.5 SBN is a uniaxial ferroelectric

with the polarization along the four fold axis (c axis). In the ferroelectric phase Sr,

Ba and Nb atoms are displaced along this axis, the Nb atoms giving the major contri-

bution to polarization.17 Above the ferroelectric phase transition temperature , in the

paraelectric phase, Sr, Ba and 20% of Nb atoms move into the oxygen planes, while

the other 80% are equally displaced above and below the oxygen planes.
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The ferro to paraelectric phase transformation is of second order. The Curie tempera-

ture changes with the Sr content, varying from 60◦C for SBN75 to 250◦C for SBN25.

The replacement of Ba by Sr leads to a relaxor behavior, firs appearing at Sr/Ba=1

and getting stronger for larger Sr/Ba ratio.2,18 An additional phase transition be-

tween 60 K and 80 K has been found.19 At this transition the crystal’s symmetry

changes from point group 4mm to m and the polar axis tilts away from the c direction

of the tetragonal lattice to the a axis in the monoclinic lattice as temperature decreases.

1.2.3.1 Relaxor behavior

Relaxor ferroelectrics are a special group of ferroelectric materials. They are distin-

guished from classic ferroelectrics by the following properties:20

• a broad peak of the dielectric constant as a function of temperature

• a strong frequency dependence of the temperature at which the maximum of

dielectric constant is reached

• the existence of polar regions at temperatures well above the maximum of the

dielectric constant

The peak of dielectric constant in relaxor ferroelectrics does not correspond to a struc-

tural phase transition as it does in conventional ferroelectrics. The intrinsic compo-

sitional disorder of relaxor crystal structure is considered to be responsible for the

existence of randomly distributed polar regions at temperatures above the dielectric

maximum.21,22 Experimental evidence of such polar regions has been firstly given by

optical measurements on Lead Magnesium Niobate and Lead Zirconium Niobate.23

Because of the uniaxial nature, the relaxor behavior of SBN has been interpreted in

terms of the Ising model.4,20,24 The random distribution of Sr and Ba cations in the

case of pure SBN and the addition of higher valence cations in the case of doped SBN,

are assumed to be responsible for random fluctuation of the crystalline internal elec-

tric field. At high temperature these fluctuation stabilize dynamic polar nanodomains.
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Lowering the temperature below Tmax enhances the interaction between domains until

a homogeneous ferroelectric state is reached.

The temperature dependence of polarization has been studied in SBN single crystal

samples.25–27 Its decay with temperature is not as sharp as expected for a second order

phase transition. A non zero value of polarization is found above the temperature of

the dielectric maximum; it becomes zero at a temperature which is independent from

the composition. It has been found that, upon the application of an electric field above

the apparent phase transition temperature, a preferential polarization state can be in-

duced even if the field is removed before cooling trough the phase transition.26 The

material keeps memory of this state as is shown by asymmetric coercive field and fast

aging of polarization upon cycling.

1.2.3.2 Dielectric properties

The reported data on dielectric properties of SBN single crystals, are in good agreement

to each other.1,2, 28 Not the same situation is found for polycrystalline SBN.29–31

Extensive work on dielectric and optical characterization of single crystals has been

done for different composition and doping. In polycrystalline bulk samples, relaxor

behavior has been found in all the composition. The temperature of the maximum

of dielectric constant as well as other properties is strongly dependent on sintering

conditions. Such differences in measured values can be attributed to the different heat

treatment histories of the material, which is thought to affect the Sr site distribution.30

In thin films this behavior is further complicated by leakage.
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Dielectric constant ε33/ε0 400

Dielectric loss tanδ 0.003

Pyroelectric coefficient (300K) (10−2µC/cm2) 6.0

Spontaneous polarization (300K) (µC/cm2) 36.0

Curie temperature Tc (K) 394

Table 1.1: Some properties of SBN50 single crystals at room temperature.

Crystal εr spont. pol µC/cm2 Tm(1kHz)

SBN73 8200 33.1 57

SBN67 1800 33.6 67

SBN60 610 34.4 80

SBN48 380 36 116

SBN25 180 39.5 196

Table 1.2: Room temperature dielectric properties of SBN single crystals along the c axis

and temperature of the dielectric constant maximum Tm.
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a) b)

Figure 1.3: Real and imaginary part of dielectric constant (here indicated

by χ′ and χ′′ respectively) as a function of temperature and frequencies

(the arrows indicate increasing freq.) for various Sr content: a)0.5, b)0.6,

c)0.75 at% Sr.28
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1.2.3.3 Superstructures

Physical properties of SBN are expected to depend on the disorder in the TTB struc-

ture, i.e. in the partially unoccupied sites. Depending on heat treatment, some ordering

and creation of superstructure has been observed.32 However a precise relationship be-

tween specific unusual properties and structure details has not been established yet. A

hierarchy of domain states has been observed using TEM and selected area electron-

diffraction for SBN50.11 At −75◦C, a structural transformation has been reported in

SBN50.33 Lower-temperature phase transformations have been reported by birefringent

studies34 and Raman spectroscopy35 at −100◦C, by structural studies at −160◦C,36 and

by dielectric constant measurements at−260◦C.37

The behavior of dielectric losses expressed as tanδ (see fig.1.5), has been investigated for

SBN50, SBN60 and SBN75.38 Besides the anomaly related to the ferroelectric phase

transition, a second anomaly in the temperature range −150 to −50◦C is observed.

This low temperature anomaly has been associated with an incommensurate structure

appearing at this temperature.38 It has been observed that a bias field applied along

the c-axis suppresses the peak of tanδ at the ferroelectric phase transition (Fig. 1.4).

Figure 1.4: 104Hz phase component (tanδ) of the dielectric response for SBN 75/25 as a

function of temperature, under various electrical biases.38
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Figure 1.5: Phase component (tanδ) of the dielectric response as a function of temperature

and frequency for various SBN compositions: a)SBN50, b)SBN60, c)SBN75.38
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1.2.3.4 Optical properties

Most of the work on SBN, both single crystals and thin films, targets at optical proper-

ties and possible applications. The birefringence of SBN can be changed by application

of an electric field. Two effects are obtained: a linear electrooptic effect and an elec-

trooptic memory effect. In a poled crystal the remanent polarization is accompanied by

a remanent birefringence that can be switched by a voltage pulse. Using the memory

effect, volume holographic storage can be realized. SBN crystals have excellent linear

electrooptic properties with low half-wave voltages and very high electrooptic coeffi-

cient r33. For example, r33 can vary from 400 to 1350 pm/V for compositions ranging

from SBN:60 to SBN:75, which is 10–40 times r33 for congruently grown lithium nio-

bate (30 pm/V), the industry standard. Illumination of a photorefractive crystal with

an inhomogeneous light pattern yields refractive-index modulation, which in SBN75

composition and the doped SBN60, is large compared to other photorefractive mate-

rials. Doping SBN61 with Ce is noticeably effective in improving the photorefractive

properties39

1.2.3.5 Pyroelectric properties

SBN shows strong pyroelectric effect and single crystals have a large pyroelectric co-

efficient at room temperature. Properties as function of composition and temperature

have been extensively studies by Glass.2 Using the pyroelectric effect in SBN, infrared

detectors have been fabricated. The room temperature characteristic of these detectors

can be improved by changing the ration Sr/Ba or by doping by Pb or La. Even a thin

plate of SBN has a high absorption capacity in the infrared region above 10µm, no

infrared absorption layer is needed. The main shortcoming of SBN is that its dielectric

constant is too high for application at high frequencies. Thus, SBN thin-film detectors

are used for small area, low-frequency detectors.
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Composition pyro. coeff.102µC/m2K

SBN25 3.0

SBN46 4.3

SBN48 6.5

SBN54 8.0

SBN60 8.5

SBN67 11.0

SBN73 28.0

SBN75 31.0

Table 1.3: Pyroelectric coefficients of SBN single crystals at room temperature.

1.2.3.6 Piezoelectric properties

Piezoelectric properties have not been extensively investigated in SBN. Surface acoustic

waves have been studied in SBN50 and SBN60 single crystals1,40–42 Reported d33 co-

efficients are listed in table 1.4. As in the case of optical properties, doping enhances

piezoelectric response.1

d33 pC/N

SBN75 670

SBN60 180

SBN50 110

SBN60:La 650

Table 1.4: Piezoelectric coefficients of SBN single crystals at room temperature.

1.2.3.7 Effect of doping

Doping has qualitatively the same effect as increasing the Sr/Ba ratio, it enhances the

relaxor behavior. The addition of rare-earth metal in SBN61 single crystals is accom-

panied by an increase in the permittivity at room temperature, which is caused by a
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decrease in the phase transition temperature and a smearing of the transition itself.

The increase in dielectric constant at room temperature is accompanied by an increase

in other parameters as piezoelectric coefficient and linear electrooptic coefficient.43

As shown in Table 1.5, the influence of the rare-earth metals on the transition tem-

perature is much more efficient than the change in Sr/Ba ratio: the difference of 35◦

between SBN75 and SBN61, can be obtained by doping with 1-2%at. of the rare-earth

metal.

The nature of the profound effect of doping has been analyzed in the case of Ce. It has

been shown that the cation predominantly occurs in the charged state +3 and, most

likely, replaces Sr, i.e. it can occupy both the pentagonal and squared tunnels, leading

to an increased disorder.

Similar effects have been achieved by the introduction of transition metal impurities

like Cr and Ni44,45

Crystal dopant in wt% Tmax (◦C) (1kHz)

SBN75 48

SBN61 83

SBN61:Tm2O3 2.0 54-56

SBN61:Nd2O3 1.0 58-60

SBN61:La2O3 1.0 61

SBN61:CeO2 0.4 63

SBN61:CeO2 1.6 27-30

SBN61:La+Ce 1+0.01 35-37

SBN61:Y b2O3 2.6 62

SBN61:Tb2O3 1.0 70

Table 1.5: Influence of dopants on the phase transition temperature.
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1.2.4 Thermodynamics of ferroelectrics

The Landau-Ginzburg-Devonshire (LGD) theory provides phenomenological descrip-

tion of phase transitions. The state function usually used to describe the system is the

Gibbs potential, a Legendre transformation of internal energy U:

G(T,Xi, P ) = U(S, xi, P )− TS −Xixi (1.1)

where T is the temperature and S is the entropy. Xixi is the work done on the system

by mechanical forces with: stress Xi and strain xi. In order to obtain the stable state

of the system the Gibss energy is expanded into even Taylor series in P, the so defined

G reaches the minimum at constant stress and temperature.

G = G0 +
α

2
P 2 +

β

4
P 4 +

γ

6
P 6 (1.2)

By the minimization of the Gibbs elastic energy, the following properties of ferroelectric

materials are found:

• the existence of a phase transition at a given temperature

• the appearance of a spontaneous polarization as well as of hysteresis below the

transition temperature

• the existence of anomalies in the dielectric constant and in other thermodynamic

quantities at the transition temperature

Two different kind phase transition are possible depending on the sign of the coefficient

β: in transition of the first order (β < 0) the order parameter of the system has a dis-

continuity at the critical temperature, i.e. its value makes a jump at this temperature.

In second order transition (β > 0) the there is no abrupt change in the value of the

order parameter which, in this case, is a continuous function of temperature. Looking

for stable state with finite polarization asks for γ to be positive.

Electric field E and dielectric stiffness ε−1 are calculated as:

∂G

∂P
= E = (αP + βP 3 + γP 5) (1.3)

∂2G

∂P 2
= ε−1 = (α + βP 2 + γP 4) (1.4)
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In the case of a second order phase transition, terms up to power of 4 are considered

in the expansion of the Gibbs free energy. The paraelectric phase corresponds to:

P = 0

ε−1 = α = α0(T − T0) (1.5)

forT > T0

Equation 1.5 is the Curie-Weiss law for ferroelectrics. The Curie temperature T0 is

identical to the critical temperature in case of second order phase transitions.

Below the critical temperature T0, P becomes different from zero,

P 2 =
α

β
=

α0(T0 − T )

β
(1.6)

and the dielectric stiffness is:

ε−1 = 2α0(T0 − T ) (1.7)

1.2.4.1 Effect of stress

External stresses Xi have a strong influence on the phase transition because there is a

coupling between the order parameter and the elastic properties of the material.46

The external stress Xi enters the Gibbs elastic energy as:

G1 = G0 +
α

2
P 2 +

β

4
P 4 +

γ

6
P 6

− 1

2
sD
11(X

2
1 + X2

2 )− 1

2
sD
33(X

2
3 )− 1

2
sD
12(X1X2)−

1

2
sD
13(X1 + X2)X3

− Q33X3P
2 −Q13(X1 + X2)P

2

with sij elastic compliances and Qij electrostrictive coefficients (the case of uniaxial

ferroelectric, with P = P3, is considered). The expression for the dielectric constant in

the paraelectric phase becomes:

P = 0 (1.8)

α = α0(T − T0) (1.9)

ε−1 = α0(T − (T0 +
1

α0

2Q13(X1 + X2))) (1.10)

Critical temperature and polarization are affected by such stresses.46
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1.2.4.2 LGD theory applied to SBN

Interpretation of measured properties in the framework of the LDG theory has been

attempted.28,47,48 Detailed fitting of measurements has been performed for SBN60 sin-

gle crystals.47 The dielectric stiffness has been found to follow a linear Curie-Weiss

law both above and below T0. Data from the paraelectric phase give a Curie constant

value (C=1/(ε0α0)) of 4.1× 105◦C and T0 = 75◦C. In the ferroelectric phase the Curie

constant is 4.5 × 104◦C and T0 = 69◦C. The phase transition is considered to be of

near second order and the difference between the critical and the Curie temperature

is attributed to the relaxor behavior. From pyroelectric measurement it is found that

the Gibbs energy should be expanded to at least the eight order, and coefficients of

terms up to the sixth should be considered as function of temperature. Equivalent be-

havior has been found in other SBN composition, in doped crystals and other tungsten

bronzes ferroelectrics.3

1.3 SBN thin films

Thin films of SBN have been deposited by various techniques such as: sol-gel process,49,50

metal-organic chemical vapor deposition,51,52 plasma enhanced CVD, RF magnetron

sputtering,53,54 PLD55–57 and a combination of PLD and sol-gel.58

Different Sr:Ba content and different doping elements have been chosen in order to en-

hance specific properties necessary for particular applications. Doping is particularly

effective in improving optical and pyroelectric properties.44,59,60

A sharp interface between film and semiconductor substrate is fundamental for fer-

roelectric gate transistors. Directly grown on Si wafer, SBN diffuses in to the sub-

strate leading to the formation of a SiO2 layer at the interface. This interfacial layer

strongly degrades the dielectric properties of the metal-insulator-semiconductor struc-

ture.61 Growth on SiO2/Si substrate has been investigated for the fabrication of wave

guides, SBN diffusion in SiO2 posing serious problems. A thin MgO layer has been

successfully used as diffusion barrier.62,63
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The high crystallization temperatures, of 700◦ or higher, which is common to all depo-

sition methods, make the choice for a suitable bottom electrode a difficult task. There

are very few materials that can withstand such temperatures without losing mechan-

ical stability or reacting with the SBN film. Platinum as well as conducting oxides

thin film, such as RuO2, SrRuO3, YBCO and LaNiO3 could not pass successfully the

test.54,56

Epitaxial growth of SBN thin films is desirable to optimize film properties for any

application, and is of particular importance for optical applications. It has been ob-

tained by different deposition methods50,51,55,64–68 on different substrates. The most

commonly studied substrate is (100)oriented MgO single crystal. Not only the low

lattice mismatch with SBN (001) (about 1.2 %), but its refractive index (n=1.735),

much lower then the SBN one (no = 2.31 ne = 2.281), makes of it a perfect substrate

for optical applications. (100)oriented single crystal of SrT iO3 has a bigger lattice

mismatch with SBN (001)(about 5%). However, as it can be made conductive by

doping and therefore used as an electrode, it is preferable for electrical characteriza-

tions. SBN epitaxial growth has been obtained as well on multilayer structures like

LaNiO3/CeO2/Y SZ/Si(100).68

1.3.1 Dielectric properties

SBN50 deposited on Pt/Si(100) by PLD have been found with transition temperature

at 80◦C, 40◦ lower than the single crystal value.61 Xu et al.50 report transition tem-

perature 290◦C for SBN60, whereas the single crystals have transition at 80◦C. P-E

hysteresis loops measured on SBNx thin film deposited by sol-gel on Pt/MgO, with po-

lar axis perpendicular to the film plane, show polarization remanence and coercive field

values increasing with increasing Sr content, the maximum value is Pr = 30(µC/cm2)

at x=75.49 This trend is not consistent with properties measured for bulk single crys-

tals. In Table1.6 thin film properties found in literature are summarized .

Properties of thin films are remarkably different from bulk properties. In addition the

measured values strongly depend on experimental condition. This is an indication of

how much SBN film is sensitive to growth condition and substrate properties. Com-
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pared to bulk processing, the processing temperature of a thin film is very low. As

this parameter has a strong influence on the intrinsic disorder in the structure, it is

probably responsible for the great variability of results reported.

ref. comp. synthesis εr loss Pr(µC/cm2) Ec(kV/cm)

69 SBN30 sol-gel - - 5.1 1.2
70 SBN30 PLD 1200 - 12.8 3.1
71 SBN30 sol-gel 600 0.05 2 3
57 SBN30 PLD - - 3.1 1.28
62 SBN50 PLD - - 26 20
72 SBN50 organic gel 221 _ 8.17 16.9
61 SBN50 PLD 200 _ _ _
56 SBN50 PLD _ _ 0.1 51
73 SBN50 sol-gel 79 1.9 180
74 SBN50 PLD 210 - - -
49 SBN60 sol-gel _ 25 70
50 SBN60 sol-gel - - 10 30
60 SBN75 organic gel 700 0.1 _ _
75 SBN75 polimeric resin - _ 1.1 50.5

Table 1.6: Room temperature dielectric properties of SBN thin films obtained by different

methods.
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1.3.2 Thermodynamics of epitaxial film

In thin films, the substrate exerts a two dimensional clamping that induces stresses.

The effect of clamping and misfit strain has been interpreted in the framework of

the LGD theory.46,76 In the case of a uniaxial ferroelectric, the phase transformation

temperature has been found to vary linearly with the misfit strain, it is increased by

compressive stress and decreased by tensile stress. Compression thus stabilized the

ferroelectric phase at temperature higher than the temperature of the phase transition

in the bulk material. The phase transition can be changed from first to second order

and the spontaneous polarization can vary significantly.

The estimation of the misfit strain should take into account the effect of stress relaxation

with increasing film thickness. The formation of misfit dislocations above a critical

thickness77 is efficient to release the strain and thus reduces the effect of epitaxial

growth on the electric properties of the film.

In order to take into account the effect of internal stresses due to epitaxy the Gibbs

elastic energy (1.10) has to be modified by the following Legendre transformation:46,76

Gf = G1 + x1X1 + x2X2 (1.11)

where xi and Xi are the in plane strain and stress induced by the substrate respec-

tively. Shear stress is zero in the case of isotropic thermal expansion coefficients of the

substrate. In case of in plane isotropy of the film xm = x1 = x2. The shift in the

transition temperature depends linearly on the strain as:76

∆T (xm) =
4

α0

Q13

s11 + s12

xm (1.12)

This is for the case of uniaxial ferroelectric with out of the film plane orientation of

the polarization axis.

1.4 Thesis outline

As evidenced by the literature review of section 1.3, a detailed characterization of SBN

film’s ferroelectric properties, comparable to the work done on single crystals , is still
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missing. The first step to fill this gap is to get knowledge in processing, in order to

establish a route for the realization of films with reproducible properties. In the present

work the growth of SBN thin film by PLD is studied.

In chapter II are introduced:

• the working principles of pulsed laser deposition (PLD)

• the deposition systems used in this work

• the methods used for the structural characterization of the deposited films

Chapter III is devoted to the structural characterization of films grown on sub-

strates relevant for integration in semiconductor technology. Special attention is de-

voted to the choice of the substrate that we wanted to act as bottom electrode. The

goal is to grow highly (001) oriented films. The first choice is a standard platinum elec-

trode grown on a silicon wafer, normally used for devices based on PbZrT iO3 (PZT).

Iridium electrodes will be considered as it is a good barrier against oxygen diffusion.

Because of its importance for integration in microelectronic circuit, direct growth on

silicon (100) will be studied as well.

Chapter IV presents the results obtained for the epitaxial growth of SBN.

The theory of epitaxial growth, relevant to our case, is summarized. The STO single

crystal’s properties are then introduced, together with the preparation techniques of

the surface employed to control the epitaxy. Finally, the epitaxial growth of SBN is

described and discussed.

The subject of Chapter V is the functional characterization of SBN thin films.

Materials compatibility there becomes an issue of great importance. Ferroelectric prop-

erties of the obtained samples (the system film-substrate) will be studied with special

attention paid to the phase transition, and compared to single crystal properties.

The first part describes the effect of contamination. Dielectric properties are measured
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as function of temperature and the results will be interpreted in terms of the Landau-

Ginzburg-Devonshire theory. The second part is dedicated to epitaxial films on STO

substrates. The problem of conduction is addressed by the use of AFM measurements.

The dielectric properties are compared with literature data on single crystals.
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Chapter 2

Experimental

2.1 Pulsed Laser Deposition

Pulsed laser deposition (PLD) is a physical method of thin film deposition where a

pulsed laser beam, of wavelength in the UV range, is employed to ablate a target com-

posed of the desired thin film material. PLD attracted much attention over the last 20

years, as it enables fabrication of multi-component stoichiometric films from a single

target.78–80

The experimental PLD setup (fig. 2.1) consists of a vacuum chamber containing tar-

gets and substrate holders. The chamber is equipped with a UV transparent window.

Outside the chamber, a UV transparent lens focuses the laser beam onto the target

surface. The use of additional optical elements, such as mirrors and beam splitters,

depends on the system complexity. Much care has to be taken to the fact that each

element reduces the intensity of the beam. The evaporation power source, i.e. the

laser, is decoupled from the vacuum system. This makes the technique very flexible.

The useful range of laser wavelengths for thin-film growth by PLD lies between 200

nm and 400 nm. Most materials used for deposition work exhibit strong absorption

in this spectral region. With an appropriate choice of the laser, any material can be

ablated congruently. In addition, the growth can be carried out in a pressure of any

kind of gas, reactive or not.
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Figure 2.1: Schematic of a generic PLD deposition system.

The laser target interaction is a very complex physical phenomenon.81 It depends on

laser characteristics and optical, topological and thermodynamic properties of the tar-

get.82 Upon absorption from a solid surface, the electromagnetic energy of the laser

beam is converted first in electronic excitation and then in thermal, chemical and me-

chanical energy, that causes evaporation. From the point of view of film formation, the

important fact is that ablation takes place in a time interval short enough to suppress

the dissipation of excitation energy beyond the actually ablated volume. In this way,

the damage of the remaining target is minimized and segregation of the different com-

ponents largely avoided.

Targets, usually in disk shape, are normally rotated and scanned with respect to the

laser beam in order to suppress surface roughening. As a consequence the density of

particles of material in the plume is minimized (fig.2.2b). It is important that the

target is not suffering modification during ablation, both structurally and chemically.

Such modifications would change the further interaction with the laser beam (light

absorption and heat conduction).83
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The most commonly used targets are ceramics ones. Dense small-grained targets are

preferable because single-crystalline or coarse-grain-polycrystalline ones are damaged

by thermal shock after few pulses and particle ejection becomes more likely. Dense

ceramics adsorb the radiation better and have lower thermal conductivity thanks to

grain boundaries. Both properties enhance a local material-radiation interaction.

The evaporated species consist of energetic evaporants congruent with the target (atoms,

molecules, electrons, ions, clusters). Together they constitute what is called the plume.

After irradiation, the plume rapidly expands into the vacuum in a jet that remains

anyhow narrow allowing for small area deposition only.84,85 This is the most impor-

tant obstacle for the application of PLD in industrial production. However, possible

evolutions of PLD that would allow for large scale deposition have been proposed.86

The angular distribution of the produced plasma is strongly forward directed and is

described by a cosnθ law, where θ is the angle with the surface normal.87 The expo-

nential increases with laser fluence and spot size, leading to a narrowing of the plume,

for a 1.5× 3.5mm spot size n ≈ 10.

The ablated species have energies between 10 and more than 100 eV, depending on

the material. The bombardment of the growing film by such energetic particles acts

on its properties and can have a positive or negative effects on morphology, stoichiom-

etry, and microstructure.88 Even though the ablation is congruent, due to differences

in transport of different species or in sticking or desorption coefficients, the film de-

posited can be non-stoichiometric.89 The presence of particles in the deposited film is

characteristic of laser ablation. They can be classified in: clusters formed in the vapor

phase, solidified melt drops coming from the melted surface (about 1µm), solid grains

(up to 10 microns) ejected from the surface because of thermal stress.90,91

2.1.1 The ablation process

Above a threshold laser fluence (the fluence is defined as the laser pulse energy per

unit area at the target), a luminous plume of material is ejected normal to the target

surface.
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The rapid ablation rate, the stoichiometric transfer and the forward directed plume may

be explained by models in which subsurface heating of the target occurs. The cause

can be either the laser beam itself or the recoil pressure of the material evaporated in

the initial part of the laser pulse. In the subsurface heating model, the laser beam is

considered as a heat source on the target surface. Upon irradiation, the temperature

throughout the target increases due to the absorption of the laser light. The front

surface of the target begins to evaporate almost immediately, the heat of vaporization

required being supplied from a layer immediately below the front surface. In this way

the surface evaporation provides a cooling mechanism. This can lead to temperatures

below the surface of the target which are higher than the temperature of the evaporating

surface. The evaporation occurring at the surface extracts heat from a depth equal to

the thermal diffusion length L = (2Dτ)1/2 where D is the thermal diffusivity and τ

the pulse length.92 If the optical penetration depth is larger than L, it is clear that a

region below the surface continues to be heated by the laser pulse. If the temperature

achieved in this subsurface layer is high enough to result in vaporization, then the

underlying material will explode out from the target, taking the surface layers with it

and forming a highly directed plume of ablated material above the target. The high

speed of material removal explains the congruent nature of the ablation process since

there is no time for segregation. In addition, the occurrence of droplets of previously

molten material on the surface of the film is explained.93

2.1.2 The plume

Studies of the plume included spectroscopic, photographic and theoretical analysis.

The plume has two notable features (Fig. 2.2a)).

• It is directed perpendicular to the target surface.

• It is brightly colored.

By analogy with the well known flame tests it may be assumed that the colors arise

from the electronic excitation of different spectroscopic species within the plume. For
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a) b)

Figure 2.2: Image of the plume: a) profile view. The brighter zone nar-

rower and forward directed is visible close to the target, then the plume

start the 3-D expansion, b) at the target surface the traces are visible, in

form of circles, caused by the laser pulses.

example, green for the ablation of copper, silvery blue for iron rich compounds, and

blue with red outer edges for the ablation of YBCO in oxygen.

Pressure gradients within the plume are greatest normal to the surface of the target so

that the constituents of the plume have the greatest velocities in this direction. Time

of flight studies of the plume just above the ablation threshold have recorded ionic ve-

locities of order of 4 m/s, corresponding to energies in the 25-50 eV range.94 This leads

to the forward directional characteristic of the ablation process. Theoretical analysis

predicts that, due to collisions within the plume, the velocities of species within the

plume should display a mass dependence weaker than the thermal dependence (where

velocity is inversely proportional to the square root of the mass) . The initial expansion

of the plasma away from the target is one dimensional for a distance comparable with

the laser spot diameter. In this dense region the plasma is heated by absorption of

the laser beam to temperatures of several thousand degrees. Beyond this heating zone

the plasma expands three dimensionally. At the involved temperatures, ionization due

to collisions is expected to be negligible and so the laser beam must be the dominant
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source of ionization.

When the electron density in the plasma is less than a certain critical density, the

plasma absorbs some of the incoming laser radiation, the critical density is higher the

shorter the wavelength. Above the critical density there is strong reflection of the in-

coming radiation.92 For long laser pulses a periodic process may occur in which the

laser produces plasma which grows denser and hotter as the pulse continues, even-

tually shielding the target and thus suppressing plasma production; the density and

temperature of the plasma just above the target decreases due to expansion and then

the ablation continues. It has been suggested that absorption of the laser beam at the

front of the plume may shield the target and the rear of the plume, allowing larger

particles such as clusters to be stabilized.92

2.1.3 Deposition parameters

In a pulsed laser deposition system the adjustable parameters are: energy per laser

pulse, pulses frequency, target substrate distance, substrate temperature, background

gas pressure. The control of such parameters can be more or less critical for the quality

of the film.

The energy of the laser pulse has to be high enough to induce ablation of the target but

not so high to induce particle ejection, once the threshold for ablation passed, further

increase of energy does not have significative effects on deposition rate. However, the

effective power density at the target surface depend on the focalization of the beam,

the optical path is thus a very important element of the deposition system.

Pulse frequency determine the deposition rate, a high deposition rate is desirable but

can lead to a film full of structural defects. Defects can be avoided and crystallization

improved if the time between laser pulses is equal to or greater than the time required

for crystallization to occur.

The kinetic energy of the arriving species is controlled by the target substrate distance

and by gas pressure. A big distance can have influence on the chemical uniformity as

well, since segregation can occur within the plume if the travelling distance is enough.
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The energy necessary to grow a film with a certain structure (amorphous, polycrys-

talline, epitaxial...) comes from both the kinetic energy of the incoming particles and

the substrate temperature. The latter has to be adjusted depending on both deposited

material and substrate, and is a parameter with the strongest influence on the crystal-

lization of the film.

In the case of oxide thin films, an oxygen pressure, of the order of one mbar, is needed

to avoid oxygen vacancies. Such pressure can be reduce by using a more reactive gas,

like ozone. A high background pressure limits the expansion of the plume, reduces the

kinetic energy of the flux, and concentrate the deposition on a smaller area.

2.1.4 SBN by PLD

An excimer laser is the usual energy source for ablation, 248nm wavelength (KrF) laser

is more common than 193nm and 308nm. A Nd:YAG laser has been used as well.57 In

table 2.1.4 the deposition parameters from literature are summarized.

Epitaxial growth requires low deposition rates and actually better quality films on

MgO have been obtained at 5Hz than at 10Hz pulse repetition rate . Oxygen pressure

does not have a strong influence on crystallization, post annealing is always necessary

to recover oxygen vacancies. The substrate temperature is in the interval 700 − 760◦

C, these values are common to other deposition techniques.

2.2 Deposition system

Two different deposition system where used to grow the films of this work. Both

where equipped with an excimer laser: one with a KrF laser producing a beam with

248 nm wavelength, and the other with a ArF laser producing a beam with 193 nm

wavelength. Pulse length is 20 ns in both cases.

As oxides have better absorption at wavelength longer than 200 nm, a 30% higher

deposition rate and a brighter plume, is obtained with the KrF laser. No differences
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Ref wlngth freq pulse enrg. dens. O2 substrate sub.temp

nm Hz J/cm2 mbar ◦C

95 193 1-10 0.5-1 3 STO 700
65 248 5 3 pulses MgO 700
96 308 10 1.8 0.4-0.02 MgO 700-760
55 248 5 3.7 10−2 MgO 675-700
68 248 7 1.5 0.026 LNO 775
97 248 5 3.8 10−1 SBN 525- 760
98 50 3 0.0159 MgO 760

59,99 248 5-20 2.2 0.13 MgO 700
62 248 3-5 7 0.3-1 SiO2 700
56 308 5 2.5 Pt/Si, SRO/Si >720
63 248 5 3.2 0.2-0.8 MgO/Si 700
61 308 5 2.5 Si, Pt/Si 720

Table 2.1: Deposition parameters for SBN thin films obtained by PLD.

have been observed in the deposition process nor in the properties of the films obtained

in the two different systems. The pulse repetition rate can be varied in the range 1 to

10 Hz with the energy per pulse in the range 100 to 600mJ.

A similar optical path for the laser beam, is common to both systems. The beam,

produced by the laser with a section of 40 × 30mm, is deviated by 45◦ mirrors and

focused on the target in a spot of about 5mm2. Then it enters the vacuum chamber

trough a UV transparent window (Fig. 2.3). All the optical elements (mirror, lens,

window) are made of UV graded fused silica, transparent in the wavelength range 185-

2100 nm, the mirrors have a coating that assures 95% reflection at 45◦. Because of

the lens dimension (same of the beam), small misalignment of the mirror and residual

absorption of the medium, about 30% of laser power is lost before the target.

The first deposition system (Fig. 2.4) was constructed as part of this thesis work.

It consists of a vacuum chamber evacuated by a turbo molecular pump, the background
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Figure 2.3: Laser beam optical path.

pressure before deposition is lower than 10−7 torr, suitable for deposition of oxides, is

reached in two hours. Due to the relatively high deposition rate, typically a few Å per

second, base pressure in the range 10−7÷10−8 are sufficient for PLD. At such pressure,

contaminants from atmosphere arrive at the substrate with a rate of one to two orders

of magnitude lower than the film deposition rate. A turbo-molecular pump is then a

good choice since it avoids hydrocarbon contamination and allows for a fast evacuation

of the chamber.

The chamber is vented with nitrogen each time a substrate or a target has to be in-

troduced, than evacuation starts from ambient pressure. For this purpose, a system

of butterfly valve allows a direct connection of the chamber with the backing pump.

When the humidity level in the chamber is too high and deteriorates the vacuum, the

chamber is baked. A system of heating tapes is installed for this purpose. Care has

been taken for the temperature not to exceed 120◦C where viton sealing is employed.

During deposition the target undergoes a rotational movement assuring the exposure

of a new portion of surface at each laser pulse and the uniform ablation of the whole

target surface. As explained before, this procedure is essential in order to avoid pro-
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Figure 2.4: Picture of the homemade PLD deposition system.

duction of particles and incongruent ablation. After one hour of ablation of the target,

erosion traces are well visible and the surface has to be polished then conditioned by a

few hundred pulses prior starting deposition.

Substrates are glued to the heater with silver paint that assures a good thermal con-

tact as well (Fig. 2.5). A difference of about 100◦C has been found between glued and

clamped substrate temperature (the latter being lower). The heater, as well as the

target holder, is a commercially available one from Neocera. The heater is specifically

designed to be oxygen compatible up to 950◦C, a shutter provides the necessary pro-

tection during the pre-ablation of the target. We modified both target and substrate

holder in order to fit our chamber, bigger than the standard. With such modification

the target substrate distance can be adjusted from a minimum of 30mm to a maximum

of about 200mm. An Eurotherm temperature controller is used to program heating

and cooling ramps and to keep temperature constant during deposition.

A gate valve separate the chamber from the turbomolecular pump, it controls the

pumping speed by varying the area of the aperture connecting the chamber and the

pump. Oxygen can be introduced in the chamber and the pressure adjusted to the
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Figure 2.5: Pictures of the interior of the deposition chamber. The target is visible in front of

the substrate heater, where a substrate is glued. The interposed shutter protects the substrate

surface from contamination in the first phase of the deposition.

desired value in the range of 1 mtorr to 1torr, using a flux meter and a needle valve;

the pressure being measured by a Baratron gauge.

A deposition rate of 4nm per minute is obtained at a target-substrate distance of 90mm,

with thickness variation of ±25 nm over a 1cm2 area.

The second deposition system is a commercial multipurpose system with: a PLD

chamber for thin film growth, AFM/STM chamber and XPS chamber. Each chamber

is equipped with a turbo-molecular pump and communicates with a central one trough

a gate valve. The central chamber serves as transfer and storage unit and is equipped

with an ion-pump. Substrate and target as well as AFM/STM tips are introduced in

the system trough a load-lock that reduces the pumping time and helps to preserve the

ultra high vacuum necessary for STM measurements.

The PLD system is similar to the previously described one. It has in addition a RHEED

facility to monitor the film growth in situ and make use of the KrF laser. The target

undergoes a roto-translational movement that allows for a uniform ablation of the tar-

get and reduces damage of the surface. As a consequence the need to polish it is highly

reduced. The substrates are glued or clamped on mobile substrate holders that can be

39



transferred from the load-lock to any other chamber for processing and measurement,

or stored in the central one. The heater of the PLD has a thermocouple on which the

substrate holder is mounted for a better control of temperature. However a difference

of about 50◦ C has been found between the temperature measured in the two system.

The nominal growth temperature needed in this second system is higher.

2.3 Structural and compositional analysis

The formation of the TTB crystal structure for both ceramic and thin films has been

verified by θ − 2θ X-ray diffraction measurements with Cuα radiation. Thin film epi-

taxial growth and relation with the substrate is studied with X-ray diffraction pole

figures and contact mode AFM topographic measurements. Details of grain growth,

film-substrate interface and grain-grain interface where analyzed by TEM observations.

Single crystal substrate surface has been characterized by contact mode AFM and re-

flection high energy electron diffraction (RHEED).

Stoichiometry of both target and films has been checked by X-Ray photoelectron spec-

troscopy (XPS), details on composition fluctuation in the films investigated by energy

dispersive X-Ray analysis (EDX).

2.3.1 XPS basic principles

From a sample irradiated with X-rays of known energy, hν, core electrons of binding

energy Eb < hν are ejected. These electrons have a kinetic energy Ek which can be

measured in the spectrometer and is given by:

Ek = hν − Eb − Φsp (2.1)

where Φsp is the spectrometer work function, the combination of the sample work

function and the work function induce by the analyzer. Since we can compensate for
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the work function term electronically it can be eliminated, leaving:

Ek = hν − Eb (2.2)

Thus the measured kinetic energy of the ejected electrons is used to calculate the bind-

ing energy of the electrons.

The surface sensitivity of electron spectroscopies is due to the low inelastic mean-free

path, λm, of the electrons within the sample. For XPS, the main region of interest

relates to electron energies from 100 to 1200eV, which give rise to a λm value of 0.5-2.0

nm. The actual escape depth of the photoelectrons depends on the direction in which

they are traveling within the solid: electrons emitted perpendicular to the surface will

arise from the maximum escape depth whereas electrons emitted nearly parallel to the

surface will be purely from the outermost surface layers.

The essential components necessary for performing XPS consist of an X-ray source, an

electron analyzer and an electron detector-multiplier, all maintained under ultra-high

vacuum.

An XPS spectrum is generated by plotting the measured photoelectron intensity as

a function of the binding energy. The resulting series of peaks, superimposed on a

background caused by Bremstrahlung radiation, are characteristic for each element.

The energies Eb are a direct representation of the atomic orbital energies. Binding

energy variation due to chemical bonding with different elements produce what is

called chemical shift, this way different oxidation states of an element can be identified

by the presence of different peaks with a definite energy shift. Quantitative analysis

of composition is performed by determining the area under the peaks and applying

previously-determined sensitivity factors specific of each element or compound.100

2.3.2 Energy Dispersive X-Ray Spectrometry

When electrons interact with matter X-rays will be generated. If the energy of the

incident electrons is high enough to eject inner shell electrons then characteristic en-

ergy loss electrons will be generated and characteristic x-rays will be emitted from the
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ionized atoms as an outer shell electron falls into the inner shell vacancy. A variety of

characteristic energy X-ray is generated as the various displaced inner shell electrons

are replaced by the various outer shell electrons. The relative probability of generating

X-ray of the various possible energies from a given element is controlled by the incident

electron energy and by the number of different possible way by which the ionized atom

can return to its ground state. The ionization cross section for any event is given by

empirical equations that give good agreement for the characteristic emission of any

element. Energy dispersive X-Ray spectrometers can be built in electron microscopes,

X-ray are generated by the incident electron beam within a volume similar to that for

the transmitted electrons. Peaks at energies characteristic of the elements within that

volume can be identified and the concentration can be calculated. Thus the compo-

sition of the sample and eventual fluctuation can be determined for comparison with

the image coming from the transmitted electrons.101

2.3.3 RHEED

Investigation of periodic structures by diffraction technique (X-rays or electrons) give

information about symmetry in the reciprocal lattice. The pattern formed by the dif-

fracted beams can be explained in terms of conservation of energy and momentum

plus a reciprocal lattice vector. The condition to have diffraction are expressed by the

Bragg’ law. For a three dimensional system the reciprocal lattice vectors have three

components and specify a point in the reciprocal lattice. The generated diffraction

patterns of a 3-D periodic structure is then constituted by spots, as in the case of

Transmission Electron Microscopy.

A graphical representation of the diffraction condition in the reciprocal lattice is the

Ewald sphere construction. Given a reciprocal lattice, a vector k, equal to the incident

radiation wave vector, is drawn to terminate at the origin of the reciprocal lattice. A

sphere is constructed about the beginning of the vector k with radius k. For any point

at which this sphere passes trough a reciprocal lattice point, a line to this point from

the centre of the sphere represents a diffracted beam. For diffraction process involving
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a) b)

Figure 2.6: Ewald construction for diffraction experiments for: a)bulk

sensitivity, b) surface sensitivity. In the first case the reciprocal lattice

is constituted by points, in the second by rods. In both cases diffraction

occurs for the reciprocal lattice elements crossed by the Ewald sphere.

only the surface, i.e. a two dimensionally periodic system, only the parallel to the sur-

face components of the wave vector are conserved, thus the reciprocal lattice vectors

have two components and specify a line. The Ewald sphere is constructed the same

way and diffraction occurs for each crossed line.

Surface sensitivity of high energy electrons, i.e. low penetration in the sample, is ob-

tained in RHEED technique by using grazing incidence. Because of the high energy of

the incident radiation, the wave vector is big and so is the Ewald sphere radius com-

pared to the spacing of the reciprocal lattice rods, the surface of such a wide sphere

crosses the rods not in a point but rather in a segment. The resulting diffraction pat-

tern is than constituted by strikes.

In a RHEED diffractometer a magnetically focused electron beam, of 5 to 30 keV, is

directed at a glancing angle of about 1◦ at a single crystal in high vacuum. Diffracted

electrons fall on a phosphor screen opposite to the electron source giving a typically
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streaked pattern.

If the surface is rough, transmission rather than reflection patterns are obtained. Due

to the surface roughness, the beam can enter and diffract at 3-dimensional structures

such as islands, steps, and ridges, and the streaks are replaced by points as in case

of a 3d crystal reciprocal lattice. Roughness of order of an atomic layer can be de-

tected.100,102

In epitaxial thin film growth, RHEED serves in a first step to analyze the growth

substrate. The occurrence of a clear diffraction image (strikes or points) confirms the

crystallinity of the surface. The information about strikes or point shapes tells in ad-

dition whether the surface is rough or flat. During growth of the film, RHEED allows

to analyze film crystallinity, two or three-dimensional growth, and lattice parameters.

In two-dimensional growth it can be used to control the number of deposited layers.
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Chapter 3

Growth and structural

characterization of SBN thin films on

silicon based substrates

In this work ferroelectric thin films were grown on conductive substrates to fabricate

parallel plate capacitors. In order to fully profit from the ferroelectric properties in such

a configuration it is convenient to have the ferroelectric polarization axis perpendicular

to the film plane. In the case of a uniaxial tetragonal material like SBN this means to

grow the film with the polar (001) axis perpendicular to the film plane. For optimal

properties, phase purity, density and surface smoothness of the film are properties of

concern.

3.1 Targets

Ceramic targets of SBN50 were prepared by the conventional sintering method. High

purity powders (> 99.999%) of strontium and barium carbonate were mixed with nio-

bium pentoxide in stoichiometric ratio. After 24h wet ball-milling in acetone with

zirconia balls, the powders where dried and calcinated at 1100◦C for 6h. The XRD

measurements showed that, during calcination, a reaction took place and the powder
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was pure tetragonal tungsten bronze phase.

The SBN powder has been sieved through a mesh of 100 µm then pressed into pellets

and sintered at 1350◦C for 24h. The obtained ceramic showed an abnormal growth of

grains up to 1mm. This material is too brittle to be ablated without production of

particles that would strongly affect the film quality. The phenomenon of grain growth

is documented in literature and arises from high calcination temperatures that are re-

quired for preparation through conventional solid-state reaction of the reactants.103,104

Direct sintering of the mixed powders (skipping the calcination step) at 1350◦C results

in a ceramic with smaller grains of more homogeneous size. The density was 90% of

the theoretical value (5.368 g
cm3 ). The X-ray diffraction spectrum is in accordance with

the standard data for TTB structure (Fig. 3.1).

Figure 3.1: X-ray diffraction pattern of SBN50 ceramic target obtained by direct sintering:

the dots represent the standard values
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3.2 Effect of growth parameters on phase purity, crys-

talline orientation, and strain

SBN films have been deposited on SiO2/Si, Pt/SiO2/Si, Ir/SiO2/Si, IrO/SiO2/Si and

SrTiO3 substrates. Deposition parameters were adjusted for each of them. The growth

on SrT iO3 single crystal substrates will be discussed in a dedicated chapter.

The SBN film grows crystalline on SiO2/Si at 700◦C. An oxygen pressure of 10−2mbar

is necessary for a crystalline growth, at 10−3mbar the resulting film is amorphous

(Fig.3.2), in crystalline form the film is strongly (001) oriented (Fig.3.3b)). Increasing

the deposition temperature to 750◦C yields the appearance of peaks at 28.8◦ and 29.7◦

which do not belong to the TTB structure (Fig.3.4). The establishment of (001)

orientation on amorphous SiO2 indicates that (001) is the natural growth facet and

thin film orientation in absence of dominating interface energies.

Growth on Si(100) single crystal substrates gives results similar to those on SiO2/Si.

This was expected as an interlayer of SiO2 is most likely to form during deposition in

a reactive oxygen atmosphere(Fig.3.5. See later in the chapter for detailed analysis of

the SBN/Si interface).

Crystallization of SBN on Pt/SiO2/Si (Fig.3.6) is obtained at 720◦C (at 700◦C the

layer is amorphous, Fig.3.3). Increasing the deposition temperature to 740◦C gives a

(001) oriented film.

Even though Ir thin films have the same structure and lattice parameters as Pt thin

films, SBN grown on Ir/SiO2/Si was never oriented, independently from the substrate

temperature and the oxygen pressure during deposition. The same result has been

obtained from SBN grown on IrO/SiO2/Si. Therefore, we conclude that the Ir surface

oxidizes at temperature and oxygen pressure used in processing(Figs.3.7,3.8). IrO2 has

a rutile structure, XRD of SBN/Ir sampled do not show the corresponding diffraction

peaks, modification of Ir should be limited to a thin surface layer.

At 750◦C Ir has a higher oxygen affinity compared to Pt, the bonding strength with

SBN is stronger in this case and influences the film growth. Because of the chemical

stability of (111) oriented Pt, on such a substrate SBN is free to follow it natural growth
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along < 001 > direction (see the literature on single crystal growth16). Pt does not

oxidize, moreover it bonds only weakly to oxides. As a consequence, interface energy

is weak. In addition there is no obvious orientation of SBN to fit the hexagonal surface

of Pt(111).

Figure 3.2: XRD θ−2θ diffractions from SBN50 deposited at 750◦C 250 mJ 10Hz on SiO2/Si

substrates with oxygen pressure: a)10−3 mbar and b)10−2 mbar. 10−2 mbar of oxygen are

necessary to crystallize the film.
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Figure 3.3: XRD θ−2θ diffractions from SBN50 deposited at 700◦C with 10−2 mbar of oxygen

250 mJ 10Hz, on a)Pt/T i/SiO2 and b)SiO2/Si substrates. While in the case Pt/SiO2 this

temperature is not enough for SBN to crystallize, the deposition on SiO2 is well crystallized

and preferentially oriented (001).
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Figure 3.4: XRD θ − 2θ diffractions from SBN50/SiO2 deposited at 700◦C and 750◦C: at

750◦C two peaks (indicated with ∗) appear that can not be attributed to the TTB structure.

Figure 3.5: XRD θ−2θ diffractions from SBN50 deposited at 740◦C 250 mJ 10Hz and oxygen

pressure 10−2 mbar on Si(100) substrate. The result is the same as found for deposition on

SiO2.
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Figure 3.6: XRD θ − 2θ diffractions from SBN50 deposited at 250 mJ 10Hz and oxygen

pressure 10−2 mbar on Pt/SiO2/Si substrate: a)740◦C, at this temperature the film is (001)

oriented, b) 720◦C, at this temperature the film start to crystallize but no preferential orien-

tation is observed.
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Figure 3.7: XRD θ−2θ diffractions from SBN50 deposited at 740◦C 250 mJ 10Hz and oxygen

pressure 10−2 mbar on Ir/SiO2/Si substrate. No preferential orientation was obtained on this

substrate.
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Figure 3.8: SBN50 deposited at 740◦C 250 mJ 10Hz and oxygen pressure 10−2 mbar on

IrO2/SiO2/Si substrate. The film obtained has the same X ray spectrum of SBN grown on Ir

films suggesting that the Ir surface actually oxidizes during deposition.

The energy per laser pulse does not influence the quality of the deposition. Below

200 mJ, the plume becomes too small and unstable, while above 400 mJ the laser gas

lifetime is drastically diminished. Therefore, the working energies have been chosen in

the interval 200-400 mJ.

The target-substrate distance has been varied in the range 50-90mm. Thickness unifor-

mity is strongly influenced by the distance and revealed by variation of film color with

thickness. With target-substrate distance of 85mm and average thickness of 500nm,

a variation of ± 50nm on a surface of 1cm2 has been measured. Deposition rate is

proportional to the pulse repetition rate and, at 85mm target substrate distance, a

rate of 0.5nm/pulse is obtained.

The film quality strongly depends on the substrate-plume distance more than on the

absolute distance from the substrate to the target. The plume dimension depends on

the background pressure of oxygen. If the substrate is too close to the plume edge, the

film contains unidentified second phases. With increasing distance, pure TTB phase is
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obtained.

After deposition, the film is cooled to room temperature at a rate inferior to 7.5◦C/min

in 1torr of oxygen. Annealing in oxygen reduces oxygen vacancy concentration and will

be discussed in the chapter on dielectric properties.

In summary, the laser parameters and the substrate-target distance have a slight in-

fluence on the SBN growth. Once the substrate temperature, oxygen pressure and

distance from the plume to the substrate are in the appropriate range for the forma-

tion of the TTB structure, it is possible to play with them in order to have a higher

deposition rate or a greater uniformity in the film thickness. On the contrary, the

substrate temperature plays a leading role in the film growth. After arrival on the sub-

strate, a certain mobility is necessary for the deposited atoms to organize in the TTB

structure. The existence of a threshold temperature to grow film with a well defined

crystalline structure clearly suggests that this mobility is provided by the substrate

temperature rather than by kinetic energy of the plasma plume. This is well under-

standable given the large diffusion distance needed to establish one unit cell and the

short hopping distance due to kinetic energy, which is not more than two next neighbor

distances on average. The large unit cell leads, in addition, to a considerable activation

energy G∗ for nucleation. Only thermal energy helps to overcome the Boltzman factor

exp (−G∗/kT ).

All the X-ray diffraction patterns show peaks shifted by about 0.1◦ toward higher val-

ues, corresponding to a out-of plane strain S3 of 0.5%, and indicating a positive strain

acting in the film plane. The thermal expansion mismatch indeed leads to a tensile

stress in the film. Such a strain, S3, is calculated as:

S3 = −(c13/c33)(S1 + S2) (3.1)

S1 = S2 = (αSBN − αSi)∆T (3.2)

where S1 and S2 are the in-plane strain along the SBN a and b axis, αSBN and αSithe

thermal expansion, c13 and c33 the elastic stiffness of SBN (see Tab.3.1). In-plane

tensile strain of about 0.6% have been calculated considering the difference in thermal

expansion of SBN and Si (see sec.5.2.2.4), this correspond to a out of plane strain of
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αSBN 15 · 10−6K−1

αSi 3 · 10−6K−1

c13 0.355 � 1011Nm−2

c33 1.166 � 1011Nm−2

Table 3.1: Parameters used to calculate the strain in the SBN films in eq.3.2.

about 0.4%. A variation in stoichiometry cannot account the large strain observed. S1

changes only by 0.3% for a 25% error in composition. In the next section it will be

shown that the composition is quite correct. The films were always found free from

particles, independently of the deposition parameters. This favorable condition has to

be attributed to the high density of the target and to the low thermal conductivity of

the material itself.

Substrate temperature > 720◦

Oxygen pressure > 10−2mbar

Target substrate distance 50-90mm with 0.2mbar of oxygen

Energy per laser pulse 200-400mJ

Laser pulse repetition rate 1-10 Hz

Table 3.2: Deposition parameters for SBN thin films.

3.3 SBN50 grown on Pt/Ta

Platinum bottom electrodes for SBN deposition were prepared by sputtering on SiO2/Si

wafers. 100 nm thick, (111) oriented films, are obtained at a temperature of 500◦C with

the use of different buffer layer. SBN films grown on Pt present the major problem

of Pt film adhesion to the silicon substrate. The stability issue of metallic layers on

SiO2/Si is well known and different materials have been studied for their adhesion
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properties, Ti Ta and Zr being the most common in the case of Pt.105,106 Often atoms

migration and compound formation are associated with decreased Pt adhesion to the

substrate. Among the different adhesion promoting procedures is the oxidation of the

metal used as adhesion layer.

In our case the deposition temperature needed to obtain (001) oriented SBN (700◦C)

lead to the peel-off of 100nm thick Pt electrode, sputtered on Si/SiO2 substrate using

TiO2 as adhesion layer. Better adhesion has been obtained in the case of Pt/Ta on

SiN. Perfectly oriented SBN grows if, in the substrate processing, an annealing step at

700◦C in oxygen is introduced after deposition of the first 50nm of Pt (see Fig:3.9).

Energy dispersive X-ray (EDX) analysis of the cross section of such processed Pt elec-

trodes, after SBN deposition at 740◦C, shows Ta diffusion trough the Pt layer (Fig.

3.10 spectra 1 to 3 and 5 to7). The interface with SBN is irregular and inter-diffusion

with the electrode occurs (Fig. 3.11, cf. spectra 1 and 4). Despite good adhesion

behavior, the roughness of the SBN/Pt interface indicates that the SBN deposition

process is damaging the electrode.

The SBN50 film is dense and constituted of columnar grains running through the film.

Oblique grain boundaries and irregular growth was observed where Pt, Ta and SBN

interdiffuse, Fig. 3.12.

The EDX measurement shows that Pt and Ta diffuse at most 10nm in to the SBN50,

forming an amorphous phase. The film composition is richer in Ba than Sr while Nb

content is consistent with TTB structure, fluctuation are present both perpendicularly

and along the film plane. Sr seems to accumulate in the amorphous layer at the in-

terface with the electrode where the ratio Sr/Ba is measured to be 1.69 while in the

film it varies from 0.5 to 0.75. Nb fluctuation are much smaller, the ratio (Sr+Ba)/Nb

varies from 0.3 to 0.45 (Fig.3.13).
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Figure 3.9: XRD θ−2θ diffractions from SBN50 deposited at 740◦C 250 mJ 10Hz and oxygen

pressure 10−2 mbar on: a) Pt/Ta/SiO2/Si, b)Pt/Ta/SiO2/Si annealed in oxygen (700◦C) as

intermediate step during the deposition of the Pt layer.

a) b)

Figure 3.10: Cross section TEM micrograph and chemical analysis (EDX)

of oxidized Pt/Ta grown on SiN. Ta is diffusing trough the whole Pt layer

up to the surface, irregularities are visible at the interface with SiN.
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a) b)

Figure 3.11: Cross section TEM micrograph and chemical analysis (EDX)

of oxidized Ta-Pt grown on SiN and the interface with the SBN film. Here,

in the first layer, about 10nm thick, Pt and Ta are diffused into the SBN

film (spectrum 1). At larger distance from the substrate the SBN is not

contaminated any more.

58



Figure 3.12: Cross-section TEM micrograph of SBN grown on oxidized Pt/Ta/SiN. The

film grows mostly in columns perpendicular to the substrate but, where there are defects in

the platinum layer, the growth is disturbed. Where interdiffusion zones are formed at the

interface, the SBN grains grow with a different morphology . This suggest that there is a

different growth mode taking place in the interdiffusion zones.
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a) b)

Figure 3.13: Cross section TEM micrograph and chemical analysis of SBN

grown on oxidized Ta-Pt electrode. SBN composition is not uniform and

the interface is richer in Sr.
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3.4 SBN50 grown on Si(100)

A substrate of (001) oriented Si is treated in HF 1% diluted in demineralized water for

1 min in order to remove the native oxide. After this treatment the substrate is rinsed

in demineralized water, dried with nitrogen and promptly introduced in the vacuum

chamber where the pressure reaches 10−6 torr in few minutes. To minimize the forma-

tion of SiO2 at the Si-SBN interface, the temperature was increased to 720◦ in vacuum.

Deposition started with a few laser pulse without oxygen and then continued in 10−2

torr of oxygen.

The obtained film is polycrystalline, (001) preferentially oriented (Fig.3.5). TEM im-

ages reveal a dense columnar structure running trough the film cross-section (Fig. 3.14)

growing on an amorphous 5nm thick layer at the interface Si-SBN (Figs. 3.14, 3.15,

3.16). Such a layer has a sharp interface with both substrate and film and is most prob-

ably due to diffusion of oxygen into the substrate. EDX chemical analysis (Fig.3.17)

reveal that the layer is rich in Si and Nb, the content of oxygen is extrapolated from

charge balancing.

The formation enthalpy for the relevant oxides are reported in table 3.3. The accu-

mulation of Nb at the interface is caused by the high enthalpy value corresponding

to Nb oxide (twice the value for Si dioxide). At the same time we can suppose the

formation of Nb oxide rather than NbSi, possible as well. We conclude that the first

layers deposited in high vacuum, do not constitute a valid barrier to the diffusion of

oxygen into the silicon substrate.

The film growing on the amorphous interface is stoichiometric and the small fluctuation

in composition are compatible with the measurement error evaluate in 1% (Fig.3.18).
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Figure 3.14: TEM cross-section micrograph of SBN grown on (100)Si. An interface layer is

visible between the silicon substrate and he SBN film. The grains are growing inclined with

respect to the plane normal and a certain degree of disorder is visible in the first 20 nm.

Figure 3.15: Detail of the previous picture clearly showing the presence of the interface layer

between substrate and SBN film.
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Figure 3.16: High resolution TEM image of SBN grown on Si(100): the 5 nm thick

interface layer is amorphous.

a) b)

Figure 3.17: TEM image and composition of the amorphous interlayer.
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a) b)

Figure 3.18: TEM image and composition (by EDX) of SBN film deposited

on Si substrate.

∆H/O

BaO -992.1

SrO -592

Nb2O5 -758.9

SiO2 -455.5

Table 3.3: Enthalpy of formation of oxides
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3.5 Conclusion

The TTB is a very complex structure. High substrate temperature, over the threshold

value of 720◦C, is necessary for the impinging species to crystallize in such a structure.

The other requirement is the presence of enough oxygen, at least 10−2mbar, in the

deposition atmosphere.

At the deposition temperature, adhesion of Pt electrode to the SiO2 substrate is a

serious problem, only partially solved by a oxygen annealed Ta/SiN adhesion layer.

The annealing step, introduced in the Pt electrode processing, improves Pt adhesion.

A further Pt layer has to be deposited in order to have a clean surface for (001)

orientation of SBN. Ir electrode is mechanically stable at such temperature but react

with oxygen. Such a reactivity induce a strong bonding with SBN, the film growth

is influenced and (001) orientation could not be attained. Amorphous, like SiO2, or

chemically inert, like Pt, substrates do not influence the film growth. On this condition

SBN is free to follow its natural crystal growth along the < 001 > direction. SBN grown

directly on Si single crystals, is accompanied by the formation of an amorphous oxide

layer of about 5nm. The shift of X-ray peaks reveals a thermal strain of 0.8% in the

plane of the film. This value is quite independent of the growth substrate (Pt, SiO2,

Si) but depends mostly on the thermal mismatch with the silicon wafer. EDX analysis

confirms a good 1:1 composition transfer from target to film.
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Chapter 4

SBN on single crystal STO substrates:

epitaxial growth

4.1 Epitaxial growth

Epitaxial growth is a specific type of film growth where a preferred orientation re-

lationship exists between the film and substrate even if their crystal structures are

different. These relationships are due to the existence of orientations with a low in-

terfacial energy. Two important factors determining the interfacial energy are lattice

mismatch and strength of chemical bonding between film and substrate atoms.107 For

sufficiently large bonding strength and sufficiently small misfit, the first mono layers of

the deposited film adopt the periodicity of the substrate. The film is strained by the

following value known as misfit strain:108–110

m =
as − af

af

where af and as are the unstrained atomic spacing of film and substrate along some

direction relevant in the epitaxial geometry considered. The tendency for epitaxial

growth increases with decreasing misfit but this is not a sufficient condition. Strong

bonding with the substrate induces epitaxy unless the misfit is so large that creation

of the film crystal structure is impossible even with the introduction of dislocations.

The misfit strain results in an elastic energy in the film, which increases proportional
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to the film thickness. Above a critical thickness dislocations are introduced to release

this elastic stress (see sect. 4.1.1).

In the equilibrium theory of epitaxial growth, three growth modes are traditionally

distinguished:111

• layer by layer, where each atomic layer is completed before the next is started

(Frank-van der Merve112).

• three dimensional or islands formation113(Volmer-Weber).

• a combination of the previous, beginning layer by layer and changing to islands

after a few layers114(Stranski-Krastanov).

The particular growth mode for a given system depends on the interface energies and

on the lattice mismatch. In lattice-matched systems, the growth mode is governed by

the interface and surface energies only. In the Frank-Van der Merve mode (FM), the

sum of film surface energy γf plus the interface energy γfs is lower than the substrate

surface energy γs. A two dimensional layer covering the whole substrate is then more

stable than a three dimensional crystalline island and the film is said to perfectly wet

the substrate. The opposite happens in the Volmer-Weber growth mode (VW). In this

case the energy due to the creation of the interface is higher than the surface energy of

the substrate and film. Wetting is energetically unfavorable and thus the film-substrate

interface is minimized by islands growth. In the framework of the wetting theory, the

following criterion discriminate between layer and island growth115,116 :

γs > γf + γfs, Frank-van der Merwe (4.1)

γs < γf + γfs, Volmer-Weber (4.2)

The presence of misfit and its accommodation has an influence on the surface and

volume energies.77,115,117 A change in γfs + γf alone may drive a transition from the

FM to the VW growth mode. For a strained epilayer with small interface energy,

initial growth may occur layer-by-layer, but a thicker layer has a large strain energy

and can lower its energy by forming isolated islands in which strain is relaxed. Thus

the Stranski-Krastanov (SK) growth mode occurs.
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4.1.1 Misfit accommodation

A theory to explain how two lattices accommodate their misfit has first been intro-

duced by Frank and van der Merwe.112

The mechanism of misfit accommodation of the film on the substrate depends on: the

misfit values, the elastic properties of the film, the bond strength with the substrate,

the film thickness and the temperature. There exists a limiting value of misfit and a

critical thickness, below which the film is stable without creation of dislocations. In

this case the misfit is accommodated by strain only. For thick films misfit dislocations

are always present unless lack of energy limits their formation. It is important to no-

tice that the generation of dislocations is an activated process, i.e. a certain amount of

energy is necessary. It is thus possible that, even if the presence of a dislocation would

decrease the overall energy of the system, the energy available is not enough to over-

come the barrier for its formation. In this case the growth of a continuous layer is not

possible and the growth proceeds in a three dimensional mode with island formation,

this is the SK mode discussed previously.

The critical thickness tc, above which the film will develop dislocations to relax the

misfit stress, has been calculated by Matthews118,119 as:

tc =
b

8π(1 + ν)m
ln

(
tc
|b|

+ 1

)
(4.3)

where m is the misfit strain, b is the Burger’s vector of the dislocation and ν the Pois-

son’s ratio. The Burger’s vector lies in the plane of the interface and is perpendicular

to the dislocation line. The validity of the theory has been confirmed by studies on

Si-based and Ge-based materials.120–122

4.1.2 Volmer-Weber growth mode

The Volmer-Weber (V-W) growth mode applies to both epitaxial and non epitaxial

growth mode; films initially grow by the nucleation of discrete islands of different

crystallographic orientation (or no crystallinity at all in the case of amorphous solids).
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Upon additional deposition, the existing islands enlarge, and new islands may nucleate,

until a continuous percolating network is achieved. The film continues to grow until

the substrate is covered, followed by additional film thickening. Both during and after

deposition, the film can undergo defect introduction and annihilation, grain growth,

recrystallization. All these process can generate stress within the film.

Study of the stress evolution during growth have been performed for various films.123,124

Figure 4.1: Stress-thickness vs stress during deposition of Ag, Al, Ti, polycrystalline Si,

polycrystalline Ge, amorphous Ge. The substrate is SiO2; no misfit strain can be defined

in this case and stress is due to growth phenomena related to surface and interface energies.

Positive values of stress thickness correspond to mean tensile stress, while negative values

correspond to mean compressive stress.

It is generally observed that the stress evolves from compressive to tensile and back to

compressive, as shown in fig.4.1 from ref.124 In this study the substrate is amorphous

and no misfit strain can be defined, the stress is due to growth phenomena related to

surface and interface energies and has been directly correlated with the microstruc-

tural evolution.124 The initial compressive stress occurs in the discrete islands stage

of growth, while the rapid rise of tensile stress correlates with the onset of island co-

alescence and grain boundary formation. The peak in tensile stress occurs when the

film becomes fully continuous, and in the final compressive stage the continuous film
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is thickening. When the deposition flux is interrupted in the final compressive-stress

regime, a rapid relaxation of the stress occurs.125

The free surface of a solid particle is known to be stressed.126 Surface stress in solids

arises because the atoms of a solid in the vicinity of the surface have a bonding envi-

ronment different from that of the atoms in the interior. As a result, the surface atoms

will in general have an equilibrium interatomic distance different from the bulk value.

Therefore the bulk of the solid can be thought of as applying a stress on the surface

atoms in order to keep them in atomic register with the underlying lattice. The equi-

librium atomic distance of the particle surface depends on its size and increase with it.

During the early stages of V-W growth a particle is not tightly bonded to the substrate

and can freely adjust its surface atoms according to the size, balancing internal and

surface stress. When the particle becomes rigidly bonded to the substrate, its lattice

parameter at the interface with the substrate is frozen and can not follow the growth

any more. The difference between the lattice parameter corresponding to the island

rigidly bonded to the substrate and the lattice parameter that it would have if it were

free to adjust to its new equilibrium size, creates a misfit strain. Associated with this

misfit strain is a biaxial stress that becomes increasingly compressive as the islands

grows.127 This prediction explains the initial compressive stress frequently observed

prior coalescence.

Stress turns over to tensile at island coalescence, when the reduction of free surface

and creation of grain boundary brings about a reduction in energy. In this case two

islands can be driven to coalesce at the expense of some elastic energy originating the

tensile stress. Different model have been proposed to describe the evolution of stress

at coalescence,128–131 in which material mobility and grain growth influence the mag-

nitude of tensile stress developed.

A mechanisms responsible for the generation of the post continuity compressive stress

in the film is the surface stress described earlier for the discrete islands stage. In this

phase is the increase in thickness that first release the tensile stress and turns it back

in to compressive. Another mechanism has been found to be responsible for compres-

sive stress,131–133 this is the incorporation of excess atoms in grains boundaries during
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deposition.

4.2 STO substrate surface

It is well known that a surface layer exists in perovskite of ABO3 type which shows

different properties compared to the bulk.134,135 The existence of new phases is related

to the chemical instability of ABO3 crystals in environments of low or high partial pres-

sure of oxygen and is not restricted to the outer atomic layer of the surface which is in

direct contact with the atmosphere. This reconstruction of the surface region already

starts at room temperature and is particularly fast at elevated temperatures.134 It is

related to the existence of extended defects in perovskite of ABO3 type which serve as

fast diffusion paths for O and AO complexes.136

STO (Fig.4.2) is a metal oxide with the cubic perovskite structure of lattice parame-

Figure 4.2: Perovskite structure of SrT iO3 (STO): Sr and Ti atoms are indicated together

with the lattice parameter of the cubic cell.

ter 0.39 nm. Along the [100] direction, the unit cell of STO is a repeated stacking of

individual titanium oxide and strontium oxide layers. The termination of any atom-

ically flat (100) surface must be either titanium and oxygen (fig.4.3a) or strontium

and oxygen (fig.4.3b). Cleaving or cutting, though, give a resultant surface with an
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a) b)

Figure 4.3: a) SrO and b)TiO2 planes of the STO structure.

equal amount of the two termination. Clean surfaces of single crystal substrates are

usually prepared by flashing at a high temperature for a short time in ultra-high vac-

uum (UHV). High temperature treatment of multi-elementary compounds may induce

decomposition and non stoichiometry. In the case of STO, thermal treatments above

900◦ and low oxygen pressure, induce a Ti-rich surface phase of type TiOx and loss of

oxygen with time from such a formed surface. In oxidizing conditions segregation of

Sr atoms at the surface is observed with formation and continuous accumulation of a

SrO-rich layer. At temperature lower than 1000◦C diffusion of the SrO in the bulk is

not expected, just the formation of a monolayer at the surface. Thermal roughening

and step bunching can occur as well.134

Kawasaki et al. and Koster et al.137,138 have shown that the TiO2-termination can

be prepared by wet chemical etching. The more basic oxide SrO is selectively etched

by a NH4F buffered HF solution. The proper solution pH as well as the previous

polishing and proper thermal treatment of the surface, determine the good result of

the procedure. Dipping the surface in demineralized water prior etching, lead to the

formation of an intermediate Sr-hydroxide and a reproducible, very good TiO2 surface

upon etching in a pH 5.5 solution. Subsequent annealing in the range 600◦ − 800◦

produces flat terraces and evaporates contaminants like carbon.

The lattice parameter of the two terminations is the same, meaning that any change in
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growth behavior can be interpreted in terms of a change in interfacial energy due to a

change in the degree of chemical bonding across the interface. Surface reconstructions

have been studied in the case of TiO2-terminating surface and different configurations

have been observed.?

The (111) layers in the bulk consist of Ti(4+) and SrO3(4-) layers (Fig.4.4). Such

highly charged layers cannot be stable at the surface. One expects a reconstruction to

reduce the large dipole moment. Chemical or thermal treatment of the (111) surface

did not lead to a noticeable influence on SBN.

a) b)

Figure 4.4: STO crystal showing: a)the (100), and b)the (111) plane. In

both cases there are Ti rich layers alternated to Sr rich layers.

4.3 Growth of SBN

4.3.1 Substrate preparation and deposition parameters

SBN thin films have been grown on STO (100)oriented single crystals. The substrate

has been utilized as received from the producer or treated in BHF for one minute after

being dipped in demineralized water for about 30 min, this process creates a TiO2

terminating surface. In order to create a SrO surface some substrate have been annealed

in oxygen for 5h at 950◦ after being etched. Terraces 200 nm wide with steps of 0.4

nm are clearly visible on non treated surfaces (fig.4.5). No defined diffraction pattern
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is produce in RHEED experiment, indicating a high degree of crystalline disorder.

RHEED diffraction patterns from wet-etched surfaces (fig.4.6) show well defined bright

spots that become strikes upon heating (fig.4.7a)).

Films have been deposited at substrate temperature in the range 730−760◦C, in oxygen

atmosphere of 200-400 mTorr, with target substrate distance 50-90 mm, laser pulse

repetition rate 1-10Hz and 200-400mJ per pulse. Crystalline films have been obtained

in the whole range of used condition, the degree of crystallization and ordering increase

with increasing temperature and is less sensitive to the other parameters. RHEED

fraction patterns are spotty-like (fig.4.7b)) indicating a high degree of roughness.

Figure 4.5: AFM image (contact mode in vacuum) of non treated STO surface. The terraces

are about 200 nm wide, the step height is 0.4 nm compatible with the unit cell dimension.

4.3.2 Phenomenology of growth

Preparation of the STO substrate with chemical an thermal treatment of has a strong

influence on the growth of SBN films and their surface morphology . Films grown on
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Figure 4.6: RHEED diffraction pattern from etched surface of STO at room temperature:

bright and well defined spots indicate a rough surface.

non-treated or treated substrates are clearly distinguishable as evident in the AFM

images: fig.4.9 corresponds to the non treated case and fig.4.10 to the etched case. The

image 4.11 was taken from the etched sample after annealing at T = 950◦.

θ − 2θ X-ray diffraction patterns of SBN grown on both treated or non treated STO

surfaces (fig.4.8) have a strong peak at 2θ = 22.5. Two different planes give diffraction

at this angle, (001) at 22.49 and (310) at 22.519,with a difference in 2θ of only 0.03◦.

Because of measurements resolution and peak width it is impossible to determine which

of the two is actually present or if the film is a mixture of the two orientations. From

the ferroelectric point of view this two orientations are completely different as the

polarization axis is perpendicular to the film plane in the first case and in the plane in

the second case.
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Figure 4.7: Rheed diffraction pattern from: (top) etched STO surface at

750◦, (bottom) SBN film at room temperature. The STO surface, rough at

room temperature, becomes smooth at deposition temperature. The SBN

film is rough, this is confirmed by AFM measurements.

77



Figure 4.8: X-ray of SBN film grown on non-treated STO surface: 750◦C, 300mJ per pulse,

10Hz, 80mm target-substrate distance.

Figure 4.9: AFM image of SBN film grown on non-treated STO surface: 750◦C, 300mJ per

pulse, 10Hz, 80mm target-substrate distance. Columnar grains are the dominating feature,

few rods are visible as well.
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Figure 4.10: AFM image of SBN film grown on BHF etched STO surface: 750◦C, 300mJ

per pulse, 5Hz, 80mm target-substrate distance. Here the film grows in rod shaped grains,

round grains are nevertheless present, due to imperfection in the TiO2 termination of STO.

The rods grow parallel to the STO axis, the round grain is rotated by about 18◦.

Figure 4.11: AFM image of SBN film grown on BHF etched and annealed STO surface:

750◦C, 300mJ per pulse, 10Hz, 80mm target-substrate distance. In this case only the columnar

growth is visible, grains are as wide as 300nm.
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4.3.2.1 Growth on TiO2 terminating substrate

When the STO surface is etched prior to the introduction in vacuum the SBN film

grows in rod-like shaped grains. The rods, about 30-50 nm wide, have variable length

of about a few hundred nm. They grow perpendicular to each other with the main

axis along the STO [100] axes. The diffraction pattern of Fig. 4.12 shows that in these

grains the (001) plane is perpendicular to the film. From the cross-section diffraction

pattern a tilt of the SBN lattice with respect to the STO lattice is evident (fig.4.14).

The [310] axis of SBN is oriented along the [100] axis of STO. The [001]-axis of SBN is

consequently parallel to the [010] axis of STO. The a-axis of SBN is tilted around its

c-axis to form and angle of ±18, 43◦ with respect to the [100] axis of STO. Such a tilt

is shown in Fig.4.15.

The film grows in a dense morphology. A very specific feature is the growth direction

of the grains. The grain boundaries include an angle of about 18◦ with the film normal,

meaning that the grains grow along the [100] direction (fig.4.17).

θ−2θ X-ray diffraction pattern show a peak at 2θ=29.5, corresponding to (410) planes

(fig.4.18). Such a peak is hardly distinguished from the background or dominating

depending on deposition condition. The (410) orientation is more likely to grow when

the energy provided to the system is lower, i.e. lower temperature, larger distance from

the plume and fast deposition rate. Other peaks are present in the X-ray diffraction

pattern in this case, indicating a disordered growth. From TEM study of the film

substrate interface only (310) oriented grains are revealed. We conclude that the (410)

orientation belongs to grains growing on top of the (310) ones.

The rods are densely distributed and quickly cover the whole substrate in a way that

the surface resembles those of a thicker film, that is already the case of a 2 min long

deposition corresponding to a thickness of about 20nm. If the growth is stopped, the

sample cooled down and then reheated for a second run of one minute,thicker isolated

rods are formed, fig.4.19. That is an indication of non equilibrium condition for the

system that relax to a configuration of lower energy during the intermediate annealing

step. During the second run the material grows preferentially on the preexisting SBN

structures.
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Figure 4.12: (top) Plane bright field micrograph and (bottom) diffraction pattern of a colum-

nar and rod-like shaped grains: the columnar grain has the [001] axis perpendicular to the

plane while rod-like grains have the same axis laying in the plane
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Figure 4.13: Cross-section high resolution micrographs of the interface between STO and

two different SBN grains: in both images the STO[001] direction is laying in the plane of the

film. The SBN [001]direction is out of section plane in the upper, and in the section plane in

the lower image.
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Figure 4.14: Diffraction image of a grain with [001] axis laying in the film plane: case of the

top image in figure 4.13, spots from both film and substrate are visible.

Figure 4.15: Cross sectional diffraction image of (310) oriented grains with [001] axis laying

in the plane: spots from both film and substrate are visible. SBN(001) planes are tilted by

±18.43 respect STO (100) plane.
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Figure 4.16: Interpretation of the diffraction images 4.14 in a), and 4.15 in b). In a) the STO

reflection from the plane (100) are superimposed to the reflection from planes (001) of SBN

and reveal the 18.43◦ rotation of the two lattice. In b) reflection of STO are superimposed to

reflection from SBN(001) grains rotated by + or − 18.43◦ as for fig.4.15
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Figure 4.17: TEM micrograph of SBN film grown on wet-etched STO surface: tilted grains

and irregularities are visible, the interface with the substrate looks stressed. The grain bound-

aries frequently show an oblique direction forming a 18◦ angle with the film normal. This

indicates that grain boundaries are constituted by (010) planes.
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a) b)

Figure 4.18: θ − 2θ X-ray diffraction pattern from films grown on etched

STO substrate: a) 750◦C, 300mJ per pulse, 5Hz, 75mm target-substrate

distance b)750◦C, 200mJ, 10Hz, 85mm target-substrate distance.
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a) b)

c)

Figure 4.19: SBN on etched STO: 1 min deposition at 10Hz 300mJ 750◦C.

a) the surface is already densely covered by rods like the thicker films are,

b) the film has been heated-up again to 750◦ and deposition continued for

1min more, c) 1 min deposition at 780◦. In case b) rods are well separated

and up to 50 nm thick, the annealing created a new distribution and the

atoms deposited after annealing preferentially accumulated to the already

existing grains.
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4.3.2.2 SrO terminating substrate

On an oxygen annealed substrate SBN film grows in columnar grains of about 100nm

diameter with the (001) plane parallel to the film plane. The SBN unit cell is rotated

by 18.43◦ respect to the STO lattice (fig.4.12). The columns nucleate as independent

units, then grow perpendicularly to the substrate up to the film surface, resulting in its

average roughness of 6 nm. The interface with the substrate is sharp and the structure

of the film is regular and dense,(fig.4.20).

Figure 4.20: Dark field TEM image of SBN film grown on SrO surface: 750◦C, 300mJ per

pulse, 10Hz, 80mm target-substrate distance. A dense columnar structure is visible: columns

are about 100nm wide and reach from the bottom to the top of the film.

4.3.2.3 Random STO surface

On a non treated STO substrate, the film grows mainly in columns like it does in the

SrO terminating substrate. The growth starts with isolated round particles of about

100 nm diameter and a very few rods, some rods persist to the end of the growth

process but other are covered by the expanding (001) oriented grains (fig.4.21). The

structure is regular and dense and the interface with the substrate is sharp. Small
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a) b)

Figure 4.21: Initial stage of growth on non treated STO substrate, 1min

at 750◦ 10Hz pulse frequency: a) standing-alone columnar grains are uni-

formly distributed on the surface, b) rods are assembling occasionally.

(310) oriented grains grow at the interface and are buried by (001) oriented grains (

see fig. 4.22).

The rod-shaped grains are present in quantities that differ from sample to sample but

always as a minority. Such mixing of features is expected as the substrate surface is

constituted of both termination at 50% in average, a great variability can be expected

from sample to sample. In figs. 4.23 to 4.26, XRD pole figures obtained from (001)

and (310) oriented films are shown ( treated substrates ). These measurements prove

that the whole film grows with only one specific orientation and there is no mixing of

the two. They confirm that the films grow globally in the same way as the TEM in-

vestigation has revealed. Calculated spectra are shown in figs 4.24 4.26, measured and

calculated reflection are shown. Twin domains of ±18◦ and ±90◦, around the [100] axis

of STO, are formed by (001) and (310) in plane orientation respectively. In any case,

for low deposition rates (< 5/sec), (001) and (310) are the only orientations obtained.

No random nucleation is observed.
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Figure 4.22: High resolution TEM image of SBN film grown on non-treated STO(100) surface

Top image: (001)-oriented grains with a sharp interface with the substrate. Bottom image:

(310)-oriented grains are observed at the interface with the substrate, their growth is limited

by the surrounding (001) grains.
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Figure 4.23: Pole figure of a SBN film grown on SrO terminated STO(100) substrate, ob-

tained measuring the (211) SBN reflection . The arrows indicate the position of measured

STO(211)reflection, from which the position of STO[100] axis (indicated by the line) has been

calculated. Once the SBN spot identified, this gives us information about the relation of SBN

with the STO substrate. In fig.4.24, the (211) SBN reflections are calculated for comparison.
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Figure 4.24: The calculated (211) reflection of (001)oriented SBN are indicated by the spots.

The position of SBN[100] has been calculated and indicated by the line. The additional

measured reflections of fig.4.23, are obtained by a rotation of 36.86◦ to the left of all the SBN

spot. After such a rotation, this figure coincide with the measurement of fig.4.23 and show as

the SBN lattice is rotated by 18.46◦ respect to STO.
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Figure 4.25: Pole figure of a film grown on etched STO(100) substrate, obtained measuring

the (211) SBN reflection . The arrows indicate the position of measured STO(111)reflection

and the line indicates the calculated position of STO[100]. Once the SBN spot identified, the

relation of the film with the substrate can be determined. In fig.4.26 the reflection from SBN

are calculated for the comparison.
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Figure 4.26: The calculated (211) reflections of (310) oriented SBN coincides with the mea-

surement of fig.4.25 where the outer reflection are considered. The extra reflection are obtained

by a rotation of 90◦. The position of SBN[100] is indicated an coincides with the position of

STO[100] derived from the measurement of fig.4.25
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4.3.2.4 SBN on STO(111)

SBN on STO (111) grows with (421) planes parallel to the (111) plane of the substrate

as shown by the X-ray diffraction measurement in fig.4.27. A Ti rich STO(111) surface,

has been reported to form upon annealing at 950◦C or more, in UHV.139,140 Thermal

behavior of the (111) surfaces is thus similar to the one of the (100) surface as reported

in Sect.4.2. We do not expect any effect at the deposition condition. There are no

studies, to our knowledge, about chemical etching of STO(111) surface. In our case,

BHF etching of the substrate does not have an effect on the growing film, nor does the

temperature of the substrate. The deposition conditions to obtain a crystalline film

are found to be the same as for STO(100) substrate.

The wetting power of SBN is in this case strongly reduced, and islands as thick as

Figure 4.27: θ − 2θ X-ray diffraction pattern of SBN grown on STO(111), the small peaks

belong to the SBN film. Deposition conditions:750◦C, 10Hz, 250mJ

50-80 nm are formed after 1min of deposition, well before coalescence. The island grow

in pyramids from 30 to 200 nm at the base (Fig.4.28a)). Such pyramids are composed

of 30-50nm wide slices.

A saw tooth profile of the surface is kept in thicker films (Fig. ??). This indicates that
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a) b)

Figure 4.28: AFM topographic image of SBN film grown on STO(111)

substrate: a)1min deposition, b)60 min deposition

the substrate determine the orientation of the film but the growth of grains proceeds

along a preferential orientation typical of SBN. Most probably this is the < 001 >

crystallographic direction. The grains height do not always span the entire thickness

of the film and inclusion are visible. The growth, fig.4.29, seem to be less ordered than

what seen in the case of STO(100) substrate.
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Figure 4.29: Bright field TEM image of SBN film grown on STO(111) surface: the interface

is sharp and the structure is dense. The grains do not grow from the substrate through the

whole section of the film and inclusions are visible.
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4.4 Model of growth

4.4.1 State of the art

Epitaxial growth of SBN [001] oriented thin films has been obtained on following

substrates: SBN(001) (homoepitaxy),97 LaNiO3/CeO2/YSZ/Si(100) multilayer (LNO

(001) oriented),68 MgO(100)53,55,64,65,73 and STO(100)67,95 single crystals. It is interest-

ing to note that these epitaxial systems lead to the formation of SBN-related antiphase

domains in the (001) plane. In the homoepitaxyal system composed of SBN61(001)

oriented film grown on SBN75(001) single crystal, the film forms grains aligned with

the substrate and grains rotated by ±28◦ around the substrate normal [001]. Grains

with fourfold symmetry, rotated by ±18.43◦ with respect to the a-b axes of the sub-

strate grow on LNO, MgO and STO single crystal. In the case of MgO(100) substrate,

grains rotated of ±31◦ have been reported as well.53,65 These extra orientation seems

to be less probable and strongly influenced by the substrate surface preparation. Do-

main formation in all these epitaxial system has been interpreted by considering the

interplay between processes that minimize lattice misfit and those that allows for bal-

ance of Coulomb’s forces as the two lattices try to accommodate each other across the

interface.

MgO is a particularly good substrate to grow (001) oriented SBN because of the low

mismatch with SBN lattice. Considering three MgO unit cell (MgO a=0.42 nm SBN

a=b=1.245 nm) it amounts to about 1.2 %. As discussed in ref.,55 the poor alignments

of the inner atoms of SBN unit cell with the MgO atoms, obtained in the configuration

with parallel a axis, is substantially improved by a rotation of 18.4◦, however, the lat-

tice mismatch increases to about 6%. For a complete appreciation of lattice matching,

the bonding strength has to be considered as well. In case of ionic crystals, the bonding

strength is mainly governed by electrostatic interaction. SBN has a layered structure,

fig.4.30, in the layer at z = 0.5c concentrate oxygen and Sr Ba cations, the rotation of

±18.43◦, make the oxygen atoms in this layer to coincide with the Mg cations of the

substrate. The layer at z = 0c contains Nb cations and oxygen and in this case upon

rotation, are the oxygen anions that superimpose to Mg cations. Growth starting from
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Figure 4.30: SBN unit cell: the layers at z = 0c (NbO containing) and at z = 0.5c ((SrBa)O

containing) are indicated.

this second layer, rotated by ±18.43◦, should be favored from the electrostatic point of

view and that would compensate for lattice mismatch.

Epitaxial growth of SBN(310) oriented film with rod shaped grains, on STO(100) single

crystal, has been reported by Nishio et al.69,71 but details of the epitaxial relationship

have not been analyzed.

4.4.2 Discussion of our experimental results

The TTB unit cell of SBN is characterized by the following constitutive elements:

• a kernel with perovskite structure, whose lattice is rotate by 18.43◦ with respect

to the a and b-axis of the SBN lattice, as indicated in fig.4.31.

• oxygen octahedra chains with the periodicity 0.395nm, along the c axis.

• a layered structure (fig. 4.30) with one (Sr,Ba)O layer and one NbO layer along

the c-axis.
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Figure 4.31: SBN unit cell: the perovskite kernel is indicated. These perovskite kernels can

be divided in to two groups depending on how they are rotated with respect to the SBN

lattice: one is rotate by 18.4◦ to the left, the other is rotate by 18.4◦ to the right. In the

figure the first is indicted by the sign "-" the second by the sign "+".
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In the case of (001) oriented SBN, the analysis of lattice matching reveals that in

both growth modes (in plane and out of plane polar axis) the particular orientation re-

alized, minimize the misfit between film and substrate. The misfit between SBN(001)

and STO(100) is calculated comparing three unit cell of STO with one unit cell of

SBN. In the case of parallel [100] axis, it is about 6.4%. The observed rotation of 18.4◦

reduces it to about 1%. For the SBN(310) oriented both the misfit along the c axis

and perpendicularly to it (with the tilt of SBN< 001 > by 18.4◦ and comparing three

unit STO unit cell with one of SBN) are about 1%. Thus lattice mismatch minimiza-

tion could explain by itself the growth orientation. It is important to notice that the

perovskite kernels in the SBN structure, belong to two sub groups. Each of them is

rotated of 18.43◦ to the left or to the right with respect to the a-b axis of the SBN unit

cell, see fig. 4.31. The existence of the two in-plane grain orientation in the growth of

SBN(001) oriented is due to the existence of such a structure and most likely the film

growth starts from this kernel that perfectly fit on the perovskite structure of STO.

What remains to be explained is the mechanism by which the two STO(100) surface

terminations, SrO and TiO2, determine the (001) and (310) orientation of SBN. As

the two layer of STO have the same lattice parameter we expect a determinant role

of charge balancing. Most likely the SrO surface is less demanding from the charge

balance point of view and "allows" SBN to grow along its easy direction perpendicular

to the film plane. In this case, the STO surface plays the role of the z = 1/2 plane and

the z = 0 plane of SBN with the basis of the NbO octahedra is nucleating. A TiO2

STO terminating surface has incomplete oxygen octahedra, such a configuration is not

stable in oxygen atmosphere and high temperature, the condition during the deposi-

tion. We can thus expect SBN to complete the octahedra, and to add the A-site ions.

Allowing for some distortion the (310) plane can form a continuous layer of octahedra

(fig. 4.33, 4.32). The octahedra chains in the (310) plane and direction perpendicular

to < 001 > are indicated in Fig. 4.32. They repeat them selves each 39.37. This is

about ten times the STO unit cell, with a misfit of 1%. After ten times the SBN peri-

odicity in the (310) plane, i.e. a hundred time the STO unit cell, i.e. 393.7, the misfit

film-substrate is 3.9. Thus misfit can be compensated by introducing one additional
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octahedra, edge dislocation, each 40nm. 40nm is the average width of one rod-grain

in (310) oriented SBN films, see fig. 4.10. We conclude that such a dislocation is

energetically unfavorable and SBN prefers to stop growing in this direction.

In the case of SBN grown on STO(111), the (421) SBN’s plane that grows parallel to

Figure 4.32: SBN (310) planes rich in oxygen octahedra. This plane are separated by one

octahedra distance.

the substrate surface coincide with the (111) plane of the perovskite kernel of the SBN

lattice (see Fig.4.34). The perovskite kernel is ruling the growth in this case as well

as in the preceding ones and the SBN film nucleates as a continuation of the substrate

structure.

SBN growth on STO is clearly Wolmer-Weber type for all STO termination. High

resolution TEM micrograph show as the TTB lattice of SBN accommodates on STO

surface in a few atomic layers. Grain boundary start at the STO surface, no continu-

ous layer, sign of Stranski-Krastanov growth, is visible. Defects in the film are mostly

confined at the triple interface grain-grain-substrate, and due to irregularities in the

STO surface.
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Figure 4.33: SBN unit cell growing (310) oriented on TiO2 terminating STO substrate. The

18.43◦ tilt aligns the octahedra chains to the substrate surface. Allowing for some distortion

of both substrate and film, the two crystals can join.

The parameter with the biggest influence on the film structure is temperature. At the

temperature needed for the TTB structure formation, about 750◦, atoms have a high

mobility on the STO surface. This is confirmed by the growth of well spaced grains

when enough time is given for them to coalesce (fig. 4.19). Diffusion distance is higher

on STO(111) surface, here well defined and well spaced grains grow (421) oriented.

That means the bonding strength with the substrate is weaker than the internal TTB

bonding, but strong enough to deeply condition the epitaxial relationship. The elec-

trostatic energy is believed to be the driving force for the different orientations and

oxygen octahedra as the building block unity. Would be interesting to verify if this can

be considered as a general principle, testing the model on other complex oxides grown
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on perovskite substrate.

It is known that SBN single crystals naturally grow along the [001] direction, the octa-

hedra chains direction. This direction is clearly the preferred for the columnar grains

of (001) oriented films. Following this tendency, rod shaped grains should grow with

the [001] direction along the main axis of the grain. Unfortunately we could not give

experimental evidence for this.

We have no experimental evidence that the slice shape of grains grown on (111)STO is

due to growth along this direction either. However, there is only the natural anisotropy

in the structure that can give rise to the platelets (slices).

The presence of one grain shape, corresponding to one orientation, on substrate where

the other one is dominating, is due to imperfection of the substrate surface. In the

case of non treated surface this is an expected effect because of the random presence of

both STO terminations, for the wet-etched substrate the occurrence of (001) oriented

grains can be due to a defective TiO2 termination caused by imperfection in the etching

process that should create the surface.

Is out of any doubt that the shape of the growing grains is determined by the STO

surface. This gives evidence that it is possible to tailor grain shape and, more impor-

tant, polar axis direction, by choosing the appropriate STO plane for their growth.

In order to improve the smoothness of films, atoms mobility should be suppressed, that

has proven to be detrimental to the quality of epitaxy.

From results of this work together with literature results, it seems highly improbable

that a monocrystalline SBN film could be obtained in heteroepitaxial growth.
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β = 45◦

α = 18.43◦

γ = α + β

δ = 90◦ − γ

OX = OA sinβ
sin(180◦−α−β)

OY /OX = sin γ
sin δ

= 2

Figure 4.34: The referring system of the perovskite kernel contained in the SBN lattice, has

the [001] axis coincident with the [001] axis of SBN and the [100][010] axis rotated by 18.43◦C

with respect to the SBN’s [100][010] axis, as shown in the schema. The intersection of the

kernel’s (111) plane with the (001) plane is a line that crosses the the SBN’s [100] and [010]

axis in the points indicated by X and Y. The ratio of the two segments OY and OX is 2. If

we take OA=3.95 then OX = 3.12, i.e. one quarter of the SBN lattice parameter along [100]

direction. The plane (111) of the kernel is thus the (421) plane of the SBN lattice.
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Chapter 5

Functional properties of SBN thin

films

5.1 Electric characterization

5.1.1 Measurement procedures

5.1.1.1 Dielectric constant and phase transition

For most application of ferroelectric materials the dielectric constant and dielectric

loss are important practical parameters that provide a lot of information about the

mechanism of electric polarization. Dielectric constant and losses can be obtained

from measurements of the impedance of a capacitor filled with the material under

study. When an electric field E(V/m) is applied to an insulating material, an electric

dipole is induced. The polarization state is described by the dielectric polarization

P (C/m2). Its change is a function of the electric field given by:

δP = (εr − 1)ε0E (5.1)

with ε0 dielectric constant of vacuum and εr the relative dielectric constant of the

material. Ferroelectric materials are characterized by high values of dielectric constant
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with εr � 1, therefore the dielectric polarization can be approximated by:

δP = εrε0E (5.2)

When an alternating sinusoidal field E(t, ω) = E0 sin ωt of angular frequency ω is ap-

plied to a lossy dielectric, the polarization response is delayed so that one distinguishes

the in phase, P = ε′E0 sin ωt, and out of phase, P = ε”E0 cos ωt, component of the

induced polarization. In this case the dielectric constant is conveniently expressed in

complex notation, using the Euler relation:

exp jωt = cos ωt + j sin ωt

εr(ω) = ε′(ω)− jε”(ω) (5.3)

ε′(ω) is the real part of the dielectric constant and ε”(ω) the imaginary part represent-

ing the dielectric loss. tanδ = ε′(ω)/ε”(ω) is more often used to express the loss.

The behavior of a dielectric in electric field is completely described by ε′ and ε” or

tanδ = ε′/ε”.

Dielectric properties have been measured with a HP 4284A precision LCR meter, as-

suming the sample to be the equivalent of a capacitor and a resistor in parallel. A

sinusoidal electric field of 40 V/m amplitude is applied to the sample in the frequency

range 100Hz-1MHz. Capacitance values and losses, in the form of tanδ, were measured.

From their behavior as function of temperature, anomalies are detected and the phase

transition temperature identified. The variable temperature measurements, in the in-

terval −150◦C 230◦C, were performed in a Delta Chamber 9023. The temperature was

measured by Pt thermocouple. The measurement procedure was software controlled.

Capacitance-voltage (CV) curves were measured with the same instrument and the

same exciting field.

5.1.1.2 Hysteresis loops

The ferroelectric polarization is a two value function of the applied field represented

by the hysteresis loop. Important values characterizing the hysteresis loop are:
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Figure 5.1: Diagram of the hysteresis loop measurement set-up

• the remanent polarization, left when the external electric field is reduced to zero

• the coercive field, necessary to bring the polarization to zero.

The existence of hysteresis, with two opposite values of remanent polarization, allows

for the use of ferroelectric materials in memory applications. It is a bistable element

that can be used to encode the 1 and 0 of Boolean algebra. The important parameters

for memory applications are: the coercive field value, the remanent polarization value

and their stability with time, temperature, and cycling.

Polarization hysteresis loops were measured applying an ac electric field of triangular

waveform and 500 Hz frequency to the sample. The measurements were made in the

virtual ground method: the electric field was applied to one electrode and the other one

was connected to a virtual ground amplifier connected in turns to an integrator that

collects the charges due to the variation of polarization of the sample. The integrated

charges were plotted against the applied electric field.

5.1.1.3 Pyroelectric measurements

The pyroelectric effect is exhibited by all polar materials, thus by ferroelectrics as well,

because the spontaneous polarization is a decreasing function of temperature. If the
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change in temperature is small and slow enough to keep the system at equilibrium, the

pyroelectric coefficient is defined as:

p =
∂Ps

∂T

and measured in Cm−2K−1. Ps is the component of remanent polarization perpendic-

ular to the electrode planes, it can be measured by the variation of the charge density

at the sample’s surface.

Pyroelectric measurements were performed at 25◦ ÷ 27◦C average temperature. Tem-

perature variation where induced by a hot plate in triangular waveform of 10 mHz

frequency and 1◦C amplitude. Charges are collected at the electrodes, of area A,

through a virtual ground amplifier with a calibrated resistor (Rf ) in the feedback loop,

and measured by a HP 3478A multimeter. The output voltage is related to the current

i and to the pyroelectric coefficient p by the relation:

V = Rf i = RfAp
∂T

∂t

5.1.1.4 Atomic force microscopy

Single grain electric properties have been studied by piezoelectric force microscopy and

conductive AFM. The measurement are performed in contact mode. A Pt-Ir coated

AFM tip has been used as a mobile electrode to apply an electric field locally to the

sample.

In conductive AFM, the force acting on the tip upon approaching the sample surface is

used to control and maintain constant the tip-surface distance; the sample is grounded

and a voltage is applied to the tip. Two different measurements are performed:

• a constant voltage is applied during the scan and both topography and current

are measured at the same time.

• the surface is scanned to obtain a topographic image. From the information
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obtained with this scan, specific sites at the surface are identified. Here, the tip

is stopped and a voltage ramp applied. An I-V curve is then measured.

5.1.1.5 Piezoelectric effect

The piezoelectric effect is due to the bilinear coupling of elastic and electric variables.141

Ferroelectric materials are a sub-class of piezoelectric materials and exhibit a linear de-

pendence of the charge density at the surface on the applied stress. Hence, piezoelectric

materials can be polarized by an applied stress. This is the direct piezoelectric effect.

The linear relation between polarization P and stress X is written as:

Pi = dijkXjk

where dijk is a third-rank tensor.

If an electric field is applied to a ferroelectric sample, it will deform. This is the converse

piezoelectric effect. The linear relation between strain x and electric field E is written

as:

xij = dkjiEk

where dkji is the same tensor as in the case of the direct effect.

Piezoelectric force microscopy is performed in contact mode. During the scan an ac

voltage is applied to the tip or to the bottom electrode of the sample, while the other

electrode is grounded. The piezoelectric sample deform in response to the electric exci-

tation because of the converse piezoelectric effect. This induced vibration has the same

frequency as the applied field and is transmitted to the AFM tip. In order to separate

the piezoelectric response from other vibrations, the excitation frequency fM is chosen

well below the resonance of the AFM cantilever, and well above the scan frequency

fs. The latter condition decouples the piezoelectric response from the topographic re-

sponse. In our experiment the electric excitation fM has a frequency of 17kHz, a 1µ

scan is performed in 2 sec. corresponding to a scan frequency fs of 0.5 Hz. In this way,

the probability of high frequency tip movement caused by topography, is strongly re-

duced. The piezoelectric signal from the tip is filtered by a lock-in amplifier, using the
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electric excitation frequency as reference, and the amplitude and phase are acquired.

The amplitude gives information on the intensity of the piezoelectric effect, the phase

gives information on the polarization direction. This method thus allows to visualize

ferroelectric domains.

5.1.2 Sample preparation

500 nm thick SBN films have been prepared for electric characterization. A mask

of positive photoresist was obtained by standard photolithography methods. Subse-

quently, a 100 nm thick film of gold or platinum was deposited by thermal evaporation

in the first case and by sputtering in the second. Both depositions were performed

at room temperature. Round top electrodes, with diameters in the range 10-200 µm

were patterned by lift-off. An adhesion layer of 20 nm chromium was deposited before

the gold. The platinum electrodes were annealed by RTA (rapid thermal annealing) at

500◦ for 5 min in oxygen to improve adhesion with the SBN film.

In order to contact the platinum bottom electrodes, the SBN film was etched to reach

the metallic layer. For SBN films deposited on doped silicon and STO, the substrate

acted as bottom electrode and the electric contact to the bottom of the sample is ob-

tained by a layer of gold in the first case and gallium in the second. A schema of the

capacitor is given in fig.5.2 while fig.5.3 is an image of the obtained electrodes.

Figure 5.2: Schematic of the capacitors used for the electric measurements: gold or platinum

are evaporated or sputtered on the SBN film trough a photoresist mask. The substrate, STO

1%Nb doped, act as electrode, the contact is effectuated trough a gallium layer.
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Figure 5.3: Electrodes obtained by photolithographic lift-off technique: diameters are 200,

100, 50, 20 and 10 µ m
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5.2 Low purity SBN

5.2.1 Ceramic SBN50

A ceramic target has been fabricated by calcination and sintering, as described in Sect.

3.1, to obtain a sample with composition SBN50. The obtained density, 4.829 g/cm3,

is 90% of the theoretical one, the color is light brown. The measured θ − 2θ X-ray

spectrum is in agreement with the reference spectrum, fig.5.4, and has no apparent

differences from the spectrum of an high purity sample, presented in Fig. 3.1. The

composition has been double checked with XPS and X-ray fluorescence, both confirm

the good composition within an error of 1% .

From dielectric constant measurements a phase transition is found around 0◦C with a

wide peak, about 160◦ FWHM, and frequency dispersion typical of relaxor behavior

(fig.5.5). The maximum of dielectric constant is reached at a temperature about 120◦

lower than the one expected for SBN50 (see 1.3), the relative dielectric constant and

loss at room temperature and 1kHz are respectively 2300 and 0.0023. As expected

polarization as function of applied field does not have hysteresis at room temperature

(Fig.5.6).

Despite the results of the chemical analysis we believe the ceramics contains impurities,

the color is in fact totally different from those of subsequently sintered ceramic. The

dielectric properties of deposited thin films support this hypothesis. Unfortunately we

could not identify the source of contamination.

Lowering of the phase transition temperature is a phenomenon observed in SBN as well

as in other relaxor ferroelectric materials, the cause can be found in different mecha-

nisms. The effect of doping on SBN single crystals has been discussed in Sect.1.2.3.7

and summarized in Table 1.5. Lowering of the transition temperature is the common

effect of doping, however the variation is usually much lower (a maximum of 50◦ for

1.6%wt Ce) than what we found in our ceramic. Differences in sintering temperature

can be responsible for Tc variability as well,29 but again in the order of few tenth of

degree.

Effects of structural ordering and non stoichiometry on the relaxor-ferroelectric behav-
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ior has been studied for Pb(Sc0.5Ta0.5)O3
142 and Pb(Sc0.5Nb0.5)O3.143 Non-stoichiometry

in Pb(Sc0.5Ta0.5)O3, namely Pb vacancies, has a strong effect on dielectric properties

and can lower the dielectric anomaly temperature of about 50◦ with respect to the

stoichiometric ordered case.142 These results confirm that, in general, the transition

to a ferroelectric state is very sensitive to any disorder inducing factor. The reason of

phase transition lowering in our case, remains an open question. However we believe it

has to be found in multiple contamination coming from the low purity (98.5%) BaCO3

powder used for this sample. Contamination from this source are calculated to be

0.083%.

Figure 5.4: θ−2θ X-ray spectrum of SBN50 low purity ceramic target: Sr and Ba carbonate

and Nb pentoxide calcined at 1100◦C for 6h and sintered at1350◦C for 12h.
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Figure 5.5: SBN50 ceramic: dielectric constant and losses as a function of temperature.

Phase transition temperature is about 120◦ below the expected value and has a frequency

dispersion typical of relaxor behavior.
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Figure 5.6: SBN50 ceramic: polarization as a function of applied field does not have hysteresis

at room temperature.
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5.2.2 Thin films

Thin films have been obtained from ablation of SBN50 and SBN60 targets and de-

posited on Pt(111)/Ta/Si and STO substrate as presented in the previous chapters.

The measurements discussed in this section are from Pt/SBN50 and Pt/SBN60 sam-

ples, the first is (001) oriented, the second non oriented. STO/SBN60 (epitaxial

growth) will be considered as well. We have found that the ratio Sr/Ba has little

influence on the dielectric properties of the material, which are mainly defined by the

substrate and the structure of the film.

5.2.2.1 Debye dielectric relaxation of oxygen vacancies

The dielectric constant measured at low field shows two anomalies with the same

characteristic for both compositions, (figs.5.11, 5.14 and 5.17).

The anomaly at high temperature, about 120◦C, has a broad frequency dispersion over

a 100◦ interval, in both dielectric constant and losses. The exponential growth of losses

above 120◦C indicate the onset of conduction. Annealing in oxygen at 700◦C (rapid

thermal annealing, RTA) for 10 min, erase this anomaly, suggesting it is due to oxygen

vacancies.

Dielectric anomalies with frequency dispersion in the temperature range −100÷600◦C,

were detected in various perovskites. Such anomalies are not related to the possible

paraelectric-ferroelectric transition, but closely related to the oxygen vacancies.144–146

In the present case, supposing a Debye type dipolar relaxation where polarization

occurs by a temperature-activated process, the dielectric constant is:

ε = ε∞ +
εs − ε∞
1 + iωτ

ε′ = ε∞ +
εs − ε∞
1 + ω2τ 2

ε” = εs − ε∞
ωτ

1 + ω2τ 2
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Figure 5.7: Arrhenius plot of Debye relaxation times. The fit with equation 5.4 give

an activation energy of 0.64 eV.

the relaxation time τ depends on temperature following the Arrhenius law for thermal

activation:

τ = τ0 exp(
Ea

kT
) (5.4)

where k is the Boltzmann constant. The relaxation frequency τ−1, is the frequency ω

at which the imaginary part of the dielectric constant ε” is peaking, it is thus derived

from the dielectric loss. The data yielded an activation energy of 0.64 eV. Similar ac-

tivation energies144have been calculated for dielectric relaxation in Bi:STO, occurring

at 80 ÷ 380◦C (0.63 ÷ 0.66 eV), and attributed to the trap controlled ac conduction

around doubly ionized oxygen vacancies.
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Figure 5.8: Arrhenius plot relative to the low temperature anomaly shown in Fig.5.11

5.2.2.2 Para to ferroelectric phase transition

Of the two dielectric anomalies, the one found at about −100◦C, survives to the ox-

idation treatment (fig.5.14). The peak value of dielectric constant decrease from 750

to 530, this can be partially due to damaging of the top Pt electrode from annealing.

The ensemble of the data on hysteresis discussed below, together with the frequency

dispersion of the dielectric constant peak, allows us to identify the low temperature

anomaly with a para to ferroelectric transition of relaxor type.

The Arrhenius plot of (log(1/ω)vs.Tm) data relative to the low temperature anomaly

does not deviate significatively from a linear dependence on 1/T (Fig. 5.8) (Tm =

temperature of the dielectric peak at a given frequency), however, the value found for

the attempt frequency ω0 (ω0 = 10−18) is to high to be attributed to ionic excitation

process as can be seen in fig. 5.9. It is known147,148 that the frequency dispersion of

dielectric peak, in the case of relaxor behavior, is better described by the Vögel-Fulcher

law 5.5 rather than by the Arrhenius law; in this law the relaxation frequency, ωr,as
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Figure 5.9: Real, ε′, and imaginary, ε′′, part of the dielectric constant as function of

frequency for insulator materials. The physical processes responsible for the anomalies

at the different frequencies are indicated.
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ω0 Ea/k Tf

3 · 109s−1 783K 156K

Table 5.1: Parameter from the modified Vogel-Fulcher fit to ω(Tm) data.

Ce content at.% ω0 Ea/k Tf

0.0 8± 6 · 108 160± 40K 347± 3K

0.0066 8± 5 · 109 368± 49K 320± 2K

Table 5.2: Parameter of the Vogel-Fulcher fit from ref.150

function of temperature is given by:

ωr = ω0 exp(− Ea

k(T − Tf )
) (5.5)

(5.6)

where ω0 is the attempt frequency and Tf the freezing temperature. A modification

of Vögel-Fulcher law, linking the measurement frequency ω to the dielectric constant

peak temperature Tm (5.7), has been introduced,147 which can be applied to both real

and imaginary part of the dielectric constant149 :

ω = ω0 exp(− Ea

k(Tm − Tf )
) (5.7)

(5.8)

Fitting our data with this law (Fig.5.10) gives for the parameters, the values reported

in Tab.5.1.

In tab.5.2 are reported the fitting parameters of pure and Ce doped SBN61 data to

the Vögel-Fulcher from ref.150 It is seen how the introduction of dopant increases the

activation energy Ea probably due to the enhancement of charge disorder. In the case

of our films the effect is of higher intensity, in accordance with greater lowering of the

critical temperature and supporting the hypothesis of higher impurities content. The

value of the attempt frequency found for our films is of the same order of magnitude

than the one relative to the Ce doped single crystal.
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Figure 5.10: Vogel-Fulcher fit to ω(Tm) data
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5.2.2.3 High field characterization: hysteresis loops

Polarization measured as function of applied electric field at room temperature, on

Pt/SBN, clearly suffer from leakage, most probably originating from oxygen vacancies,

(fig.5.12). At low temperature, below the critical temperature, hysteretic behavior

(−150÷−170◦C) is well defined in the oriented samples. The loop has a coercive field

of 20kV/cm and saturation polarization of 13µC/cm2, fig.5.13. Oxidation treatment

has been detrimental to the sample, the bottom electrode got damaged by delamina-

tion from the silicon support.

The as deposited SBN60 non oriented sample is even more affected by leakage and

polarization curve of the as deposited films were possible at low temperature only,

(fig.5.15). This film has been successfully post annealed in oxygen. Leakage at room

temperature is suppressed and polarization has no hysteresis, at −170◦C hysteresis

start to manifest but the coercive field and the remanent polarization are much lower

than in the ordered film case (fig.5.16).

Qualitatively similar properties have been found for SBN60 grown on STO single crys-

tal, however the transition temperature (about −10◦C) is higher of about 70◦C than

in the case of Pt substrate (fig.5.19). Polarization hysteresis is present at room tem-

perature (Fig.5.18), these loops attest for ferroelectricity above Tm. Non zero local

spontaneous polarization above the dielectric peak temperature have been calculated

in SBN single crystals and other relaxor, from measured optical properties.27,151 Direct

measurement of polarization revealed the same.152,153 Field cooling of SBN has been

proven to enhance polarization at high temperature and to induce a memory behavior

in SBN.26
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Figure 5.11: As deposited SBN50, grown on oxidized Ta/Pt: dielectric constant and losses

as function of temperature. Phase transition temperature is about 220◦ below the expected

value.
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Figure 5.12: As deposited SBN50 grown on oxidized Ta/Pt: hysteresis loop at room tem-

perature.
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Figure 5.13: As deposited SBN50 grown on oxidized Ta/Pt: hysteresis loop at −150◦C,

below the phase transition temperature.
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Figure 5.14: SBN60 grown on Ta/Pt oxidized: dielectric constant before (top) and after

annealing (bottom) at 700◦C in oxygen.
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Figure 5.15: As deposited SBN60 grown on oxidized Ta/Pt: hysteresis loop at −150◦C,

below the phase transition temperature.
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Figure 5.16: SBN60 grown on Ta/Pt oxidized: (top) hysteresis loops at room temperature

and (bottom) at -170◦C.
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Figure 5.17: (001) oriented SBN60, grown on STO 1%Nb-doped single crstal:dielectric con-

stant and losses as function of temperature of (top)the as grown film AND (bottom)after

annealing in oxygen at 700◦C.
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Figure 5.18: (001) SBN60 grown on STO single crystal: room temperature hysteresis loops

of the as grown film (top) and after annealing in oxygen at 700◦C (bottom).

132



Figure 5.19: Dielectric constant as function of temperature of SBN60 grown on Pt/Ta/Si

and STO substrate.
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5.2.2.4 Effect of stress on SBN phase transition

The influence of the substrate induced stress on the behavior of SBN phase transition

can be evaluated with the help of the Landau Ginzburg Devonshire theory as outlined

in the introduction. An estimation of the effect of stress on SBN can be obtained by

Eq.(1.12), p.26. The thermodynamic parameters, relative to SBN60, used for calcula-

tion are listed in tab.5.3 In the present case, the film is thick enough (about 500nm)

PsC/m2 C ◦C TC
◦C Q13m

4/C2 ε0 F/m εr s11 + s12 · 10−12m2/N

0.25 2 105 80 −0.7 · 10−2 8.854 · 10−12 470 3.86

Table 5.3: Saturation polarization Ps, Curie constant C,47 phase transition temperature

TC , electrostrictive constant Q13,27 dielectric constant of vacuum ε0 and relative dielectric

constant of SBN60. Room temperature values.

to relax the stress, during the growth process, by formation of dislocations (see page

69) The presence of grains helps in the process of relaxation. However another source

of strain is the thermal expansion. We can suppose that below a certain temperature

dislocation formation is inhibited. At that moment differences in thermal expansion

between film and substrate induce a strain that can not relax anymore.

SBN60 Silicon STO

K−1 15 · 10−6 2.6 · 10−6 10.4 · 10−6

Table 5.4: Linear thermal expansion coefficients of SBN60, Silicon and STO.

The in plane strain, S, due to thermal expansion, is given by:

S = (αSBN − αsub)∆T (5.9)

where αSBN and αsub are the thermal expansion of SBN and substrate respectively.

Thermal expansion coefficients are listed in tab. 5.4 and considered to be constant in

the temperature range of interest. We estimate relaxation by defect creation does not
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occurs anymore below 600-550◦C. On both substrates SBN undergoes a tensile strain.

Calculation with Eq. 5.9, considering ∆T = 500, give a strain of 0.6% in the case of

Si and 0.2% in the case of STO.

The temperature shift has been evaluated with Eq.(1.12), p.26. For a 0.6% tensile

strain it is found to be in the interval 100± 50◦ C and negative. The measured differ-

ence in phase transition temperature between the film deposited on STO substrate, the

one deposited on single crystal silicon and the ceramic samples, can thus be interpreted

as due to such a stress.

5.2.3 Discussion

The dielectric behavior of the as grown samples is indicating the presence of oxygen

vacancies that can be removed by post annealing in oxygen at 700◦C. Such a procedure

is a common one for oxygen vacancy recovery in other ferroelectric materials.

The dielectric anomaly at low temperature has been identified as the transition from

para to ferroelectric phase and the presence of impurities as the cause of tempera-

ture lowering respect to expected for the nominal composition (SBN50 120◦C, SBN60

80◦C). The phase transition has a strong relaxor character (frequency dispersion of

the dielectric constant peak) even in SBN50. This composition is known to be purely

ferroelectric in single crystal SBN and the relaxor behavior in our films is most likely

due to the impurities.

Chemical analysis has been carried out on both target and films giving the same re-

sults, thus assuring the level of impurities is not higher than 1% at. As the source

of contamination has not been identified, we can not exclude the presence of different

elements. It is known that the combination of different dopant is more effective in both

lowering the transition temperature and enhancing the relaxor behavior of SBN.43

The substrate has a strong effect on the dielectric properties of the film as proven by

the different temperatures of the phase transition. While the film grown on STO has

a behavior compatible with the bulk ceramic used as target, in the film grown on Pt

the ferroelectric transition is manifesting at a much lower temperature. We believe the
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cause has to be found in the stress induced by the thermal expansion mismatch.

5.3 Characterization of high purity SBN/STO 1%Nb

films

The films, whose properties will be discussed in this section, are grown from a different

SBN50 target. X-ray diffraction patterns of this ceramic are shown in fig.3.1 at pg.46.

A single anomaly is observed at about 120◦C in the temperature dependence of the di-

electric constant,(e.g. Fig. 5.33 page 149). Although leakage is strong at temperatures

higher than 100◦C, the anomaly at 120◦C can be identified as the para-ferroelectric

phase transition. The transition temperature thus corresponds to the expected value

for such a composition in the single crystal case.

Growth of SBN on STO single crystals is epitaxial and dominated by the effect of

substrate surface as seen in details in the previous chapter. In the following properties

of pure (001) oriented, mixed (001)(310) oriented and (421)oriented films are analyzed.

5.3.1 Conduction trough the film

Leakage has been a major problem encountered during the characterization of SBN

films grown on STO. As deposited, the films are affected by high losses which can be

reduced by annealing in oxygen. Leakage and conduction can be attributed to oxygen

vacancies formed during film growth. However high field conduction is enhanced by

annealing of the top electrodes (see Sect.5.3.3).

Figure 5.20 shows the topography and current image taken from an as deposited film.

The surface morphology is well recognizable in the current image and is in agreement

with the topographic image. The current is in the interval 0.1-0.5 nA for 2V applied

to the AFM tip, it increases to few 5-10 nA for 5V; the maximum is detected at the

grain boundary. Annealing in oxygen effectively reduces the conduction through the
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sample from nA to pA as shown in fig.5.21 where a voltage of 10V applied to the tip

has been necessary in order to obtain the image.

I-V curves (fig.5.22) evidence that conduction is one order of magnitude more intense

in the rod shaped grains, where the polar axis lies in the film plane, than in the colum-

nar grains with the polarization axis perpendicular to the film plane. Fig.5.23 shows

I-V curves after annealing; conduction is the same in the two grain type,with intensity

strongly reduced. The strong current reduction upon annealing in oxygen is an indi-

cation of the fact that conduction is due to oxygen vacancies. Such a conduction is

strongly anisotropic and the movement of vacancies is easier in the direction perpen-

dicular to the polar axis. This means conduction does not occurs along the octahedra

chains but rather in the planes perpendicular to them. The Nb-O plane (the plane

indicated as z=0 in fig.4.30) are the more dense in oxygen content, i.e. the ones with

the smallest interatomic distance, therefore we can expect these are the ones where the

mobility is facilitated. Once the vacancies responsible for conduction are removed, the

strong anisotropy in conduction is logically expected to disappear as well, as actually

does.

From the current profile of fig.5.21 a "hole" is seen (indicated by the bars), 15 nm wide,

that can be related to the tip shape ( tip radius= 15nm, as from technical specifications

). In the topographic image, in fact, there is a corresponding cavity formed by four

meeting grains perpendicular to each other. Other "holes" are visible in the current

profile which can not be directly related to the topography; we could argue that the

current measurement is more sensitive than the force ones, and actual electric proper-

ties of the sample are giving a contribution to the signal together with the topography.

The interpretation is complicated by the fact that the measured current value is very

close to the resolution of the measurement, 15 · 10−4nA. What is important to notice

here is the close resemblance of the current and topography measurement, and the fact

that the tip dimensions constitute a limit in the resolution because close to the topo-

graphic features. For these reasons we believe that the higher current measured at the

grain boundary has to be interpreted as an artifact due to the convolution of tip shape

(radius of curvature about 15 nm) and film morphology rather than to a locally higher
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current density. Where the profile is steeper the tip-film surface of contact is wider and

consequently the current signal stronger. Therefore the current measurements do not

prove that grains boundary are easy path for conduction but do not exclude it either.

The resolution is not good enough to inspect the boundary. What is clearly seen is

that the bulk of grains is affected by conduction due to oxygen vacancies, removed by

thermal treatment in oxygen atmosphere. Therefore post annealing leakage is unlikely

to be due to conduction trough the grains.

a) b)

Figure 5.20: As deposited SBN film a) AFM topographic image of the

surface, b) current image with 1V applied at the tip. The conductive

substrate is grounded.

138



a) b)

Figure 5.21: Annealed SBN film: a) AFM topographic image of the sur-

face, b) current image with 10V applied at the tip. The conductive sub-

strate is grounded. In the lower part of the images, the profile of: a)

topography and b) current, corresponding to a grain boundary is shown.

The current resolution is 15 · 10−4nA. The lateral resolution of the profiles

is 1.25 nm and the tip radius 15nm. The higher current measured at the

grain boundary is due to the convolution of tip shape and film topography

rather than to locally higher current density.
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Figure 5.22: I-V curve measured on as deposited film: 1) along the polar axis, 6)8)per-

pendicular to the polar axis. Topografy image 1µm.

Figure 5.23: I-V curve of conduction along the polar axis and perpendicular to it,

measured after annealing in oxygen. The peak of current at negative voltage is an

artifact of measurement.
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5.3.2 Piezoelectric Atomic Force Microscopy (PAFM)

In order to address conductivity, a 500 nm thick film exhibiting leakage on the macro-

scopic level was analyzed in more detail. Dielectric measurements have been performed

on capacitors of a large range of electrodes sizes (10-500 µm diameter). The leakage

current density was found to be independent of the electrode size. That means that,

if the leakage were due to pinholes, their density would be higher than 0.012 µm−2.

The sample is formed mainly by rod shaped grains with polar axis in the plane of the

film and therefore perpendicular to the applied field. The region of the sample chosen

for the measurements includes some columnar grains that allows for characterization

of the material along the polar axis as well.

Despite the strong conductivity at macroscopic scale, the local characterization by

means of PAFM reveals piezoelectric activity of single grains. The sequence of images

shows the response of the sample to a sinusoidal signal with 2V of amplitude applied to

the bottom electrode while the AFM tip was grounded (Figs. 5.24-5.28). The colum-

nar grain, with polar axis perpendicular to the film plane, at the center of the pictures

and indicated by the arrows, is the most reactive to the excitation. It shows complete

switching of polarization back and forth (Figs. 5.25-5.26).

In fig.5.24 is the piezo-response of the as grown film. The sample has been polarized

afterwards, by applying a dc voltage to the bottom electrode while the grounded AFM

tip was scanning the surface. The piezoelectric activity was measured after poling with

the same amplitude ac exciting signal. Poling with +30V enhances the signal registered

on the as grown film (fig.5.25). Here the polarization of columnar grains points out of

the plane and the signal is more intense at their border. Poling with -30V reduce the

amplitude of the signal but the phase of the columnar grains is inverted with respect

to the previous picture (fig.5.26). A second scan with -40V fully switches the polariza-

tion as demonstrate by the phase shift of 180◦ and the strong contrast(fig.5.27). The

previous direction of polarization is restored by poling with positive field (fig.5.28).

The sample shows an asymmetric electric behavior upon poling, the magnitude of the

electric field has to be higher in the negative case. Such an asymmetry is found in

macroscopic measurements as well, and can be attributed to the rectifying properties
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of the substrate-film interface.

The interpretation of the piezo-response of the columnar grains, where the polarization

and the applied field are along the same direction, is straightforward. The amplitude

is directly related to the intensity of piezoelectric activity. The phase shift depends on

the reciprocal orientation of polarization and field, when the two vectors point in the

same direction the response is in phase with the excitation, while it is it is out of phase

when the two vectors are antiparallel. The grains show uniform response, therefore

they are single domain.

(a) (b)

Figure 5.24: (a) Amplitude and (b) phase, of piezo response without poling. Ac signal

applied to the bottom electrode. The (001) grains exhibit a uniform polarization direction

while the (310) oriented grains have a phase change. (1x1 µm scan area )
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(a) (b)

Figure 5.25: (a) Amplitude and (b) phase, of piezo response after poling with +30V to

bottom electrode, ac signal to the bottom electrode. The grains switched and give a signal in

phase with ac voltage. (1.5x1.5 µm scan area )

(a) (b)

Figure 5.26: (a) Amplitude and (b) phase, of piezo response after poling with -30V to bottom

electrode, ac signal to the bottom electrode. (1.5x1.5 µm scan area )

(a) (b)

Figure 5.27: (a) Amplitude and (b) phase, of piezo response after poling with -40V to bottom

electrode, ac signal to the bottom electrode. (1.5x1.5 µm scan area )
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(a) (b)

Figure 5.28: (a) Amplitude and (b) phase, of piezo response after poling with +40V to

bottom electrode, ac signal to the bottom electrode. (1.5x1.5 µm scan area )
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In the case of rod-shaped grains the polar axis lays in the film plane and is thus

perpendicular to the applied field. In this configuration no domain imaging is expected.

However the field applied to the sample by the AFM tip is highly non uniform in

both intensity and direction. Depending on the shape of the grain and on how the tip

touches the surface, an unbalanced component of the electric field along the polarization

direction can exist and be parallel or anti parallel to the polarization vector. The

response of a rod-shaped grain shown in fig.5.29, can be interpreted as the distortion

of the lattice due to an in-plane electric field (E3) directed along the polar axis c. The

measured out-of-plane distortion S1 is characterized by the piezoelectric coefficient d31,

S1 = d31E3. Note that d31 has a negative value. The direction of electric field and

polarization coming from this interpretation are shown in fig.5.29b.
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Figure 5.29: Piezo-response of a single rod-shaped grain with in plane polarization: a)

amplitude, b) phase. Because of the negative value of the d31 piezoelectric coefficient, relevant

in this experiment, where there is a component of the electric field parallel to the polarization

the piezo-response is in antiphase with it, when the component is anti parallel the piezo-

response is in phase. c) schema of the field lines coming out of the metallic AFM tip: the

electric field is not perpendicular to the sample surface and a non zero component of the

electric field E parallel to P exist. While in center of the grain this in-plane component of E is

zero in average, when the tip is in proximity of the border of the grain it reaches a maximum.

From this the high amplitude detected. At the very edge of the grain the overall intensity of

the field is lower for both geometrical reasons and effect of conduction, as a consequence is

lower the measured response.
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5.3.3 Macroscopic characterization

Standard macroscopic capacitance measurement and hysteresis loops and have been

performed using the capacitor prepared as described at page 112 Sect.5.1.2. In table

5.5 are summarized the properties of films with mixed phase(001)(310) where polar-

ization lies both in-plane and perpendicular to the film plane, (Fig.5.32), and single

phase (001) where polarization is perpendicular to the film plane (fig.5.30). Values for

as deposited (ad) and post annealed in oxygen (ann) film are reported.

mixed ad mixed ann, single ad single ann

ε max 2400 2300 2400 2400

Pr (µC/cm2) 5 5 10

Ec (kV/cm) 25 15 30

c. pyro (µC/m2K) 68 86

Table 5.5: Properties of SBN50 thin films deposited on STO single crystals. Mixed

((001)+(310) oriented) and single (pure (001) oriented) phase, as deposited (ad) and annealed

in oxygen(ann).

5.3.3.1 Low field response

For all samples (Figs. 5.33, 5.31, 5.38), disregarding the orientation of the polar axis,

the dielectric anomaly is very broad. The FWHM can be estimated as 300◦C. The

temperature at which the dielectric constant reach its maximum value is compatible

with the bulk transition temperature, 120◦C, and does not depend on frequency. This

indicates that the material undergoes a phase transition of the ferroelectric type. The

peak value of dielectric constant however, depends on the frequency and varies in an

interval of about 300, such variability is reduced by annealing in oxygen (Fig. 5.31 and

5.33). No appreciable effect is seen in the losses of (001) oriented samples while in the

(001)(310) case the exponential increase is shifted to higher temperature.
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Figure 5.30: SBN50 grown on non treated STO. SEM image of the surface: the structure is

purely columnar therefore the polar axis is oriented out of plane.

a) b)

Figure 5.31: Dielectric constant and losses as function of temperature before (a) and after (b)

annealing in oxygen for a (001) oriented sample. The arrows indicate increasing measurement

frequency
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Figure 5.32: SBN50 grown on non treated STO. SEM image of the surface: the structure is

a mix of columns and rods therefore the polar axis is oriented out-of-plane or in-plane.

a) b)

Figure 5.33: Dielectric constant and losses as function of temperature before (a) and after

(b) annealing in oxygen for a mixed phase sample.
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Figure 5.34: Capacitors model of SBN films with (001) and (310) oriented grains. The

contribution of oxygen vacancies are taken into account by an in-parallel capacitor.

Two effects are expected from annealing in oxygen rich atmosphere: oxygen vacan-

cies recovery, with consequent reduction of leakage, and better adhesion of electrodes

with reduction of any inter-layer with different dielectric properties. From the AFM

measurements we know that DC conduction of the as deposited samples is higher in the

direction perpendicular to the polarization axis and annealing eliminates the asymme-

try, this explains the behavior of losses in the mixed sample. The fact that the losses

are not affected from this process indicate that in the (001) samples oxygen vacancies

do not have a dominant effect in the leakage phenomenon. Conductive AFM measure-

ments already gave evidence of this fact.

In both (001) and (310)-(001) samples the dielectric constant curves at different fre-

quencies group together upon annealing, a contribution independent from temperature

and from the absolute value of the dielectric constant is subtracted to each curve. This

constant contribution can be represented by a capacitance in parallel to the ferroelec-

tric one, a capacitance in series would give a stronger effect in correspondence of the

dielectric peak and can therefore be excluded. The model of capacitance in parallel

is represented in Fig.5.34: a first capacitance accounts for the bulk of the grains with
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ferroelectric properties, the second represents the contribution of oxygen vacancies. In

single crystal form the real part of the dielectric constant along the polar axis (ε‖)

and perpendicular to the polar axis (ε⊥) have values very close to each other, (about

400 at room temperature, Tab.1.2 and ref.47) with exception of temperatures close

to the phase transition. Because in or samples the phase transition peak is strongly

suppressed we take ε⊥ = ε‖ = εf in the whole temperature interval measured, therefore

the total dielectric constant becomes:

ε = (1− a)ε⊥ + a(ε‖ + εox) = εf + aεox

where εf is the dielectric constant due to the ferroelectric part. The constant a is a

geometrical factor that takes in to account the fact that the oxygen vacancies contri-

bution to the dielectric signal, εox, is limited to the sample’s portion with the in-plane

polarization axis. The oxygen vacancies contribution is due to the dielectric relax-

ation of related hopping charged defects as discussed for the case of low purity SBN in

Sect.5.2.2.1. It is reduced or eliminated by annealing.

The peak value of dielectric losses is reached at a temperature lower than the temper-

ature of the dielectric constant peak, and it has a strong frequency dispersion; at this

temperature the dielectric constant shows frequency dispersion not affected by anneal-

ing. tanδ measurement performed on single crystal samples (SBN60) by Huang at al.

exhibit similar features38 (Fig.1.4, page 16); in this case a broad peak at about −100◦C,

dispersed in frequency, is observed together with the peak at the critical temperature.

While the dispersed low temperature peak is scarcely affected by the application of a

bias field, the peak at the critical temperature is strongly suppressed by a field of 7.5

kV/cm. From the behavior of single crystals we can suppose that a bias electric field

is acting on our samples, suppressing the peak at the critical temperature and leaving

the dispersed broad peak only. Evidence for such a bias field, in the order of magnitude

of 10kV/cm, will be found in the high field measurement discussed later.
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5.3.3.2 Hysteresis and CV curves

High field measurements are strongly affected by leakage. Samples with mixed orienta-

tion,(310)(001), are more leaky than (001) oriented ones. In the first case, when enough

field can be applied to the capacitor, hysteresis loops have rounded edges and very low

remanent polarization, Fig.5.35. Annealing in oxygen can increase leakage leading to

conduction, as in the mixed phase samples case, or reduce it as for the case of (001)

oriented samples (Fig.5.36). Oxygen vacancies in the TTB structure therefore, are not

the only responsible for conduction through the capacitor; we believe that annealing

improves the adhesion of the Pt top electrode but, at the same time, creates paths

for the charges to go trough the sample, experimental evidence for this phenomenon

is found in the CV curves measurements. The comparison of experimental data taken

from (001) and (310)-(001) oriented samples indicate that the creation of such paths

is more effective in the case of in-plane polarization oriented grains.

The onset of conduction in the sample require the overcome of a threshold electric

field, this is visible in the CV curves measured on (001) samples. The behavior of the

dielectric loss as function of the applied voltage in the CV curves in Fig. 5.37, is clearly

suggesting a diode behavior of the sample, which can be thought as a capacitor with

ferroelectric properties, in parallel with a diode. When the diode is inversely biased,

in our case when the electric field is directed from the STO electrode to the Pt elec-

trode, the properties of the ferroelectric sample are measurable and the CV curve has

the typical butterfly shape. When the diode is forward biased and the electric field is

directed fro mthe Pt electrode to the STo electrode, a current can flow trough it, which

is exponentially dependent on the applied dc voltage.

The current density in a diode is given by:

J = Js

[
exp

(
qVdc

kBT

)
− 1

]
(5.10)

where q is the unitary electric charge. The differential conductivity of the diode, σac,

can be calculated as:

σac =
dJ

dE
=

Jsql

kBT

[
exp

(
qVdc

kBT

)
− 1

]
(5.11)
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where l is the distance between the electrodes of our capacitance and E the applied

electric field. The differential conductivity of dielectric material, is related to the

dielectric loss, tanδ, by the the following formula:

σac = ωε0ε
′
tanδ (5.12)

where ω is the measurement frequency, ε
′ the real part of the relative dielectric constant

and ε0 the dielectric constant of vacuum. The combination of equations 5.11 and 5.12

gives the exponential dependence of the dielectric loss on the applied dc voltage:

tanδ =
Jsql

kBTωε0ε
′

[
exp

(
qVdc

kBT

)
− 1

]
(5.13)

The interface SBN-STO is a junction between a heavily n-doped STO and an non or

slightly doped SBN, and behaves as a rectifier. The electric field directed from the

SBN film to the STO substrate, forward biases the junction and enhances the losses

when it exceeds a threshold value, indicating the onset of leakage conduction. Below

the threshold of 50 kV/cm leakage is low and the hysteretic behavior of the ferroelectric

can be measured. Annealing sharpens the threshold field of conduction and eliminate

the loss hysteresis, Fig. 5.37. The real part of the dielectric constant is increased but

the range of applicable dc electric field is reduced of about one order of magnitude.

This behavior well agrees with the low field measurements of fig.5.31. AFM measure-

ments demonstrate that conduction through the bulk of grains is reduced by annealing.

Therefore we conclude that, by improving adhesion of the Pt electrode, annealing cre-

ates easy paths for conduction through grain boundaries.

The hysteresis loops, before and after annealing, are clearly asymmetric as indicated

by the coercive field and the slope of the loop, fig.5.36; the asymmetry amounts to

about 50 kV/cm. Here the voltage is applied to the STO electrode.

CV curves have been measured on (001) oriented samples. They show the same asym-

metric behavior of the hysteresis loops, with an offset of about 10kV/cm as determined

by the position of the crossing point in the CV curve. In this case the voltage is applied

to the Pt electrode, Fig. 5.37. Even though different in magnitude, both CV and hys-

teresis curves indicate the presence of a bias field directed from the bottom to the top
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electrode with intensity in a range that support the hypothesis made at the end of sec-

tion 5.3.3.1. There we suppose that the peak of dielectric losses, that should appear in

correspondence of the critical temperature, is suppressed by a bias field. This field can

be attributed to the different work function of the two electrodes, Pt and STO. When

a metal is brought to contact with a ferroelectric a Schottky barrier can be formed,

depending on the difference between metal and ferroelectric work functions and sign

of the trapped charges. As a consequence a field is built-in. In our capacitors we have

two metal ferroelectric interfaces. When both electrodes are made by the same metal

the built-in fields have the same magnitude and opposite sign. In this case the CV and

hysteresis curves are supposed to be symmetric and only the magnitude of the applied

field needed to obtain a response (capacitance and polarization respectively) of a given

magnitude is affected. In the case of films grown on doped STO substrates, the work

function of the two electrode is not the same and the built-in fields at the two interface

do not compensate. From this the asymmetry observed in the measurements.

Properties of (421) oriented films as-grown on (111) STO are shown in figs.5.38 and

5.39. The dielectric constant measured as function of temperature at different frequen-

cies (figs.5.38a) show a wide gap between the curved measured at 10 kHz and the one

measured at 100 kHz. The losses peak is smeared in temperature. The loss increase

exponentially above a threshold temperature whose value depend on frequency as in

the case of the mixed orientation samples. In the CV curve measurement (figs.5.38b)

the loss remain below 0.1 for the whole range of applied field, the P-E loops (figs.5.39)

are not affected by hysteresis due to leakage. From the limited experimental data avail-

able we can only argue that, the samples are much less affected by conduction at high

field but they have defect contributing to the dielectric constant at low applied field

in the frequency range 100 Hz-10 kHz. The diode behavior is present as well, even

though shifted at higher field, confirming that this is rather a property of the interface

STO/SBN than of the film itself.
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Figure 5.35: Hysteresis loop measured on a as deposited (310)(001) oriented sample
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Figure 5.36: Hysteresis loops before and after annealing in oxygen measured on a (001)

oriented film.

Figure 5.37: CV curve before (a) and after (b) annealing from a (001) oriented film. The

thermal treatment removes the hysteresis in the losses and reduces the threshold field value

below which the CV curve can be measured.
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a) b)

Figure 5.38: a) Dielectric constant behavior as function of temeperature and b) CV curve at

room temperature, of a (421) oriented film deposited on (111) STO single crystal

a) b) c)

Figure 5.39: Hysteresis loops measured on a (421) oriented thin film at a)23◦C, b) −80◦C,

c)−150◦C
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5.3.3.3 Suppression of the phase transition dielectric peak

One of the more striking feature of the dielectric constant measurements as function

of temperature presented in the previous pages is the suppression of the peak related

to the phase transition. While for SBN50 single crystals peak values of about 105 are

reported we found values in the order of 2× 103. It is remarkable that the room tem-

perature values are higher in the case of our thin films (103 against 400 for the single

crystal). In the discussion that follows we will see how the presence of a non ferroelec-

tric layer (referred to as "dead layer", Fig. 5.40) at the interface ferroelectric-electrode

can induce the suppression of the phase transition peak leaving unchanged the critical

temperature.

Figure 5.40: Ferroelectric film sandwiched between two electrodes with a dead layer at the

Pt interface.

When a metal and a ferroelectric are bring to contact a Schottky barrier can be formed

with a consequent space charge layer and a built-in field at the interface;154 because

there are no free charges in a dielectric, in our case we have depletion of traps at the

interface. Such a depleted layer most likely has dielectric properties different from the

"bulk" of the film and is not expected to be ferroelectric. The built-in field is expressed

as:

Ebi = eNw/ε

N is concentration of relevant deep traps, e their charge, w depletion width (supposing

w smaller the half film thickness) and ε dielectric constant of the ferroelectric.
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The switching of polarization in the ferroelectric starts when the external applied elec-

tric field reach a value given by the sum of the interface field and the threshold field

for nucleation typical of the ferroelectric material. The measured coercive field is thus

the difference between threshold and built-in field: Ec = Et − Ebi.

The intensity of the built-in electric field depends on the work function difference

between metal and ferroelectric. Therefore, if the two electrodes are constituted by

different materials we can expect the field at the two interfaces to be different. From

this originate the asymmetry in measured hysteresis loops.

The presence of a non ferroelectric layer at the ferroelectric electrode interface has an

influence on dielectric constant as function of temperature. The ferroelectric plus the

non-ferro layer can be treated as in series capacitance and the dielectric constant of

the sample becomes:

td + tf
ε

=
td
εd

+
tf
εf

where:

• td, tf thicknesss of non-ferro and ferroelectric layers, respectively.

• εd, εf dielectric constants of non-ferro and ferroelectric layers, respectively.

The dielectric constant of the ferroelectric layer is given by the Curie-Weiss law:

εf =
C

T − T0

T > T0

εf =
C

2(T0 − T )

T < T0
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with T0 the critical temperature and C Curie-Weiss constant. When approaching the

critical temperature from the paraelectric phase (T > T0) we have:

td + tf
ε

=
tf (T − T0)

C
+

td
εd

1

ε
=

T − T0 + tdC
tf εd

C
tf

(tf + td)

The result is a shift of the critical temperature at lower values:

T0 −
tdC

tfεd

and a reduced "Curie-Weiss" constant, depending on the ratio td/tf .

The same treatment, approaching the critical temperature from the ferroelectric phase

gives a shift to higher values.

T0 +
2tdC

tfεd

In both cases the effect of a non-ferroelectric layer in series with the ferroelectric, is to

shift far away the critical temperature, independently on which side it is approached.

The result of the two opposite effects is a suppression of the dielectric constant max-

imum that remains at the original critical temperature T0 (see Fig. 5.41). In this

discussion the sample is supposed to split into domains while it undergoes the phase

transition. In this way the depolarizing field associated with the appearance of spon-

taneous polarization is on average suppressed within the film. If this is not the case

and one single domain is created within the sample, the effect of the depolarizing field

would be a shift to lower temperature of the transition depending on the intensity of
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Figure 5.41: Non ferroelectric layer in series with a ferroelectric one: effect on the dielectric

constant behavior across the phase transition

the depolarizing field itself.

In Fig. 5.42 is shown the comparison between the inverse of dielectric constant

of our thin film sample (001) oriented, and the data reported by Olivier et al.47 for

SBN60 single crystal along the [001] direction. The behavior is clearly different in the

two cases. We can remark the following features of curve belonging to the thin film:

• the peak of dielectric constant is suppressed

• the critical temperature remains the same as in single crystals

• at temperature much lower than the critical temperature, the slope of the curve

is highly increased and is higher than in single crystals (the difference would be

higher than shown, with data belonging to SBN50 crystal)

• there is a change in slope around 0◦C

The first two points are in agreement with the prediction of the model presented above.

The third is against the model that predicts a decrease of slope as the curie constant

161



Figure 5.42: Inverse of the real part of the dielectric constant in a temperature range including

the phase transition. The values measured on a (001) oriented sample at 10kHz (full line)

are compared with values measured on SBN60 single crystal in the same conditions47 (broken

line). The curve relative to the single crystal has been translated in temperatures to have the

the critical temperature at 120◦C, for the sake of comparison.
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C transforms in C(1+ td
tf

). The fourth point is not predicted by the model. The values

of dielectric constant at low temperature, higher in the film than in the single crystal,

do not find explanation in the proposed model. While the passive layer scenario is

plausible, it can not fully describe the behavior of our films. Such a behavior can be

due to the existence of not one but a distribution of transition temperatures (from the

experimental data we can estimated this distribution to be in the interval 0◦− 120◦C).

This would lead to both suppression of the peak and rise of the dielectric constant

value in the phase transition temperature range. The smearing of the transition over

an interval of temperature has been observed in SBN single crystals as well (see Olivier

et al.47), and it is attributed to the unfilled nature of the TTB structure in SBN. While

for single crystals the temperature range amounts to something like 10◦, in thin films

this feature is highly enhanced, a sign of higher degree of disorder.
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Figure 5.43: Circuit model of thin film capacitor: a) as deposited b) after annealing.

5.3.4 Conclusions

The properties of the SBN films analyzed in this section are summarized as follows:

- Oxygen vacancies conduction is more efficient along the (310) direction, i.e. perpen-

dicular to the polarization axis.

- Single grains of both (001) and (310) orientation are piezoelectric and ferroelectric.

- The dielectric anomaly at 120◦C, related to the ferroelectric phase transition, is

broader with reduced peak value than in the single crystal case. Diffusion of the phase

transition over a temperature range is the most probable explanation even tough the

passive layer scenario can not be excluded as concomitant cause.

- Annealing promote the creation of easy path for conduction, located at the grain

boundary.

- The different work-function of the two electrodes induces the diode behavior of the

dielectric losses, whose threshold field is sharpened by annealing.

In fig. 5.43 are represented the samples before and after annealing. There we find:

a capacitance in parallel with the ferroelectric representing the oxygen vacancies con-

tribution, a distribution of diodes with different I-V characteristic and threshold field.

Depending on crystals orientation, the importance of each element is different. Upon
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annealing the oxygen vacancies contribution is strongly reduced and the threshold field

for the onset of conduction is sharpened, its magnitude depends on grain orientation

and boundaries distribution: very low in the (320) orientation, higher for the (001)

and (421) orientation. Clearly thermal treatment is efficient in reducing defects at the

interface with the Pt electrode but not at the grain boundaries; for this reason leakage

remains as the main problem of our samples.
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Summary of results and conclusions

This thesis was devoted to the study of growth and functional properties of SBN thin

films. The main goals were to grow SBN thin films with the polar axis oriented per-

pendicular to the film plane and to integrate them in capacitor structures. As this has

been proven to have a strong influence on both structural and functional properties of

the films, special attention has been put in the substrate choice.

SBN thin films were grown in-situ by Pulsed Laser Deposition from ceramic targets

prepared by calcination and sintering of Ba and Sr carbonate and Nb pentoxide. The

ablation of the ceramic was congruent resulting in a film composition that was identical

to the target composition. It was found that the dielectric and ferroelectric proper-

ties of SBN are very sensitive to contaminations of even less than 1 % concentration.

Ceramics prepared from low purity Ba carbonate show a lowering of the critical tem-

perature superior to 100◦C and enhancement of the relaxor properties. Therefore, high

purity powders are necessary for the fabrication of the target.

For the nucleation of the TTB structure, the deposition temperature and the oxygen

partial pressure must exceed 720◦C, and 10−2 mbar, respectively. A lower deposition

rate, obtained by a smaller laser pulse repetition frequency, improves the epitaxial

growth in agreement with standard theories on growth. Target-to-substrate distance

and laser pulse energy have no evident influence on the film properties indicating that

the ion impact does not play any role. The main growth mechanisms are a consequence

of large thermal activation to overcome nucleation and growth activation energies, and

to increase diffusivity. The temperature threshold is common to other deposition tech-

niques, like sol-gel and sputtering, reflecting the large activation energies needed for

the formation of a complex structure such as TTB, which cannot be supplied by the
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kinetic energy of the arriving species. As-deposited films suffer from oxygen vacancies

independently from the oxygen partial pressure during deposition. These can be sig-

nificantly removed by a post-deposition thermal treatment in oxygen rich atmosphere.

The high deposition and post annealing temperatures require the use of chemically

inert and thermally stable substrates. Direct growth of SBN on Si leads to the for-

mation of an amorphous oxide interlayer composed of Si and Nb oxides. The TTB

film exhibits mostly (001) orientation. The use of Pt films as substrate and electrodes

has been considered, but Pt thin film on oxidized silicon are thermally unstable and

tend to delaminate during the deposition process or the post-anneal. The instability

is caused by the large difference in thermal expansion of SBN and silicon, leading to

compressive stresses, in combination with Pt diffusion along grain boundaries and in-

terfaces. Optimization of adhesion and barrier layer between Pt and Si (Ta/Si3N4) has

been attempted, but no well reproducible quality of adhesion was achieved.

SBN was found to grow well in an epitaxial manner on STO single crystals; the inter-

face stays clean and no interdiffusion was observed. The growth is characterized by

the following features:

1. The growth proceeds in Volmer-Weber mode. This means that we do not deal with

a simple epitaxy leading to layer-by-layer growth. Instead, the new phase must first

nucleate. Interface and/or surface energy must be large enough to result in 3-d island

growth.

2. The crystalline orientation, and consequently also grain shape, is controlled by

the STO surface termination. The starting point of SBN crystal nucleation is the

perowskite kernel that grows as a continuation of the substrate perowskite structure,

the SBN unit cell then organizes around the perowskite kernel. In case of STO(100),

the development of c-axis direction depends on the surface termination of STO: TiO2

termination leads to in-plane c-axis orientation (i.e. (310)), SrO termination to out-

of-plane c-axis orientation (i.e. (001)). The observed (421) orientation on STO(111)

is readily explained by postulating the nucleation of the perowskite kernel in (111)

orientation as continuation of the substrate structure. We always observe growth of

twins related to ±18◦ rotation of the perowskite kernel with respect to the unit cell
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a-axis. The realization of a unique variant seems highly improbable. The nucleation

mechanism based on the perowskite kernel makes possible two in-plane orientation of

the SBN film (two variants) in the case of (001) orientation. By the same mechanism

four variants grow in the (310) and (421) oriented films.

Concerning dielectric properties, it has been found that the films grown on Si-based

substrates have the peak of the dielectric constant shifted to a 100◦C lower temper-

ature than measured in the bulk ceramic (target). This is due to the thermal stress

induced in the film during cooling from the deposition temperature. The amount of

the shift can be explained in the framework of the LGD theory. The films grown on

Nb-doped STO exhibit the same critical temperature as the target ceramic. In the

case of high purity SBN films on STO, the critical temperature coincides also with the

one of single crystals of the same composition (SBN50). Such film show the charac-

teristics of a para to ferroelectric phase transition, although it is much broader than

in the single crystal case, and the peak values are strongly reduced. In contrast the

dielectric constant at room temperature is higher in the thin films than in the single

crystals. Both effects can be explained supposing the smearing of the phase transition

on a temperature interval. The cause of smearing is to be found in the high disorder

of A and B site occupancy induced by the low processing temperature of thin films

compared to the processing temperature of single crystals. The presence of a dielectric

layer at the interface SBN/substrate could account for the lowering of the dielectric

peak, and its contribution to the effect is not excluded, but not to the increased room

temperature value.

Leakage is the main problem of the obtained samples. It affects the small field di-

electric behavior and even more the high field dielectric properties, as shown by CV

curves (i.e. quasi-static) and hysteresis loops (500Hz). A diode effect has been found,

attributed to the rectifying characteristic of the STO:Nb/SBN interface. Such an effect

is accentuated by annealing after the deposition of the top electrodes. AFM spectro-

scopic measurement revealed that the conduction is much stronger in the direction

perpendicular to the polar axis than along it. After annealing, grains of both orienta-

tions have the same I-V curve and the conduction is reduced by about three orders of
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magnitude. We conclude that the conduction is due to oxygen vacancies and that the

observed asymmetry is an asymmetry the in mobility of oxygen atoms. Single grains

have been proven to be ferroelectric by PAFM measurements, in the case of both in-

plane and out-of-plane polar axis. The leakage observed in macroscopic measurements

after recovering oxygen vacancies by thermal treatment, is most likely to occur at the

grain boundaries. This type of leakage mechanism is also supported by the fact that

columnar grain structure like SBN(001) on STO(100) are more conductive than ran-

dom grain structures as in case of SBN(421)/STO(111).

The main results of this work can be summarized in the following points:

• SBN films grow in Volmer-Weber mode and the grains grow along the polar

axis, as observed in single crystals growth. On amorphous or polycrystalline

substrates the film grows with the polar axis perpendicular to the film plane. In

the case of epitaxial growth the direction of the polar axis with respect to the

film plane is determined by the substrate surface, therefore it can be tailored by

the appropriate choice and preparation of the substrate. The observed crystal

twins prove that the film starts to nucleate from the perovskite kernel.

• oxygen vacancies are easily formed in the TTB structure under the processing

condition of PLD. They induce an anomaly in the dielectric constant at the

temperature of 100◦C and conduction at room temperature with intensity higher

in the direction perpendicular to polarization axis than along it.

• ferroelectricity is possible in SBN films. Single grains are proven to be ferroelectric

but leakage trough grain boundaries does not allow the observation of ferroelectric

properties at bigger scale.

• the ferroelectric properties are strongly dependent on the processing condition,

raw materials quality and film-substrate thermal expansion mismatch. The smear-

ing of the phase transition is most likely due to the low processing temperature,

preventing an ideal distribution of A and B site occupancy by Ba and Sr ions.
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Outlook

(SrBa)Nb2O6 has proven to be an interesting system not only for its unique ferroelec-

tric properties but also for the study of heteroepitaxial growth of complex oxide thin

films. Better knowledge on the nucleation can be gained by using monocrystalline sub-

strates with perovskite structure and others. Various orientations of the terminating

surface should be chosen and special attention should be given to the symmetry of the

reconstructed surface.

In order to study the ferroelectric properties of these samples the electric leakage needs

to be minimized. For this purpose, the effect of thermal treatments at temperature

higher than the processing one, should be investigated. Grain growth due to high

temperature and long annealing time would result in a decreased density of grain

boundaries. At the same time, defects in the grain boundary would be reduced as

well. The use of dopants is another possibility to reduce electrical leakage; a dopant

concentrated in the boundary would reduce the mobility of ions and therefore their

conduction and would have influence on the electronic conduction at the same time.

The optimal conductive substrate for the fabrication of parallel plate capacitors has not

been found yet. Doped ionic crystals like STO show a semiconductor behavior which

interferes with the ferroelectric properties of SBN. Such an interference is avoided by

using a metallic electrode. Chemical as well as mechanical stability of metallic films on

silicon wafers proved to be difficult to achieve at processing conditions needed for SBN.

A multilayer electrode like Ir/Pt on silicon could solve these problems by combining

the mechanical stability of Ir with the chemical stability of Pt.
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