

Steve BURION Benoît DAGON Dr. Charles BAUR

CALT Computer-Aided Laser Treatment of Hard Tissue

Laser Positioning System

Hightech-Forschungs-Zentrum Basel

Division of Cranio-Maxillo-Facial Surgery, Department of Reconstructive Surgery University Hospital Basel

PD Dr.Dr. Robert SADER
Prof. Dr.Dr. Hans-Florian ZEILHOFER

Dr. Mikhail IVANENKO Prof. Dr. Peter HERING

Inselspital Bern / University of Bern

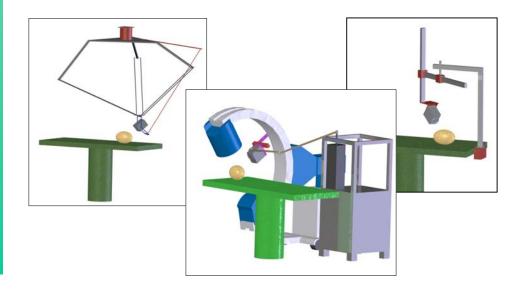
Dr. Marco CAVERSACCIO

Institute for Surgical Technology & Biomechanics

Dr. Ion PAPPAS

Laser Bone Cutting (Osteotomy)

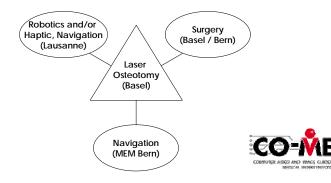
We are developing a laser-based, noncutting tool contact to perform osteotomy without mechanical stress With and vibrations. respect conventional mechanical approaches, the laser method reduces procedure invasiveness while significantly increases precision. accuracy and Furthermore, the development of a positioning system will allow 3D cuts that are currently impossible with a saw.



Example of structural joints [CAESAR]

Comparison of a cut using a saw or a laser [CAESAR]

Project goal


Our primary objective is to provide a surgeon with an instrument that enables him to apply a computer-assisted pre-operative plan to an intraoperative situation.

Our research focuses on two areas: (1) navigation and (2) mechanical positioning. We currently evaluating several semi-active and haptic systems that will help the surgeon position the laser beam over the patient in an easy and accurate manner.

Number of DOF	4 – 5
Working volume	hemisphere Ø 1300 mm
Accuracy	< 1 mm (x, y, z)
Loading capacity	5 kg

Application field

Laser-based cutting will enable the use of bone fixation implants to be avoided. In addition, structural joints (dovetail, mitre, etc.) can be produced and assembled. Thus, this technology offers substantial potential for improving maxillofacial and ENT surgery.

