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ABSTRACT
Virtual Machine (VM) environments (e.g., VMware and
Xen) are experiencing a resurgence of interest for diverse
uses including server consolidation and shared hosting. An
application’s performance in a virtual machine environ-
ment can differ markedly from its performance in a non-
virtualized environment because of interactions with the
underlying virtual machine monitor and other virtual ma-
chines. However, few tools are currently available to help de-
bug performance problems in virtual machine environments.

In this paper, we present Xenoprof, a system-wide statis-
tical profiling toolkit implemented for the Xen virtual ma-
chine environment. The toolkit enables coordinated profil-
ing of multiple VMs in a system to obtain the distribution
of hardware events such as clock cycles and cache and TLB
misses.

We use our toolkit to analyze performance overheads in-
curred by networking applications running in Xen VMs. We
focus on networking applications since virtualizing network
I/O devices is relatively expensive. Our experimental re-
sults quantify Xen’s performance overheads for network I/O
device virtualization in uni- and multi-processor systems.
Our results identify the main sources of this overhead which
should be the focus of Xen optimization efforts. We also
show how our profiling toolkit was used to uncover and re-
solve performance bugs that we encountered in our experi-
ments which caused unexpected application behavior.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Measurements;
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures
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1. INTRODUCTION
Virtual Machine (VM) environments are experiencing a

resurgence of interest for diverse uses including server con-
solidation and shared hosting. The emergence of commercial
virtual machines for commodity platforms [7], paravirtual-
izing open-source virtual machine monitors (VMMs) such
as Xen [4], and widespread support for virtualization in mi-
croprocessors [13] will boost this trend toward using virtual
machines in production systems for server applications.

An application’s performance in a virtual machine en-
vironment can differ markedly from its performance in a
non-virtualized environment because of interactions with the
underlying VMM and other virtual machines. The grow-
ing popularity of virtual machine environments motivates
deeper investigation of the performance implications of vir-
tualization. However, few tools are currently available to
analyze performance problems in these environments.

In this paper, we present Xenoprof, a system-wide statis-
tical profiling toolkit implemented for the Xen virtual ma-
chine environment. The Xenoprof toolkit supports system-
wide coordinated profiling in a Xen environment to obtain
the distribution of hardware events such as clock cycles, in-
struction execution, TLB and cache misses, etc. Xenoprof
allows profiling of concurrently executing domains (Xen uses
the term “domain” to refer to a virtual machine) and the
Xen VMM itself at the fine granularity of individual pro-
cesses and routines executing in either the domain or in the
Xen VMM. Xenoprof will facilitate a better understanding
of the performance characteristics of Xen’s mechanisms and
thereby help to advance efforts to optimize the implementa-
tion of Xen. Xenoprof is modeled on the OProfile [1] profil-
ing tool available on Linux systems.

We report on the use of Xenoprof to analyze performance
overheads incurred by networking applications running in
Xen domains. We focus on networking applications because
of the prevalence of important network intensive applica-



tions, such as web servers and because virtualizing network
I/O devices is relatively expensive. Previously published
papers evaluating Xen’s performance have used network-
ing benchmarks in systems with limited network bandwidth
and high CPU capacity [4, 10]. Since this results in the
network, rather than the CPU, becoming the bottleneck
resource, in these studies the overhead of network device
virtualization does not manifest in reduced throughput. In
contrast, our analysis examines cases where throughput de-
grades because CPU processing is the bottleneck instead of
the network. Our experimental results quantify Xen’s per-
formance overheads for network I/O device virtualization in
uni- and multi-processor systems. Our results identify the
main sources of this overhead which should be the focus of
Xen optimization efforts. For example, Xen’s current I/O
virtualization implementation can degrade performance by
preventing the use of network hardware offload capabilities
such as TCP segmentation and checksum.

We additionally show a small case study that demon-
strates the utility of our profiling toolkit for debugging real
performance bugs we encountered during some of our exper-
iments. The examples illustrate how unforeseen interactions
between an application and the VMM can lead to strange
performance anomalies.

The rest of the paper is organized as follows. We begin in
Section 2 with our example case study motivating the need
for performance analysis tools in virtual machine environ-
ments. Following this, in Section 3 we describe aspects of
Xen and OProfile as background for our work. Section 4
describes the design of Xenoprof. Section 5 shows how the
toolkit can be used for performance debugging of the moti-
vating example of Section 2. In Section 6, we describe our
analysis of the performance overheads for network I/O de-
vice virtualization. Section 7 describes related work, and we
conclude with discussion in Section 8.

2. MOTIVATING EXAMPLE
Early on in our experimentation with Xen, we encountered

a situation in which a simple networking application which
we wrote exhibited puzzling behavior when running in a Xen
domain. We present this example in part to illustrate how
the behavior of an application running in a virtual machine
environment can differ markedly and in surprising ways from
its behavior in a non-virtualized system. We also show the
example to demonstrate the utility of Xenoprof, which as
we describe later in Section 5 we used to help us diagnose
and resolve this problem.

The example application consists of two processes, a
sender and a receiver, running on two Pentium III ma-
chines connected through a gigabit network switch. The
two processes are connected by a single TCP connection,
with the sender continuously sending a 64 KB file (cached
in the sender’s memory) to the receiver using the zero-copy
sendfile() system call. The receiver simply issues receives
for the data as fast as possible.

In our experiment, we run the sender on Linux (non-
virtualized), and we run the receiver either on Linux or in
a Xen domain. We measure the receiver throughput as we
vary the size of the user-level buffer which the application
passes to the socket receive system call. Note that we are
not varying the receiver socket buffer size which limits ker-
nel memory usage. Figure 1 shows that when the receiver is
running on Linux, its throughput is nearly independent of
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Figure 1: XenoLinux performance anomaly: Net-
work receive throughput in XenoLinux shows erratic
behavior with varying application buffer size

the application receive buffer size. In contrast, throughput
is highly sensitive to the application buffer size when the
receiver runs in the Xen environment.

This is one prime example of a scenario where we would
like to have a performance analysis tool which can pinpoint
the source of unexpected behavior in Xen. Although system-
wide profiling tools such as OProfile exist for single OSes
like Linux, no such tools are available for a virtual machine
environment. Xenoprof is intended to fill this gap.

3. BACKGROUND
In this section, we briefly describe the Xen virtual ma-

chine monitor and the OProfile tool for statistical profiling
on Linux. Our description of their architecture is limited to
the aspects that are relevant to the discussion of our statis-
tical profiling tool for Xen environments and the discussion
of Xen’s performance characteristics. We refer the reader to
[4] and [1] for more comprehensive descriptions of Xen and
OProfile, respectively.

3.1 Xen
Xen is an open-source x86 virtual machine monitor

(VMM) that allows multiple operating system (OS) in-
stances to run concurrently on a single physical machine.
Xen uses paravirtualization [25], where the VMM exposes
a virtual machine abstraction that is slightly different from
the underlying hardware. In particular, Xen exposes a hy-
percall mechanism that virtual machines must use to per-
form privileged operations (e.g., installing a page table), an
event notification mechanism to deliver virtual interrupts
and other notifications to virtual machines, and a shared-
memory based device channel for transferring I/O messages
among virtual machines. While the OS must be ported to
this virtual machine interface, this approach leads to better
performance than an approach based on pure virtualization.

The latest version of the Xen architecture [10] introduces
a new I/O model, where special privileged virtual machines
called driver domains own specific hardware devices and run
their I/O device drivers. All other domains (guest domains
in Xen terminology) run a simple device driver that com-



municates via the device channel mechanism with the driver
domain to access the real hardware devices. Driver domains
directly access hardware devices that they own; however, in-
terrupts from these devices are first handled by the VMM
which then notifies the corresponding driver domain through
virtual interrupts delivered over the event mechanism. The
guest domain exchanges service requests and responses with
the driver domain over an I/O descriptor ring in the device
channel. An asynchronous inter-domain event mechanism is
used to send notification of queued messages. To support
high-performance devices, references to page-sized buffers
are transferred over the I/O descriptor ring rather than ac-
tual I/O data (the latter would require copying). When data
is sent by the guest domain, Xen uses a sharing mechanism
where the guest domain permits the driver domain to map
the page with the data and pin it for DMA by the device.
When data is sent by the driver domain to the guest do-
main, Xen uses a page-remapping mechanism which maps
the page with the data into the guest domain in exchange
for an unused page provided by the guest domain.

3.2 OProfile
OProfile [1] is a system-wide statistical profiling tool for

Linux systems. OProfile can be used to profile code exe-
cuting at any privilege level, including kernel code, kernel
modules, user level applications and user level libraries.

OProfile uses performance monitoring hardware on the
processor to collect periodic samples of various performance
data. Performance monitoring hardware on modern pro-
cessor architectures include counters that track various pro-
cessor events including clock cycles, instruction retirements,
TLB misses, cache misses, branch mispredictions, etc. The
performance monitoring hardware can be configured to no-
tify the operating system when these counters reach spec-
ified values. OProfile collects the program counter (PC)
value at each notification to obtain a statistical sampling.
For example, OProfile can collect the PC value whenever
the clock cycle counter reaches a specific count to generate
the distribution of time spent in various routines in the sys-
tem. Likewise, OProfile can collect the PC value whenever
the TLB miss counter reaches a specific count to generate
the distribution of TLB misses across various routines in the
system. The accuracy and overhead of the profiling can be
controlled by adjusting the sampling interval (i.e., the count
when notifications are generated).

On x86 systems, OProfile configures the performance
monitoring hardware to raise a Non-Maskable Interrupt
(NMI) whenever a hardware performance counter reaches
its threshold. The use of the NMI mechanism for notifi-
cation is key to accurate performance profiling. Since the
NMI cannot be masked, the counter overflow will be ser-
viced by the NMI handler without any delay allowing the
program counter to be read immediately and associated with
the sample. If a maskable interrupt is used to notify counter
overflow, the interrupt can be masked which will delay the
recording of the program counter causing the sample to be
associated with a wrong process or routine (e.g., if a con-
text switch occurs between the overflow of the counter, and
the actual collection of the sample). Furthermore, since the
NMI will be serviced even in the middle of other interrupt
handlers, use of the NMI allows the profiling of interrupt
handlers.

Profiling with OProfile operates as follows (simplified):
1. User provides input to OProfile about the performance

events to be monitored and the periodic count.
2. OProfile programs hardware counters to count the user-

specified performance event and to generate an NMI when
the counter has counted to the user-specified count.

3. The performance monitoring hardware generates an
NMI upon counter overflow.

4. OProfile’s NMI handler catches the NMI and records
the program counter value in a kernel buffer.

5. OProfile processes the buffer periodically to determine
the routine and executable corresponding to the program
counter on each sample in the buffer. This is determined by
consulting the virtual memory layout of the process and the
kernel.

4. STATISTICAL PROFILING IN XEN
In this section, we describe Xenoprof, a system-wide sta-

tistical profiling toolkit we have developed for Xen virtual
machine environments. The Xenoprof toolkit provides ca-
pabilities similar to OProfile for the Xen environment (i.e.,
using performance monitoring hardware to collect periodic
samples of performance data). The performance of appli-
cations running on Xen depend on interactions among the
application’s processes, the operating system it is running
on, the Xen VMM, and potentially other virtual virtual ma-
chines (e.g., driver domain) running on the same system.
In order to study the costs of virtualization and the inter-
actions among multiple domains, the performance profiling
tool must be able to determine the distribution of perfor-
mance events across routines in the Xen VMM and all the
domains running on it.

The Xenoprof toolkit consists of a VMM-level layer (we
hereon refer to this layer as Xenoprof) responsible for ser-
vicing counter overflow interrupts from the performance
monitoring hardware and a domain-level layer derived from
OProfile responsible for attributing samples to specific rou-
tines within the domain. The OProfile layer drives the per-
formance profiling through hypercalls supported by Xeno-
prof and Xenoprof delivers samples to the OProfile layer us-
ing Xen’s virtual interrupt mechanism. System-wide profil-
ing is realized through the coordination of multiple domain-
level profilers. While our current implementation is based
on OProfile, other statistical profilers (e.g., VTune [3]) can
be ported to use the Xenoprof interface.

We first describe the issues that guided our design choices
for Xenoprof, followed by a description of the Xenoprof
framework itself. We then describe the modifications to
standard domain level profilers such as OProfile that are
necessary to enable them to be used with Xenoprof for pro-
viding system-wide profiling in Xen.

4.1 Design choice for profiling in Xen
The main issue with profiling virtual machine environ-

ments is that profiling cannot be centralized. System-wide
profiling in any environment requires the knowledge of de-
tailed system level information. As an example, we saw in
Section 3.2 that in order to account a PC sample to the
correct routine and process, OProfile needs to consult the
virtual memory layout of the current process, or the kernel.
In a single-OS case like OProfile, all the required system level
information is available in one centralized place, the kernel.
Unfortunately, in a virtual machine environment like Xen,



the information required for system-wide profiling is spread
across multiple domains, and this domain-level information
is not usually accessible from the hypervisor. For instance,
Xen cannot determine the current process running in a do-
main, or determine its memory layout in order to find the
routine corresponding to a PC sample collected for profiling.
Thus, system-wide profiling in Xen is not possible with the
profiler executing solely inside Xen.

Even if the domain’s kernel symbol map is available to
Xen, it would still be difficult for Xen to determine the sym-
bol map for processes running in the domain.

Thus, system-wide profiling in Xen must be “distributed”
in nature, with help required from domain specific profilers
for handling the profiling of the individual domains. Most
of the domain specific profiling responsibilities are delegated
to domain specific profilers, and a thin paravirtualized inter-
face, Xenoprof, is provided for coordinating their execution,
and providing them access to the hardware counters.

4.2 Xenoprof Framework
Xenoprof helps realize system-wide profiling in Xen by the

coordination of domain specific profilers executing in each
domain. Xenoprof uses the same hardware counter based
sampling mechanism as used in OProfile. It programs the
hardware performance counters to generate sampling inter-
rupts at regular event count intervals. Xenoprof hands over
the PC samples collected on counter overflow to the profiler
running in the current domain for further processing. For
system-wide profiling, all domains run a Xenoprof compliant
profiler, thus no PC samples are lost. Xenoprof also allows
the selective profiling of a subset of domains.

Xenoprof allows domain level profilers to collect PC sam-
ples for performance counter overflows which occur in the
context of that domain. Since these PC samples may also in-
clude samples from the Xen address space, the domain pro-
filers must be extended to recognize and correctly attribute
Xen’s PC samples. Xenoprof also allows domain level pro-
filers to optionally collect PC samples for other “passive”
domains. A possible use of this feature is when the passive
domain does not have a Xenoprof-compliant profiler, but
we are still interested in estimating the aggregate execution
cost accruing to the domain.

Domain level profilers in Xenoprof operate in a manner
mostly similar to their operation in a non-virtualized setup.
For low level operations, such as accessing and program-
ming performance counters, and collecting PC samples, the
domain profilers are modified to interface with the Xenoprof
framework. The high level operations of the profiler remain
mostly unchanged. After collecting PC samples from Xeno-
prof, the profiler accounts the sample to the appropriate
user or kernel routine by consulting the required memory
layout maps. At the end of profiling, each domain profiler
has a distribution of hardware event counts across routines
in its applications, the kernel or Xen for its domain. The
global system profile can be obtained by simply merging the
individual profiles. The detailed profile for Xen can be ob-
tained by merging the Xen components of the profiles from
the individual domains.

The Xenoprof framework defines a paravirtualized inter-
face to support domain level profilers in the following re-
spects:

1. It defines a performance event interface which maps
performance events to the physical hardware counters, and

defines a set of functions for domain level profilers to specify
profiling parameters, to start and to stop profiling.

2. It allows domain-level profilers to register virtual in-
terrupts that will be triggered whenever a new PC sample
is available. Unlike sampling in OProfile, the domain level
profilers in Xenoprof do not collect PC samples themselves.
Instead, Xenoprof collects it on their behalf. This is because
it may not be possible to call the domain level virtual inter-
rupt handler synchronously from any context in Xen, when-
ever a hardware counter overflows. Since PC samples must
be collected synchronously to be correct, Xenoprof collects
the samples on behalf of the domain and logs them into the
per-domain sample buffer of the appropriate domain. The
domain profiler is notified of additional samples through a
virtual interrupt.

3. It coordinates the profiling of multiple domains. In
every profiling session there is a distinguished domain, the
initiator, which is responsible for configuring and starting
a profiling session. The initiator domain has the privileges
to decide the profiling setup, including hardware events to
profile, domains to profile, etc. After the initiator selects the
set of domains to be profiled, Xenoprof waits until all partic-
ipant domains perform a hypercall indicating that they are
ready to process samples. The profiling session starts only
after this condition is satisfied and after a start command
is issued by the initiator. Profiling stops when requested by
the initiator. The sequencing of profiling operations across
the initiator and other domains is orchestrated by the user
(e.g., using a user-level script).

In the current architecture, only the privileged domain,
domain0, can act as the initiator for a profiling session in-
volving more than one domain. Thus, only the privileged
domain 0 can control system-wide profiling involving multi-
ple domains. This restriction is necessary because allowing
unprivileged domains to do system-wide profiling would vi-
olate the security and isolation guarantees provided by Xen.

Xenoprof allows unprivileged domains to do single-domain
profiling of the domain itself. In this scenario, the domain
can start profiling immediately, and no coordination be-
tween domains is involved.

One restriction in the current architecture of Xenoprof is
that it does not allow concurrent independent profiling of
multiple domains. Concurrent independent profiling of dif-
ferent domains would require support for per-domain virtual
counters in Xenoprof. This is currently not supported.

4.3 Porting OProfile to Xenoprof
Domain level profilers must be ported to the Xenoprof

interface so that they can be used in the Xen environment.
Porting a profiler to Xenoprof is fairly straightforward, and
entails the following steps:

1. The profiler code for accessing and programming the
hardware counters must be modified to use the Xenoprof
virtual event interface.

2. Before starting profiling, the profiler queries Xenoprof
to determine whether it is to take on the role of the initia-
tor. Only the initiator domain performs the global profiling
setup, such as deciding the events and profiling duration.
Both the initiator and the other profilers register their call-
back functions for collecting PC samples.

3. The profiler is extended with access to the Xen virtual
memory layout, so that it can identify Xen routines corre-
sponding to PC samples in Xen’s virtual address range.
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Figure 2: Xenoprof network performance anomaly

We ported OProfile to use the Xenoprof interface in the
above respects.

5. PERFORMANCE DEBUGGING USING
XENOPROF

In this section, we analyze the performance anomaly de-
scribed in Section 2 using our Xenoprof based profiling tool.
To recall briefly, the performance bug consists of the erratic
variation in TCP receive throughput as a function of the
application level buffer size, when the application runs in
a Xen driver domain on a Pentium III machine. We repro-
duce the graph of the receiver throughput versus application
buffer size in Figure 2.

To understand the variation in receiver throughput run-
ning in Xen, we profile the receiver at two points that have
widely different performance (points A and B in Figure 2
with high and low throughput, respectively). Table 1 shows
the distribution of execution time for points A and B across
the XenoLinux kernel (Linux ported to the Xen environ-
ment), the network driver and Xen. The table shows that
when the throughput is low at point B, a significantly greater
fraction of the execution time is spent in the XenoLinux ker-
nel, compared to point A, which has higher throughput.

Point A Point B
XenoLinux kernel 60 84

network driver 10 5
xen 30 11

Table 1: Xen domain0 Profile

The additional kernel execution overhead at B has a
function-wise breakdown as shown in table 2. Table 2 shows
that point B suffers significantly lower throughput com-
pared to A, because of the additional time (roughly 40%)
spent in the kernel routines skb copy bits, skbuff ctor

and tcp collapse. The corresponding overheads for these
functions at point A are nearly zero.

The biggest overhead at point B comes from the func-
tion skb copy bits. skb copy bits is a simple data copying
function in the Linux kernel used to copy data from a socket
buffer to another region in kernel memory.

Point A Point B
skb copy bits 0.15 28
skbuff ctor absent 9
tcp collapse 0.05 3

other routines 99.8 60

Table 2: XenoLinux Profile

The second function, skbuff ctor, is a XenoLinux specific
routine which is called whenever new pages are added to the
socket buffer slab cache. This function zeroes out new pages
before adding them to the slab cache, which can be an ex-
pensive operation. XenoLinux clears out pages added to its
slab cache to make sure that there are no security breaches
when these pages are exchanged with other domains.
tcp collapse is a routine in Linux which is called for

reducing the per-socket TCP memory pressure in the ker-
nel. Whenever a socket’s receive queue memory usage ex-
ceeds the per-socket memory limits, tcp collapse is in-
voked to free up fragmented memory in the socket’s re-
ceive queue. (Note that this deals with per-socket memory
limits, not the entire kernel’s TCP memory usage). The
tcp collapse function tries to reduce internal fragmenta-
tion in the socket’s receive queue by copying all the socket
buffers in the receive queue into new compact buffers. It
makes use of the skb copy bits function for compacting
fragmented socket buffers. Frequent compaction of socket
buffers can be an expensive operation.

The high execution cost of tcp collapse and
skb copy bits at point B indicates that the kernel
spends a significant fraction of the time compacting frag-
mented socket buffers for reducing TCP memory pressure.
This is suspicious, because in the normal scenario, most of
the socket buffers in a socket’s receive queue have a size
equal to the Maximum Transfer Unit (MTU) size and do
not suffer much internal fragmentation.

To check if socket buffer fragmentation is indeed the issue
here, we instrument the XenoLinux kernel to determine the
average internal fragmentation in the socket buffers. Ker-
nel instrumentation reveals that on an average, each socket
buffer is allocated 4 KB (i.e. one page size), out of which
it uses only 1500 bytes (MTU) for receiving data. This ob-
viously leads to internal fragmentation, and causes the per-
socket memory limit to be frequently exceeded, leading to
significant time being wasted in defragmenting the buffers.

It turns out that for every 1500 byte socket buffer re-
quested by the network driver, XenoLinux actually allocates
an entire page, i.e. 4 KB. This is done to facilitate the trans-
fer of a network packet between an I/O domain and a guest
domain. A page sized socket buffer facilitates easy transfer
of ownership of the page between the domains. Unfortu-
nately, this also leads to significant wastage of per-socket
memory, and as we see in the analysis above, this can result
in unexpected performance problems.

The performance problem resulting from socket memory
exhaustion can be artificially fixed by using the kernel pa-
rameter tcp adv window scale. This kernel parameter de-
termines the fraction of the per-socket receive memory which
is set aside for user-space buffering. Thus, by reserving a
large fraction of the socket’s memory for user buffering, the
effective TCP window size of the socket can be reduced,
and thus the kernel starts dropping packets before it leads
to socket memory exhaustion.



With this configuration in place, the performance prob-
lem arising due to socket buffer compaction is eliminated
and we get more consistent receiver performance. This im-
proved scenario is shown in Figure 2 as the line correspond-
ing to the “fixed” Xenoprof configuration. The overhead of
virtualization is approximately constant across the range of
buffer sizes, leading to similar throughput behavior for this
configuration and the base Linux configuration.

6. PERFORMANCE OVERHEADS IN XEN
In this section, we compare the performance of three net-

working applications running in the Xen virtual environment
with their performance in a non-virtualized Linux environ-
ment. The three applications provide a thorough coverage of
various performance overheads arising in a virtualized net-
work environment.

The three benchmarks we use stress different aspects of
the network stack. The first two are simple microbench-
marks, similar to the TTCP [2] benchmark, and measure
the throughput of TCP send and receive over a small num-
ber of connections (one per network interface card). The
third benchmark consists of a full fledged web server run-
ning a simple synthetic workload. These benchmarks stress
the TCP send half, TCP receive half, and concurrent TCP
connections respectively.

We use Xenoprof to analyze and evaluate the performance
of the three benchmarks in non-virtualized Linux (single-
CPU) and also in three different Xen configurations:

1) Xen-domain0: Application runs in a single privileged
driver domain.

2) Xen-guest0: A guest domain configuration in which
an unprivileged guest domain and a privileged driver do-
main run on the same CPU. The application and a virtual
device driver run in the guest domain, and the physical de-
vice driver (serving as the backend for the guest) runs in the
driver domain and interacts directly with the I/O device.

3) Xen-guest1: Similar to Xen-guest0 configuration ex-
cept the guest and driver domains each run on a separate
CPU.

Our experimental setup is the following. For experi-
ments that do not include the Xen-guest1 configuration
(Sections 6.1.1 and 6.2), we use a Dell PowerEdge 1600SC,
2393 MHz Intel Xeon server, with 1 GB of RAM and four
Intel Pro-1000 gigabit ethernet cards. The server is con-
nected over a gigabit switch to multiple client machines
having similar configurations and with one gigabit ethernet
card each. For experiments that include Xen-guest1 (Sec-
tions 6.1.2 and 6.3, and for the web server benchmark, we use
a Compaq Proliant DL360 dual-CPU 2800 MHz Intel Xeon
server, with 4 GB of RAM, and one Broadcom ‘Tigon 3’
gigabit ethernet card. The server is connected to one client
machine with similar configuration over a gigabit switch.

Xen version 2.0.3 is used for all experiments, and the
domains run XenoLinux derived from stock Linux version
2.6.10. All domains are configured to use 256 MB of RAM.

In the following subsections, we describe our evaluation
and analysis of Xen for the three benchmarks.

6.1 Receiver workload
The TCP receiver microbenchmark measures the TCP

receive throughput achievable over a small number of TCP
connections. This benchmark stresses the receive half of the

TCP stack for large data transfers over a small number of
connections.

The benchmark consists of a number of receiver processes,
one per NIC (network interface card), running on the target
machine. Each receiver is connected to a sender process
running on a different machine over a separate NIC. Sender
processes use sendfile() to send a cached 64 KB file to the
corresponding receiver process continuously in a loop. We
measure the maximum aggregate throughput achievable by
the receivers. The sender processes each run on a different
machine to make sure that they do not become a bottleneck.

6.1.1 Xen-domain0 configuration
We first compare the performance of the receiver in the

Xen-domain0 configuration with its performance in a base-
line Linux system. In the next subsection, we will evaluate
its performance in Xen guest domain configurations. Fig-
ure 3 compares the Xen-domain0 and Linux performance
for different number of NICs.
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Figure 3: Receive throughput on Xen domain0 and
Linux

In Linux, the receivers reaches an aggregate throughput
of 2462 Mb/s with 3 NICs, whereas in Xen-domain0 reaches
1878 Mb/s with 2 NICs.

This result contrasts with previous research [4], which
claims that Xen-domain0 achieves performance nearly equal
to the performance of a baseline Linux system. Those ex-
periments used only a single NIC which became the bot-
tleneck resource. Since the system was not CPU-limited,
higher CPU utilization with Xen was not reflected in re-
duced throughput. With more NICs, as the system becomes
CPU-limited, performance differences crop up.

We profile the Xen-domain0 configuration and Linux for
different hardware events in the 3 NIC run. We first com-
pare the aggregate hardware event counts in the two con-
figurations for the following hardware events: instruction
counts, L2 cache misses, data TLB misses, and instruction
TLB misses. Figure 4 shows the normalized values for these
events relative to the Xen-domain0 numbers.

Figure 4 shows that a primary cause for reduced through-
put in Xen-domain0 is the significantly higher data and in-
struction TLB miss rates compared to Linux. We can com-
pare configurations in terms of the ratio of their cache or
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Figure 4: Relative hardware event counts in Xen-
domain0 and Linux for receive (3 NICs)

TLB miss rates (we define miss rate as the ratio of number
of misses to number of instructions executed). Compared
to Linux, Xen-domain0 has a data TLB miss count roughly
13 times higher (which works out to 19 times higher data
TLB miss rate), and instruction TLB miss count roughly 17
times higher (or 25 times higher miss rate). Higher TLB
misses leads to instruction stalling, and at full utilization
this results in the instruction count for Xen-domain0 being
only about 70% of the instruction count for Linux, leading
to a similar decrease in achieved throughput.

TLB misses in Xen-domain0 are not concentrated in a
few hotspot functions, but are spread across the entire TCP
receive code path, as shown in Table 3. From preliminary
investigations based on Xen code instrumentation, we sus-
pect the increase in misses is caused by increases in working
set size as opposed to TLB flushes, but further investigation
is needed.

% D-TLB miss Function Module
9.48 e1000 intr network driver
7.69 e1000 clean rx irq network driver
5.81 alloc skb from cache XenoLinux
4.45 ip rcv XenoLinux
3.66 free block XenoLinux
3.49 kfree XenoLinux
3.32 tcp preque process XenoLinux
3.01 tcp rcv established XenoLinux

Table 3: Data TLB miss distribution in Xen-
domain0 (3 NICs)

In addition to comparing two configurations in terms of
miss rates, which determine the time required to execute
each instruction, we can also evaluate the efficiency of two
configurations in terms of their instruction cost, which we
define as the number of instructions that must be executed
to transfer and process a byte of data to or from the net-
work. By dividing the ratio of instructions executed in the
two configurations by the ratio of throughput achieved in
the two configurations, we get the instruction cost ratio for
the two configurations. Comparing Xen-domain0 to Linux,

0.6919 (the ratio of instructions executed, Figure 4) divided
by 0.6251 (throughput ratio, Figure 3) yields instruction
cost ratio 1.11, indicating that Xen-domain0 requires 11%
more instructions to process each byte compared to Linux.
The receiver in the Xen-domain0 configuration must execute
additional instructions within Xen and also Xen specific rou-
tines in XenoLinux.

The execution of Xen is roughly 14% of CPU cycles. Ta-
ble 4 shows the cost of some specific routines in Xen and
XenoLinux which contribute to execution overhead.

% Execution time Function Module
9.15 skbuff ctor XenoLinux
6.01 mask and ack irq Xen
2.81 unmask irq Xen

Table 4: Expensive routines in Xen-domain0 (3
NICs)

The skbuff ctor routine, discussed in Section 5, is a
XenoLinux specific routine which can be quite expensive
depending on the frequency of socket buffer allocation (9%
of CPU time in this case). Masking and unmasking of inter-
rupts in Xen contributes an additional 9% of CPU overhead
not present in Linux. For each packet received, the network
device raises a physical interrupt which is first handled in
Xen, and then the appropriate “event” is delivered to the
correct driver domain through a virtual interrupt mecha-
nism. Xen masks level triggered interrupts to avoid un-
bounded reentrancy since the driver domain interrupt han-
dler resets the interrupt source outside the scope of the phys-
ical interrupt handler [10]. The domain interrupt handler
has to make an additional hypercall to Xen to unmask the
interrupt line after servicing the interrupt.

In summary,
1. The maximum throughput achieved in the Xen-

domain0 configuration for the receiver benchmark is roughly
75% of the maximum throughput in Linux.

2. Xen-domain0 suffers a significantly higher TLB miss
rate compared to Linux, which is the primary cause for
throughput degradation.

3. Other overheads arise from interrupt handling over-
heads in Xen, and Xen specific routines in XenoLinux.

6.1.2 Guest domain configurations
We next evaluate the TCP receiver benchmark in the

guest domain configurations Xen-guest0 and Xen-guest1,
and compare performance with the Xen-domain0 configu-
ration. Our experiments show that receiver performance in
Xen-guest0 is significantly lower than in the Xen-domain0
configuration. Whereas the Xen-domain0 receiver achieves
1878 Mb/s, and Linux receiver achieves 2462 Mb/s, the re-
ceiver running in Xen-guest0 achieves 849 Mb/s, less than
the capacity of a single NIC. Thus, for the remainder of this
section, we focus our analysis for the guest domains only for
the single NIC configuration, where Xen-domain0 and Xen-
guest1 both deliver 941 Mb/s and Xen-guest0 achieves only
849 Mb/s.

The primary cause of throughput degradation in the guest
domain configurations is the significantly higher instruction
counts relative to Xen-domain0. Figure 5 shows normal-
ized aggregate counts for various performance events rela-



tive to the Xen-domain0 values. We can see that compared
to Xen-domain0, the Xen-guest0 and Xen-guest1 configu-
rations have higher instruction cost ratios (2.25 and 2.52,
respectively), higher L2 cache miss rates (1.97 times higher
and 1.52 times higher), lower instruction TLB miss rates
(ratio 0.31 and 0.72), and lower data TLB miss rates (ratio
0.54 and 0.87).
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Figure 5: Relative hardware event counts in
Xen-domain0, Xen-guest0 (1CPU) and Xen-guest1
(2CPUs)

Table 5 gives the breakdown of instruction counts across
the guest and driver domains and Xen for the three config-
urations. The table shows that compared to Xen-domain0,
the guest domain configurations execute considerably more
instructions in Xen and a large number of instructions in the
driver domain even though it only hosts the physical driver.

Xen-domain0 Xen-guest0 Xen-guest1
Guest domain N/A 16453 20145
Driver domain 19104 15327 18845

Xen 1939 11733 14975

Table 5: Instruction execution samples in Xen con-
figurations

Detailed profiling of Xen execution overhead, shown in
Table 6, shows that most of the instruction overhead of Xen
comes from the page remapping and page transfer between
the driver and guest domains for network data received in
the driver domain. For each page of network data received,
the page is remapped into the guest domain and the driver
domain acquires a replacement page from the guest.

The second source of overhead is within the driver domain.
Most of the overhead of the driver domain, as shown in Ta-
ble 7, comes from the network filtering and bridging code.
Xen creates a number of virtual network interfaces for guest
domains, which are bridged to the physical network inter-
face in the driver domain using the standard Linux bridging
code1

1As an alternative to bridging, Xen recently added a
routing-based solution. We have not yet evaluated this ap-
proach.

% Instructions Xen function
3.94 copy from user ll
3.02 do mmu update
2.59 copy to user ll
2.50 mod l1 entry
1.67 alloc domheap pages
1.47 do extended command
1.43 free domheap pages

Table 6: Instruction count distribution in Xen (Xen-
guest0 configuration)

% Instructions Driver domain function
5.14 nf hook slow
3.59 nf iterate
1.76 br nf pre routing
1.17 net rx action
1.31 fdb insert
1.00 br handle frame

Table 7: Instruction count distribution in driver do-
main (Xen-guest0 configuration)

Apart from these two major sources of overhead, Figure 5
shows that the guest configurations also suffer significantly
higher L2 cache misses, roughly 4 times the misses in Xen-
domain0. This may be explained by the fact that executing
two domains concurrently increases the working set size and
reduces locality, leading to more L2 misses. One surprising
result from Figure 5 is that Xen-guest0 suffers lower TLB
misses compared to Xen-guest1, even though Xen-guest0 in-
volves switching between the guest and driver domains on
the same CPU.

In summary,
1. The receiver benchmark in the guest domain config-

urations achieves less than half the throughput achieved in
the Xen-domain0 configuration.

2. The main reasons for reduced throughput are the com-
putational overheads of the hypervisor and the driver do-
main, which cause the instruction cost to increase by a factor
of 2.2 to 2.5.

3. Increased working set size and reduced locality lead to
higher L2 misses in the guest configurations.

6.2 Sender workload
We now evaluate the different Xen configurations using

our second microbenchmark, the TCP sender benchmark.
This is similar to the receiver benchmark, except that we
measure the throughput on the sender side of the TCP con-
nections. We run multiple sender processes, one per NIC,
on the target machine, and run each receiver process on a
separate machine. This benchmark stresses the send control
path of the TCP stack for large data transfers.

We first compare the performance of the sender running
in Xen-domain0 with its performance in Linux. We ob-
serve that, for our system configuration, the sender work-
load is very light on the CPU, and both Linux and Xen-
domain0 are able to saturate up to 4 NICs, achieving an
aggregate throughput of 3764 Mb/s, without saturating the
CPU. Thus, we observe no throughput differences up to
4 NICs. However as in the receiver benchmark, the Xen-



domain0 configuration suffers significantly higher TLB miss
rates compared to Linux, and shows greater CPU utilization
for the same workload.

We next evaluate the TCP sender benchmark in the guest
domain configuration, Xen-guest0. As TCP send is cheaper
compared to TCP receive, we expected the sender in the
guest configuration to perform better than the receiver.
However, we found that maximum throughput achievable
by the sender in the Xen-guest0 configuration is only 706
Mb/s, whereas in the Xen-domain0 configuration, the sender
is able to achieve up to 3764 Mb/s.

Figure 6 compares the hardware event counts for Xen-
guest0 and the event counts for the sender running in Xen-
domain0 with one NIC. The figure demonstrates that the
primary cause for throughput degradation in Xen-guest0 is
higher instruction cost. The Xen-guest0 configuration in-
curs a factor of 6 times higher instruction count (8.15 times
higher instruction cost) than the Xen-domain0 configura-
tion. The L2 miss rate is also a factor of 4 higher in the
Xen-guest0 configuration than the Xen-domain0 configura-
tion, which can be attributed to contention for the L2 cache
between the guest domain and the driver domain.
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Figure 6: Relative hardware event counts in Xen-
domain0 and Xen-guest0 for sender benchmark

We study the distribution of instructions among the rou-
tines in the domain hosting the sender application, i.e., the
guest domain of the Xen-guest0 configuration and the driver
domain of the Xen-domain0 configuration. The instruction
counts for these domains differs by a factor of 2.8 (as com-
pared to factor of 6 overall between the two configurations).

Function Xen-guest0 guest Xen-domain0
tcp write xmit 212 72

tcp transmit skb 512 92
ip queue xmit 577 114

Table 8: Instruction execution samples in Xen-
guest0 guest and Xen-domain0

Table 8 shows the cost of high-level TCP/IP protocol pro-
cessing functions. The Xen-guest0 guest has significantly
higher instruction counts for these functions, and although
not shown, this leads to similar increases for all descendant

functions. It appears as if the TCP stack in the guest con-
figuration processes a larger number of packets compared to
Xen-domain0 to transfer the same amount of data. Further
analysis (from kernel instrumentation) reveals that this is
indeed the case, and this in fact results from the absence
of TCP segmentation offload (TSO) support in the guest
domain’s virtual NIC.

TSO support in a NIC allows the networking stack to
bunch together a large number of socket buffers into one big
packet. The networking stack can then do TCP send pro-
cessing on this single packet, and can offload the segmenta-
tion of this packet into MTU sized packets to the NIC. For
large data transfers, TSO support can significantly reduce
computation required in the kernel.

For the sender workload, Xen-domain0 can directly make
use of TSO support in the NIC to offload its computation.
However, the guest domain is forced to perform more TCP
processing for MTU sized packets, because the virtual NIC
visible in the guest domain does not provide TSO support.
This is because virtual I/O devices in Xen have to be generic
across a wide range of physical devices, and so they provide
a simple, consistent interface for each device class, which
may not reflect the full capabilities of the physical device.

Profiling results show that in addition to performing large
TCP packet segmentation in software, the guest domain uses
the function csum partial copy generic to perform TCP
checksum computation in software. This is again because
the virtual NIC does not support the checksum offload ca-
pabilities of the physical NIC. However, we have determined
that disabling TSO support in the Xen-domain0 configura-
tion increases instructions executed by a factor of 2.7. Recall
that the ratio of instructions executed between the guest do-
main in Xen-guest0 and the driver domain in Xen-domain0
is 2.8. Therefore, we conclude that the inability to use TSO
in the guest domain is the primary cause for the higher in-
struction cost for the guest domain in Xen-guest0.

In summary,
1. The sender workload in the guest configuration

achieves a throughput less than one-fifth of its throughput
in Xen-domain0 or Linux.

2. Xen’s I/O driver domain model prevents the guest do-
main from offloading TCP processing functions (e.g., TCP
segmentation offload, checksum offload) to the physical in-
terface.

3. Increased working set size and reduced locality in the
guest configuration also lead to higher L2 miss rates.

6.3 Web server workload
Our third benchmark for evaluating network performance

in Xen is the macro-level web-server benchmark running
a simple synthetic workload. The web-server benchmark
stresses the overall networking system, including data trans-
fer paths and connection establishment and closing for a
large number of connections.

We use the multithreaded knot web server from the
Capriccio project [22], and compare the performance of the
different domain configurations with a baseline Linux config-
uration. We run the server using the LinuxThreads thread-
ing library in all configurations, because the NPTL library
currently cannot be used with Xen.

To generate the workload, we run multiple httperf [17]
clients on different machines which generate requests for a



single 1 KB file at a specified rate (open loop). We mea-
sure the aggregate throughput of the web server for differ-
ent request rates. For our workload, we deliberately choose a
small file size to force the server to become CPU-bound [6],
in order to emphasize the performance difference between
different configurations.

Figure 7 shows the performance of the web server for
the configurations, Linux, Xen-domain0, Xen-guest0 and
Xen-guest1. As we can observe, the maximum throughput
achieved in the Xen-domain0 and Xen-guest1 configurations
is less than 80% of the throughput achieved in Linux. knot
running on Xen-guest0, achieves a significantly lower peak
throughput. Its peak throughput is only around 34% of the
peak throughput of Linux.
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Figure 7: httperf throughput for different configu-
rations

Figure 8 compares the aggregate hardware event counts
for all four configurations at a request rate of 5000 reqs/s.
At this request rate, all configurations deliver the same
throughput.
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Figure 8: Relative hardware event counts in differ-
ent configurations for web-server benchmark

Many of the trends seen in figure 8 are similar to the
results seen for the sender and receiver microbenchmarks.
In particular, DTLB misses per instruction is much higher in
all Xen configurations than in Linux. The TLB miss rate is
the primary cause for the lower throughput of Xen-domain0
compared to Linux.

Both the guest configurations suffer from higher instruc-
tion costs and L2 miss rates compared to the Xen-domain0
configuration. Overheads identified earlier such as those as-
sociated with bridging in the driver domain and page trans-
fers in Xen contribute to the higher instruction count for
the guest configurations. However, TSO offload does not
contribute to significant overhead in this workload, because
each data transfer is of a small 1 KB file, and large data
transfers are not involved. The higher computational over-
head does not degrade performance significantly in the Xen-
guest1 configuration since it utilizes two CPUs. The Xen-
guest0 configuration performs the worst, both because of its
higher computational overhead on a single CPU, and also
because of higher L2 miss rates.

7. RELATED WORK
Several previous papers which describe various VMM im-

plementations include performance results that measure the
impact of virtualization overhead on microbenchmark or
macrobenchmark performance (e.g., [4, 15, 25, 23, 19]).
Xenoprof allows a deeper investigation of such performance
results to measure the impact of virtualization on microar-
chitectural components such as the cache and the CPU in-
struction pipelines, and the interaction between the appli-
cation, the VMM, and other domains.

The use of techniques similar to Xen’s I/O device driver
domains seems to be a growing trend with many cited advan-
tages including portability, reliability, and extensibility [10,
9, 24, 14]. It is important to gain a better understand-
ing of the performance impact of using this new model [6].
Our work aims to contribute to this effort, and it is hoped
that the performance issues that have been identified so far
through the use of Xenoprof will be helpful in finding op-
portunities to improve performance with this model.

Performance monitoring techniques in general can be clas-
sified into two categories, software level monitoring and
hardware level monitoring. Software level monitoring in-
volves collection of data related to software events, such as
number of calls to a function, amount of heap memory usage,
and detection of memory leaks. Collection of software level
data is done through code instrumentation, either at com-
pile time or dynamically at run time. Tools that can use this
approach include Caliper [12], PIN [21], and Paradyn [16].
Hardware level monitoring uses programmable performance
monitoring counters in the processor or chipset hardware to
collect information about hardware events. Several hard-
ware monitoring interfaces [8, 18, 5] and tools [3, 1] have
been defined for using hardware performance monitoring on
different architectures and platforms.

Conventionally, both software and hardware performance
monitoring have been defined in the scope of single OS sys-
tems. Xenoprof extends this approach to virtual machine
environments which potentially run multiple OS instances
simultaneously.

Hardware performance monitoring has been used to tune
application performance in Java Virtual Machines, which



present a different but somewhat analogous hierarchy of in-
teracting entities as in the Xen environment [20, 11].

Xen currently supports the notion of software performance
counters, which can be used to count software level events
occurring inside Xen, such as number of hypercalls, con-
text switches between domains, etc. Xenoprof extends the
profiling facilities of Xen in an orthogonal direction, allow-
ing hardware level performance events to be counted across
multiple domains.

8. CONCLUSIONS
In this paper, we presented Xenoprof, a system-wide sta-

tistical profiling toolkit for the Xen virtual machine envi-
ronment. Xenoprof allows coordinated profiling of multiple
VMs in a virtual machine environment to determine the dis-
tribution of hardware events such as clock cycles, cache and
TLB misses.

We evaluated network virtualization overheads in the Xen
environment using different workloads and under different
Xen configurations. Our Xenoprof based profiling toolkit
helped us analyze performance problems observed in the
different Xen configurations. We identified key areas of net-
work performance overheads in Xen, which should be the
focus of further optimization efforts in Xen.

We also demonstrated the use of the profiling toolkit for
resolving real performance bugs encountered in Xen. We be-
lieve that with the growing popularity of virtual machines
for real world applications, profiling tools such as Xenoprof
will be valuable in assisting in debugging performance prob-
lems in these environments.
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