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Abstract—For better understanding of genetic mechanisms
underlying clinical observations, we often want to determine
which genes and clinical traits are interrelated. We introduce
a computational method that can find co-clusters or groups of
genes and clinical parameters that are believed to be closely
related to each other based upon given empirical information.
The proposed method was tested with data from an Acute
Mpyelogenous Leukemia (AML) study and identified statistically
significant co-clusters of genes and clinical traits. The validation
of our results with Gene Ontology (GO) as well as the literature
suggest that the proposed method can provide biologically
meaningful co-clusters of genes and traits.

I. INTRODUCTION

The invention of DNA microarray technologies has en-
abled researchers to simultaneously monitor the expression
level of virtually all known genes [5], [9]. Thus, for the
purpose of finding genes related to a certain clinical trait
(or parameter) of interest, it has become feasible to examine
all the genes available and then select only those whose
expression is consistently correlated with the trait over
many samples. Although correlation does not always imply
causality, this approach has been successful in many studies
as an attempt to understand genetic mechanisms underlying
clinical observations [3], [13], [16], [17].

To measure correlation between a gene and a clinical trait,
existing approaches obtain a vector of the expression level
of the gene over a number of samples and another vector
of the value of the clinical trait over the same samples and
then calculate statistical correlation between two vectors. By
applying this procedure to many genes, we can identify some
genes correlated to the clinical trait of interest.

Proceeding one step further from prior methods that can
reveal one-to-many relationships between a single trait and
multiple genes (or vice versa), we present in this paper a
method that can find many-to-many relationships between
genes and traits using a clustering technique called co-
clustering. Here the term co-clustering or biclustering [10]
refers to an unsupervised learning technique that performs
simultaneous clustering of rows and columns in a matrix to
find (possibly) overlapping submatrices covering the matrix.

More specifically, given gene expression data and clinical
parameter values, we first create a matrix called correla-
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tion matrix that can collectively represent the degree of
correlation between genes and clinical traits. Each row and
column of this matrix corresponds to a gene and a clinical
trait, respectively. Then, our method searches co-clusters or
submatrices (with some semantics to be defined) covering
the correlation matrix.

The co-cluster search algorithm proposed in this study
is an extension of our earlier work [18], which can de-
terministically find all the co-clusters satisfying specific
input parameters in an efficient manner. This prior work
possessed clear advantages over heuristic methods that can
provide only partial solutions and other exact algorithms
that are not scalable to large-scale problems. In addition to
this efficiency, our extended algorithm can detect not only
positive correlation but also negative correlation, which was
neglected in our previous study.

We tested our method with the Acute Myelogenous
Leukemia (AML) data set [3], which consists of a DNA
microarray data matrix and a parameter matrix for 119
patients, 15 parameters, and 6283 genes. We identified 43 co-
clusters using the proposed method. To justify the grouping
of certain genes and clinical traits by the co-clusters found
from the AML data, we present some supporting evidence of
co-clustered genes and traits from the literature. In addition,
we show that certain Gene Ontology terms annotating genes
in some co-clusters are significantly over-represented. Taken
together, these experimental studies suggest that our method
can find biologically meaningful co-clusters.

Section II explains at length our method to find co-
clusters. Experimental results and discussions are presented
in Section III, followed by concluding remarks in Section I'V.

II. METHOD

Let S represent a set of clinical samples. For each sample
in S, gene expression levels are measured by the DNA
microarray technology of choice. Let G be the set of genes
in the measurement. Clinical traits are recorded for each
sample. Let T" be the set of the recorded traits.

The input of our method consists of two data matrices
constructed from the above experiments. One is a gene
expression data matrix denoted by pair A = (G, S). That is,
A € RIGI¥ISI and the element a;j, of the matrix A represents
the expression level of gene ¢ for sample k. The other matrix
is denoted by pair B = (T',.S), where the element bj;, of the
matrix B corresponds to the value of trait j for sample k.
Depending upon the type of trait j, b;; may be quantitative,
categorical, or others. We make the columns of A and B
arranged in the same order.
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Fig. 1. Construction of the correlation matrix. A co-cluster appears as a
submatrix of the correlation matrix C.

The output is a set of co-clusters. A co-cluster is composed
of a gene set I C G and a trait set J C T and represents
a group of genes and traits closely related to each other,
given the input matrices A and B. A formal definition of a
co-cluster will be presented in Section II-B.

The proposed method consists of the following three steps:

1) An intermediate data matrix called correlation matrix
is constructed from the input matrices (Section II-A).

2) Special co-clusters called pairwise co-clusters are
found in the correlation matrix (Section II-C).

3) Co-clusters are derived from the pairwise co-clusters
(Section II-D).

A. Correlation matrix computation

We combine the input matrices A and B and construct a
correlation matrix. This matrix is denoted by C, and the row
set and the column set of C' are G and T, respectively. The
element c;; indicates the degree of correlation between gene
1 and trait j, as illustrated in Figure 1.

More precisely, the element c;; is the statistic defined in
significance analysis of microarrays (SAM) [13], namely,

_ "

“ij = Sij + So’ M
where 7;; is a score to measure the degree of correlation
between the expression level of gene ¢ and the value of
clinical trait j, s;; is the “gene-specific scatter” or the
standard deviation of repeated expression measurements, and
sp is a “fudge” factor to prevent the computed statistic
from becoming too large when s;; is close to zero [5]. The
specific definition of r;; varies depending upon the type of
clinical trait j. For example, if clinical trait j has quantitative
values then 7;; is defined in terms of the Pearson correlation
coefficient [12] between the ¢-th row vector of the matrix A
and the j-th row vector of the matrix B.

When calculating ¢;;, we must follow a procedure for
multiple comparisons, thus ensuring that too many falsely
significant ones are not declared [5], [12]. To this end, the
false discovery rate (FDR) is estimated for each c;; by
random permutation of the data for gene expression among
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Fig. 2. Defining co-clusters. (a) D = (I, J), an example co-cluster with
the gene set I and the trait set J. (b) The column vectors of D show the
same trend. (c) Positive correlation between traits « and y. (c) Negative
correlation between traits « and y.

the different experimental arms. Then, the p-value of the
statistic ¢;; is defined as follows.

Definition I: The p-value for score c;;, denoted by p-
value(c;;), is the lowest FDR at which the score is called
significant.

Further details on defining r;;, estimating the FDR, and
computing sg are beyond the scope of this paper, and the
interested readers are directed to [13].

B. Defining co-clusters

We are interested in finding a submatrix (of the correlation
matrix) in which the values on all columns exhibit some
common behavior. An example is presented in Figures 2(a)
and 2(b). In particular, we focus on searching submatrices
where every pair of column vectors show positive or negative
correlation as seen in Figures 2(c) and 2(d).

To assess the degree of correlation, we introduce a metric
called linear deviation, which resembles a conventional
statistic such as the Pearson correlation coefficient but can
be computed more efficiently, especially in the current setup
where we want to measure correlation between many sub-
vectors of two vectors. The introduction of this metric is
not to deny the effectiveness of a conventional statistic but
to transform it to a computation-efficient form, minimizing
loss in the detection power.

Definition 2: For V, a vector on R, the range of V,
denoted by RANGE(V), is the absolute difference between
the largest and the smallest elements of V.
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Definition 3: Given V and W, two real vectors of the
same dimension, the linear deviation of V and W, denoted
by LIN-DEV(V, W), is defined as

min{RANGE(V — W), RANGE(V + W)}. (2)

The example in Figure 3 reveals the relationship between
LIN-DEV and the Pearson correlation coefficient: a lower
value of LIN-DEV typically corresponds to a higher level
of either positive or negative correlation. Using the metric
LIN-DEV, a co-cluster is formally defined as follows.

Definition 4: Given the correlation matrix C' = (G,T)
and thresholds 7 > 0 and w > 0, a co-cluster is a matrix,
denoted by D = (I, J), satisfying the following conditions:
(1) I € G and J C T (2) for any two column vectors V and
W ofsize |I]in D, LIN-DEV(V, W) < 73 (3) Vi € I,Vj € J,
p-value(c;;) < .

Condition (1) indicates that D is a submatrix of the corre-
lation matrix C. Condition (2) is to require that every pair of
|I|-dimensional column vectors from D exhibit correlation
with respect to the metric LIN-DEV. The last condition is to
find co-clusters with statistically significant elements. In this
study, we search only maximal co-clusters or those that are
not contained by others.

C. Discovering pairwise co-clusters

After having computed the correlation matrix, the next
step of our method is to find a special type of co-cluster
called pairwise co-cluster. A pairwise co-cluster is a co-
cluster with only two traits and can therefore be represented
by a submatrix (of the correlation matrix) with two columns.
Pairwise co-clusters are used later in Section II-D as seeds
to find (non-pairwise) co-clusters.

To find a pairwise co-cluster in the correlation matrix C' =
(G, T), we first select two distinct columns v,w € T and
construct from them two |G|-dimensional column vectors
V = (ClU,CQU, ey C|G\u) and W = (Clw; Cowy v v vy C|G\w)~
Then, we compare V and W to identify I, a set of dimen-
sions over which V and W are correlated (I C (). Finally,
we remove all ¢ € I such that p-value of ¢;, or ¢;,, is greater
than a given threshold. By Definition 4, the matrix denoted
by pair (I, {v, w}) represents a co-cluster, and this co-cluster
with only a pair of traits is called pairwise co-cluster.

Here we further explain the procedure to compare two
vectors V' and W and identify the dimension set I. The other
details on finding pairwise co-clusters are straightforward
and are thus omitted.

Algorithm 1 presents the procedure to find I, a set of
dimensions over which two vectors V' and W are positively
correlated. Invoking this algorithm with —V, W or V, -W
provides a set of negatively correlated dimensions.

The key idea of Algorithm 1 is simple: when the elements
of a vector V are arranged in an ascending or descending
order, range(V') is simply the absolute difference between
the first and the last elements of V', and no other elements
need to be examined. Thus, in Lines 1-3, the vector S =
V — W is rearranged in ascending order. Then, in Lines
6-15, the algorithm examines sub-vectors of S and reports
those whose range is not greater than the threshold 7. The

Algorithm 1: Find positively correlated dimensions for two vectors

input : V and W, two n-dimensional vectors
input : 7, a threshold
output: 7 C {1,2,...,n}, a set of dimensions

for i = 1 to n do
S[i].score := V; — Wy
S[i].dim := 1;

sort S in ascending order with respect to the field score;
begin := 1, end := 2;

while (end < n) do

if (S[end].score — S[begin].score < T) then
end := end + 1;

if (end > n) then

10 | Report {S[begin].dim, ..

XTI N AE W -

., S[end — 1].dim};

12 Report {S[begin].dim, ..
13 repeat

14 ‘ begin := begin + 1;
15 until (begin = end) or
(S[end].score — S[begin].score < T);

., Slend — 1].dim};

boundary of a sub-vector under consideration is indicated by
two pointers begin and end. The algorithm relies on these
pointers to find only maximal subsets and to handle multiple
(and possibly overlapping) instances of I.

The worst-case complexity of Algorithm 1 is polynomial
in n, the number of dimensions in two vectors.

D. Deriving co-clusters

In the last step of our method, co-clusters are derived from
pairwise co-clusters. For the sake of explanation, let pair
(I,J) represent a pairwise co-cluster with J = {z,y} and
assume that we want to expand this co-cluster “horizontally”
by adding z, a third column index, to the set J. Let (I’, J’)
denote this new co-cluster. Since we are interested in finding
only maximal co-clusters, assume that we are to find the
instance of I’ with maximal cardinality.

Clearly, the set .J’ is a superset of J, namely, J' = J U
{2} = {z,y,2}. In contrast, the set I’ is a subset of I by
construction'. In what follows, we explain more precisely
what the set I’ should be.

First, I’ C I as previously stated. Second, if the pair
(I',{x,y,z}) represents a co-cluster, then by definition,
(I' {z,z}), (I',{y, 2}), and (I, {z,y}) should be pairwise
co-clusters. Now let I, and I, be the row sets of pairwise
co-clusters obtained by Algorithm 1 for column pairs {z, z}
and {y, z}, respectively. Then, I’ C I, and I’ C I,.,
since Algorithm 1 finds only maximal pairwise co-clusters.
Therefore, I’ C INI,.NI,,, and we can obtain the instance
of I' with the largest cardinality by setting I’ = INI,,NI,,.

In general, given a co-cluster (I, J), we can add element
z to the set J and produce a new maximal co-cluster (I, JU
{z}) with

I'=1nN

M 5| 3)

vieJ

'Tf any two trait vectors show a common trend over |G| dimensions in
the correlation matrix, then three traits including the two traits cannot show
a common trend over more than |G| dimensions.
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Fig. 3.

An empirical study to show the relationship between LIN-DEV and the Pearson correlation coefficient. (a) A pair of 10-dimensional vectors

(V, W) were generated in such a way that the Pearson correlation coefficient py 17 between the two vectors randomly lies in [—1, 1]. The elements of the
two vectors were ranged in [—10, +10]. We also calculated RANGE(V — W) and then place point (py w, RANGE(V — W)) on a plot. We repeated this
procedure 300 times. Two 300-dimensional vectors X and Y were created from the 300 points (x,y) on the plot. We calculated the Pearson correlation
coefficient pxy between vectors X and Y to obtain pxy = —0.7433 (P < 10~°%), indicating significant negative correlation between RANGE(V — W)
and pyyy. (b) The same procedure repeated for a plot of pyyy versus RANGE(V + W): pxy = 0.7934 (P < 10766). (c) Focusing on a low value of
the metric LIN-DEV thus enables us to detect either strongly positive or highly negative correlation between V' and W.

Algorithm 2. Mining co-clusters

input : C = (G, T), a correlation matrix
output: co-clusters

1 Generate pairwise co-clusters by Algorithm 1;
2 foreach {z,y} C T do
3 Create vertex v;
4 v.J :={z,y}
5 ConstructTrieInPreorder(v);
6 delete v;
7 Remove redundancy and return remaining co-clusters;
8 procedure ConstructTrieInPreorder (vertex v)
9 begin
10 if [v.J| = |{z,y}| = 2 then
11 ‘ vl = Ty
12 else
13 vertex p := v.parent;
14 k := the element in v.J — p.J;
15 vl :=pIN(Nvjep.s Lik):
16 if v.I = 0 then return;
17 Collect pattern (v.I,v.J);
18 | := the “largest” element in v.J wrt a total order <;
19 J:={jlj€Tandl < j};
20 foreach j € J do
21 create vertex w;
22 w.J :=v.JU{j}
23 w.parent := v;
24 ConstructTrieInPreorder(w);
25 delete w;
26 end

where I;, is a maximal pairwise co-cluster for columns
{4, z}. Our approach to deriving co-clusters from pairwise
co-clusters is based upon this idea.

Algorithm 2 provides the details. Recall that 7" is the set of
clinical traits or the set of column indices in the correlation
matrix C = (G, T). Algorithm 2 examines elements .J € 27
in such an order that Equation 3 can be exploited to find a
co-cluster (I,.J). To this end, a data structure called prefix
tree or trie [1] is employed to systematically represent the
elements of the power set 27. For the sake of explanation,
assume that T = {1,2,3,4}. The prefix tree representing
the power set 27 is depicted in Figure 4(a). Each vertex v
of the prefix tree is associated with two sets v.I and v.J

such that v.J C G and v.J C T'. Indicated inside a vertex in
Figure 4(a) is v.J.

The prefix tree is traversed in preorder by Algorithm 2. In
the worst case, the algorithm needs to visit every vertex of the
prefix tree. Thus, the worst-case complexity of Algorithm 2
is exponential in |T'|. However, in most cases, this exhaustive
enumeration is avoided, and the running time of our algo-
rithm on typical benchmarks is practical. To see the reason,
observe that the subtree rooted at a vertex v with v.I =
needs not be visited and removed from the prefix tree. The
condition v.] = () means that the matrix represented by the
pair (v.I,v.J) cannot be a co-cluster. Thus, any pair (I, J')
with J’ D v..J cannot represent a co-cluster, either, regardless
of the set I'. For instance, assume that v.I = ) for the top left
vertex v with v.J = {1,2}. Then, as shown in Figure 4(b),
the vertex v and the subtree rooted at v are removed from
the tree, producing the reduced tree in Figure 4(c).

Several remarks are in order. First, the algorithm does not
maintain the prefix tree in its entirety. Only a part of the
subtree is constructed at a time and removed after its use.
To emphasize this, the procedure used in Algorithm 2 was
termed “ConstructTrie” rather than “TraverseTrie.” Second,
multiple instances of v.I can be produced in Line 15, since
p-I and I}, in this line are not necessarily unique.

E. Remarks

Our method provides both a list of co-clusters found in
the correlation matrix and the graphical images of these co-
clusters. For example, Figure 6(d) shows some co-clusters
discovered from the correlation matrix in Figure 6(c), which
was constructed from the data in Figures 6(a) and 6(b). The
reader may first refer to Figure 5 for more details on reading
the images in Figure 6(d).

Given input matrices A and B, our method can find all co-
clusters that satisfy specific input parameters. If desired, the
users can also define a criterion to further select co-clusters
of specific interest.
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Prefix tree example. Each vertex v is associated with two sets v./ and v.J. Indicated inside each vertex v is v.J. Algorithm 2 examines only

those vertices with |v.J| >= 2. (a) A prefix tree representing the power set 27, where T' = {1, 2, 3,4}. (b) Assuming v.I = () for the top most vertex
with v.J = {1, 2}, the subtree rooted at the vertex v can be removed. (c) Reduced prefix tree.

The problem of co-clustering is inherently intractable [10],
and the worst-case complexity of our method is exponential
in |T'|, the total number of samples. However, the response
time of our method was practical in all the cases we tested.

III. EXPERIMENTAL RESULTS

A. Experiment procedure

We tested our method with data from an Acute Myeloge-
nous Leukemia (AML) study [3]. The AML data set used
includes two matrices. One is a gene expression data matrix
with 6283 genes and 119 samples as shown in Figure 6(b).
The other is a matrix of 15 clinical parameters measured
from the identical samples as seen in Figure 6(a). We used
the procedure described in Section II-A to produce the
correlation matrix? presented in Figure 6(c). The algorithm to
find co-clusters in the correlation matrix was implemented in
ANSI C++ on a 3.02 GHz Linux machine with 4 GB RAM.
The implementation was invoked with the parameters listed
in Table I. The running time was in the order of minutes.

2This correlation matrix has 14 columns instead of 15, because the traits
“Status” and “Overall survival” were merged into one for the convenience
in survival analysis.
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Fig. 5. Composition of each images in Figure 6(d). Each figure is composed
of three panels (heat maps). The panel in the middle corresponds to the
submatrix (I, S) of the microarray matrix A, where I C G. The panel at
the top corresponds to the submatrix (J, S) of the trait matrix B, where
J C T. The right panel represents a co-cluster or a submatrix (I, J) of
the correlation matrix C'. The colored bars at the left of the middle panel
indicate those genes from the gene groups C—H labeled in Figure 6(b).

B. Results and discussion

We identified 43 co-clusters from the AML data set.
Figure 6(d) shows some of the co-clusters found. Refer to
Figure 5 for how to read the images in Figure 6(d). For
each co-clusters (I, J) discovered (I C G,J C T), it is
possible to pose a hypothesis of the form “genes g € I are
correlated with traits ¢ € J”, which can then be tested by
further experimental studies.

Supporting evidence from the literature: Our data showed
that trait “survival” is clustered with genes TGFBI or TGFB2
and CDIa multiple times in co-clusters #37, #38, #42 and
#43. TGF-f (transforming growth factor-3 ) is a multifunc-
tional peptide that has both growth-inhibitory and growth-
stimulating properties [8]. Its combined effects with other
growth factors or inhibitors have been shown to play a central
role in the control of growth, differentiation, and morpho-
genesis of normal and malignant cells. For example, TGF-
[ is required for efficient in vitro generation of dendritic
cells (DC) from CD34+ progenitor cells [11]. However, it
also inhibits cell proliferation and survival mediated by Flt3
(Fms-like tyrosine kinase-3) signaling pathway [7], [14].
Given that a mutated and constitutively active form of Flt3 is
detected in 30-35 % of AML cases and the patients with FIt3
mutations tend to have a poor prognosis [15], it is interesting
to note that “survival” trait is positively correlated with the
expression of TGFBI and TGFB2 which abrogate the effects
of Flt3.

In addition, our data indicate that “survival” is associated
with the expression of CDla, a cell surface marker for
mature DC. Previous studies reported that, when cultured in
the presence of GM-CSF (granulocyte-macrophage colony-

TABLE I
THE INPUT PARAMETERS USED FOR THE EXPERIMENT AND SOME
STATISTICS OBTAINED FROM THE OUTPUT CO-CLUSTERS.

Parameters/statistic Value/reference

A: gene expression matrix [3]

B: trait matrix [3]

7: parameter for Algorithm 1 2.5

7. p-value cutoff 0.05
Total number of co-clusters found 43
Average size of co-clusters (#genes, #traits) (143, 3)
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Fig. 6. Data from an adult acute myeloid leukemia (AML) study [3]. (a) The heat map of the clinical trait matrix, in which each row corresponds to a
trait and each column a sample. The legend of the heat map can also be found. (b) The heat map of the gene expression matrix with 6283 genes (rows) and
119 samples (columns). The vertical colored bars are to indicate the gene groups C—H used in the original study [3]. (c) The heat map of the correlation
matrix. (d) Some co-clusters found by the proposed method. Refer to Figure 5 for further details. [We suggest the reader to print this page in color.]
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TABLE I
SOME GENES CONTAINED IN CO-CLUSTER #15 WITH DESCRIPTIONS.

[ Gene Description
MALTI MAL tissue lymphoma translocation gene 1
NFIL3 Nuclear factor, interleukin 3 regulated
APOH Apolipoprotein H (beta-2-glycoprotein I)
FCGRT Fc fragment of IgG, receptor, transporter, alpha
SERPINAI Serine (or cysteine) proteinase inhibitor
CIQA Complement component 1, q subcomponent, alpha
0AS2 2’-5’-oligoadenylate synthetase 2
ITK IL2-inducible T-cell kinase
CD3G CD3G antigen, gamma polypeptide (TiT3 complex)

TABLE III
AN ENRICHED GO TERM OBTAINED BY GO::TERMFINDER [2].

Item Value ]
GO term

Cluster frequency
Genome frequency of use

Defense response
9 out of 54 genes (16.7%)
1209 out of 23531 genes (5.1%)

Corrected p-value 0.0359
False Discovery Rate (FDR) 3.00%
False Positives 0.06

stimulating factor), TNF-a (tumor necrosis factor-av), and
IL-4 (interleukin-4), AML cells were induced to differentiate
into DC and up-regulated the expression of CDIa and co-
stimulatory molecules such as CD80 and CD86 [4], [6].
Since DC are the most potent antigen-presenting cells (APC)
in the immune system, the CDlIa-positive leukemic DC
might function as APC bearing leukemic antigen, prime
cytotoxic T cells and generate a strong anti-leukemic immune
response. This may explain why CD/a is often clustered with
trait “survival” in our data.

Validation with GO: To determine whether any GO terms
annotate genes in a specified co-clusters at a frequency
greater than that would be expected by chance, a p-value is
calculated in this particular setting using the [hypergeometric

L _ k-1 ()2 :
distribution: p-value = 1 — Y 7" ~n=t> where N is

the total number of genes in the backéround distribution,
M 1is the number of genes (within that distribution) that are
annotated to the node of interest, n is the size of the list
of genes in a co-cluster of interest, and % is the number of
genes within that list which are annotated to the node. The
background distribution is all the genes within a given GO
annotation file.

We used the tool GO::TermFinder [2] for the calculation
of p-values as well as the multiple hypothesis correction
[5] of the calculated p-values. Using this tool, we found
from Process Ontology the terms that annotate genes in co-
cluster #15 with p-values less than a threshold of 0.05.
(The descriptions of the genes included in co-cluster #15 are
listed in Table II.) These terms include “defense response,’
“immune response,” “acute-phase response,” “antigen pre-
sentation,” and “T-cell activation.” Further analysis of each
enriched term is also possible, and as an example, Ta-
ble IIT shows more statistics for the term “defense response”
(GO:0006952).

ELINT3

IV. CONCLUSIONS

We investigated the problem of finding co-clusters of genes
and clinical traits using microarray data and clinical pa-
rameter information. An intermediate data matrix called
correlation matrix was computed by means of a statistical
method. We then modeled a co-cluster by a submatrix of
the correlation matrix with some semantics and aimed at
finding statistically significant co-clusters. We proposed a
co-clustering algorithm, tested it with the AML data set and
discovered some number of co-clusters. The validation with
GO as well as the literature suggests that some co-clusters
found be biologically meaningful.
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