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Abstract—The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental
conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional
clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit
coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters
with high levels of coherence. In this work, we propose a novel biclustering algorithm that exploits the zero-suppressed binary decision
diagrams (ZBDDs) data structure to cope with the computational challenges. Our method can find all biclusters that satisfy specific
input conditions, and it is scalable to practical gene expression data. We also present experimental results confirming the effectiveness
of our approach.
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1 INTRODUCTION

CLUSTER analysis, or clustering, is an unsupervised
learning technique to group a set of objects into

subsets, or clusters, such that those within each cluster are
more closely related to one another than objects assigned to
different clusters [14]. Although there is mature statistical
literature on clustering, DNA microarray data have sparked
the development of multiple new methods [22]. In
particular, the biclustering technique [7], [21], [8], [4], [13],
[15], [16], [26], [29], [31], [33], [34] is one of the most
promising innovations in this area [3]. Given a gene
expression data matrix, this technique seeks to find a
bicluster, or a subset of genes displaying similar behavior
under a subset of conditions.

The biclustering technique is more suitable for cases in
which genes have multiple functions and experimental
conditions are diverse. Consequently, this method may
provide additional biological insight that has been over-
looked by traditional clustering approaches. For example,
biclustering is more compatible with our understanding of
cellular processes: We expect subsets of genes to be
coregulated and coexpressed under certain experimental
conditions, but to behave almost independently under other
conditions [4]. Thus, the biclustering method may be useful
in recognizing reusable genetic “modules” that are mixed
and matched in order to create more complex genetic
responses [3].

We can characterize a bicluster by several criteria. The
most common method is to measure the degree of coherence,
or similarity in behavior, among the objects in a bicluster. In
addition, it may be helpful to characterize biclusters by the
degree of fluctuation in gene expression levels, which cannot
be captured by coherence measurement. In Fig. 1, we
present a plot in which biclusters can be placed according to
their degree of coherence and fluctuation.

In some applications, such as gene coregulation analysis,
the biclusters in area A would be the most interesting
because similar behavior between highly expressed genes is
much more important than that between two poorly
expressed genes [13]. On the other hand, the “flat”
biclusters in area C are important and need to be considered
in other applications, such as the identification of marker
genes. Suppose that we are interested in correlating the
activity of one or more genes to specific subphenotypes. If
specific genes are expressed in some phenotypes and not in
others, and if we eliminate the genes whose expression
levels do not change much over the range of experimental
conditions, then the emerging biclusters will be flat.
Qualitatively speaking, the biclusters in area B are less
interesting because they have a lower level of coherence
than those in areas A or C.

Many techniques have been proposed to find biclusters
with a high level of coherence, particularly those that can be
placed in areas A or C on the characterization plot. Some
methods define a bicluster in a way such that any sub-
bicluster of the bicluster is yet another bicluster under the
same definition and input parameters. Examples include
the �-valid kj-patterns [7], OPSMs [4], xMOTIFs [21],
�-pClusters [31], and GEMS [32]. By measuring coherence
with fine granularity, these biclusters can potentially exhibit
high degrees of coherence [31]. Our approach also takes
advantage of this property to find coherent biclusters.

The cluster search problem is in general NP-hard [28],
and the biclustering problem is no exception [8], [31], [29].
To cope with this computational challenge, our method
exploits a compact data structure called zero-suppressed
binary decision diagrams (ZBDDs) [19], [20], [18] to implicitly
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represent and manipulate massive data. The ZBDDs have
been used widespread in other domains, namely, the
computer-aided design of very large-scale integration (VLSI)
digital circuits, and can be useful in solving many practical
instances of intractable problems. We emphasize that our
method exploits this property of ZBDDs, and can find all
the biclusters that satisfy specific input conditions without
exhaustive enumeration.

In Section 2, we brief the reader on the relevant
biclustering techniques as well as the fundamentals of
ZBDDs. We also provide a formal problem statement.
Section 3 introduces a special kind of bicluster that plays a
crucial role in helping the reader to understand our method.
In Section 4, we present the essential properties of biclusters
in our definitions. We propose our biclustering algorithm in
Section 5 and, in Section 6, we present the results from our
experimental studies.

2 PRELIMINARIES

2.1 Definitions

Let UG ¼ fg0; g1; . . . ; gn�1g and UE ¼ fe0; e1; . . . ; em�1g repre-
sent a set of genes and a set of experimental conditions
involved in gene expression measurement, respectively. The
result can be represented by the matrix D 2 IRjUGj�jUE j with
the set of rowsUG andset of columnsUE . Eachelementdij inD
corresponds to the expression information of gene gi in
experiment ej. We can denote D by the pair ðUG;UEÞ.
Depending on the microarray technology used, the informa-
tion reflects either absolute expression levels (e.g.,Affymetrix
GeneChips) or relative expression ratios (e.g., cDNA micro-
arrays) [15]. Our method is applicable to both.

A bicluster is defined to be a subset of genes that exhibit
similar behavior under a subset of experimental conditions,
and vice versa. Thus, in the gene expression data matrix D,
a bicluster will appear as a submatrix of D. We denote this

submatrix by pair B ¼ ðG;EÞ, where G � UG and E � UE .
We specify the size of bicluster B by jGj � jEj.
Example 1. An example of data matrix D ¼ ðUG;UEÞ and

biclusters on D are shown in Figs. 2a and 2b,
respectively. Throughout the paper, we are going to
explain how to find these two biclusters from matrix D.

2.2 Characterization of Biclusters

2.2.1 Definition of Similarity

The elements of a bicluster show similar behavior. Depending
upon the biclustering method used, the definition of this
“similar behavior” varies. According to Madeira and
Oliveira [17], we can identify four major classes of
biclusters:

1. biclusters with constant values,
2. biclusters with constant values in rows (genes) or

columns (experiments),
3. biclusters with coherent values, and
4. biclusters with coherent evolutions.

Califano et al. [7] modeled a bicluster with constant rows
by the �-valid kj-pattern, a k� j matrix in which the
maximum and minimum values of each row differ by less
than �. Wu et al. [32] proposed a similar definition of
biclusters in which every gene is expressed within a small
range � across all experimental conditions. Both methods
aimed at finding maximal biclusters, in the sense that they
are not contained by other biclusters of the same type.

The �-biclustering approach by Cheng and Church [8]
employed the concept of a residual to find a bicluster with
coherent values. In the analysis of variance (ANOVA)
models, a residual is the difference between an actual value
and the mean score for the group or category from which
that value was taken [23], [27]. Thus, a low value of residual
can show a high degree of coherence, while a high value

2 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 2, NO. 3, JULY-SEPTEMBER 2005

Fig. 1. Characterization of biclusters. In some applications, such as gene coregulation analysis, the biclusters in area A are most interesting. On the

other hand, the biclusters in area C are important in other applications, such as marker gene identification.

Fig. 2. Example to be referred to throughout the paper. (a) Gene expression data matrix D ¼ ðUG; UEÞ, where UG ¼ fg0; g1; g2; g3; g4; g5g and

UE ¼ fe0; e1; e2; e3; e4; e5g. (b) Two maximal biclusters on D we are going to find. The parameters used are � ¼ 1, MG ¼ ME ¼ 3, as will be explained

in Section 2.4.



reveals the opposite. The residual of element aij in the
matrix A denoted by a pair of sets ðI; JÞ is

rij ¼ aij � ai� � a�j þ a��; ð1Þ

where ai� is the mean of the ith row, a�j the mean of the jth
column, and a�� the mean of all elements in A. The pair
ðI; JÞ specifies a �-bicluster if the following mean squared
residual (MSR) of the elements in A is lower than �, a given
threshold:

MSRðI; JÞ ¼ 1

jIjjJ j
X

i2I;j2J
r2ij: ð2Þ

The pClustering technique by Wang et al. [31] also aimed
at finding a bicluster with coherent values. The matrix A
denoted by pair ðI; JÞ is called a �-pCluster if the value of
jx� z� yþ wj is lower than some � for any 2� 2 submatrix

x y
z w

� �

in A.
Some biclustering algorithms seek to find biclusters with

coherent evolutions across the rows regardless of their exact
numerical values. Ben-Dor et al. [4] looked for order-
preserving submatrices (OPSMs), in which the expression
levels of all genes induce the same linear ordering of the
experiments. An OPSM represents a bicluster with coherent
evolutions on its columns, and they wanted to find large
OPSMs. Murali and Kasif [21] proposed a representation for
gene expression data called conserved gene expression
motifs (xMOTIFs). An xMOTIF is a subset of genes that is
simultaneously conserved across a subset of experimental
conditions. They assumed that the expression level of a
gene is conserved across some experimental conditions if
the gene is in the same “state,” or a range of expression
levels, under each different condition. They aimed at
finding the largest xMOTIF.

2.2.2 Degree of Fluctuation in Expression Levels

Depending upon the situation encountered, itmay be helpful
to characterize biclusters by the degree of fluctuation in gene
expression levels as well as by the similarity in behavior.
Considering similarity alone is insufficient to capture widely
fluctuating gene expression patterns. For instance, the lowest
MSR value (zero) indicates that the gene expression levels
fluctuate in unison. However, flat biclusters with no fluctua-
tion can also have an MSR value of zero [8].

When removing flat biclusters is beneficial, we can
employ the following average row variance (ARV) to
eliminate them:

ARV ðI; JÞ ¼ 1

jIjjJ j
X
i2I

X
j2J

ðaij � ai�Þ2: ð3Þ

2.3 Implicit Representation of Boolean Functions

In Sections 3.3 and 5.2.2, we will present a method to
implicitly represent and manipulate massive data. This
method is based upon an efficient data structure called the
zero-suppressed binary decision diagram (ZBDD) [20]. To
facilitate our explanation in a later section, here we explain
the fundamentals of ZBDDs and related concepts. For a
more extensive treatment of ZBDDs, the reader can refer to
[18], [19], [25], [20].

2.3.1 Binary Decision Diagrams (BDDs)

Boolean logic functions can be represented in several ways.
For example, Figs. 3a and 3b show the truth table and the
binary decision diagram (BDD) of f ¼ ðaþ bÞc, respectively.
Decision diagrams, which are arranged so that variables are
in any given order, can be reduced and made into a
canonical representation of the function [5]. Reduction rules
are 1) merge equivalent subgraphs and 2) remove vertices
with identical subgraphs. For example, we can apply the
first rule to the BDD in Fig. 3b and obtain the BDD in Fig. 3c.
Applying the second rule to the BDD in Fig. 3c finally gives
the reduced ordered BDD (ROBDD) representation in Fig. 3d.

ROBDDs have found widespread use in the optimization
and verification of VLSI design [6]. When ROBDDs are
used, the computational complexity of a problem depends
on the size of its ROBDD representations, which often have
mild growth with the problem size [5], [10].

2.3.2 Zero-Suppressed BDDs (ZBDDs)

Zero-suppressed BDDs [19], [20] are a variant of ROBDDs
that represent a set of combinations. A combination of
n elements is an n-bit vector ðx1; x2; . . . ; xnÞ 2 IBn, where
IB ¼ f0; 1g. The ith bit reports whether the ith element is
contained in the combination. Thus, a set of combinations
can be represented by a Boolean function f : IBn ! IB. A
combination given by the input vector ðx1; x2; . . . ; xnÞ is
contained in the set if and only if fðx1; x2; . . . ; xnÞ ¼ 1. In
most combinatorial applications, the sets of combinations
are sparse, which is defined as the following:

. The sets contain only a small fraction of the 2n

possible bit vectors.
. Each bit vector in the sets has many zeroes.

By exploiting both types of sparsity, ZBDDs provide an
efficient representation for manipulating large-scale sets of
combinations [19]. Minato [19], [20] proposed two reduction
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Fig. 3. Representations of a Boolean logic function f ¼ ðaþ bÞc. (a) Truth table. (b) BDD for the variable order ða; b; cÞ. (c) After applying the first
reduction rule. (d) After applying the second reduction rule. This corresponds to the ROBDD for the variable order ða; b; cÞ.



rules to reduce ordinary BDDs to ZBDDs: 1) merge
equivalent subgraphs and 2) if the 1-edge of a node v
points to the 0-terminal vertex, then eliminate v and redirect
all incoming edges of v to the 0-successor of v.

Although other types of BDDs can represent a set of
combinations, ZBDDs provide the most compact represen-
tations. For example, the ROBDD in Fig. 4a represents a set
of combinations f1000; 0100g for four input variables ðabcdÞ.
By applying the ZBDD reduction rules, we can reduce the
BDD in Fig. 4a to the ZBDD in Fig. 4b, which is more
compact. In addition, ZBDD representations are indepen-
dent of the number of input variables as long as the
combination remains the same, which is due to the “zero-
suppression” effect. For example, a set of combinations
f1000000; 0100000g for seven variables ðabcdefgÞ is repre-
sented by the same ZBDD in Fig. 4b. This is not the case if
we use other types of BDDs. Minato [20] compared the size
of a ZBDD with that of an ROBDD for a large set of
combinations, as shown in Fig. 4c.

2.4 Formal Definition of a Bicluster and Problem
Statement

Definition 1. For the gene expression matrix D 2 IRjUGj�jUE j, let
the pair B ¼ ðG;EÞ represent a submatrix of D. That is, G �
UG and E � UE . The matrix B is called a bicluster if the value
of jx� z� yþ wj is less than or equal to some � for any 2� 2
submatrix

x y
z w

� �

in B.

Definition 2. Given the gene expression data matrix D, the
objective is to find every submatrix B ¼ ðG;EÞ of D that is:
1) a bicluster with respect to a given �; 2) not too small,
namely, jGj � MG and jEj � ME for given values of MG and
ME ; and 3) maximal, or not contained by other biclusters that
satisfy the previous conditions.

Example 2. The two maximal biclusters in Fig. 2b are found
in the data matrix in Fig. 2a by our algorithm with the
parameters � ¼ 1, MG ¼ ME ¼ 3.

In essence, our definition of a bicluster is equivalent to
that of the �-pCluster [31]. The rationale of choosing this
particular bicluster model is that �-pClusters can have
multiple desirable properties. According to Wang et al. [31],
�-pClusters are more resilient to outliers and more coherent
than alternatives. Another very important property is that a
sub-bicluster of a �-pCluster is yet another �-pCluster, which
often results in a high level of coherence.

However, our algorithm is significantly different from
the pClustering technique. The experimental results in
Section 6 will show that a substantial speed-up is possible
by our method even with a reasonably optimized method
such as the pClustering algorithm. Furthermore, our
algorithm can find biclusters that can be placed in area A
as well as area C (see Fig. 1), whereas the biclusters found
by pClustering tend to be located mainly in area C [34]. The
next paragraph explains this reasoning.

The threshold parameter � affects many aspects of the
biclustering problem, as shown in Fig. 5. First, the difficulty
of a biclustering problem depends to some extent on the
value of � since the amount of intermediate data is
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Fig. 4. Representation of a set of combinations. (a) ROBDD representation. (b) ZBDD representation. (c) Comparison of ROBDD and ZBDD [20].

Fig. 5. Qualitative analysis of dependency on �. (a) A larger value of � means a more difficult problem. (b) The ability to capture fluctuation is roughly
proportional to the value of �, whereas the ability to capture coherence decreases as the parameter � becomes larger. (c) A small value of � tends to
find biclusters in area C, while a large value of � typically finds biclusters in areas A or B.



proportional to the size of this threshold value. Second, as
the value of � grows, the capability of the algorithm to find
coherent patterns decreases. In contrast, the wide dynamic
range exhibited by fluctuating patterns can better be
captured by a larger value of �. Figs. 5a and 5b depict
these observations. Consequently, as shown in Fig. 5c, a
large value of � typically results in biclusters in area A,
whereas a small value usually produces biclusters in area C.
According to our experiments, our algorithm can handle
larger values of � than the pClustering algorithm. Conse-
quently, our algorithm can find biclusters in area A as well
as those in area C.

3 PAIRWISE MAXIMAL BICLUSTERS (PMBS)

In this section, we introduce a special kind of bicluster
called pairwise maximal biclusters, which play a crucial role in
our method. Although the biclustering problem is, in
general, intractable [8], [31], these special biclusters can be
discovered in polynomial time.

3.1 Definition of PMBs

We refer to 2� jEj or jGj � 2 maximal biclusters as pairwise
maximal biclusters (PMBs). As shown in Fig. 6, a horizontal
PMB is a bicluster composed of two genes and a maximal
(but not necessarily unique) set of experiments in which the
two genes show a similar behavior. We refer to this
maximal set as a horizontal seed for the two genes. More
formally, horizontal PMBs and seeds are defined as follows.

Definition 3 (Horizontal PMB and seed). Assume B ¼
ðfgi; gjg; EÞ is a 2� jEj bicluster. If there does not exist

E0 � E such that ðfgi; gjg; E0Þ is also a 2� jE0j bicluster,
then the set of experiments E is called a horizontal seed

and is denoted by E
fgi;gjg
max . In this case, we call B a

horizontal PMB for two genes fgi; gjg, and denote it by

B ¼ fgi; gjg; Efgi;gjg
max

� �
.

As will be shown shortly, multiple instances of E
fgi;gjg
max

can exist for a given pair fgi; gjg. We denote the set of all

E
fgi;gjg
max as E

fgi;gjg
max

n o
.

By switching the roles of genes and experiments, vertical

PMBs and vertical seeds are similarly defined. Table 1

summarizes the notations defined in this section.

3.2 Generation of PMBs

Wang et al. [31] proposed a biclustering method called

pClustering. The first step of their algorithm is to find all

the maximal n� 2 biclusters that satisfy specific input

conditions in polynomial time. In order to generate PMBs,

we use a similar approach. Our biclustering method then

differs completely in the remaining steps.
Algorithm 1 describes how to generate vertical seeds for

a given pair of experiments. An algorithm to generate

horizontal seeds is similar but is not shown here. The worst-

case time complexity of Algorithm 1 is OðnlognÞ [31], where

n is the number of genes in the input gene expression

matrix. Moreover, the maximum number of vertical seeds

that can be generated by the algorithm for each pair of

experiments is ðn� 1Þ. Consequently, Algorithm 1 is

efficient, and the number of seeds discovered by this

algorithm does not grow exponentially.

Example 3. Tables 2b and 2c show the vertical seeds and the

horizontal seeds generated from the data set in Fig. 2a,

which is repeated in Table 2a for convenience.
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Fig. 6. Pairwise maximal biclusters (PMBs).

TABLE 1
Notations for PMB and Seed



3.3 Representation of Vertical Seeds

Details on the representation of horizontal seeds will be

provided in Section 5.1. Here, we explain how to represent

vertical seeds. In particular, we utilize zero-suppressed binary

decision diagrams (ZBDDs) [19], an efficient data structure for

large-scale sets. This ZBDD-based representation is crucial to

keeping the entire algorithm computationally manageable.
The key observation is that a set of vertical seeds can be

regarded as a set of combinations and, thus, represented

compactly by the ZBDDs. The set of vertical seeds Gfem;eng
max

� �
normally has much fewer elements than 2jUGj. In addition,

jGfem;eng
max j � jUGj for typical Gfem;eng

max . In other words, both

types of sparsity introduced in Section 2.3.2 hold true.

Hence, the symbolic representation using ZBDDs is more

compact than the traditional data structures for sets.

Furthermore, as shown in Section 5.2.2, the manipulation

of vertical seeds, such as union and intersection, is

implicitly performed on ZBDDs, thus resulting in high

efficiency. Refer to Section 2.3.2 for details on how to

construct ZBDDs.

Example 4. In Table 2c, we showed the vertical seeds for our

running example. The ZBDD in Fig. 7a represents the set

of vertical seeds Gfe0;e3g
max

� �
¼ ffg0; g2; g3; g4g; fg1; g3; g4gg.

Example 5. The ZBDD representation of Gfe3;e5g
max

� �
¼

ffg0; g1; g2; g3g; fg0; g1; g4gg is shown in Fig. 7b, along

with that of Gfe2;e5g
max

� �
¼ ffg1; g3; g4gg.

4 PROPERTIES OF BICLUSTERS

Recall that a bicluster is composed of gene set G and
experiment set E. We first show how G and E are related to
vertical and horizontal seeds, respectively. Then, we
present the property that reveals how G and E are
mathematically related to each other.

4.1 Relationship between G, E, and Seeds

For the gene set G in bicluster ðG;EÞ, G is a subset of a
certain vertical seed. More formally, the following proposi-
tion holds.

Proposition 1. Let ðG;EÞ be a bicluster. If E � fem; eng, then
there exists Gs 2 Gfem;eng

max

� �
such that G � Gs.

Proof. AssumeG � Gs for allGs 2 Gfem;eng
max

� �
. Since ðG;EÞ is

a bicluster and E � fem; eng, its subbicluster ðG; fem; engÞ
is also a bicluster for a given value of �. By definition, if
Gs 2 Gfem;eng

max

� �
, then there exists no G0 � Gs such that

ðG0; fem; engÞ is yet another bicluster for the given value of
�. We have reached a contradiction and thus our original
assumption that G � Gs for all Gs 2 Gfem;eng

max

� �
must be

false. Therefore, theremust be at least one instance ofGs 2
Gfem;eng

max

� �
such that G � Gs. tu

Example 6. Consider bicluster #1 in Fig. 2b, in which G ¼
fg0; g2; g3g andE ¼ fe1; e3; e5g. FromTable 2c, Gfe3;e5g

max

� �
¼

ffg0; g1; g4g; fg0; g1; g2; g3gg. There exists Gs 2 Gfe3;e5g
max

� �
such that G � Gs. That is, G � Gs ¼ fg0; g1; g2; g3g.

Similarly, for any experiment set E in bicluster ðG;EÞ,
the set E is a subset of a certain horizontal seed, as formally
stated in the following proposition. (Its proof is similar to
the proof above and is not presented here.)

Proposition 2. Let ðG;EÞ be a bicluster. If G � fgi; gjg, then
there exists Es 2 E

fgi;gjg
max

n o
such that E � Es.

Example 7. Consider bicluster #0 in Fig. 2b, in which G ¼
fg0; g2; g3; g4g andE¼fe0; e1; e3g. FromTable 2b, Efg0;g3g

max

� �
¼ ffe0; e1; e3g; fe1; e3; e5gg. There exists Es 2 Efg0;g3g

max

� �
such that E � Es. That is, E � Es ¼ fe0; e1; e3g.

4.2 Relationship between G and E

We first define 	, a pairwise intersection operator on two
sets of subsets A and B:
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TABLE 2
Example (� ¼ 1;MG ¼ ME ¼ 3)

(a) Data matrix, (b) horizontal PMBs, and (c) vertical PMBs.

Fig. 7. ZBDDs for vertical seeds.



A	 B ¼ fIjI ¼ A \B; 8A 2 A and 8B 2 Bg: ð4Þ

For instance,

ff0; 1; 2g; f2; 3; 4gg 	 ff0; 2g; f4; 5gg ¼ ff0; 2g; f2g; f4gg:

Now,weuseanexample to reveal the relationshipbetween

GandE byProposition1.Weusebicluster #1 inFig. 2b,which

is depicted in Fig. 8a. By Proposition 1, there exists G1 2
Gfe1;e3g

max

� �
such that G � G1. Similarly, there exists G2 2

Gfe3;e5g
max

� �
such thatG � G2. Also, there existsG3 2 Gfe1;e5g

max

� �
such thatG � G3. Thus,G � G1 \G2 \G3. If we assume that

bicluster B is maximal, then there is no G0 such that G0 � G

and G0 � G1 \G2 \G3. Therefore, as shown in Fig. 8b,

G ¼ G1 \G2 \G3, assuming that we know the sets

G1; G2; G3. In practice, there can be multiple G1; G2; G3, and

weneedtouse theoperator	 insteadof theoperator\.That is,

G ¼ fall G derivable from Eg

¼ Gfe1;e3g
max

n o
	 Gfe3;e5g

max

n o
	 Gfe1;e5g

max

n o
:

In general, the following equation holds:

G ¼ fall G derivable from Eg ð5Þ

¼
O

8ðem;enÞ2E
Gfem;eng

max

n o
; ð6Þ

and by symmetry,

E ¼ fall E derivable from Gg ð7Þ

¼
O

8ðgi;gjÞ2G
Efgi;gjg

max

n o
: ð8Þ

In this work, we use (6) but not (8) because, in most gene

expression data, jUEj � jUGj, which makes the evaluation of

(6) much faster.

5 OUR BICLUSTERING ALGORITHM

We first repeat the problem statement presented in
Section 2.4. For the given gene expression matrix
D 2 IRjUGj�jUE j, the objective is to find every matrix B ¼
ðG;EÞ such that 1) G � UG and E � UE and 2) the value
of jx� z� yþ wj 
 � for any 2� 2 submatrix

x y
z w

� �

in B for a given � � 0. In particular, we are interested in
finding B such that 1) B is not too small, namely, jGj � MG

and jEj � ME and 2) B is maximal in the sense that it is not
contained by others that satisfy the previous conditions.

Our approach is to generate the horizontal and vertical
PMBs from a data matrix and then to derive other biclusters
from them, as shown informally in Fig. 9. Sections 4.1 and
4.2 together suggest a way to derive biclusters from PMBs:
We first determine E from the horizontal seeds and then
compute G by (6) with reference to the vertical seeds. This
idea is elaborated upon in this section.

Fig. 10 shows a flowchart of the proposed method. As
described in Section 3.2, Algorithm 1 is used to find vertical
and horizontal PMBs. Section 3.3 already presented how to
represent vertical seeds by ZBDDs. The representation for
horizontal seedswill be explained in Section 5.1.Algorithm2,
presented in Section 5.1, is used to predict E from horizontal
seeds. Section 5.2 describes Algorithm 3, which can deriveG
from E by (6). For very large-scale gene expression data, we
can optionally split input data by the method introduced in
Section 5.3 before starting Algorithms 2 and 3.

5.1 Predicting the Experiment Set E

For bicluster B ¼ ðG;EÞ, assume that G � fgi; gjg. Then,
E � E

fgi;gjg
max by Proposition 2 in Section 4.1. In the current

setup, what we have is E
fgi;gjg
max and what we are finding is E.

Examining every subset of E
fgi;gjg
max could eventually allow us

to find E. However, it is time-consuming to probe every
subset. Thus, we present a technique to avoid exhaustive
enumeration of subsets in Algorithm 2. This algorithm
considers multiple instances of E simultaneously. Next, we
show each step in detail and with examples using the data
matrix and the seeds in Table 2 with the parameters � ¼ 1

and MG ¼ ME ¼ 3.

5.1.1 Step 1: Removing the Extra Elements in a

Horizontal Seed

Weonly consider the subsets ofhorizontal seeds that arevalid,

according to the following definition, in order to find E.

Definition 4. Let V be a subset of the horizontal seed E
fgi;gjg
max .

The set V is called valid if the following conditions are both

met: 1) jV j � ME and 2) for all fem; eng in V , there exists at

least one1 set Gfem;eng
max such that Gfem;eng

max � fgi; gjg.
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Fig. 8. Relationship between G and E in a Q-bicluster B ¼ ðG;EÞ. (a) Definitions. (b) Deriving G from E.

1. Although it seems that any Gfem;eng
max always has to contain at least gi

and gj, the set Gfem;eng
max may not exist for some fem; eng. This is because

Algorithm 1 does not generate Gfem;eng
max at all if it has less than MG elements.



The invalid subsets need not be examined because they

either contain too few elements (Condition 1) or they cannot

produce any gene set by applying (6) to them (Condition 2).

Example 8. Let E1 and E2 be the two instances of the seed

Efg2;g4g
max in Table 2b. In particular, assume that E1 ¼

fe0; e1; e3g and E2 ¼ fe1; e2; e3g. E1 is valid because there

is at least one instance of each Gfe0;e1g
max , Gfe1;e3g

max , and Gfe0;e3g
max

containing fg2; g4g. In contrast, E2 is not valid because

Gfe1;e2g
max and Gfe2;e3g

max do not exist.

We can identify valid subsets using the notion of cliques

on an undirected graph. Suppose we construct an undir-

ected graph in which the vertices are the elements in E
fgi;gjg
max

and the edges exist according to the following: The edge

between two vertices em and en exists if there is at least one

set Gfem;eng
max such that Gfem;eng

max � fgi; gjg, as described in

Lines 3-7 of Algorithm 2. Then, a valid subset of E
fgi;gjg
max

corresponds to a clique (or complete subgraph) of at least

ME vertices.

Example 9. Figs. 11a and 11b present the graphs for the sets

E1 and E2 in the previous example, respectively. Only

the former represents a valid subset.

However, the clique finding problem cannot in general

be solved in polynomial time [9]. Thus, we instead remove

the elements that cannot belong to a clique on the graph as

an efficient heuristic. These elements are represented by

vertices with a degree (the number of incident edges) less

than ME � 1. Line 8 of the algorithm removes these

elements. If removing them from the set E
fgi;gjg
max makes it

contain fewer than ME elements, then we eliminate the

whole E
fgi;gjg
max (Lines 9-10).

Example 10. In Fig. 11b, all vertices should be removed
because none of them can belong to a clique of at least
ME ¼ 3 vertices. Removing them makes the set E2 empty
and we therefore eliminateE2 from further consideration.

Removing unnecessary elements from the seed E
fgi;gjg
max is

beneficial because the resulting set will have fewer
elements, thus allowing us to examine a smaller number
of subsets. Note that this heuristic aims at reducing the
amount of data to be processed while preserving the quality
of the biclustering results.
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Fig. 9. Overview. (1) Generating horizontal and vertical PMBs: Section 3.2. (2) Predicting the experiment set E: Section 5.1. (3) Calculating the gene

set G from E: Section 5.2.



Example 11. Fig. 11c lists our running example of the
horizontal seeds from which unnecessary elements have
been removed. In this simple example, only a few
elements have been removed. However, in practical data,
there exist many extra elements, and this step is helpful
for improving the response time.

5.1.2 Step 2: Representation of Horizontal Seeds

by a Trie

In Lines 12-16 of Algorithm 2, the horizontal seeds are
collectively represented by a trie, a data structure to
represent sets of character strings [1]. Many overlaps occur
between horizontal seeds, and the trie provides compact
representations.

Ina trie, eachpath fromthe root to a leaf corresponds toone
word or character string in the represented set. This way, the
nodes of the trie correspond to theprefixes ofwords in the set.
For each seed E

fgi;gjg
max found in the previous step, we first sort

its elements assuming a total order among the elements, such

as e0 � e1 � � � � � en. Now, the sorted seed canbe regarded as

a word made up of the characters e0; e1; . . . ; en, and we can

insert it into the node whose path is specified by the ordered

elements.
Suppose that the seed E

fgi;gjg
max is to be inserted into node

n. In Lines 15-16, we associate two sets n:G and n:E with

the node n. We let the gene set n:G ¼ fgi; gjg and the

experiment set n:E ¼ E
fgi;gjg
max . (If the node n already exists,

we let n:G ¼ n:G [ fgi; gjg.)
Example 12. Fig. 12a shows the trie representation of the

horizontal seeds in Fig. 11c. For instance, Efg0;g2g
max ¼

fe0; e1; e3; e5g and Efg2;g3g
max ¼ fe0; e1; e3; e5g are inserted

into the leftmost leaf by following the path “0,1,3,5.”
Hence, n:G ¼ fg0; g2g [ fg2; g3g and n:E ¼ fe0; e1; e3; e5g,
assuming that this node is denoted by n.

5.1.3 Step 3: Predicting E from Horizontal Seeds

In Lines 18-19, the algorithm predicts the experiment set E
by examining subsets of horizontal seeds. To this end, we
exploit the property of the trie: For each node n encountered
in the postorder traversal of the trie, the gene set n:G is
distributed to every node m in which jm:Ej ¼ jn:Ej � 1 and
jm:Ej � ME . Fig. 12b shows the trie representation after
Step 3 is performed on the trie in Fig. 12a with ME ¼ 3.

After Step 3, the set n:G represents an upper bound of
the gene set that can form a bicluster with the experiment
set n:E.

5.1.4 Step 4: Eliminating Invalid Predictions

In Lines 21-22, every node n in which jn:Gj < MG is
deleted. This step can be performed efficiently by a preorder

traversal of the trie. Genes were distributed in postorder in
Step 3 and, thus, node n in the trie always has a superset of
the genes its children have. Thus, if the node n has less than
MG genes, then none of its children can have more. For this
reason, we can safely remove the entire subtree whose root
is located at the node n. Fig. 13a shows the trie after this
step for the running example.

5.1.5 Step 5: Collecting Exposed Biclusters

After Step 4, it is possible that the pair ðn:G; n:EÞ can
already be forming a bicluster for a certain node n. That is,
for any 2� 2 submatrix
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Fig. 10. Overall flow of the proposed method.

Fig. 11. Example for Step 1. (a) Efg2 ;g4g
max ¼ fe0; e1; e3g. (b) Efg2 ;g4g

max ¼
fe1; e2; e3g. (c) Horizontal seeds after Step 1.



x y
z w

� �

in the matrix denoted by the pair ðn:G; n:EÞ, jx� z� yþ
wj 
 � for the parameter �. In Lines 24-25, these biclusters

are collected (and the node n is removed if it is a leaf).

Fig. 13b presents the trie after this step. Bicluster #0 in

Fig. 2b is found here.
The biclusters found in this step are only a by-product of

our algorithm to predict experiment sets. In Section 5.2, we

describe our main approach that derives gene set G from

experiment set E by (6).

5.2 Calculating the Gene Set G

After completing Steps 1-5 of Algorithm 2, we apply (6) to

the experiment set n:E of each remaining node n in the trie

in order to find G, thus finalizing the biclustering process.
The worst-case complexity of the entire biclustering

algorithm is due to the series of 	 operations in (6). The

scalability of the algorithm thus depends on how much the

total number of 	 operations can be reduced and how

efficiently a single 	 operation can be performed.
To reduce the number of 	 operations, we take an

approach similar to dynamic programming. That is, the

repetitive calculations are minimized by storing and

reusing previously obtained partial results. For an efficient

implementation of the operator 	, we take advantage of the

ZBDDs, by which we can symbolically represent vertical

seeds and implicitly perform 	 operations on them without

enumerating all of the intermediate results.

5.2.1 Reducing the Number of
N

Operations

We use the following example to introduce this idea.

Example 13. Suppose that (6) is applied toE ¼ fe0; e1; e3; e5g.
We then need to perform the 	 operations 4

2

� �
� 1 ¼ 5

times:

G ¼ Gfe0;e1g
max

n o
	 Gfe0;e3g

max

n o
	 Gfe1;e3g

max

n o
	

Gfe0;e5g
max

n o
	 Gfe1;e5g

max

n o
	 Gfe3;e5g

max

n o
:

In contrast, if we had already applied (6) to E0 ¼
fe0; e1; e3g and saved the result into G0, then we only

need the following three 	 operations:

G0 	 Gfe0;e5g
max

n o
	 Gfe1;e5g

max

n o
	 Gfe3;e5g

max

n o� �
: ð9Þ

In general, when applying (6) to E with N elements, we

can reduce the number of 	 operations from N
2

� �
� 1 to

ðN � 1Þ by exploiting previous results. This idea can be

realized efficiently by the trie since it has a hierarchical

structure. Algorithm 3 shows the outline of our approach.

In the algorithm, eachnoden is associatedwithn:G, a set of
gene sets. For each node n visited in the preorder traversal of

the trie,weperform the followingprocedure. If the setn:E has
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Fig. 12. The trie representation of horizontal seeds and the experiment sets predicted from them. The edge labeled with i corresponds to the
experiment ei. The path from the root to node n represents the set of experiments n:E. The set associated with each node is the set of genes n:G.
(a) Horizontal seeds from Fig. 11c. (b) Predicted E sets. The trie has been expanded to examine possible experiment sets. ME ¼ 3.

Fig. 13. Continuation of the trie example in Fig. 12. (a) After eliminating invalid predictions (Step 4).MG ¼ 3. (b) After collecting the exposed bicluster

ðfg0; g2; g3; g4g; fe0; e1; e3gÞ from the parent node of the leftmost leaf (Step 5). This corresponds to bicluster #0 in Fig. 2b.



only two elements em; en, then the set n:G is made equal to the

set of vertical seedsGfem;eng
max in Lines 2-3. This is the base case.

Otherwise, the intermediate result is computed in Lines 5-9,

which corresponds to (9) Gfe0;e5g
max

� �
	 Gfe1;e5g

max

� �
	 Gfe3;e5g

max

� �� �
in Example 13. If any intermediate result is empty or has

fewer than MG elements, we stop and remove the entire

subtree rooted at n.

Example 14. In Fig. 14a, the intermediate results for the

leaves are indicated by G0135, G015, G035, and G135. Here,

G0135 ¼ Gfe0;e5g
max

n o
	 Gfe1;e5g

max

n o
	 Gfe3;e5g

max

n o
¼ ffg0g; fg0; g2g; fg2; g3gg:

However, all the sets in G0135 have less thanMG elements.

Thus, we set G0135 ¼ ; and remove the leftmost leaf.

Similarly, G015 ¼ ;, and its corresponding leaf is deleted.

On the other hand, G035 ¼ ffg1; g2; g3gg and G135 ¼
ffg0; g2; g3gg (after the sets with too few elements are

removed). Fig. 14b finally shows the trie in which the

two left leaves are removed from the trie in Fig. 14a.

In Line 10, the resulting Gn, corresponding to (9) itself, is

calculated. If this set Gn is empty, we prune the entire

subtree rooted at n (Lines 11-12). We otherwise collect

biclusters (Lines 13-15). Fig. 14c presents the final trie in

which bicluster #1 in Fig. 2b is found at the leaf node.

5.2.2 Efficient Implementation of 	
The operator 	 is implemented using the basic set operators
on ZBDDs, such as \ and [. These operators are recursively
defined on ZBDDs with trivial terminal cases, such as P \
; ¼ ; or P [ ; ¼ P. For more details, we refer the reader to
[19], [20].

We first show how to partition a set of subsets into two
smaller sets. Let P be a set of subsets. We partition P into P1

and P0 with respect to the variable x in such a way that P1

contains all of the subsets that include x, while P0 includes
all of the other subsets.

Example 15. LetP ¼ Gfe0;e5g
max

� �
¼ ffg0; g2; g4g, fg1; g2; g3; g5gg

from the example inTable 2c. Then,P1 ¼ ffg0; g2; g4gg and
P0 ¼ ffg1; g2; g3; g5gg, assuming x ¼ g0.

With respect to the topmost vertex of a ZBDD, we can
perform this partitioning by simply recognizing two
subgraphs—the subgraphs connected by the 1-edge and 0-
edge correspond to P1 and P0, respectively.

Based on this partitioning, we can recursively perform
various operations on ZBDDs. For example, P [QðP0 [ P1Þ
[ðQ0 [ Q1Þ ¼ ðP0 [ Q0Þ [ ðP1 [ Q1Þ, as shown in Fig. 15a.
TheproblemofP [Q cannowbecome twosmallerproblems,
ðP0 [ Q0Þ and ðP1 [ Q1Þ.

We can similarly compute P 	Q by recursively solving
and merging four subproblems: ðP0 	Q0Þ, ðP1 	Q0Þ,
ðP0 	Q1Þ, and ðP1 	Q1Þ. Fig. 15b depicts the decomposi-
tion with respect to the topmost variable. The right
subgraph includes ðP1 	Q1Þ, and the left subgraph con-
tains the others since only ðP1 	Q1Þ can have a subset with
the topmost variable.

Example 16. Let P ¼ Gfe0;e5g
max

� �
¼ ffg0; g2; g4g fg1; g2; g3; g5gg

and Q ¼ Gfe2;e5g
max

� �
¼ ffg1; g3; g4gg from the examples in

Table 2. Then, P 	Q ¼ ðP0 	Q0Þ [ ðP1 	Q0Þ ¼ ffg1;
g3g; fg4gg, as shown in Fig. 15b, where we partition the
sets with respect to the variable g0. Both ðP0 	Q1Þ and
ðP1 	Q1Þ are empty sets and are not shown in the figure.

5.3 Considerations for Very Large-Scale
Expression Data

We present a divide-and-conquer technique that is useful in
the analysis of very large-scale data sets. This technique
enables us to split the whole expression data matrix into
submatrices, without any compromise in cluster discovery.
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Fig. 14. Continuation of the trie example in Fig. 13. Bicluster #1 in Fig. 2b

is found from the trie in (c).

Fig. 15. The operators [ and	 on ZBDDs. (a) The set operators are recursively defined on the ZBDDs. The operator \ is defined in the same way as

the operator 	, but is not shown here. (b) An example.



(Thus, we can still find all maximal biclusters on the data
matrix.) The resulting submatrices will be small enough to
apply our algorithm as explained in the previous sections,
even if the original data matrix is so huge that the algorithm
is not applicable.

The basic idea is to split the data matrix into submatrices
specified by Gfem;eng

max ; UE

� �
for all fem; eng in UE .

Example 17. In Fig. 16, we assume that five vertical PMBs
exist in data matrix D. For each vertical PMB, we can
expand it and generate a submatrix in which the rows
are the genes in the PMB and the columns are UE .

The motivation is that for any bicluster ðG;EÞ, G is
always a subset of a certain vertical seed Gf�g

max. Thus, the
biclusters found from all possible submatrices ðGf�g

max; UEÞ
are equivalent to those discovered from the whole matrix
ðUG;UEÞ. Moreover, this split can be done very quickly,
since Gf�g

max generation is trivial even for large-scale data, as
explained in Section 3.2. For most gene expression data,
Gf�g

max � jUGj and jUE j � jUGj, so the size of each submatrix
is manageable. We summarize our approach as follows:

1. All vertical PMBs are discovered from data matrixD.
2. A submatrix ðGf�g

max; UEÞ is created for each Gf�g
max in a

vertical PMB.
3. The biclustering procedure presented in the pre-

vious sections is executed on each submatrix.

5.4 Algorithm Complexity

The problem of biclustering is inherently intractable [8],
[29], [31], and the worst-case complexity of our algorithm is
exponential in the number of columns in the input data
matrix. However, the execution time on typical benchmarks
is practical, as will be shown in Section 6. This is due to
efficient techniques such as the ZBDD-based manipulations
and the dynamic programming approach, which enable us
to avoid the exhaustive and explicit enumeration of the
intermediate results. When ZBDDs are used, the computa-
tional complexity of a problem depends on the size of its

ZBDD representation, which often has mild growth with
the problem size. Thus, it has been reported by numerous
independent research studies that ZBDDs may be used to
efficiently solve many practical instances of intractable
problems [19], [20], [10], [18], [5], [6], [25].

Additionally, our algorithm works in polynomial time if
the input data matrix and parameters satisfy a certain
condition. We refer the interested reader to [34] for more
details on this condition.

6 EXPERIMENTAL RESULTS

We performed experimental studies to analyze the perfor-
mance of our algorithm on several benchmarks, including
both synthetic andreal expressiondata sets.We implemented
our method2 in ANSI C++, and for the generation and
manipulation of the ZBDDs, we utilized the CUDD3 and
EXTRA4 packages. We conducted our experiments on a
3.02 GHz Linux machine with 4 GB RAM. We listed the
specific algorithmparameters for each experiment in Table 3.

6.1 Evaluation of Algorithm Efficiency

We started our experiments with synthetic data sets to
validate the correctness of our method. In addition,
synthetic data sets can serve as convenient benchmarks to
compare different algorithms. We created these synthetic
data sets by the method introduced in [31]. Initially, a
matrix is filled with random values ranging from 0 to 500,
and then a fixed number of perfect pClusters are embedded.
(Perfect pClusters are those that can be found with � ¼ 0.)
We created matrices of 100 columns and five different rows
(1K, 3K, 6K, 9K, and 12K) to test the scalability of various
algorithms, including an alternative implementation of our
method that uses a classical data structure for sets instead of
ZBDDs. The results are presented in Fig. 17a.
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2. http://akebono.stanford.edu/users/sryoon/tcbb04.
3. http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.
4. http://www.ee.pdx.edu/~alanmi/research/extra.htm.

Fig. 16. Dividing a large data matrix into submatrices of manageable sizes.

TABLE 3
Algorithm Parameters for the Experiments



Next, we compared the time needed to produce the first

n biclusters from the yeast data [30] by our method and the

other techniques. This data set has 2,884 genes and

17 conditions obtained from the yeast Saccharomyces

cerevisiae cell cycle expression levels. In Fig. 17b, the abscissa

is the number of biclusters produced and the ordinate is the

time required to find these biclusters. Our method and the

pClustering method do not take as input the exact number

of biclusters to generate. Thus, we run these algorithms

multiple times with different values of � to find approxi-

mately n biclusters.
Through the above experiments, we established that our

method tends to outperform the others in terms of running

time for both the synthetic and the real gene expression

data.

6.2 Statistical and Biological Validation

In Section 6.2.1, we use correspondence plots [29] to assess the

statistical significance of the biclusters produced by our

algorithm. In addition, we utilize the receiver operating

characteristic (ROC) curves [11], [24], [12] for two more

validation studies. In Section 6.2.2, we first use the ROC

curves to qualitatively evaluate the ability of our algorithm

to produce biclusters conforming to prior biological knowl-

edge. Section 6.2.3 then presents a statistical comparison of

the biclusters produced by our method and the �-biclusters

[8] in terms of the ROC curves.

6.2.1 Correspondence Plot

To statistically validate the biclusters produced, we em-

ployed the technique proposed by Tanay et al. [29], which

takes advantage of a known (putatively correct) classifica-

tion of genes or experimental conditions. Suppose prior

knowledge classifies N genes into K classes, C1; C2; . . .CK .

Let B be a bicluster with g genes and assume that out of

those g genes, gj genes belong to class Cj. Assuming the

most abundant class for B is Ci, the hypergeometric

distribution is used to calculate the p-value of bicluster B:

pðBÞ ¼ �g
k¼gi

jCij
k

� �
N�jCij
g�k

� �
N
g

� � :

That is, the p-value corresponds to the probability of
obtaining at least gi elements of the class Ci in a random
set of size g.

In the correspondence plot, the early departure of a
curve from the x-axis indicates the existence of biclusters
with low p-values. Consequently, the area under a curve
shows the approximate degree of statistical significance of
the biclusters used to draw the curve.

Fig. 18a presents the correspondence plot for the
biclusters generated by several different methods on the
aforementioned yeast data set [30]. The plot also includes
randomly generated biclusters. It indicates that the biclus-
ters shown are all far from the random noise. It also
demonstrates that the biclusters generated by our algorithm
tend to be more statistically significant than the others,
meaning that our biclusters conform to the known
classification more accurately.

6.2.2 ROC Curve for Algorithm Evaluation

A receiver operating characteristic (ROC) curve is a plot of

the true positive rate TP
TPþFN

� �
versus the false positive rate

FP
FPþTN

� �
of a screening test, where the different points on

the curve correspond to different cut-off points used to

designate test positives [11], [24]. The two axes of the ROC

curve thus represent trade-offs between errors (false

positives) and benefits (true positives) that a classifier

makes between two classes [12].
The area under the ROC curve (AUC) is a reasonable

summary of the overall diagnostic accuracy of the test [24].
Consequently, the closer the curve follows the left-hand
border and then the top border of the ROC space, the more
accurate the test. Likewise, the closer the curve comes to the
45-degreediagonalof theROCspace, the lessaccurate the test.

Since our algorithm is unsupervised, we associate each
bicluster with known classes as follows: Suppose prior
knowledge classifies M samples into two classes, P and N .
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Fig. 17. Running time comparison of several biclustering algorithms: �-biclustering [8], pClustering [31], GEMS [32], and our method. (a) Synthetic

data [31]. (b) Yeast cell cycle data [30].



Let B be a bicluster in whichmP samples belong to the class
P and mN samples belong to the class N . The class of
bicluster B is set to P if mN

mPþmN
< t for a given threshold t.

Otherwise, the class of B is set to N . Determining the class
of a bicluster thus corresponds to a test. Each sample is
classified into one of ðTP; TN; FP; FNÞ as usual, and the
ROC curve is drawn varying the parameter t.

Fig. 18b presents the ROC curves based upon the
biclustering results from the B-cell lymphoma data set by
Alizadeh et al. [2], which contains normal and cancerous
cell-line samples for 4,026 genes. This result shows that our
algorithm has a better characteristic in the ROC space than
the alternative methods on this benchmark. Consequently,
the biclusters produced by our method tend to represent
more accurate classification of the genes or samples
involved.

6.2.3 ROC Curve for Bicluster Evaluation

We next compared the biclusters found by our method from
the yeast data set [30] with the �-biclusters [8] found from
the same data set. Using the ROC curve, it was possible to
statistically distinguish these two sets of biclusters with
respect to the 30 known categories (or groups) of yeast
genes reported by Tavazoie et al. [30]. Moreover, our
analysis suggests that the biclusters found by our method
are in fact more compatible with the known categories of
genes. The details are presented here.

ROC curves can be used to see if two populations are
statistically different, and the departure of AUC from 0.5
indicates the degree of discrimination [11], [24], [12]. In our
experiment, we constructed as follows one population
(called Population 1) from the biclusters obtained by our
algorithm and another population (called Population 2) from
the �-biclusters. We compared each bicluster found by our
method with each of the 30 known gene groups; we used a
�2 test for a 2� 30 contingency table [24]. The contingency
table lists 1) the distribution of the genes in a single bicluster
found by our method over the known 30 gene categories by
Tavazoie et al. and 2) the distribution of the genes in a
single known gene group over the 30 known gene
categories. A �2 test was performed on this table, and the

corresponding �2 statistic was computed and added to
Population 1. The lower the statistic, the more similar the
two rows in the contingency table, and vice versa.
Population 2 was constructed similarly from the �2 scores
obtained by the comparison of �-biclusters with the known
gene categories.

To focus more on the biclusters that best represented the
known gene categories, we next selected, for each known
gene category, one bicluster by our method and one
�-bicluster that had the lowest �2 scores. That is, we left
only 30 �2 scores in each population. After this filtering,
Population 1 had a mean of 58:4 and a standard deviation of
44:0. The mean and standard deviation for Population 2were
96:5 and 34:4, respectively.

Finally, we produced an ROC curve out of these two
populations as follows. We arbitrarily considered Population
1 as the “control.” We then merged the two populations into
one and rank-ordered individual �2 scores. We examined
each score in descending order, labeling it “False Positive”
if it belonged to the control population and “True Positive”
otherwise. Scanning 60 �2 scores in this way allowed us to
produce points on the ROC plane, and by connecting these
points, the ROC curve in Fig. 19 was obtained.

The AUC of this ROC curve is 0.75, indicating reasonable
discrimination of the two populations. Combined with the
fact that the 30 best biclusters discovered by our method
tend to have lower �2 scores than the 30 best �-biclusters
(58.4 versus 96.5 on average), it appears that the biclusters
obtained by our algorithm are more compatible with the
known yeast gene groups reported by Tavazoie et al. [30].

7 CONCLUSION

In this study, we investigated the problem of finding
coherent biclusters. We mathematically characterized this
problem and proposed a suite of new algorithms to find
biclusters with coherent values. Our method employed
dynamic programming and a divide-and-conquer techni-
que, as well as efficient data structures such as the trie and
zero-suppressed decision diagrams (ZBDDs). In particular,
the use of ZBDDs enabled us to substantially extend the
scalability of our method. We conducted experimental
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Fig. 18. (a) The correspondence plot depicts the distribution of p-values of the produced biclusters with respect to a known classification of

experimental conditions or gene annotations. The plot presents the fraction of biclusters whose p-value is at most P out of the n best biclusters

discovered, for each p-value P on the plot. We used the yeast cell cycle data [30]. (b) In a receiver operating characteristic (ROC) curve, the abscissa

is the false positive rate, FP=ðFP þ TNÞ, and the ordinate is the true positive rate, TP=ðTP þ FNÞ. We used the B-cell lymphoma data [2].



studies including statistical and biological validations of the
biclusters produced by our method. The results demon-
strated the effectiveness of our approach.
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