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Abstract— We consider the design of optimal strategies
for joint power adaptation, rate adaptation and scheduling
in a multi-hop wireless network. Most existing strategies
for ad-hoc networks control either power and scheduling,
or rates and scheduling, but not the three together as we
do. We assume the underlying physical layer allows fine-
grained rate adaptation (like in 802.11a/g, HDR/CDMA,
UWB). Our goal is to find properties of the power control
in an optimal joint design. In the linear regime (i.e when
the rate of a link can be approximated by a linear function
of signal-to-noise ratio, SNR), we prove analytically that
it is always optimal to use the simple 0 — PMAXpower
control (when a node is sending it uses the maximum
transmitting power allowed). This holds in both important
networking scenarios: high rate networks where the goal is
to maximize rates under power constraints, and low power
networks where the goal is to minimize average consumed
power while meeting minimum rate constraints. Moreover,
we prove that, when maximizing rates, 0— P 4Xis the only
possible optimal power control strategy. Outside the linear
regime, we do not know what the optimal power control
is. We show that in the power minimization scenario, in
some cases, rate adaptation and 0 — PM4Xpower control
performs much worse than power adaptation. Neverthe-
less, we conjecture, and we demonstrate numerically that
when maximizing rates, even outside the linear regime,
0 — PMAXjs very close to the optimal power control, and
the rate adaptation with 0 — PMAXoutperforms power
adaptation with fixed link rates.

Index Terms— System design, Mathematical program-
ming/optimization

I. INTRODUCTION

A. Power Control and Optimal Wireless MAC Design

The first wireless MAC protocols for multi-hop net-
works were designed to control only medium-access. A
typical example is the original 802.11 MAC. It always
uses maximum power for transmitting a packet, and aims
to establish communication on a fixed, predefined link
rate. Then several improvements to the initial approach
have been proposed. According to the type of improve-
ment, the MAC protocols can be divided globally in
two groups. One group of protocols [1], [2], [3] is
focused on rate adaptation: the transmission power is
still kept fixed, but the rate is adapted to the actual
channel conditions and the amount of interference. The
other group of protocols [4], [5], [6], [7] considers power
adaptation while keeping the rates fixed. However, there
are no MAC protocols that adapt both rate and power at

the same time, and the fundamental issues in this joint
adaptation problem are not well understood.

We consider a wireless network with arbitrary con-
straints on scheduling, rate adaptation and routing, and
we are interested in characterizing properties of the
optimal power allocation strategy in this setting.

B. Physical Layer and Rate Adaptation

The physical layer of a wireless link defines com-
munication parameters such as bandwidth, modulation
and coding that can be used to establish communication
with some level of bit or packet errors. One of the most
important parameters of the physical layer is signal-to-
noise ratio (SNR) at the receiver. The higher the SNR
is, the higher communication rates can be attained, and
one of the goals of networking design is to efficiently
tracks and adapts SNRs and/or rates on links.

Some of the existing wireless systems use fix com-
munication rates. A typical example is a cellular voice
network, where one voice channel has a fixed rate.
There, a goal of the system is to maintain the SNR
of each user above a threshold, such that there are
no outages. Initially, the first version of 802.11 used
the same approach. Although it has been defined for
best-effort data traffic, it did not support variable rates
due to simplicity in design. In contrast, most of the
recently proposed wireless physical layers allow rates to
vary with SNR. A typical examples are 802.11a/g [8],
CDMA/HDR [9], TH-UWB [10]. Those physical layers
use adaptive modulation [11], [8] and/or adaptive coding
[10] to adjust the rate to the SNR at the receiver while
maintaining a constant, guaranteed bit-error rate. The
function that gives the maximum achievable rate for a
given SNR is called rate function. Examples of protocols
that use rate adaptation can be found in [1], [2], [3].

C. Linear Regime

The rate function of an efficiently design system is a
concave function of SNR. Furthermore, in many cases,
it is a linear function. Some examples of physical layers
where rate function is linear are low or moderate-gain
CDMA [12] or TH-UWB [10]. Also, physical layers with
non-linear rate functions may operate in the linear regime
if the transmitted power is low. We show in Section IV-A
that the part of the rate functions of 802.11a/g physical
layer for low SNR is approximately linear. Our main
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findings are for the linear regime, where we obtain exact,
analytically proven results; for the non linear regime we
have only some numerical results.

D. Rate Maximization and Power Minimization

There are two typical deployment scenarios for wire-
less networks: high bit-rate networks and low power
consumption networks. The first one considers real-time
video and audio communication, web surfing, data trans-
fer, and alike. The primary design focus is to maximize
available rates. Typical examples of this type of networks
are 802.11 wireless LANs and HDR cellular systems.
Rate maximization is performed under given power
constraints which are typically due to regulations and
battery constructions. In the rate maximization scenario,
we are interested in the set of feasible rates.

The second scenario is focused on low power net-
works like sensor networks or networks of computer
peripherals. The main goals in this type of networks is to
maximize network lifetime, or equivalently, to minimize
average consumed power. At the same time, end-to-end
flow rates are lower bounded by application requests,
and each sender typically has a minimum amount of
information to send to a destination in a given time.
Here we are interested in the set of feasible long-
term average power consumptions on links in networks,
subject to minimum long term rate constraints. Long-
term average power consumption is defined in Section I1-
D, and different performance objectives for comparing
the sets are presented in detail in Section II-E.

E. Power Control

The goal of power control is to determine which power
a transmitter should use when transmitting a packet. The
optimal transmitted power of a packet depends on a
large number of parameters, such as distance from the
destination, background noise, amount of interference
incurred by concurrent transmissions, etc. Since power
control is tightly coupled with scheduling, it is typically
implemented within the MAC protocol.

Perhaps the simplest way to choose the transmitted
power is to do no power control. In other words,
whenever a packet is sent, it is sent with maximum
allowed power. We call this 0 — PMAXpower control.
The 0 — PMAXpower control was widely used in the
design of the first wireless MAC protocols, such as
802.11, due to its simplicity, and due to the fact that
the optimal power control was not well understood.

Most of the research on power control is focused
on voice cellular systems. Those systems typically use
orthogonal channels for different users (e.g. CDMA
spreading) in order to decrease the inter-channel interfer-
ence. However, if the signal of an interfering user is very

strong, the interference cannot be completely filtered
out, and the transmission might fail. This problem is
known as the near-far problem, and it is solved by
power control. Some pioneering work in this area can
be found in [13], [14], [15]. These papers propose
iterative algorithms that converge to a power allocation
where all nodes’ SNRs are above thresholds, should such
allocation be possible. Those ideas have been extended
to multi-hop wireless networks in [16].

An attempt to design an optimal power control pro-
tocol for 802.11 networks has been done in [4], [5],
[6], [7]. They consider the 802.11b physical layer with
fixed rate, and the common conclusion is that the power
should be adjusted to the minimal value required to be
successfully decoded at the destination. One of the most
recent protocols defined along these lines, and which
we will use for numerical performance comparison,
is CA/ICDMA [7]. There, every transmitter transmits
with the minimum necessary power, increased by some
margin. This margin allows it to resist some amount
of interference caused by concurrent transmission. The
MAC protocol guarantees that the interference from
concurrent transmissions is not going to exceed the
margin.

The above power control protocols are optimal only
when the physical layer offers a fixed rate, regardless of
the signal-to-noise level at the receiver. Not too much
work is done on power control for networks with vari-
able link rates. An adaptive power control mechanism
for cellular networks with variable link rates has been
presented in [11]. However, this mechanism is adapted
to voice traffic. It does not consider scheduling and thus
leaves out an important design parameter of data wire-
less networks. Protocols that consider rate adaptation,
power adaptation and scheduling, and that maximize the
sum of rates for this scenario have been proposed in
[12], [17]: they focus on low processing gain CDMA
or UWB networks (thus linear regime) and show that
0 — PMAXpower control is optimal for a specific rate-
based performance metric, maximizing sum of rates.
The optimal power control for an arbitrary metric is not
known, nor it is known for an arbitrary physical layer.

Several power adaptation protocols have been pro-
posed for power minimization scenarios. A typical ex-
ample is given in [18] where the power of a link is
adjusted to a minimum necessary to reach a destination,
and the routing is chosen to minimize the overall power
dissipation.

F. Performance Comparison

For different power control strategies, we are inter-
ested in comparing the resulting rate allocations. How-
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ever, by using different scheduling strategies with one
power control strategy, one can obtain different rate
allocations. The set of all possible rate allocations that
can be obtained with a given power control strategy, and
with different schedules, is called the feasible rates set.
A feasible allocation where one rate cannot be increased
without decreasing another one is called Pareto efficient.
When maximizing rates, we are clearly interested in
Pareto efficient rate allocations. The most general way of
comparing performances of two power control strategies
is thus to compare the sets of their Pareto efficient
allocations, and we will use this method in the analytical
part of the paper.

In some numerical examples, when we consider larger
networks (Section V), it is numerically complex to
calculate Pareto efficient rates for all possible schedules.
We will then choose a single schedule which achieves
the Pareto efficient rate allocation that maximizes the
log-utility of the system, and which is known to have
desirable properties in wireless networks [19]. We will
use the log-utility of this rate allocation as a performance
metric.

Pareto efficiency can be defined in a similar manner
for feasible average power consumptions. Precise defini-
tions of all the above terms are given in Section II-E.

G. Modeling of Wireless Networks

We are interested in the fundamental principles in
a design of a wireless MAC, and not in designing a
specific protocol. Therefore, we assume an ideal, zero
overhead MAC protocol, which comprises ideal schedul-
ing and rate adaptation strategies, and we are interested
in characterizing properties of an optimal power control
strategy.

General models of wireless networks that incorporate
various physical layers, MAC and routing protocols, are
discussed in [12], [20], [21]. We define a model of a
multi-hop wireless network that allows the most general
assumptions on a physical layer (including variable rate
802.11, UWB or CDMA) and MAC protocols. We
assume arbitrary routing (single-hop or multi-hop), and
we assume point-to-point links whose conditions change
over time due to random fading. For a given network
topology and traffic demand, we characterize the set of
feasible average end-to-end rate allocations under given
maximum average power constraints, and equivalently
the set of feasible average power constraints under
minimal average end-to-end rate constraints. We use the
model to prove our findings by theoretical analysis and
numerical simulations. More detailed assumptions on the
network model are given in Section II.

H. Problem Definition and Our Findings

We consider a wireless network where link rates,
transmission powers and medium access can be varied.
For such system, one can find rate control, power control
and theoretical MAC protocols that maximize the perfor-
mance. This is a joint optimization problem and a change
in any of the three components influences the choice
of the other two. We consider different power control
strategies, for each of them we assume the optimal MAC
and rate adaptation, and we compare their performances.
The goal is to characterize the optimal power control.

We first analyze the linear regime. We consider the
rate maximization scenario and we theoretically prove
that every feasible rate allocation can be achieved with-
out power control (power adaptation is useless), and that,
if there are no average power constraints, any power
control that does not use 0 — PMAXpowers control is
not Pareto efficient (power adaptation is harmful). We
further consider the power minimization scenario and
we show that any feasible average power allocation is
achievable without power adaptation (power adaptation
is useless).

For non-linear regimes, we do not know the optimal
power control, scheduling and rate adaptation. We give
some conclusions based on numerical simulations. We
show that for power minimization, 0— P*4Xpower con-
trol is far from optimal. The joint optimization problem
in this case remains still an open issue. When considering
rate maximization in non-linear regime, the conclusions
are different. We show on numerical examples that, while
0 — PMAXwith scheduling and rate adaptation is not
optimal, it is very close to optimal. We then compare
the benefits of rate adaptation with 0 — PMAXpower
control, against power adaptation and 0 — RMAXrates.
We show that rate adaptation with 0 — PMAXpower
control outperforms by far the state-of-the-art power
adaptation protocol, CA/CDMA, with fixed rates.

Our findings are based on the assumption that, for
every power control protocol of choice, we design an
optimal scheduling and rate adaptation protocol. For
a fixed scheduling and rate adaptation protocols the
findings might not hold, and they depend on properties
of those protocols. However, our results indicate what
are the design goals that an optimal MAC should try
to reach, for the cases that fall in the scope of our
conclusions.

I. Organization of The Paper

The next section describes system assumption. In
Section Il we give a mathematical formulation of the
model of a network and present our theoretical findings.
In section Section IV we give simple numerical examples
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that illustrate our findings. In Section V we compare rate
adaptation vs. power adaptation. In the last section we
give conclusions and directions for further work. Proofs
of the propositions can be found in the appendix.

Il. SYSTEM ASSUMPTIONS

We analyze an arbitrary multi-hop wireless network
that consists of a set of nodes, and every two nodes
that directly exchange information are called a link. For
each pair of nodes we define a signal attenuation, that is
a level of signal received at the receiver, assuming the
sender is sending with unit power. This attenuation is
usually a decreasing function of a link size due to power
spreading in all directions, but here we assume it can be
an arbitrary number defined for each pair of nodes. We
assume the network is located on a finite surface and that
all attenuations are always strictly positive, hence every
node can be heard by any other node in the network and
there is no clustering. Signal attenuation also changes
in time due to mobility and different variations of
characteristics of paths the signal takes, thus we will
model it as a random process. We next give properties
of the physical model of communications on links.

A. Physical Model Properties

All physical links are point-to-point, this means each
link has a single source and a single destination. There
are more advanced models such as relay channel [22]
that attain higher performances, but they are not used
in most of the contemporary networks, and their per-
formance is in general not known and is still an open
research issue.

A node can either send to one next hop or receive
from one at a time. There are more complex transmitter
or receiver designs that can overcome these limitations.
An example is a multi-user receiver that could receive
several signals at the time. This would change the
performance of links having a common destination,
but would not change the interactions over a network.
However, these more complex techniques are not used in
contemporary multi-hop wireless networks (like 802.11,
UWB, bluetooth or CDMA) due to high transceiver
complexity, and we do not analyze them here. Still, the
model can easily be changed if this assumption is relaxed
and our results will still hold.

We model rate as a function »(SNR) of the signal-to-
noise ratio at the receiver, which is the ratio of received
power by the total interference perceived by the receiver
including the ambient noise and the communications
of other links that occur at the same time. In case
of systems with spreading, such as CDMA, frequency-
hopping OFDM or TH-UWB, a receiver does not capture

the full power of an interferer, but just a fraction that
depends on the correlation of the spreading sequences of
the sender and the interferer. The total noise at a receiver
can thus be modeled as the sum of the ambient noise
and the total interference multiplied by the orthogonality
factor. The more efficient the spreading is, the smaller
is the orthogonality factor.

This model corresponds to a large class of physical
layer models, for example:

« Shannon capacity of Gaussian channels [22]:
r(SNR) = 1/2logs(1 + SNR).

o Low-power and/or wide-band Gaussian channels
[23]: 7(SNR) ~ K x SNR

« Time-hopping ultra-wide band [10]: »(SNR) = K x
SNR.

« Moderate processing gain CDMA [12]: »(SNR) =
K x SNR.

« Fixed rate 802.11b [standard]: »(SNR) is a step
function of SNR

« Variable rate 802.11a/g [standard]: »(SNR) is a stair
function of SNR.

o« CDMA HDR [9]: 7(SNR) is a stair function of
SNR.

In all the examples except for 802.11b, the rate is
variable, and is a function of signal-to-noise ratio at a
receiver. This is achieved by adaptive modulation, like in
[11], [1], [2], or adaptive coding [3]. Rate as a function of
SNR is a concave function. For an efficiently designed
system, it usually approaches the Shannon capacity of
the system [22], which is a log-like function. However,
for low-power (e.g. sensor networks) or high-bandwidth
system (e.g. UWB [10] or CDMA systems with moderate
processing gain [12]), the total noise is much larger than
received powers, and the capacity can be approximated
with a linear function of SNR [24], [23]. Also, physical
layers with non-linear rate function operate in linear
regime when the SNR at the receiver is low. We show in
Section IV-A that this is the case for 802.11a/g physical
layer.

In this paper we consider both kinds of physical layers:
linear and non-linear. We prove our findings analytically
for systems with linear rate functions, and extend some
of them numerically for a class of systems with non-
linear rate functions.

B. MAC Protocol

We further assume a slotted system. In each slot a
node can either send data, receive or stay idle, according
to the rules defined in Section I1-A. Each slot has a power
allocation vector associated with it, which denotes what
power is used for transmitting by the source of each link.
If a link is not active in a given slot, its transmitting
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power is 0. A schedule consists of an arbitrary number
of slots of arbitrary lengths.

The first part of our MAC is a power control strategy.
The power control strategy is defined by a set of possible
powers that can be allocated to links in any slot. An
example of power control strategy is 0 — PMA4Xpower
control where any link in any slot can send with power
PMAX or stay idle. This is the simplest strategy where
powers are fixed and there is no power adaptation.

The second part of a MAC is the rate adaptation and
scheduling. Having chosen a power control strategy, a
MAC chooses a schedule and assigns powers that belong
to the set of possible powers to links in each slot. Finally,
the rate on each link in each slot is adapted to the SNRs
at receivers.

We assume that for a given power control strategy
we have an optimal MAC protocol that calculates the
optimal transmission power of each link out of the
set of possible powers defined by power control, and
in each slot in a ideal manner and according to a
predefined metric. This is equivalent to a network where
nodes dispose of an ideal control plane with zero delay
and infinite throughput to negotiate schedule and power
allocation.

A more realistic MAC protocol would introduce some
errors and delays, but a good approximation should be
close to the ideal case. Also, by considering an ideal pro-
tocol, we focus our analysis on properties of performance
metrics, and not artifacts of leaks in protocol design. Our
assumption corresponds to neglecting the overhead (in
rate and power) of the actual MAC protocol.

We also assume random fading. Since we have an
ideal MAC protocol, it can instantly adapt the schedule
and the power and rate allocation to any state of the
random fading of links. For precise mathematical model
of MAC protocol, see Section I1I-B.

C. Routing Protocol and Traffic Flows

We assume an arbitrary routing protocol. Flows be-
tween sources and destinations are mapped to paths,
according to some rules specific to the routing protocol.
At one end of the spectrum, nodes do not relay and
only one-hop direct paths are possible. At the other end,
nodes are willing to relay data for others and multi-hop
paths are possible. There can be several parallel paths.
All these cases correspond to different constraint sets in
our model, as defined in Section I11-B. Sources can send
to several destinations (multicast) or to one (unicast).

D. Power and Rate Constraints

There are four types of power and rate constraints
in a wireless network: peak power constraint, short-

term average power constraint, long-term average power
constraint and average rate constraint. Here we describe
them in detail:

Peak power constraint: Given a noise level on a
receiver, a sender can decide which codebook it will
use to send data over the link during one time slot.
Different symbols in the codebook will have different
powers. The maximum power of a symbol in a codebook
is then called peak power. It depends on the choice of
the physical interface and its hardware implementation
and we cannot control it. It limits the choice of possible
codebooks, and it puts restrictions on the available rate.
In our model, the peak power constraint is integrated in
a rate function, given as an input.

Short-term average power constraint: We assume a
slotted system. In each slot a node chooses a codebook
and its average power, and sends data using this code-
book within the duration of the slot. We call transmitted
power the average power of a symbol in the codebook.
This is a short-term average power within a slot, since
a codebook is fixed during one slot. We assume that
this transmission power is upper-bounded by PMAX,
This power limit is implied by technical characteristics
of a sender and by regulations, and is not necessarily the
same for all nodes. For example, this is the only power
constraint that can be set by users on 802.11 equipment.

Long-term average power constraint: While trans-
mitting a burst of data (made of a large number of bits),
a node uses several slots, and possibly several different
codebooks. Each of these codebooks has its transmission
power. We call the consumed power the average of
transmission powers during a burst, and we assume it
is limited by P consumed power is related to
the battery lifetime in the following way: Tiifetime =~

Doavery  \where Tiifetime 1S the battery lifetime, Eyagiery

—MAX
P

XU
is the battery energy, P s the average consumed
power constraint and « is the fraction of time a node has
data to send (or activity factor, measured in Erlangs). The
approximation corresponds to ignoring overhead spent
managing the sleep / wakeup phases, etc. P is thus
set by a node to control its lifetime; it can vary from a
node to a node.

Average rate constraint: In networks like sensor
or peripheral networks, the goal is to minimize power
consumption and to maximize lifetime of nodes rather
than maximize the rates of links. Still, there is a lower
bound on the rate a node has to transmit. For example,
a temperature sensor on a car engine or a computer
mouse have a well define rate of information they need
to communicate to a central system. This is what we
call the average rate constraint and we defined it as an
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average amount of bits a node has to transmit over the
network in one second. We assume this average limit is
the same on both long and short timescales.

We incorporate explicitly in our model the transmis-
sion power constraints, the average consumed power
constraints and the average rate constraints. The peak
power is incorporated implicitly through the choice of
the rate function.

E. Performance Obijectives

Design criteria in wireless networks can be divided
into two groups: rate maximization and power mini-
mization. We first consider rate maximization. Given
a network topology and a family of MAC protocols,
one can define a set of feasible rate allocations as the
set of all rate allocations that can be achieved on the
network with some MAC protocol from the given family.
An interesting subset of the feasible rate set is the set
of Pareto efficient rate allocations. A rate allocation
is Pareto efficient if no rate can be increased without
decreasing some other rate. When maximizing rates,
we are clearly interested only in Pareto efficient rate
allocations.

The most general way to compare two families of
network protocols on a same network is to compare their
Pareto efficient rates’ sets. If all Pareto efficient rates
of one family of protocols are feasible under the other
family of protocol, then one can undoubtedly say that the
second family is as good as the first one. If, furthermore,
neither of the Pareto efficient rates of the second family
is achievable under the first family of MAC protocols,
then we can say that the second family is strictly better
than the first one. We will use this criterion to compare
different power control strategies throughout the paper.

Although the above method for comparing power
control strategies is the most general one, it is difficult to
use in practice. Namely, for large networks, calculating
all feasible rate allocations, and thus all possible sched-
ules, is a difficult and prohibitively expensive numerical
problem. Instead, we will use a different approach for
numerical comparison of power controls on large net-
works topologies. We will choose a single scheduling
for a given power control that maximize some rate-
based performance metric. There are several existing
rate-based performance metrics, and all of them yield
Pareto efficient rates. Maximizing total capacity is known
to be efficient and unfair while max-min fairness is fair
but inefficient; proportional fairness represents a good
compromise between efficiency and fairness [19]. One
can defined log-utility of a rate allocation to be the sum
of logs of all components in the rate allocation, and the
proportionally fair rate allocation is the one that maxi-

mizes log-utility. For precise mathematical definitions of
the therms see Section I11-B.

In Section V where we numerically compare rate
adaptation with power adaptation, we compare log-
utilities of the proportionally fair rate allocations: for a
given network topology and MAC protocol, we choose
the schedule such that the resulting rate allocation max-
imizes the log-utility of a network. We use this maximal
log-utility to compare protocols, and we say that a MAC
protocol that has higher log utility is better than the other
MAC.

The above discussion can be similarly put in the
context of rate minimization. However, in this case we
only need a notion of Pareto efficient power allocation:
it is defined as the one where no power can be decreased
without increasing some other power. Mathematical def-
initions of terms are given in Section 111-B.

I1l. THEORETICAL FINDINGS
A. Notations

We model the wireless network as a set of I flows, L
links, O nodes and N time-slots. Flows are unicast or
multicast. We assume the network is in a random state S
belonging to set S, which defines the attenuations among
nodes in the network. Since we analyze a theoretical
MAC, we assume for each system state s € S that there
is a separate instance of the MAC. We give here a list of
notations used in this section to describe the model. The
precise definitions are given in subsequent subsections.

o hy,1,(s) is the attenuation of a signal from the source
of link /; to the destination of link I, when the
system is in state s.

« (3 is the orthogonality factor that defines how much
power of interfering signals is captured by a re-
ceiver.

o f € R! is the vector of average rates achieved by
flows.

« % € RE is the vector of average rates achieved on
links.

o for every n € {1,---,N(s)}, x"(s) € R is the
vector of rates achieved on links in time slot n when
the system is in state s.

o for every n € {l1,---,N(s)}, p"(s) €

R, prcv™(s) € R are the vectors of transmitted

and received powers allocated on links in time slot

n, regpectively, when the system is in state s.

F'™N ¢ R is the vector of minimum average rates

achieved by end-to-end flows (every flow may have

a different minimum average rate).

o PMAX ¢ RL js the vector of maximum allowed
transmission powers on links, which are assumed
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constant in time (every link may have a different
maximum power).

« P ¢ RE is the vector of maximum allowed
average transmission powers on links (every link
may have a different maximum power).

« 7(s) € R is the white noise at the receiver of link
[ when the system is in state s.

o forevery n € {1,---,N}, SNR"(s) € R is the
vector of signal-to-noise ratios at the links’ receivers
in time slot n, when the system is in state s.

o for every n € {1,--- N}, o"(s) € [0,1] is the
relative frequency of time slot n in the schedule
assigned to the system when in state s.

e R (routing matrix) is such that R;; = 1 if flow
¢ uses link . We have f < Rx. The matrix R is
defined by the routing algorithm.

B. Mathematical Formulation

We assume that for every state s there is a schedule
consisting of time slots n = 1...N(s) of frequency
ay(s). This is an abstract view of the MAC protocol,
without overhead. We normalize these lengths such that
S N 4, (s) = 1. Let us call p(s) the vector of
transmission powers assigned to links in slot n and
state s, and let SNR"(s) be the vector of signal-to-
noise ratios at receivers of the links, induced by p”(s).
The rate achievable on link [ in slot n and state s is
x;'(s) = K SNRJ(s). The vector of average rates on
the links is thus x = E [Z -1 an(S)X”(S)]. Since

x"(s) has dimension L (where L is a number of links),
by virtue of Carathéodory theorem, when in state s, it
is enough to consider N(s) < N = L + 1 time slots of
arbitrary lengths «(s) in order to achieve any point in
the convex closure of points x"(s).

Feasible rate and power allocations. Given a net-
work topology and a routing matrix R, we define the
set of feasible average powers and end-to-end rates X
(without average power or rate constraints). It is the set
of f ¢ R! and p € RY such that there exist schedules
a(s), sets of power allocations p™(s) and corresponding
sets of rate allocations x"(s) forall n =1--- N and all
states s € S, such that the following set of equalities

and inequalities are satisfied for all n = 1---N,i =
1---I,l=1---Lo=1---0:
f < Rx
P = E|X anS)p (S)]
x = E [Zﬁ an (9)x"( S)} (1)
x;'(s) = KSNRy(p"(s))
SNR,(p"(s)) = S

m(s)+8 Zk;ﬂ p; (s)hu(s)

1 = ZL+11 an(s)
Zl:l.src:o 1{P?(5)>0}+

Zz :l.dst=o0 1{p{‘(s)>0}
PpMAX
l

P (s)
where [.src = o and [.dst = o are true if node o is the
source or the destination of link [, respectively.

We are interesting in comparing average rates and
power consumptions with 0 — PMAXand with arbitrary
control. With 0 — PMAXpower control, a node sends
with maximum power when sending. More formally this
means that in any slot n, power allocation vector p™ has
to belong to the set of extreme power allocations P¥ =
{p| (Wl = 1---L)p; € {0, PMAX}}. In contrast, with
an arbitrary power control, any power from the set of all
possible power allocations P4 is possible. The set P4
is defined as P4 = {p| (VI =1---L)p; € [0, PMAX]}.

We say that an average rate allocation f and average
power consumption p is achievable with a set of power
allocations belonging to P if forall n = 1---N,i =
1---I,l =1---L,o = 1---0, it satisfies constraints
(1), and foralln=1---N,s € S,p"(s) € P.

We can similarly define the set of average rate and
power allocations X' (P) that is achievable with power
allocations belonging to P, as the set of all (f,p) that
are achievable using power allocation P. Thus, sets X
and X (P¥) represent the sets of all possible average rate
allocations and power consumptions with an arbitrary
and with 0 — PMAXpower control, respectively.

When we consider rate maximization under con-
straints on average consumed power, we are interested
only in the set of feaS|bIe rates If the average consumed
power is limited by Y , then the set of feasible
rates is F = {f|(f,p) € X p < FMAX} Similarly,
W|th 0 — PMAXpower control, the set of feasible rate is

= {£[(£,p) € X(PP),p < P},

Slmllarly, when considering power minimization, we
focus on the set of feasible average consumed powers.
If the average end-to-end flow rate is lower-bounded by
FMIN, then the set of feasible average consumed pow-
ers, under arbitrary power control, is P = {p|(f,p) €

X, f> N }. Similarly, with 0— PMAX power control,
the set of feasible rate is P = {p| (£, p) € X (PE),f >
FMIN}_

Per for mance Objectives: Finally, we formally define
notions of Pareto efficiency and log-utility, that were
introduced in Section 1I-E. Rate vector f € F is Pareto
efficient on F if there exist no other vector f’ € F such
that for all 4, f/ > f; and for some 7, f]’- > f;. Log-utility

IN

)Ty —

of f € Fis ) ,log(f;). Power vector p € P is Pareto
efficient on P if there exists no other vector p’ € P such
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that for all 4, p; < p; and for some j, p; < p;. Exp-cost
of pe Pis ), exp(p;).

C. Main Finding - Rate Maximization

In this section we show that any rate allocation that
is feasible with an arbitrary power control and under
some average power constraint, is also achievable with
0 — PMAXpower control. Moreover, if we consider a
scenario without average power constraints, then 0 —
PMAXjs the single optimal power control.

We clearly have F¥ C F, and we want to show that
every feasible flow rate allocation can be achieved by a
set of extreme power allocation from P, that is F C
FE,

Theorem 1: For arbitrary values of parameters of con-
straint set (1), we have that 7% = F.

The proof of the theorem is in the appendix. We see
from this theorem that every feasible rate allocation,
thus including the Pareto efficient ones, can be achieved
with 0 — PMAXpower control, and with an appropriate
scheduling, hence we conclude that 0 — PM4Xis at least
as good as any other power control, and power adaptation
is useless.

We next consider a scenario where there are no con-

. . =MAX
straints on consumed power (or equivalently P >
PMAX) and we have the following theorem:

Theorem 2: Consider an arbitrary network, and an
arbitrary schedule « and a set of power allocations p™ for
that network. If for some n, o™ > 0 and power allocation
p" & PF then the resulting average rate allocation f is
not Pareto efficient on X.

The proof of the theorem is in the appendix. We
see from the theorem that a Pareto efficient allocation
cannot be achieved if in any time slot a power allocation
different from 0 — PMAXis used. Therefore we conclude
that in this case, 0 — PM4Xpower control is actually the
single optimal power control strategy, and any power
adaptation is harmful.

D. Main Result - Power Minimization

We show that any average power consumption that is
feasible under some average rate constraints is achievable
with 0 — PMAXpower control

Theorem 3: For arbitrary values of parameters of the
constraint set (1), we have that " = P.

The proof is in the appendix. All feasible rates,
hence all Pareto efficient rates can be achieved with
0 — PMAXpower control, hence it is at least as good as
any other power control. Again here, power adaptation
is useless. We note here that for power minimization
there is no statement analog to Theorem 2. Theorem 2

assumes no average power constraints. In the framework
of power minimization, this corresponds to a setting with
no average rate constraints, which leads to the trivial
solution of having the network silent all the time.

IV. NUMERICAL EXAMPLES
A. Examples With Linear Rate Function

In order to illustrate findings from Section Il we
give a simple example. Consider a network of 2 links
presented on the left of Figure 1. This network is know
as the near-far scenario as an interferer is closer to a
receiver than the corresponding transmitter. Node S,
transmits to D; and node S5 transmits to Dy. We
introduce two simple MAC protocols. The first MAC
protocol assumes 0 — PMAXpower control and arbitrary
scheduling. The second assumes no scheduling (constant
power allocations through time, like in some cellular
systems), and arbitrary power control strategy. The cor-
responding sets of feasible rates and powers are given
on the right of Figure 1.

We see that when maximizing rates, only 0 —
PMAXnower control gives Pareto efficient rates. How-
ever, when there is an average power limit, there might
exist a schedule and a power control strategy, differ-
ent from 0 — PMAX  that can achieve Pareto efficient
allocations, as discussed in Section I11-D. To see this,
consider the simple example of a single link. Let PMAX
be the maximum transmitting power, P~ < pMAX
the maximum average consumed power, h be the fading
from the source and 7 be the power of background white
noise. There exist only one Pareto efficient rate allocation
which is R = ?MAXh/n. It can be achieved by sending
a = PV4%/pPMAX fraction of the time using full
power, or by sending all the time using PMAY a5 the
transmitting power. The second strategy thus does not
have the form of 0— PMAX power control, yet it achieves
the Pareto efficient allocation. An analogous construction
can be done to show that a non-0— PM4X power control
can achieve Pareto efficient average power allocation.

As already mentioned, the rate functions of 802.11a/g
is not linear. Still, for smaller rates, it can be approxi-
mated as with a linear function. To show that, we look
at the specification of Tsunami 802.11a wireless card in
turbo mode [8]. Rate as a function of SNR, for smaller
values of SNR, is depicted on Figure 2. We see that this
function is almost linear and hence our findings apply to
this regime of 802.11a.

B. A 2-node Counter Examples

Rate Maximization: There are physical layers, like
high-rates 802.11a [8] or HDR [9], where the rate func-
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Py
S1 D1
1I' 'f P MAX p MAx)
d 1 |
| |
Y :
D2 S2
(P VX 0)
I | 1 R2 P,

Fig. 1. A simple example of network with 2 links. The topology of the network is given on the left. Node S; sends to node D, while
node S> sends to D-. The feasible rate set for this network is given in the middle. The lighter region in dashed line represent the set
of feasible rates that can be achieved without scheduling, only with power adaptation. The lighter region in full lines represent an
increase that is achieved by scheduling and without power adaptation (0 — P4 power control). The darker region in dashed lines
is the same example without scheduling and with power control, but this time with additional average power constraints. Again the
darker region in full lines represents an improvement introduced by scheduling. We see that the second protocol cannot achieve
Pareto efficient rates of the feasible rate set, except for the three rate allocations. But these three rate allocations are achieved with
power allocations (0, P*4X), (PMAX 0) and (PM4X, PMAX) which belong to 0 — P 4X power strategy. On the figure on the left,
the feasible set of average consumed power under minimum rate constraints is depicted in gray. The region in full lines represent
average power consumption achievable with scheduling and without power adaptation, and the region in dashed lines represent
average power consumptions achievable without scheduling and with power adaptation. All average powers belonging to this set

can be achieved without power adaptation.
407

35¢
301

25¢

Rate [Mbps]

201

15¢

10,
SNR

Fig. 2. Link rates that can be achieved on Tsunami 802.11a

wireless card in turbo mode [8], as a function of SNR. We

assume an adaptive coding technique such as RCPC codes

[25] is used in addition to adaptive modulation defined in [8].
For lower SNRs, this function is almost linear.

tion is clearly non-linear and our findings do not apply.
In order to illustrate this, we consider again the near-
far topology from Figure 1. We take the rate function
defined in [8], where maximum rate is 108 Mbps. The
assumptions on MAC layer and the rest of the network
remain as defined in Section Il (we do not assume 802.11
MAC protocol). We assume free space path loss model
with parameters given in [26].

We carefully handcrafted the example to derive a
case where 0 — PMAXpower control is not the optimal
strategy. In order to have that, we need to have the two
links operating in a high rate regime, that is around
100 Mbps. We put a link distance to be 10m. We next
choose interferer distance d. A large d will decrease the
effect of the interference, and the feasible rate region
will look like a square (Figure 3, dotted line). A small
d will force mutual exclusion, and lead to a triangle-like
feasible rate region (Figure 3, solid line). In both cases
these regions will coincide with a region obtained with
0 — PMAXpower control. Instead, we choose d = 40m.

120

100 T )
80 )
7
j=X
o
S 60
N
@ '\
40 i
d=100m, both !
-- d=40m, optimal Va
20f| - - - d=40m, 0-PMAX \
— d=10m, both
0 4
0 20 40 60 80 100 120
R1 [MBps]

Fig. 3. Near-far scenario from Figure 1 on 802.11a/g network
[8]. We set [ = 10m. In dotted line we plot the feasible rate
region for d = 100m. In this case 0 — PM4Xand the optimal
power control coincide. In dashed-dotted line we plot the feasible
rate region for the optimal power control and d = 40m, and in
dashed line we plot the feasible rate region for d = 40m and
0 — PMAXpower control. We see that the second one is slightly
smaller than the first one. Finally, with the solid line we depict the
feasible rate region for d = 10m. Again, the regions for optimal
and 0 — PMAXpower control coincide.

The feasible rate region for this case is depicted on
Figure 1 (dash-dotted line). As we see from the figure,
even for this handcrafted example, the region achieved
with 0 — PMAXpower control (dashed line) is only
slightly smaller than the one achievable with the optimal
power control. Although 0 — PMAXjs close to optimal
power control in this example, the optimal power control
for an arbitrary network with 802.11a/g physical layer is
not known. We obtain a similar result for HDR physical
layer [9], but we do not present them here for the sake
of brevity.

Power Minimization: In the previous example we
saw that rate adaptation with 0 — PMAXjs almost as
efficient as the optimal power and rate adaptation for
non-linear rate functions. It is not the case for power
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minimization. To see that, consider again a single link
example. Let R(SNR) be a strictly concave rate func-
tion, PMAX pe the maximum transmitting power, F' the
minimum rate, h be the fading from the source and
n be the power of background white noise. If we use
0 — PMAXpower control, we send « fraction of the
time such that F = aR(PMAXh/n). Otherwise, if we
do not restrict to 0 — PMAXwe can choose to transmit
with some power P such that ' = R(Ph/n). Since
aR(PMAX] /n) = R(Ph/n) and R is strictly concave,
we have that P < aPMAX hence the average dissipated
power in the second case is strictly less than in the
first case. We quantified numerically this difference for
802.11a/g physical layer and it goes up to two orders of
magnitude for larger networks. Therefore we conclude
that rate adaptation and 0 — PMAXpower control are not
efficient for power minimization when rate function is
not linear.

V. RATE vS. POWER ADAPTATION

In this section we compare the performances of two
design approaches: rate adaptation without power adapta-
tion, and power adaptation with fixed link rates. We focus
on rate maximization, as we have already showed in the
previous section that the first approach is not optimal for
power minimization.

It is difficult to numerically characterize feasible rates’
and powers’ sets for larger networks. Therefore, instead
of comparing feasible sets, we will compare utilities, as
explained in Section II-E.

For the case with rate adaptation, we assume 0 —
PMAXpower control. We then find the optimal schedule
that maximizes log-utility of the network. We assume the
optimal rate adaptation: for a given schedule and power
allocation, in each slot we can calculate SNRs at every
receiver, and we select the maximum achievable rate for
that SNR, as defined by the rate function of the physical
layer.

For the second case, we assume all links have fixed
link rates. We use CA/CDMA power control algorithm
[7] as the state-of-the-art power control algorithm for
networks with fixed links’ rates. We again assume ideal
scheduling that maximizes utility. The basic principle
of CA/CDMA is to allocate slightly higher transmission
power than necessary to achieve the fixed link rate. This
additional power is called interference margin, and is
used to let other nodes transmit during the same slot.
For more details about the protocol see [7].

We implemented a centralized version of CA/CDMA
that assumes no protocol overhead. Possible power allo-
cations are constructed apriori, and we find a schedule
that uses these power allocations and maximizes total
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log-utility of the network (as discussed in Section II-E).
Similarly we have implemented 0— P AX power control
with rate adaptation and ideal scheduling.

Another important design factor in wireless networks
is routing. We considered several routing strategies. We
varied maximum hop lengths, and for each predefined
maximum hop length we found a route that minimizes
the number of hops. This way we varied routes gradually
from nearest neighbor routing to direct routing.

We repeat the procedure for a number of uniformly
random topologies. For each topology we varied maxi-
mum hop distance and constructed several sets of routes.
For each of the routes we maximized the total utility by
solving the optimization problem. The optimal routing
is thus the one for which the total utility is maximized.
The simulations are done in MATLAB. We see from
the results, depicted in Figure 4, that rate adaptation
with 0 — PMAX power control outperforms by far power
adaptation with 0 — RMAXrate control.

MAX

18 — 0P
--- u=48Mbps
161
§ 14f
?12*
£
Z 10t
| bl
% 5 10 15 20
PMAX [dBm]
Fig. 4. Comparison between rate adaptation with 0 —
PMAX nower control and CA/ICDMA power adaptation with 0 —

RMAXrate control. We put 12 nodes randomly on a 200mx200m

grid, and we select randomly source and destination pairs. We
see that 0 — PM4Xwith rate adaptation is always much better
and its performance improves with increase in PM4X_On the
other hand, CA/CDMA uses fixed rate (in this case 48Mbps). For
small powers (e.g. PM4% = 1mW) CA/ICDMA cannot establish
communication (hence the utility is —oo and is not plotted). For
larger powers CA/CDMA cannot benefit from higher link rates
and its utility stays fixed.

V1. CONCLUSION

We have considered multi-hop wireless networks with
linear and non-linear rate functions. We have shown
that in linear regime, having no power control (or in
other words 0— PMAX power control), is always optimal,
and that power adaptation is useless, both for power
minimization and rate maximization.

We have also shown that for rate maximization, in
the linear regime and without average power limitations,
0 — PMAXjs the only optimal power control strategy,
and any other power control strategy yields non-Pareto
optimal rate allocations, hence there power adaptation is
harmful.
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For the non-linear regime, the issue of optimal power
control, scheduling and rate adaptation remains open.
This is especially true for power minimization, where we
showed that 0 — PM4Xmight be significantly worse than
optimal power control. Still, when maximizing rates,
we showed that 0 — PMAXwith rate adaptation and
scheduling, although not optimal, is very close to the
performance of optimal power control.

Then we compared the performance of 0 —
PMAX nower control with rate adaptation and scheduling
against power adaptation, scheduling and fixed rates. We
considered CA/CDMA as a state-of-the-art power control
protocol for rate maximization scenarios in fixed link
rates networks. We found that a rate adaptation with
a simple 0 — PMAXpower control highly outperforms
power adaptation with fixed link rates, when maximizing
rates. If the number of possible physical link rates is
small, one should use power adaptation and scheduling
(as for example in [7]), but if the number of possible link
rates is large, which is usually the case with adaptive
modulation and/or coding, one should adapt rates, use
0— PMAXpower control and scheduling. The complexity
of a protocol should thus be invested in optimizing
scheduling and rate adaptation, and not the power adap-
tation. Another conclusion, that stems from our work is
that, unlike common belief, in CDMA or similar data
networks with almost-orthogonal links’ transmissions,
and for rate maximization, it is better to solve near-
far problems by scheduling and rate adaptation and to
use 0 — PMAXpower control, instead of using power
adaptation that tend to equalize received powers.

APPENDIX

Lemma 1: Consider a function U(f,p)
>; Aip; for some arbitrary vectors i, A. Then:

o Thereis a unique maximum U* = U(f*, p*) on set X,

o The maximum (f*,p*) € XF,

o If somei, |p;| > 0andforal j, A; = 0, thenfor arbitrary

a and {p"(s)}1,... n, such that for some n, a,, > 0 and

0 < pt < PMAX and the resulting (f,p) we have

U(f,p) <U((f*,p").

Proof: Both function U (f, p) and set X" are convex, hence
the maximum is attained in some (f*, p*) € X'. We aso know
there exist o*, {p"*(s) }1,....n that satisfy (1).

Let us fi rst assume there is a single system state S = {s}
hence there is no randomness in the system/ We use an
approach similar to [12], [17]. Without loss of generality, we
fix al o (s), {p *(s)}1,....v except pi(s), and we consider a
function pi(s) — Z wifi — >, \ip; as afunction of asingle
free variable pi(s). From the routing equation in (1) we have
that >, pifi = >°; (32 pili;) X;. Since p is an arbitrary
vector we can further on simplify and assume a single-hop
routing (f; = x;).

Zi iy —
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We then have the following derivatives:
ov ,uloq(s) hn(s) _ o
OO T YR OO
-y picvi(s) pi (8)hii(s)hai(s) e

20 () + B s PH5) i (5))

v OLHOOUACKIN
O BT (n(s) + BT PE ()

We fi rst suppose that for al 4, 14 > 0. It is easy to see from
(4) that regardless of the values of other variables, the second
derivativeis always positive, V (pi (s)) is aways convex, hence
the maximum is attained for p}(s) € {0, PMAX}. Therefore,
we have that {p"*(s)}1...v € PF, and f € FE.

Next we suppose, without loss of generality, that for some
m we have 1 < 0,---, 4y < 0. Then clearly the optimal
isto have fi = 0,---, f,, = 0 which is aways feasible,
regardless of the average rates of links x. Then by setting
w1 = 0,--+, ym = 0, the new optimization problem has
the same maximum as the old one, and we again have that
{p™(s)},...n € PF,and f € FF.

At this point we proved the second claim under assumption
that there is no randomness in the system. We next relax this
assumption. From the above we know that for every state s €
S there is a power alocation from P¥ that maximizes the
utility. Since averaging over S isalinear operation, the average
over S is aso going to be maximized, which concludes the
proof of the second claim.

Findly, consider the case when |p1] > 0 and A; = 0 for
al j. We again suppose no randomness (S = {s}), and we
suppose that a1 (s) > 0 and 0 < pi(s) < PMAX . Itiseasy to
verify from (3) that equation % = 0 can be transformed
into Q(pi(s)) = 0 where Q is some polynomial of degree
ng. Furthermore, one can verify that the coeffi cient of the
polynomial of degree ng is strictly positive, hence @ is not
identical to 0. Thereforethereis only afi nite number of values
of pi(s) that solves Q(pl(s)) = 0, and thus also Z‘?‘f) = 0.

We know from above that the maximum V* is achieved
a one of the extrema points, say PM4X without loss of
generality. By assumptions, we have V' (pi(s)) = V*. Now for
some  we have that pl(s) = yPMAX and V* = V(pi(s)) <
(1 =)V (0) + AV (PMAX) < V*. We thus have V* = V(p)
for al p € [0, P4¥]. Now this is impossible since V'(p)
has only a fi nite number of zeros, hence {p*(s)}1,....y cannot
maximize V.

Now we introduce randomness. Again, due to linearity of
averaging it is easy to see that if for any state s with positive
probability (P[S = s] > 0) we have {p"(s)}1..n & PE,
then the utility in that dot is going to be strictly smaller
than the maximum achievable, hence the overal utility will
be strictly smaller than the maximum, which proves the last
clam. m

Proof of Theorem 1. We clearly have F¥ C F, and it
remains to be shown that 7 C F¥. Firdt, consder the opti-
mization problemmax  _, u;f; suchthat p < P (f p) €
X. Thisis a convex optimization since set X' is convex, hence
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if the constraint set is not empty there is a unique maximum
(£, *). The dual problem is minysog(A) + 33, AP,
where g(\) = max p)ex »,; #iXi — y_; Mibi. According to
lemma 1, point (f*, u*) that maximizes g(\*), thus also max-
imizes the above maximization problem, belongs to X' (PE).

We now prove the theorem by contradiction. Suppose there
exists apoint f € F that is not in 7. Then by the separating
hyperplane theorem [27] there exists a hyperplane defi ned by
(c,b) that separates f and FF, that is ¢’f > b and for all
g € FP, cTg < b. This on the other hand means that f ¢ F¥
maximizes the above maximization problem, which leads to
contradiction. m

Proof of Theorem 2: We proceed by contradiction, and
assume there exist a schedule o and a set of power allocations
{p™(s)}1,...,v such that the resulting average rate alocation f
is Pareto effi cient (and thus on the boundary of set F), and for
some n, i, 0 < pi* < PMAX . Since F is convex, there exists
a supporting hyperplane [27] (i, b) which contains f (that is
uTf = b) and contains F in one of the half-spaces (that is for
al f' € F,uTf <b).

Let us first suppose || > 0. Then, according to lemma
1 there exists (f*,p*) € XF such that p7f* > pTf* = b,
which leads to contradiction. Therefore, we have that 1; = 0,
and Z#i_ujfj’- < bforalf e F. Howev_er, it is easy to
construct fi nd a counter example. If there exist another j # i
such that p? > 0, then by setting p;' = 0 we increase f;,
thus > ., u1;f; > b, hence the contradiction. On the contrary,
if for al j # 4, p] = 0, we then set o, = 0 and increase
some other o™ such that for some j, p7* > 0. Again, this
way we increase f;, thus >, pi;£; > b, that also leads us to
a contradiction. m

Proof of Theorem 3: Consider the optimization problem
min Y, u;p; such that £ > F (F,p) € X. This is
a convex optimization since set X’ is convex, hence if the
constraint set is not empty there is a unique minimum (£*, p*).
The dua problem is maxy>og(A) + 5, AFTTY where
g(\) = minge pyex D, pibi — »_; Aifi. According to lemma
1, point (f*, u*) that maximizes —g(\*), thus aso minimizes
the above minimization problem, belongs to X' (P¥). The rest
of the proof is the same as in Theorem 1. m
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