THRESHOLD-BASED ALGORITHMS FOR POWER-AWARE LOAD BALANCING IN
SENSOR NETWORKS

Christopher M. Cianci, Vlad Trifa, and Alcherio Martinoli

Swarm-Intelligent Systems Research Group, Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland. {Chris.Cianci, Vlad.Trifa, Alcherio.Martinoli} @epfl.ch

ABSTRACT

Given the rigid energetic constraints under which a sensor
network must operate, efficient means of power manage-
ment are vital to the success of any sensor network deploy-
ment, particularly those in rapidly changing environments.
Threshold-based algorithms provide a possible in-network
method for adaptive distributed control of energy consump-
tion.

1. INTRODUCTION

In the rapidly expanding field of sensor networks, power
management is of paramount importance. The highly dis-
tributed nature of relevant applications often renders wired
deployments infeasible, and frequent battery replacement in
a deployed network is unlikely to be practical due to the
time and effort required to perform such a task. Therefore,
until the power requirements of the hardware and the ability
of a node in the network to harvest power from its environ-
ment converge, any battery-operated node will necessarily
have a finite lifetime—which one obviously wants to be as
long as possible.

More specifically, the quantity of interest is the lifetime
of the network as a collective entity, and the resources avail-
able for optimizing this lifetime are the individual nodes and
their respective available power reserves. While one can en-
vision various methods for approaching this problem, the
common element will usually involve taking advantage of
the inherent redundancy in the distributed system and avoid-
ing duplication of work where and whenever possible. In
this context, the question then becomes one of how to as-
sign tasks (distribute the workload) in such a way that du-
plicate computations are minimized while system integrity
is maintained. Accomplishing this in a distributed manner,
particularly in a rapidly-changing environment, can be diffi-
cult, requiring the network to detect and adapt to the current
circumstances while operating.

This type of load balancing, through the mediation of
redundancy, has been previously addressed in terms of rout-
ing [5], sensing [4], and other individual elements of a sen-
sor network. Here, we explore the possibility of informing

and influencing this type of decision in a distributed man-
ner using real-time local estimates of remaining energetic
resources.

1.1. Swarm Intelligence (SI)

Swarm-intelligent principles were originally inspired by ob-
servation of various natural phenomena, including the col-
lective behavior of social insects and flocking and shoaling
in vertebrates. However, due to significant hardware dif-
ferences between natural and artificial systems, the swarm-
intelligent metaphor is continuously being readjusted in or-
der to fit the relevant natural and artificial technological con-
straints.

The application of SI to distributed, real-time, embed-
ded systems aims at developing robust task-solving method-
ologies by minimizing the complexity (including the intelli-
gence) of the individual units and emphasizing parallelism,
and self-organization.

From an engineering standpoint, the principle advan-
tages of swarm-intelligent system design are four-fold: scal-
ability, from a few to thousands of units; flexibility, as units
can be dynamically added or removed without explicit re-
organization; robustness, not only through unit redundancy
but also through an adequate balance between explorative
and exploitative behavior of the system, and simplicity (and
low-cost) at the individual level, which also increases ro-
bustness.

1.2. Threshold-Based Algorithms

Many swarm-intelligent algorithms have been patterned af-
ter the behavior of social insect societies. One such example
is the class of “threshold-based” algorithms.
Threshold-based algorithms model group behavior based
on a small number of control parameters (thresholds) that
affect whether or not a particular task will be executed by
a given swarm member based solely upon the intensity of
the stimulus presented in comparison to the threshold cur-
rently assigned to the individual in question. In this way,
decision-making is fast and reactive. The response to a stim-

ulus can be deterministic or probabilistic depending on the
amount of randomness the designer wants to introduce into
the task-allocation algorithm. Heterogeneous thresholds, or
thresholds which are allowed to change and become hetero-
geneous over time as a function of stimuli encountered and
tasks performed, can lead to specialization, and division of
labor [3].

1.3. Foundations and Prior Related Works

The apparent similarities between a community of social
insects and a swarm of mobile robots have inspired a va-
riety of research efforts in applying the observed behavioral
model of the insects to the design and analysis of control
strategies for the robotic swarm. For instance, threshold-
based algorithms have been successfully applied to division
of labor schemes in swarm robotics ([1], [2], [7]) yielding
interesting results.

Noting the similarities between swarm robotics (or more
generally, ‘sensor and actuator’ networks) and sensor net-
works, our work explores the application of swarm-intelli-
gent algorithms to the control of sensor networks. Specifi-
cally, this paper proposes a feasibility study on the optimiza-
tion of network power consumption modeled on threshold-
based algorithms, which have been used quite successfully
in multi-robot systems. We would like to determine whether
or not such algorithms are applicable and interesting in the
context of sensor networks.

2. EXPERIMENTAL APPROACH

Our focus is primarily on densely-packed event-based ap-
plications; an area which we feel has not yet been well ex-
plored. Rather than periodically sampling a continuously
available phenomenon, such as temperature or humidity, our
model looks toward monitoring events which may be sparse
in time, and in situations where adequate prediction of oc-
currences may not always be possible. Therefore, under
these conditions, the treatment of the network as a single
fully-connected graph covering the detection area is reason-
able, albeit naturally leaving open the possibility of future
work extending the algorithm to larger spacial distributions
(and implicitly less than complete connectivity).

2.1. Case Study

For the current work, a simple acoustic monitoring task is
considered; a sensor network is asked to observe a binary
source (a tone generator with only two states: on/off) in
two dimensions (the sensor nodes and the source all lie in
the same plane). Events travel at the speed of sound, and
are attenuated in the atmosphere. For simplicity, reflections
are ignored in the initial analysis, and communication is ap-
proximated as instantaneous, reliable, and radially symmet-

ric. The behavior of each sensor node is governed by a sim-
plistic finite state automaton. An event is considered to be
detected by a node if the node is awake (listening) while
it occurs; similarly, if the node is sleeping for the entire
duration of an event, that event is missed (by the node in
question).

Depending upon the spatial distribution and the syn-
chronization (or lack thereof) of the nodes, different sets of
nodes will be awake and listening at different times. In this
paper we consider a sound source with two types of tempo-
ral patterns: periodic and aperiodic.

In order to provide a realistic basis for our calculations,
we have used the logical structure and measured electrical
characteristics of the MICAz sensor network platform (the
newest member of the MICA [6] family). Typical measured
values of current consumption by section/task are shown in
Figure 1.

Sleep I 528 uA
Idle I; 3.98 mA
Processing I 8.02 mA
Radio On I, 20.89 mA
Transmitting N 23.32 mA

Figure 1. The MICAz module with antenna, and table of average
measured power consumption per activity (samples of such mea-
surements can be seen in Figure 5). Note that powering the radio,
such that messages may be received, is particularly expensive, re-
gardless of whether or not any messages are actually received.

Simulation using these measurements estimates mean
energy consumption per node that is active, with its radio
on, over the course of 24 hours to be about 1.5J; at this
rate the network would have a functional lifetime of around
five days. However, seeing as the network is highly redun-
dant, for all of the desirable reasons previously mentioned,
one can imagine a drastic energy savings by putting various
nodes to sleep at different times.

2.2. Characteristics of the Solution Space

Since a deliberative centralized scheduler would be com-
plex, scale poorly, and represent a single point of failure in
the system, we are principally interested in exploring possi-
ble distributed solutions.

As in any system, the complexity and even the funda-
mental nature of the solution is heavily influenced by the
amount of information available a priori about the task; in
the case of monitoring tasks such as this one, it will vary as
a function of information available to us about the entity or
entities to be monitored.

For example, if we know beforehand exactly what the
actions of the event source will be (strictly periodic emis-
sions, or otherwise according to a known schedule), we can
simply instruct the network to only activate when the events
are going to occur, and sleep for the intermediate times
when nothing of interest is happening. Alternatively, events
might be known to arrive with a frequency that is only ap-
proximately regular, which would require the network to be-
have in a slightly more intelligent fashion. If, however, we
know little or nothing about the source (perhaps the emis-
sion times are completely random), the corresponding net-
work controller will have to be more flexible, and it may not
even be possible to engineer an efficient solution, in which
case it may be necessary to invoke a learning algorithm.

Our detection task can be approached from two sides:
coverage (ensuring that, with high probability, a quorum of
properly functioning nodes is active at any given point in
time) and adaptation (allowing a node, or even the network
as a whole, to sleep during times when it feels that events
are unlikely to occur). Prediction/adaptation can be very in-
teresting when the event source being monitored is to some
degree predictable. However, so as not to restrict ourselves
to predictable sources, our primary focus will be on the first
approach, coverage.

2.3. Engineered Controller

Having selected the coverage task, we must ensure that at
least one node is active at any time during the course of
the deployment. Since the objective is to minimize power
usage, the best performance will result from having only
one node active at a time. Clearly, for a task more involved
than simple detection (such as acoustic localization), or in
an environment where measurements are less certain, it may
be desirable or even necessary to keep more than one awake
at a time; this analysis is being covered in our future work.

A naive engineered solution might be to simply spec-
ify that they take turns being on active watch, in the order
specified by their id. But this poses at least two sizable prob-
lems, namely that it requires every node to (at the minimum)
know the total number of nodes in the network, and that a
single malfunctioning node would have the potential to re-
sult in complete network failure. In the absence of difficul-
ties, though, some basic analysis of this type of controller
can provide us with a baseline measurement of the most ef-
ficient performance we might be able to expect from our
other solutions.

2.4. Threshold-Based Controller

Since the principle concern here is energy consumption, a
smarter, more effective, and scalable mechanism could be to
consider the energetic resources (remaining battery level) of
the individual nodes during the shift assignment. As a possi-
ble solution, we propose a threshold-based algorithm, which
allows each node in the network to carry out its decision-
making process in a fast and effective way.

In order to accomplish this, we need to first draw a map-
ping between our physical setup and the terminology of the
threshold model. The model depends on three crucial ele-
ments: the stimulus, the response, and the threshold (which
controls when the response is performed relative to the pre-
sented stimulus).

Based on the success criterion of the task being consid-
ered, one might think that the “number of missed events”
could constitute an effective stimulus, as when more events
are being missed, we probably want more nodes to be called
into action. However, there is a fundamental problem with
this proposal, as neither at the individual level nor at the
group level does any member or part of the network have
any idea what the value of this stimulus might be (clearly,
since if the events are undetected, by definition, the network
doesn’t know about them). And while this task might be
performed by a supervisor, that would bring us back into
the realm of centralized control (not to mention being im-
practical outside of simulation).

Therefore, the stimulus must be something that can be

TIMEOUT

Wait for

| volunteer

offer[s]
I,

Wait for
help
request
I

Compare
stimulus to
threshold

volunteer
offer
I

Wait for
approval
message
I

2

Figure 2. Finite state machine describing the behavior of a single
node participating in a shift change. Current draw is given in terms
of the I values from Figure 1. Messages are slotted to avoid colli-
sions. The rounded rectangles (Awake and Asleep) last a length of
time determined by the shift length. Circles are short fixed-length
phenomena (like transmitting a message). Squares represent block-
ing wait states.

measured locally, and the response something that can be
done locally (or not, depending on the threshold).

To accomplish this, we propose the following: upon ini-
tialization, one node is selected (perhaps at random) to take
the first watch. At the end of its shift, the node will broad-
cast a message asking for a volunteer to take over the watch.
Any node that hears this message will compare the stimulus
to its threshold, and if the stimulus exceeds the threshold,
will respond that it is available to take over the watch. The
requesting node will acknowledge one offer (for instance,
the first one it receives) and go to sleep, while the volun-
teer is now on active duty. At the end of this shift, the new
active node will repeat the procedure, passing control to an-
other volunteer. !

The shift length must be agreed upon within the net-
work, as unless they all activate their radios at the same
time, they will be unable to communicate with each other.
While for these tests we arbitrarily set it to a constant, there
may be an optimal value taking into consideration the fea-
tures of the coverage task and and the sensor network sys-
tem, but tests exploring this dimension of the solution space
will occur in future work.

So now we have specified where the stimulus fits in, but
we still have a little bit of freedom in terms of how it is
actually calculated. Usually, threshold-based decisions are
probabilistic; the threshold is used to position the inflection
point of a sigmoid function that, for an input stimulus, out-
puts the probability with which this agent will be willing to
perform the task. However, because of the computational
constraints of the agents, it is advantageous for us to mini-
mize the amount of calculation necessary. We can achieve
nearly the same results by utilizing a deterministic response
to a random stimulus generated by the node seeking vol-
unteers; as if the probabilistic threshold response were de-
scribed by the Heaviside function H (o —), where o, 0 rep-
resent the stimulus and the response, respectively (see Fig-
ure 3). In this case, the generated stimulus is drawn from a
uniform distribution on [0, 1], the same range as the possible
threshold values.

However, this still leaves us with the possibility that the
randomly generated stimulus may be too low to provoke
volunteers. If no other nodes volunteer, the stimulus will
be increased (by a deterministic amount; an algorithmic pa-
rameter), and the request will be resent. Eventually, for in-
stance, when the algorithm is extended to a larger spacial
distribution of the network, we think it would be interest-
ing to see the value of the stimulus affect the transmission
power with which the request is sent, and consequently the
range (local neighborhood) that the request is sent to. No
response would prompt an increase in the stimulus; a louder

'The node that performed the previous shift is also eligible to respond
to its own request, if its remaining energy places it still within the set of
most desirable candidates.

1.5 .
- — Sigmoid
— Heaviside
[0}
2 1t —
o ‘ s
Q ,
(7]
<] ;
S 05) {
b /
E /
© , ‘
Qo .
S o -
o
-0.5 L L L L
0 0.2 0.4 0.6 0.8 1

Stimulus (o)

Figure 3. Probability of response versus stimulus for a node with
threshold 6 = %, using sigmoid or Heaviside behavior.

request that can be heard by more nodes.

Notice also that if the thresholds are fixed, it will nearly
always be the case that the nodes with lower thresholds are
used to extinction before the nodes with higher thresholds
will allow themselves to be consistently conscripted. But, if
each node is able to adapt its threshold as a function of its
remaining energy reserves, we should be able to distribute
the work load more evenly, achieving a more balanced so-
lution.

A further solution we plan to investigate in the future
is to generate the randomization of the response of a given
node based on the receiver threshold randomization. In other
words, while the stimulus emitted by a given leader coordi-
nating a shift change will be completely deterministic and a
function of its own battery level (with possible increments
due to lack of responses from other nodes), the threshold
of a given receiving node will not only be a function of its
battery level but will be perturbed by a given amount of uni-
formly distributed noise.

2.5. Microscopic Modeling

Similar to [8] and [9], we use a time-discrete microscopic
model for simulating the dynamics of the whole system. In
this model, each real node is represented by its correspond-
ing Finite State Machine (FSM, see Figure 2) where each
individual state is characterized by a given power consump-
tion.

Tests were performed to compare the different algorithms
discussed in a simplified simulated environment built using
C++ and Matlab. Parameter values and power consumption
estimates were initially based on the MICA?2 measurements
reported in [10], and eventually replaced with similar mea-
surements that we have taken here on the MICAz (see Fig-

ures 1, 4, and 5).

Battery Voltage

8 ‘ ‘ ‘ ‘
100 80 60 40 20 0
Percent Battery Life Remaining

Figure 4. In-situ voltage measurements from the MICAz, over the
lifetime of a pair of AA batteries.

Current (mA)
o

0 10 20 30 40
Time (seconds)

Figure 5. Measured current draw of an operating MICAz node. (a)

processor idle, (b) processor active, (c) sleep, (d) radio receiver on,

(e) radio transmitting, (f) LEDs [one, two, and three, respectively].
(See also the numerical values in Figure 1.)

2.6. Implementation and Testing in Hardware

A testbed based on this algorithm has also been success-
fully implemented on a physical network of MICAz sensor
nodes.

These tests were done on a network of nine nodes. A
tenth non-participating node was used as a base-station to
log the negotiation messages sent within the network. For
stress testing, and to shorten the experimentation time, the
time between shift changes was fixed at 20 seconds, and the

active node executes a mathematical transform (cpu-bound
process) on detected events, requiring approximately two
seconds. These additional loading factors will allow us to
show that the workload is indeed shared relatively fairly
among the nodes in the network, but as the time spent in the
negotiation phase is non-negligible with respect to the shift
length, projections about actual network longevity based on
these tests are not expected to show particularly long life-
times.

3. TESTS AND RESULTS

Here we provide and evaluate various simulated and physi-
cal implementations of the proposed algorithm, as described
above.

3.1. Performance Metric

Before conducting tests, it is necessary to establish a means
for interpreting their results. For purposes of evaluation, we
use a network performance function of the following form
to compare different control strategies:

15N
M = a <1 _ il E) + (1)
02 <1 _ max(E;) — fnin(i))
max(E;)

where NN is the number of nodes in the network, the «; are
weighting coefficients (3 0y = 1, see Figure 6 for exam-
ples), and

K

E, = ZE,-(kT).)

k=0

T = 1ms is the quantum of time-discretization, and K =
(1000-3600-24) = 8.64e7 is the total number of iterations.
To properly normalize the first term, we need to consider the
maximum energy a node could possibly expend (see section
3.2.1 for the calculation of a value for E’mw).

This gives us a quantifiable measure by which to eval-
uate the performance of a control strategy by explicitly re-
warding characteristics we consider desirable, and punish-
ing those which are not. In this case, our goal is to minimize
the amount of energy consumed (first term) while simul-
taneously encouraging a fair distribution of labor (second
term). This yields a best possible performance of one, while
the worst performance would receive zero.

Currently, the simplifying assumptions in place disal-
low missed events, but in the future, a third term should be
introduced to account for this as well.

While it is clear that the stated form does not allow all
values in the range [0, 1] (for example, a performance of

one would require energy expenditure to be identically zero,
which is physically impossible), it will nonetheless still pro-
vide a relative preferential ordering between different con-
trollers.

3.2. Results With The Microscopic Model

For comparison, several different scenarios are considered.
A summary of the various results can be found in Figure 6.

When nothing is known about the source, often algo-
rithms must be adjusted to account for assumptions exploited
in the periodic case. In fact, none of what we have done in
the threshold-based controllers relied on assumptions about
source behavior, and therefore running them unaltered in
this new situation shows nearly identical performance. As
mentioned previously, we consider both periodic (10s pe-
riod, 10% duty cycle) and aperiodic (1s events, random ar-
rival rate) event sources.

3.2.1. Always-On vs. Always-Off

As previously mentioned, a node which is active, with its
radio on, through the entire day of simulation will use ap-
proximately Emaw = 1.5J (Figure 6, column 1). As this
is basically the worst imaginable case for a control mecha-
nism, we will consider this to be the upper bound on pos-
sible energy consumption, and use it for the value of the
normalizing constant in equation 1, to ensure that the out-
put values scale properly.

Likewise, a node who sleeps the length of the simulation
will use only E,,;, = 38.0mJ. Again, this case is unrealis-
tic and undesirable, principally due to the fact that it results
in a network incapable of accomplishing anything (neither
sensing nor computation), but it will function as an adequate
lower bound.

Obviously, neither of these situations are practical or
even useful in a real environment, but they set boundaries
with which we can compare our results, and understand
where in the spectrum they fall.

3.2.2. Strict Baton-Passing

In the engineered solution (described in section 2.3) with
a network of 9 nodes over 24 hours, if nothing goes wrong,
average energy consumption is 428.5mlJ, and the load is per-
fectly distributed (see Figure 6, column 2). These seem like
respectable results, but we have already explained why they
way in which they were obtained was overly optimistic.

3.2.3. Fixed Thresholds

Using the current stimulus randomization method (described
in section 2.4), if thresholds are immutable and homoge-
neously distributed, then the result is the same as picking

a node randomly to take over each new shift, as, when the
stimulus is high enough to merit a response from any node,
it will invoke responses from every node.

Heterogeneously distributed thresholds will enforce an
order of preference, but as the hardware capabilities of the
nodes in the network are designed to be the same (obviously,
there will be minimal hardware differences, but it would be
impractical if not impossible to attempt to assess these a
priori for each node), there is no readily apparent way to

0.81

1 2 3 4
Controller

1 2 3 4 5 6
Controller

1 2 3 4 5 6
Controller

Figure 6. Network performance evaluation for different values of
ay1,23 (Equation 1). Top: af1,23 = {1,0}. Middle: gy 9 =
{%, %} Bottom: a5y = {0,1}. Controllers: 1. Always
On, 2. Engineered (periodic), 3. Fixed Thresholds (periodic), 4.
Adaptive Thresholds (periodic), 5. Fixed Thresholds (aperiodic),
6. Adaptive Thresholds (aperiodic).

artificially assign heterogeneous thresholds in a meaningful
manner.

Consequently, for ease of implementation, we have tes-
ted nodes with randomly distributed fixed thresholds. The
result is as expected: the average power is higher, due to ex-
tended negotiation times when the initially generated stim-
ulus is not large enough to provoke a response. There is
also greater variation between nodes, as the ones with lower
thresholds do more work (see Figure 6, columns 3 [periodic]
and 5 [aperiodic]).

3.2.4. Adaptive Thresholds

To avoid exhausting the nodes with low thresholds, we can
modify the threshold locally as a function of available re-
maining energy (battery level) at each shift change, accord-
ing to the function:

1
busr = 5 (0n+(1-B)) 3)

where B is the percentage of remaining battery life (see
Figure 7). Our microscopic model incorporates a linearized
model of battery depletion based on real measurements (Fig-
ure 4). According to simulations run, this appears to give
more desirable results than a linear adjustment, but further
investigation should be done in order to determine the opti-
mal transformation.

_

I I o
EN [} ©

Threshold Adjustment (1-B°)
o
[V

?00 86 éO 46 2‘0 0
Percent Battery Life Remaining (B)
Figure 7. Threshold adjustment (second term in Equation 3). Var-
ious possibilities were attempted, including similarly shaped linear
and exponential functions. The polynomial was chosen as a com-
promise between desirable behavior and computational simplicity

(since it must be performed regularly on the node’s limited micro-
processor).

Adding this adaptation gives much better performance
than the fixed case, and is closer to the engineered solution
(see Figure 6, columns 4 [periodic] and 6 [aperiodic]).

3.3. Results in a Real Sensor Network

As shown in Figure 8 and Table 1, we implemented the same
adaptive threshold-based controller in TinyOS and tested it
on a small network of MICAz nodes. The minor differences
between the simulated results and the hardware results can
be explained by variation in initial battery voltages.

o o o
> <) ©

Energy Consumed (Joules)
o
o

I o o
EN o ©

Energy Consumed (Joules)
o
o

1 2 3 4

5 6 7 8 9
Node ID

Figure 8. Power used by each node in a sensor network during 24
hours using energy-aware adaptive thresholds; in simulation (top),
and on real hardware (bottom).

| M(a1=1) | M(az =1/2) | M(a1 =0)
0.5529 0.7246 0.8963
0.6261 0.7130 0.8000

micro model

real network

Table 1. Comparison of values predicted by the microscopic model
with those observed in the physical network deployment.

4. CONCLUSION & FUTURE WORK

It has been demonstrated that threshold-based algorithms
can be applied to the problem of energy-constrained load
balancing in distributed wireless sensor networks in a po-
tentially beneficial manner. In the future, this type of con-

troller should be compared with results from other method-
ologies, such as market-based or game-theoretic algorithms.
The authors also are also currently exploring possible exten-
sions to this approach which will allow for maintaining an
arbitrary number k£ nodes active at a time, and also networks
with larger spacial distributions, without the assumption of
complete connectivity.

5. ACKNOWLEDGMENTS

Christopher Cianci and Alcherio Martinoli are currently spon-
sored by a Swiss NSF grant (contract Nr. 11 P00268647/1).
Vlad Trifa is currently sponsored by an EPFL undergradu-
ate fellowship.

6. REFERENCES

[1] W. Agassounon and A. Martinoli, Efficiency and Ro-
bustness of Threshold-Based Distributed Allocation Al-
gorithms in Multi-Agent Systems Proc. of the First Int.
Joint Conf. on Autonomous Agents and Multi-Agent
Systems AAMAS-02 (Bologna, 2002), ACM Press,
2000, pp. 1090-1097.

[2] W. Agassounon, A. Martinoli, and K. Easton, Macro-
scopic Modeling of Aggregation Experiments Using
Embodied Agents in Teams of Constant and Time-
varying Sizes, Autonomous Robots, Special Issue on
Swarm Robotics 17 (2004), 163-192

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm In-
telligence From Natural to Artificial Systems, Oxford
University Press, New York, NY, 1999.

[4] R. R. Brooks and S. S. Iyengar, i Maximizing
Multi-Sensor System Dependability, Proceedings of
IEEE/SICE/RSJ 1996 Conference on Multisensor Fu-
sion and Integration for Intelligent Systems, Washing-
ton D. C., IEEE, Piscataway, NJ, 1996, pp 1-7.

[5] H. Dai, R. Han, A Node-Centric Load Balancing Al-
gorithm For Wireless Sensor Networks, IEEE Global
Communications Conference (GLOBECOM), Wireless
Communications, 1 (2003), 1-5, pp. 548-552.

[6] J. Hill and D. Culler, Mica: A Wireless Platform for
Deeply Embedded Networks, IEEE Micro 22 (2002),
12-24

[7] M. Krieger and J.-B. Billeter, The call of duty: Self-
organized task allocation in a population of up to twelve

mobile robots, Robotics and Autonomous Systems 30
(2000), 65-84

(8]

(9]

A. Martinoli, K. Easton, and W. Agassounon, Modeling
Swarm Robotic Systems: A Case Study in Collabora-
tive Distributed Manipulation. Special Issue on Experi-
mental Robotics, Int. Journal of Robotics Research, 23
(2004), No. 4, pp. 415-436.

A. Martinoli, A. Ijspeert, and F. Mondada, Understand-
ing Collective Aggregation Mechanisms: From Prob-
abilistic Modeling to Experiments with Real Robots.,
Special Issue on Distributed Autonomous Robotic Sys-
tems, Robotics and Autonomous Systems, 29 (1999),
pp- 51-63.

[10] V. Shnayder, M. Hempstead, et al., Simulating the

Power Consumption of Large-Scale Sensor Network
Applications, Proceedings of the Second ACM Confer-
ence on Embedded Networked Sensor Systems SenSys-
04 (Baltimore, 2004), ACM Press, 2004

