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Abstract. Query processing in traditional Database Management Systems 
(DBMS) has been extensively studied in the literature and adopted in industry. 
Such success is, in part, due to the performance of their Query Execution En-
gines (QEE) for supporting the execution of traditional queries. With the advent 
of the web and its semi-structured data model, new query scenarios were cre-
ated, suggesting new execution models such as: adaptive, continuous, and 
stream based. To support these models, the traditional QEE must be extended, 
resulting in a great development effort as the one recently seen to support the 
XML data model. This paper proposes the design and construction of an exten-
sible QEE adapted to new execution models and our approach is to implement 
each execution model as a combination of execution modules. Thus, adding 
new modules to this QEE, new execution models will be supported. To achieve 
this goal, we use a software framework technique to produce a framework, 
named QEEF (Query Execution Engine Framework). 

1 Introduction 

The adoption of Relational Database Management System (RDBMS) in management 
of databases is a reality in the industry.  The success of those systems was achieved, 
in part, by the efficiency of their query processing, in witch has been widely studied 
by the database community. That efficiency is due to the Query Optimizer, that pro-
duces optimized Queries Execution Plans (QEP), and to the Query Execution Engine 
(QEE), which receives and executes a QEP according to a query execution model.  
We consider a “query execution model” as a set of execution techniques, called “exe-
cution characteristics”, to produce a data flow that attends to the requirements of a set 
of query applications, generalized as “application scenarios”.  For example, the tradi-
tional scenario is represented by SQL queries in RDBMS, and its execution model 
uses the execution characteristics of parallelism, distribution, and demand-driven con-
trol flow. With the advent of the Internet computational model and new data models 



 

(such as semi-structured model [1]), new query execution scenarios were produced, 
such as:  

1. Queries that have to deal with few (or no) data statistics or with variations in query 
execution conditions, such as: unpredictable delays to access data sources, selectiv-
ity and lack of memory ([2], [3], [6], [7] and [18]). 

2.  “Publish/Subscribe” type queries that need to be re-evaluated continuously, ac-
cording to the user needs ([9], [10]). 

3. Queries over data streams, where data are processed upon arrival ([11], [19] and 
[21]).   

Such scenarios produce new execution characteristics, such as: adaptability of the 
QEP and data-driven control flow, both not supported by the traditional QEEs. Fur-
thermore, these scenarios suggest new characteristics that will be required by new 
query applications, resulting in new extensions of traditional QEEs. On the other 
hand, those extensions can demand a considerable development effort, as seen re-
cently in commercial DBMS to support the XML data model [22]. 

The proposal of this work consists on the design and the implementation of an ex-
tensible QEE that supports different execution models. In our approach, each execu-
tion characteristic’s state is implemented by an execution module, so that, a particular 
combination of these modules in a QEP permits the QEE to support a particular query 
execution model.  Therefore, the specification of new modules provides the extension 
of QEE supporting new execution models.  The idea of using execution modules as 
QEP operators is not new, following the example of the Exchange [16] and Eddies [3] 
operators, that encapsulate respectively, the parallelism and the adaptability of the al-
gebraic operators.  However, we don’t know in literature a QEE that combines and 
extends modules in a flexible and uniform way to support different execution models.  

In order to design the extensible QEE, we use the software framework technique 
[14], producing the QEEF (Query Execution Engine Framework) [4].  As a case 
study, we instantiate the engine AQEE (Adaptive Query Execution Engine) to support 
the execution model of the scenario 1 above.  

This work is organized as follow: Section 2 describes the execution scenarios men-
tioned above; Section 3 presents the new concepts: execution characteristics, mod-
ules, and models; Section 4 specifies the architecture of the extensible QEE; Section 5 
shows the AQEE case study, and, finally, in Section 6 we present our conclusions.   

2 Query Execution Scenarios 

In this section we will detail the scenarios presented in the introduction of this work 
as well as the main related works.   

2.1 Preliminaries 

A query execution engine (QEE) is responsible for the execution of a Query Execu-
tion Plan (QEP) submitted, in general, by the DBMS optimizer.  A QEP is composed 



by a set of related operators aiming to produce query results.  Most DBMs represent a 
QEP by a tree where the nodes are operators, the leaves are the data sources, and the 
edges are the relationship between operators in the producer-consumer form. These 
trees present linear or bushy topology.   

During the QEP execution, tuples of data flow through the QEP’s operators in the 
following manner: first, a tuple is created by an operator that access its data source, 
and then it is processed by the others operators until it is discarded or it is sent to the 
output. This dataflow is in according to the producer-consumer model, in witch tuples 
flow from producers to consumers’ operators. Furthermore, this dataflow must be in 
according to the techniques needed by the own applications. 

Although different architectures of QEE are found in literature, is not known a 
study that classifies them according to their functionalities.  Additionally, it is not 
easy to find a clear separation between the QEEs and the other components of a query 
processing system.  However, we define the architecture of a QEE by the following 
elements:  
− Execution Unit: corresponds to an operator; 
− Data Unit: corresponds to a data tuple processed by any operator;   
− Data Structure: corresponds to a persistent or volatile structure necessary to sup-

port the operators execution (ex: lists, bags, sets and trees); 
− Data Model: corresponds to an algebra implemented by the algebraic operators;  
− Execution Model: corresponds to a set of techniques to produce a data-flow re-

quired by a given scenario. 

2.2 Traditional Execution Scenario 

The state of art in traditional QEEs is based on the iterator interface [17], in which the 
operators implement the following operations: Open - it prepares the operator to pro-
duce data; Next - it produces a data under demand of the operator consumer; and 
Close - it finalizes the execution of the user.   

Calling one of these operations, at the root operator, will propagate it to its opera-
tors’ children and so on, until reaching the data sources (leaves).  Using the Next op-
eration, each operator will produce a data when its consumer operator requests it.  As 
result, connecting each pair of operators related to a plan, it is able to execute any 
plan in pipeline, increasing the performance and producing output results as soon as 
possible (first-tuple first.)  Within the advantages of this technique is the extensibility 
to new operators and to different implementations of the same operator [5].  Another 
feature of the traditional execution model is the use of the Exchange operator [16], for 
parallel execution, and Send and Receive operators [20], for distributed execution.  

2.3 Adaptive Execution Scenario 

In this scenario, the QEE adapts QEP operators according to changes in certain condi-
tions that can occur during execution, since: 

1. They have their performance slow down, due to the unpredictable delays in access 
time of QEP’s data sources.  



 

2. They detect an internal problem.   

A query processing system is considered adaptive if (a) it receives information 
from its environment, (b) uses this information to determine its behavior and (c) proc-
esses in a continuous way, generating an interaction between the environment and the 
system.  In this way, the adaptive QEE offers a dynamic optimization (in run time), in 
contrast with the traditional process of optimization that is static.  

The adaptive execution of operators in a QEP can be done in terms of tuple or in 
terms of fragment.  In the first case, each tuple is always sent to the operator of higher 
performance, until complete all the operations necessary to be sent to the output.  In 
the second case, the execution will occur in a traditional form inside of a QEP frag-
ment until it is detected some problem, and in that case, the fragment execution is in-
terrupted and the optimizer is called to generate another alternative fragment.  The 
main solutions found in literature are namely: Query Scrambling [2], Eddies [3], Dy-
namic Query Scheduling [6], Hybrid [7] and Tukwila [18].   

2.4 Continuous Execution Scenario 

The query execution in a continuous way permits the operators to obtain new results 
of a database without submit the same query, repeatedly.  In general, the control flow 
is data-driven, or in other words, as new data arise, new results are produced.  Besides 
that, the execution time of a query can be very long.  Examples of related works are 
namely: TelegraphCQ [9] and NiagaraCQ [10].   

2.5 Streams-Based Execution Scenario 

This execution scenario is characterized by the following elements: 

− The stream data arrives online; 
− The QEE does not have control about the order in which the stream elements 

stream must be processed; 
− A stream can have unlimited size; 
− The data are processed at once due to the space limitations in memory.   

Examples of application for this scenario include financial application, sensor net-
work application and click-streams application.  Examples of related works are [11], 
TurboPath [18] and Continuous Eddies [21].  

We use these scenarios above as examples of extensibility of a QEE to support dif-
ferent and new requirements of application, in an incremental way.  In the next sec-
tion we detail these execution scenarios.   

3 The Supporting of Different Query Execution Models 

Traditionally, a QEE is built to support a specific query execution model, present in a 
certain scenario. In this context, the PECs submitted to a QEE are executed always 



using the same execution model that, in general, is implicit into the QEE’s implemen-
tation. For example, the traditional QEE executes QEPs based on the traditional 
model.  

The first step toward the supporting of different execution models by a QEE, was 
to analyze the scenarios previously presented, and capture new execution concepts, 
named of: 

− Execution Characteristic: is a type of execution technique that produces the desired 
data flow control needed by a (or part of) QEP. Each characteristic can have differ-
ent states.  

− Execution Module: is a high level operator that implements an execution character-
istic state by inserting control operators between algebraic operators, based on 
some strategy. 

− Execution Model: is the result of the combination of execution modules to attempts 
the requirement of a given execution scenario. 

The Table 1 relates these and others execution concepts in composition levels 
(from 1 to 6) and in abstraction levels (Physical and Logical) where the physical con-
cepts implement the logical concepts. 

Table 1. The composition and abstraction levels of query execution concepts 

Level Physical Concept Logical Concept 
1 QEE  Query Execution Scenario 
2 QEP Query Execution Model 
3 Module Query Execution Characteristic’s State 
4 Control Operator Meta-Operator 
5 Algebraic Operator Data Model’s Algebra 
6 Tuple Data Model’s Data Structure 

 
At level 1 (the highest) we have a customized QEE implementing each query ap-

plications scenario. At level 2, a QEP implements an execution model using different 
models. At level 3, model implements a certain state of a characteristic of execution, 
matching one or more control users. In level 4, we have a control operator implemen-
tation for each type of communication between operators. At level 5, we have an al-
gebraic operator implementation based on data model’s semantic operations. In level 
6 (the lowest) we have a tuple implementation based on a data model’s data structure. 

The extensible QEE proposed in this paper, named QEEF, is based on this different 
composition levels and, in particular, on the combination of execution modules in a 
QEP, to support different execution models. In this case, the user must specify a QEP 
containing these modules. Permitting this specification, we propose the meta-model 
QUEM (QUery Execution Meta-Model.) that defines the rules for combination of ex-
isting modules and the new ones. In the following sections, we detail these execution 
concepts and the meta-model QUEM. 



 

3.2 Query Execution Characteristics 

From an analysis of the scenarios described in the previous sections, we observe some 
abstractions, named “query execution characteristics”, that can be presented in one or 
more execution models and they can assume different states depending on the model 
considered.  Some of these characteristics were introduced to [17].  They are:  

− Synchronism: it defines the state of the execution of an operator when he requires 
service or data from another operator.  There are three possible states: wait (syn-
chrony pipeline), wait-all (sequential synchrony) and no-wait (asynchrony); 

− Parallelism: it occurs when two operators process data in an independent way, in 
other words, the consumption of the data is not synchronized with its production.  
There are two states: Intra and Inter-operator; 

− Distribution: it concerns about distributed execution of the operators in a QEP to 
support the consumption of data from a remote operator; the alternatives are: Local 
or Remote; 

− Data Flow: it specifies the order in which data are processed.  There are two 
states:: Fixed, where the tuples flow through the operators in the same way, and 
Adaptive, where the tuples flow in different ways, depending on the performance 
of these operators;  

− Control Flow: it refers to the kind of control between operators producing a chain 
of execution between consumers and producers’ operators.  The alternatives are: 
Demand-Driven and Data-Driven; 

− Response Time: it refers to the moment in which the query results will be available 
to the user application.  There are two states: First-Tuple first, that requires data to 
be sent to the user immediately after they are produced, and Last-Tuple first, that 
requires data to be sent to the user only when all the tuples have been produced.   

3.3 Query Execution Modules 

The Table 2 suggests the most common relationship between the execution mod-
ules and models based on the scenarios described in Section 2, including the tradi-
tional scenario. This table shows, for each model, the correspondent modules that 
must be implemented by the QEE. Note that each characteristic permits several alter-
native modules in one or more models, each model permits several alternative mod-
ules of the same characteristic. In the following sections, we describe some of these 
modules.  

Table 2. Relationships between Modules and Models.  

Execution Model Execution  
Characteristic 

Module 
 Traditional Adaptive Continuous Stream based 
Wait * *  X 
Waitall  X  X 

Synchronism 

Nowait X X * * 
Distribution Remote X X X X 



 Local * * X X 
Inter * * X X Parallelism 
Intra X X X * 
Fixed *  X * Data Flow 
Adaptive  * * X 
Demand-Driven * * X X Control Flow 
Data-Driven  X * * 
First-Tuple  * * * * Response Time 
Last-Tuple   X  X 

Legend: (*) is a more relevant configuration and  (X) is a possible configuration. 

Wait, Nowait, and Waitall Modules.  The figure 1 shows the Wait, Nowait and 
Waitall modules, in which are implemented through the homonym control operators. 
In this figure, the arrows indicate the producer-consumer data flows, between the 
algebraic operators op1 and op2, and the control operators Wait, Nowait and Waitall.) 
The module Wait uses the wait operator for synchronizing the op1 and op2 operators 
in a way that op2 waits for a tuple to be produced by op1. In an analogous way, the 
module Nowait uses the Nowait operator to decouple op1 and op2 in a way that data 
consumption is independent of its production, in two different situations: 

− When the consumption rate of op2 is lower than the production rate of op1, the 
data that arrive in the Nowait operator are temporally stored in a buffer while they 
are waiting for being consumed by op2. The limitation of the memory buffer size 
can control the Nowait production rate; 

− When the consumption rate of op2 is higher than the production rate of op1, the 
Nowait operator behaves as a Wait operator; 

The module Waitall uses the Waitall operator to consume (and materialize) all the 
tuples produced by op1, before producing the first tuple to op2. Although this tech-
nique can have an importance in the execution of certain QEPs, it’s not efficient as a 
whole, because the input/output cost could be too expensive.  

Demand-Driven and Data-Driven Modules. The Figure 2 shows the Demand-
Driven module, in which a consumer requires data to its producer through a Get 
method call, and the Data-Driven module, in which a producer sends data to its 
consumer through a Put method call. Although most of execution models need only 
one of these modules in the same PEC, it’s possible to combine them through control 
flow schedulers, implemented by the passive and active control operators (see Figure 
2). In this case, the active operator requires data from its producer (by get method) 
and sends it to its consumer (by put method). The passive operator receives data from 
its producer (by put method) and these data are sent (by get method) to its consumer. 
 



 

Adaptive Module. The Figure 3 shows the Adaptive module for a QEP fragment that 
needs to adapt the op1 and op2 operators, by inserting the distributor control operator, 
in which distribute tuples based on some distribution policy, and inserting both wait 
and active control operators, to scheduler op1 and op2, in the follow manner: each 
wait operator consumes a tuple from the distributor’s input queue, and sends it to its 
consumer operator (op1 or op2) that process it and, if is not discarded, sends it to the 
correspondent active operator to send it back to the distributor’s input queue, to be 
processed by another operator or, in the case of it has been processed by all internal 
operators, to be sent to the distributor’s output queue. For example, the tuples 
processed by the QEP fragment in the Figure 3 would flow two possible ways: 
op1→op2 and op2→op1. 

Fig. 1.  Modules Wait (a), Nowait (b) e Waitall (c). 

Fig. 2. The (a) Demand-Driven and (b) Data-Driven Modules. These modules can be combined 
through the (c) passive and (d) active control operators. 

Fig. 3. Adaptive Module 
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3.3 Query Execution Models 

In this section we show examples of the combination of the modules to produce the 
Traditional, Continuous, and Adaptive models. It’s important to be noted that these 
examples are based on the same QEP fragment.  

Traditional Model.   The Figure 4 shows, on the left side, an example of QEP with 
the modules Fixed, First-tuple, Demand-Driven and Wait. The solid arrows indicate 
the direction of data flow. The data sources were omitted by simplicity. This Figure 
illustrates, on the right side, the QEP to be executed, where the dashed arrows indicate 
the control flow direction. As a consequence of this execution process, the operators, 
op1, op2, and op3, process tuples in a synchrony way. As the application requires new 
tuples, they are produced by op3. Each tuple flows in the fixed way: op1→op2→op3. 

Fig. 4. Example of the Traditional Execution Model 

Continuous Model.  The Figure 5 shows, on the left side, an example of QEP with 
the Fixed, First-tuple, Data-driven, and Nowait modules, and shows, on the right side, 
the QEP to be executed. 

Adaptive Model.   The Figure 6 shows, on left side, the modules Adaptive, Fixed, 
First-tuple, Demand-Driven and Wait modules, and shows, on the right side the QEP 
to be executed. When the application requires a tuple from the distributor, it consumes 
tuples from op1 and sends them to the adaptable execution of the op2 and op3 
operators, until one of them produce a result tuple. As a consequence of this execution 
process, the three operators, op1, op2 and op3 process tuples in a synchrony way. As 
the application requires new tuples, the distributor produces these. The tuples flow in 
different way depending on its adaptability. 

op1 op3op2
get get get get

First-tuple 
Fixed 
Demand -driven 
Wait 

op2 op3op1



 

Fig. 5. Example of the Continuous Execution Model 

Fig. 6. Example of the Adaptive Execution Model 

3.4 Query Execution Meta-Model 

A QEP, submitted to the extensible QEE, is specified in a XML document, according 
to the traditional approach or our approach (named meta-QEP), in which is based on 
an execution meta-model, named QUEM (QUery Execution Meta-model). In the tra-
ditional approach, the QEP’s descriptions contain algebraic and control operators. In 
our approach, the meta-QEP’s description contains algebraic operators (algebraic 
QEP) and modules, combined by QUEM in a producer-consumer form. A XML 
document for a meta-QEP is specified by the QUEM DTD presented in the Figure 7. 
A similar DTD, without modules, is used to specify a traditional QEP. 

A meta-QEP is pre-processed by a meta-QEE, resulting in a final QEP that will be 
executed by a QEE, as the traditional QEP would be. The Figure 8 illustrates the 
forms to submit a QEP to the extensible QEE. The Figure 9 illustrates the two execu-
tion levels for a meta-QEP. 

<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT  METAPLANO (listoperator, MODULO)> 
<!ELEMENT  MODULO (FIXED | ADAPTIVE | DEMAND-DRIVEN | DATA-DRIVEN | 

REMOTE | LOCAL | INTRA | INTER | LASTTUPLE | FIRSTTUPLE | WAITALL | 
NOWAIT | WAIT | DEFAULT)> 

<!ELEMENT  ADAPTIVE ((MODULO | ALGEBRICO), (MODULO | ALGEBRICO)+)> 
<!ELEMENT  DATA-DRIVEN (MODULO | ALGEBRICO)> 
<!ELEMENT  DEMAND-DRIVEN (MODULO | ALGEBRICO)> 
<!ELEMENT  FIRSTTUPLE (MODULO | ALGEBRICO)> 
<!ELEMENT  FIXED (MODULO | ALGEBRICO)> 
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<!ELEMENT  INTER ((MODULO | ALGEBRICO)+, ALGEBRICO)> 
<!ELEMENT  INTRA (MODULO | ALGEBRICO)> 
<!ELEMENT  LASTTUPLE (MODULO | ALGEBRICO)> 
<!ELEMENT  LOCAL (MODULO | ALGEBRICO)> 
<!ELEMENT  NOWAIT (MODULO | ALGEBRICO)> 
<!ELEMENT  REMOTE (MODULO | ALGEBRICO)> 
<!ELEMENT  WAIT (MODULO | ALGEBRICO)> 
<!ELEMENT  WAITALL (MODULO | ALGEBRICO)> 
<!ELEMENT  DEFAULT (ALGEBRICO)> 
<!ELEMENT  ALGEBRICO (MODULO | ALGEBRICO)*> 
<!ATTLIST  ALGEBRICO name CDATA #REQUIRED ref CDATA #REQUIRED> 
<!ELEMENT  listoperator (operator+)> 
<!ELEMENT  operator (parameter+)> 
<!ATTLIST  operator id CDATA #REQUIRED  type CDATA #REQUIRED  
 name CDATA #REQUIRED> 
<!ELEMENT  parameter (itemparameter+)> 
<!ATTLIST  parameter  name  CDATA #REQUIRED> 
<!ELEMENT  itemparameter > 
<!ATTLIST  itemparameter type CDATA #REQUIRED value CDATA #REQUIRED > 

Fig. 7. The QUEM DTD for a meta-QEP specification 

Fig. 8. The two different approaches to submit a QEP 

Fig. 9. The two execution levels for a meta-QEP. At the first level, the QEEF behaves like a 
meta-QEE, executing the modules m1,m2, ..., and mN, of the meta-QEP. At the second level, 
the QEEF behaves like an instantiated QEE, executing the algebraic and control operators of 
the final QEP. 
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4 The Extensible Query Execution Engine 

In this section, we present the specification of the Extensible QEE, named QEEF 
(Query Execution Engine Framework), a white-box software framework [14] imple-
mented in Java language, to be instantiated according to an execution and data mod-
els, producing a QEE to support these models. Additionally, the QEEF can be instan-
tiated for different execution and data models producing different QEEs, in an 
orthogonal way. The Figure 10 shows the QEEF architecture specified in a (high 
level) UML diagram, where the concrete classes represent its frozen-spots and the ab-

stract classes represent its hot spots. 
 

Fig. 10. The architecture of the QEEF 

The QEEF class implements the Facade design pattern [15] and it interfaces a QEE 
and the user application, in which submits a QEP (or a meta-QEP) specified in a 
XML document. The Plan Manager class implements the Singleton pattern and man-
ages the construction of a plan (Plan class). In the following way: upon receiving the 
XML description of a meta-QEP, the algebraic operators (Algebraic class) are cre-
ated, and then the modules (Module class) are created and combined according to the 
QUEM meta-model. The Module class implements a Decorator pattern.  Each module 
creates its own control operators (Control class) and inserts them into a QEP, accord-
ing to the logic of composition of each module, producing a final plan object com-
posed only by algebraic and control objects related in the consumer-producer manner.  

The Factory class is used to create all operators. During the execution, an operator 
can use many data structures (Structure class) for persistence of its tuples (Tuple 
class). The Singleton class DataStructureManager that manages the data persistence 
creates all data structures. The Access class represents the algebraic operators that ac-
cess a data source. The DataSource class encapsulates all access to data sources and 
need to be specialized (via adapter pattern) to the data source’s interfaces. The Single-
ton class DataSourceManager creates all data sources, based on their metadata. The 
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Operator class implements, to all operators, an iterator-based interface consisting of 
the following operations: Open - it prepares the operator to produce data; Hasnext - it 
produces a tuple; Getnext - it sends a tuple under demand of the consumer; Putnext - 
it sends a tuple to the consumer; and Close - it finalizes the operator. 

The initialization of a plan is made through an open method call from its root op-
erator, in which can propagates it to the others operators, depending on the execution 
model.  The execution of an operator is made through the hasnext and getnext meth-
ods calls (in a demand-driven control flow) or a Putnext method call (in a data-driven 
control flow). The data of the tuples being produced can be printed out by the 
toString() method in the Tuple class.   

5 A Case Study 

We present in this section a case study, motivated by the adaptive scenario, instantiat-
ing the QEEF to the adaptive execution model, producing the AQEE (Adaptive Query 
Execution Engine) to be used by the web data integration application described in the 
follow. In this case, we consider a local data source (represented by L1) containing 
the initial list of products and three sites of supermarkets with information published 
in the web (represented here by the data sources S1, S2 and S3).  The exported rela-
tional scheme is composed of the relations: L1 (cod, name), S1 (cod, price), S2 (cod, 
price) and S3 (cod, price).  A data integration application that aims at recovering the 
prices of products of the three sites above would be expressed by the SQL query be-
low: 

Select L1.name, S1.price, S2. price, S3. price 
From   L1, S1, S2, S3 
Where L1.cod = S1.cod and L1.cod = S2.cod and L1.cod = S3.cod 

The predicate p = (L1.cod=Si.cod) illustrates the need of providing a search crite-
rion to access published data by the site Si.  In this case, each site requires the associa-
tion of a product code to the price of this product.  This way, the data source L1 
should be the first to be accessed to obtain the initial list of products.  It defined then, 
a partial order between the operators that will compose the QEP.  There is, to deep 
left trees, the following possible orders of evaluation of the predicates:  O1 = L1→ 
S1→ S2→ S3 ,  O2 = L1→ S1→ S3→ S2, O3 = L1→ S2→ S1→ S3, O4 = L1→ S2→ 
S3→ S1,  O5 = L1→ S3→ S1→ S2, and O6 = L1→ S3→ S2→ S1.  Other possible 
plans would include versions to bushy plans.  The determination of the best plan to be 
executed in this scenario is a difficult task considering the great variations in the an-
swer time to the sites involved.  Purely static strategies aren’t capable to model such 
variations. Adaptive strategies already can combine several possible plans during the 
execution of a query.  For this query example, AQEE will execute the QEP equivalent 
to the O1 ∪ O2 ∪ O3 ∪ O4 ∪ O5 ∪ O6.  

The Figure 11 illustrates the meta-QEP of the query above, consisting of the rela-
tional operators Scan, BindAccess (Ba), BindJoin (Bj) [13] and Project, and the mod-
ules Fixed, Demand-drive, Wait, Adaptive, and First-Tuple. The final QEP produced 



 

by the QEEF’s meta-engine is showed in the Figure 12, through the object diagram, 
composed only by algebraic and control operators.   

Fig. 11. Example of QEP using Adaptive Execution Model  

The combination of modules in that meta-QEP occurs in the follow manner: The 
Fixed module contains the Scan operator (associated to L1,) the Project operator, and 
the Adaptive module that contains the three BindJoin operators that uses the corre-
spondent BindAccess operator to submit bindings to the sites S1, S2, and S3, respec-
tively. The distributor operator manages the adaptability of the tuples, putting them 
into a queue. Each tuple has a priority that is incremented every time its return to the 
queue. The tuple with highest priority is sent to output as soon as possible. 

The Figure 13 shows the Java implementation of the AQEE’s application main 
method, in which calls the following QEEF methods: Open (to initialize the engine 
and the data sources listed in the metabase), Execute (to submit a QEP specified in 
XML), Hasnext (to produce a tuple), Getnext (to get the tuple), and Close (to finalize 
all operations).  It’s possible to re-execute the same QEP by calling the Reexecute 
method. 

Fig. 12.  Operators of the QEP, represented by the object diagram  
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public static void main (String[] args)  {   
 AQEE engine = new AQEE(); 
 engine.open("Metabase.txt"); 
 engine.execute("Plan.xml"); 
 while (engine.hasnext()){  
   Tuple t = engine.getnext(); 
   System.out.println(t.toString()); 
 } 
 engine.close(); 
} 

Fig. 13. The application main method 

6 Conclusions 

In this work, we presented an extensible query execution engine (QEE), named 
QEEF, to support new query execution models.  We defined a query execution model 
as being a combination of execution modules, which is a high level operator that in-
serts some control operators into the algebraic query execution plan (QEP).  The 
QEEF architecture was obtained using a software framework technique, very used in 
the construction of systems with high flexibility and that can be adapted rapidly to at-
tend the new application requirements, being, therefore, adequate to our context.  We 
develop a case study simulating a web data integration application, where the adapta-
bility is associated to the unpredictability of the access time to these data. Applica-
tions as those present challenges as the access time to data sources register variations 
and there is no statistical information. 

The main contributions of this work are: an analysis of the different execution sce-
narios, modules and models; the QEEF specification and its meta-model QUEM that 
makes possible the combination of modules in a QEP; and the AQEE case study. Be-
sides that, we do not find in literature an extensible QEE with a support to new execu-
tion models.  

As future work, we will instantiate the QEEF to new case studies such as a combi-
nation of Relational and XML data models in a QEP.  The use together of these mod-
els has particular importance in applications of web data integration (like [12, 23]).  
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