
Pattern Recognition from One Example by
Chopping

François Fleuret
CVLAB/LCN–EPFL

Gilles Blanchard
Fraunhofer FIRST

June 7, 2005

EPFL Technical Report IC/2005/027

Abstract

We investigate the learning of the appearance of an object from a
single image of it. Instead of using a large number of pictures of an
object to be recognized, we use pictures of other objects to learn invari-
ance to noise and variations in pose and illumination. This acquired
knowledge is then used to predict if two images of objects unseen dur-
ing training actually display the same object. We propose a generic
scheme called chopping to address this task. Using a fast learner, we
build hundreds of arbitrary binary splits of the image space designed
to assign the same label to all the training images of any given object.
Predictors of these splits are combined with a Bayesian rule into a
posterior probability of similarity. Experiments with the COIL-100
database and with a database of 150 degraded LATEX symbols com-
pare our method to a classical learning method with several examples
of the positive class and to direct learning of the similarity.

1 Introduction

Pattern recognition has so far mainly focused on the following task: given
many training examples labelled with their actual classes (the object they
display), try to guess the class of a new sample which was not available during
training. The various approaches all consist of going to some invariant fea-
ture space, and there using a classification method such as neural networks,
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decision trees, kernel techniques, Bayesian estimations based on parametric
density models, etc. Providing a large number of examples results in good
statistical estimates of the model parameters. Although such approaches
have been successful in applications to many problems, their performance
are still far from what biological visual systems can do, which is one sample
learning. This can be defined as the ability, given one picture of an object,
to spot instances of the same object, under the assumption that these new
views can be induced by the unique available example.

Being able to perform that type of one-sample learning corresponds to
the ability, given one example, to sort out which elements of a test set are of
the same class. This can be done by comparing one by one all the elements
of the test set with the reference example, and labelling as of the same class
those which are similar enough. Learning techniques can be used to choose
the similarity measure, which could be adaptive and learned from a large
number of examples of classes not involved in the test.

Thus, we propose to address a new problem. Given a large number of
training images of a large number of objects labeled with their actual classes,
and provided two pictures of unknown objects (objects which do not appear in
the training pictures), we want to decide if these two objects are actually the
same object. We call approaches aimed at solving this problem one-sample
learning techniques (OSL).

The idea of “learning how to learn” is not new and has been studied
for instance in the context of goal planning [8] or generic neural networks
[7]. Taking into account invariance with respect to a certain fixed class
of deformations was studied in [11]. In [5] the authors explicitly describe
a space of deformations and estimate the distribution of the deformations
needed to align training images of the same class. Again in the context of
object classification it was also proposed to learn a prior for the parameters
of a constellation model in order to achieve learning from very few examples
[4]. Finally, it has been proposed recently to learn generalization properties
under an assumption that the space tangent to the training data manifold is
a highly structured function of the location on the manifold [1].

This study proposes a more generic approach, and avoids an explicit
description of the space of deformations. We propose to build a large number
of binary splits of the image space, designed to assign the same binary label
to all the images common to a same object. The binary mapping associated
to such a split is thus highly invariant across the images of a certain object
while highly variant across images of different objects. We can define such
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a split on the training images, and train a predictor to extend it to the
complete image space by induction. We expect the predictor to respond
similarly on two images of a same object, and differently on two images of
two different objects with probability 1

2
. The global criterion to compare two

images consists roughly of counting how many such split-predictors responds
similarly and compare the result to a fixed threshold.

The principle of transforming a multiclass learning problem into several
binary ones by class grouping has a long history in Machine Learning [10].
From this point of view the collected output of several binary classifiers is
used as a way for coding class membership. In [2] it was proposed to carefully
choose the class groupings so as to yield optimal separation of codewords
(ECOC methodology). While our method is related to this general principle,
our goal is different since we are interested in recognizing yet-unseen objects.
Hence, the goal is not to code multiclass membership; our focus is not on
designing efficient codes – splits are chosen randomly and we take a large
number of them – but rather on how to use the learned mappings for learning
unknown objects.

2 Data and features

To make the rest of the paper clearer to the reader, we now introduce the data
and feature sets we are using for our experiments. However, note that while
we have focused on image classification, our approach is generic and could
be applied to any signals for which adaptive binary classifiers are available.

2.1 Data

We use two databases of pictures for our experiments. The first one is the
standard COIL-100 database of pictures [6]. It contains 7200 images cor-
responding to 100 different objects seen from 72 angles of view. We down-
sample these images from their original resolution to 38 × 38 pixels, and
convert them to grayscale. Examples are given in figure 1 (left).

The second database contains images of 150 LATEX symbols. We generated
1, 000 images of each symbol by applying a random rotation (angle is taken
between −20 and +20 degrees) and a random scaling factor (up to 1.25).
Noise is then added by adding random line segments of various gray scales,
locations and orientations. The final resulting database contains 150, 000
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Figure 1: Four objects from the 100 objects of the COIL-100 database (down-
sampled to 38× 38 grayscale pixels) and four symbols from the 150 symbols
of our LATEX symbol database (A, Φ, l and t, resolution 28 × 28). Each
image of the later is generated by applying a rotation and a scaling, and by
adding lines of random grayscales at random locations and orientations.

images. Examples of these degraded images are given in figure 1 (right).

2.2 Features

All the classification processes in the rest of the paper are based on edge-
based boolean features. Let ξx,y,d denote a basic edge detector indexed by a
location (x, y) in the image frame and an orientation d which can take eight
different values, corresponding to four orientations and two polarities (see
figure 2). Such an edge detector is equal to 1 if and only if an edge of the
given location is detected at the specified location, and 0 otherwise.

A feature fx0,y0,x1,y1,d is a disjunction of the ξ’s in the rectangle defined
by x0, y0, x1, y1. Thus, it is equal to one if and only if ∃x, y, x0 ≤ x ≤
x1, y0 ≤ y ≤ y1, ξx,y,d = 1. For pictures of size 32 × 32 there is a total of
N = 1

4
(32× 32)2 × 8 ' 2.106 features.

3 Chopping

The main idea we propose in this paper consists of learning a large number of
binary splits of the image space which would ideally assign the same binary
label to all the images of any given object. In this section we define these
splits and describe and justify how they are combined into a global rule.
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Figure 2: The figure on the left shows how an horizontal edge ξx,y,4 is de-
tected: the six differences between pixels connected by a thin segment have
to be all smaller in absolute value than the difference between the pixels con-
nected by the thick segment. The relative values of the two pixels connected
by the thick segment define the polarity of the edge (dark to light or light to
dark). On the right are shown the eight different types of edges.

3.1 Splits

A split is a binary labelling of the image space, with the property to give
the same label to all images of a given object. We can trivially produce a
labelling with that property on the training examples, but we need to be able
to extend it to images not appearing in the training data, including images
of other objects. We suppose that it is possible to infer the split function on
the complete image space, including images of other objects by looking at
the problem as a binary classification problem.

Inference is done by the mean of a simple learning scheme: a combination
of a fast feature selection based on conditional mutual information (CMIM)
[3] and a linear perceptron [9].

Thus, we create M arbitrary splits on the training sample by randomly
assigning the label 1 to half of the NT objects appearing in the training set,
and 0 to the others. Since there are

(
NT

NT /2

)
such balanced arbitrary labellings,

with NT of the order of a few tens, a very large number of splits is available
and only a small subset of them will be actually used for learning. For each
one of those splits, we train a predictor using the scheme describe above. Let
(S1, . . . , SM) denote the family of arbitrary splits and (L1, . . . , LM) the split-
predictors. The continuous outputs of these predictors before thresholding
will be combined in the final classification.
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Figure 3: These two histograms are representative of the responses of two
split predictors conditionally to the real arbitrary labelling P (L |S).

3.2 Combining splits

To combine the responses of the various split predictors, we rely on a set
of simple conditional independence assumptions (comparable to the “naive
Bayes” setting) on the distribution of the true class label C (each class corre-
sponds to an object), the split labels (Si) and the predictor outputs (Li) for
a single image. We do not assume that for test image pairs (I1, I2) the two
images are independent, because we want to encompass the case where pairs
of images of the same object are much more frequent than they would be if
they were independent (typically in our test data we have arranged to have
50% of test pairs picturing the same object). We however still need some
conditional independence assumption for the drawing of test image pairs. To
simplify the notation we denote L1 = (L1

i ), L
2 = (L2

i ) the collection of pre-
dictor outputs for images 1 and 2, S1 = (S1

i ), S
2 = (S2

i ) the collection of their
split labels and C1, C2 their true classes. The conditional indepence assump-
tions we make are summed up in the following Markov dependency diagram:
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In words, for each split i, the predictor output Li is assumed to be indepen-
dent of the true class C conditionally to the split label Si; and conditionally
to the splits labels (S1, S2) of both images, the outputs of predictors on test
pair images are assumed to be independent.

Finally, we make the additional symmetry hypothesis that conditionally
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to C1 = C2, for all i : S1
i = S2

i = Si and (Si) are independent Bernoulli
variables with parameter 0.5, while conditionally to C1 6= C2 all split labels
(S1

i , S
2
i ) are independent Bernoulli(0.5).

Under these assumptions we then want to compute the log-odds ratio

log
P (C1 = C2 |L1, L2)

P (C1 6= C2 |L1, L2)
= log

P (L1, L2 |C1 = C2)

P (L1, L2 |C1 6= C2)
+ log

P (C1 = C2)

P (C1 6= C2)
. (1)

In this formula and the next ones, when handling real-valued variables L1, L2

we are implicitly assuming that they have a density with respect to the
Lebesgue measure and probabilities are to be interpreted as densities with
some abuse of notation. We assume that the second term above is either
known or can be reliably estimated. For the first term, under the aforemen-
tioned independence assumptions, the following holds (see appendix):

log
P (L1, L2 |C1 = C2)

P (L1, L2 |C1 6= C2)
= N log 2 +

∑
i

log
(
α1

i α
2
i + (1− α1

i )(1− α2
i )

)
, (2)

where αj
i = P (Sj

i = 1 |Lj
i ). As a quick check, note that if the predictor

outputs (Li) are uninformative (i.e. every probability αj
i is 0.5), then the

above formula gives a ratio of 1 which is what we expect. If they are perfectly
informative (i.e. all αj

i are 0 or 1), the above product can take the values 0
(if for any j we can ensure S1

j 6= S2
j , this excludes the case C1 = C2) or 2N

(if for all j we have S1
j = S2

j there is still a tiny chance that C1 6= C2 if by
chance C1, C2 are on the same side of each split).

To estimate the probabilities P (Sj |Lj), we use a simple 1D Gaussian
model for the output of the predictor given the true split label. Mean and
variance are estimated from the training set for each predictor. Experimental
findings show that this Gaussian modelling is realistic (see figure 3).

4 Experiments

We estimate the performance of the chopping approach by comparing it
to classical learning with several examples of the positive class and to a
direct learning of the similarity of two objects on different images. For every
experiment, we use a family of 10, 000 features sampled uniformly in the
complete set of features (see section 2.2)
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Figure 4: Error rates of the chopping, smart-chopping and classical predictor
on the LATEX symbol (left) and the COIL-100 database (right). Each curve
shows the average error and a two standard deviation interval, both estimated
on ten experiments for each setting. The x-axis shows either the number of
splits for chopping or the number of samples of the positive class for the
classical learning.

4.1 Classical learning

We call classical learning a procedure in which we train a predictor with
several pictures of a positive class and with a very large number of pictures
of a negative class. The number of positive examples depends on the experi-
ments (from 1 to 32) and the number of negative examples is 2, 000 for both
the COIL-100 and the LATEX symbol databases. Note that to handle the
unbalanced positive and negative populations, the perceptron bias is chosen
to minimize a balanced error rate.

In each case, and for each number of positive samples, we run 10 exper-
iments. Each experiment consists of several cross-validation cycles so that
the total number of test pictures is roughly the same as the number of pairs
in one-sample techniques experiments below.

4.2 One-sample learning

For each experiment, whatever the predictor is, we first select 80 training ob-
jects from the COIL-100 database (respectively 100 symbols from the LATEX
symbol database). The test error is computed with 500 pairs of images of
the 20 unseen objects for the COIL-100, and 1, 000 pairs of images of the
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50 unseen objects for the LATEX symbols. These test sets are built to have
as many pairs of images of the same object than pairs of images of different
objects.

Baseline predictor: Note that one-sample learning can also be simply cast
as a standard binary classification problem of pairs of images into the classes
{same, different}. We therefore want to compare the Chopping method
to a more standard learning method directly on pairs of images using a
comparable set of features. For every single feature f on single images,
we consider three features of a pair of images standing for the conjunction,
disjunction and equality of the feature responses on the two images. From
the 10, 000 features on single images, we thus create a set of 30, 000 features
on pairs of images.

We generate a training set of 2, 000 pairs of pictures for the experiments
with the COIL-100 database and 5, 000 for the LATEX symbols, half picturing
the same object twice, half picturing two different objects. We then train a
predictor similar to those used for the splits in the chopping scheme: feature
selection with CMIM, and linear combination with a perceptron (see section
3.1), using the 30, 000 features described above.

Chopping: The performance of the chopping approach is estimated for
several numbers of splits (from 1 to 1024). For each split we select 50 objects
from the training objects, and select at random 1, 000 training images of
these objects. We generate an arbitrary balanced binary labelling of these 50
objects and label the training images accordingly. We then build a predictor
by selecting 2, 000 features with the CMIM algorithm, and combine them
with a perceptron (see section 3.1).

To compensate for the limitation of our conditional independence as-
sumptions we allow to add a fixed bias to the log-odds ratio (1). This type
of correction is common when using naive-Bayes type assumptions. Using
the remaining training objects as validation set, we compute this bias so as
to minimize the validation error. We insist that no objects of the test classes
be used for training.

To improve the performance of the splits, we also test a “smart” version of
the chopping for which each split is built in two steps. The first step is similar
to what is described above. From that first step, we remove the 10 objects
for which the labelling prediction has the highest error rate, and re-build the
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split with the 40 remaining objects. This get rid of problematic objects or
inconsistent labelling (for instance trying to force two similar objects to be
in different halves of the split).

4.3 Results

The experiments demonstrate the good performance of chopping when only
one example is available. Its optimal error rate, obtained for the largest
number of splits, is 7.41% on the LATEX symbol database and 11.42% on the
COIL-100 database. By contrast, a direct learning of the similarity, what we
called the baseline predictor (see section 4.2), reaches respectively 15.54%
and 18.1% respectively with 8, 192 features.

On both databases, the classical multi-sample learning scheme requires
32 samples to reach the same level of performances (10.51% on the COIL-100
and 10.7% on the LATEX symbols).

The error curves (see figure 4) are all monotonic. There is no overfitting
when the number of splits increases, which is consistent with the absence of
global learning: splits are combined with an ad-hoc Bayesian rule, without
optimizing a global functional, which generally also results in better robust-
ness.

The smart splits (see section 4.2) achieve better performance initially but
eventually reach the same error rates as the standard splits. There is no
visible degradation of the asymptotic performance due to either a reduced
independence between splits or a diminution of their separation power. How-
ever the computational cost is twice as high, since every predictor has to be
built twice.

5 Conclusion

In this paper we have proposed an original approach to learning the appear-
ance of an object from a unique image. Our method relies on a large number
of individual splits of the image space designed to keep together the images
of any of the training objects. These splits are learned from a training set of
examples and combined into a Bayesian framework to estimate the posterior
probability for two images to show the same object.

This approach is very generic since it never makes the space of admissible
perturbations explicit and relies on the generalization properties of the family
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of predictors. It can be applied to predict the similarity of two signals as soon
as a family of binary predictors exists on the space of individual signals.

Since the learning is decomposed into the training of several splits inde-
pendently, it can be easily parallelized. Also, because the combination rule is
symmetric with respect to the splits, the learning can be incremental: splits
can be added to the global rule progressively when they become available.

Appendix: Proof of formula (2). For the first factor, we have

P (L1, L2 |C1 = C2)

=
∑

s1,s2

P (L1, L2 |C1 = C2, S
1 = s1, S2 = s2)P (S1 = s1, S2 = s2 |C1 = C2)

=
∑

s1,s2

P (L1, L2 |S1 = s1, S2 = s2)P (S1 = s1, S2 = s2 |C1 = C2)

=
∑

s1,s2

∏
i

P (L1
i |S1

i = s1
i )P (L2

i |S2
i = s2

i )P ((S1
i , S

2
i ) = (s1

i , s
2
i ) |C1 = C2)

= 2−N
∏

i

(
P (L1

i |S1
i = 1)P (L2

i |S2
i = 1) + P (L1

i |S1
i = 0)P (L2

i |S2
i = 0)

)
.

In the second equality, we have used that L is independent of C given S. In
the third equality, we have used that the (Lj

i ) are independent given S. In
the last equality, we have used the symmetry assumption on the distribution
of (S1, S2) given C1 = C2. Similarly, we have

P (L1, L2 |C1 6= C2) = 4−N
∏

i

∑
s1,s2

P (L1
i |S1

i = s1)P (L2
i |S2

i = s2)

= 4−N
∏

i

∑
s1,s2

P (S1
i = s1 |L1

i )P (S2
i = s2 |L2

i )P (L1
i )P (L2

i )

= 4−(N+2)
∏

i

P (L1
i )P (L2

i ) .

Taking the ratio of the two factors leads to the conclusion.
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