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Abstract. This paper studies the interplay between inner classes and virtual
types. The combination of these two concepts can be observed in object-oriented
languages like BETA or ScALA. This study is based on a calculus of classes
and objects composed of a very limited number of constructs. For example
the calculus has neither methods nor class constructors. Instead it has a more
general concept of abstract inheritance which lets a class extend an arbitrary
object. Thanks to an interpretation of terms as types the calculus also unifies
type fields and term fields. The main contribution of this work is to show that
typing virtual types in the presence of inner classes requires some kind of alias
analysis and to formalize this mechanism with a simple calculus.

1 Introduction

The combination of inner classes and virtual types can be observed in several object-
oriented programming languages like BETA [1] and SCALA [2]. The goal of this paper
is to give a formal basis to study the interplay between inner classes and virtual types
in these languages.

An inner class C is a class nested into another one such that each instance of C
contains a reference to an instance of the enclosing class. Virtual types are types whose
occurrence in a class needs to be reinterpreted in the context of a subclass. Because the
context of the subclass usually gives more information than the context of the super
class, it is possible to have a better knowledge about a type. In the presence of inner
classes, the context of a class depends also on its statically enclosing class. The role of
a type system is to make the most of this extra information.

Both concepts, inner classes and virtual types, have been studied and well-understood
separately [3,4] but little has been done on the formalization of their interaction. Our
work focuses on this problem.

The paper is organized as follows. Section 2 is a reminder about inner classes.
Section 3 introduces virtual types and describes informally the mechanism needed
to type virtual types in the presence of inner classes. It reveals that the core of this
mechanism is a kind of alias analysis. In Section 4 we introduce SCALETTA !, a calculus
of classes and objects whose goal is to type virtual types in the presence of inner
classes. Because our primary goal does not require to consider mutable fields, we limit
ourselves to a functional fragment where objects have no state and no identity like
in [5]. The calculus has neither methods nor class constructors. Instead it has a more
general concept of abstract inheritance which lets a class extend an arbitrary object.

1 SCALETTA formalizes some important concepts of SCALA, hence its name.



This choice reduces greatly the number of evaluation rules. In Section 5, we give an
interpretation of terms as types which lets us simulate type fields with normal term
fields and introduce a type system based on the concept of abstract evaluation. We
illustrate by an example how this type system performs the required alias analysis
identified in Section 3. In Section 6, we extend the type system to address the problem
of typing abstract inheritance. In Section 7 we discuss the undecidability of our type
system and introduce the concept of typing strategies. In Section 8 we discuss the
requirement of globally unique names in our calculus. We show that this requirement
is equivalent to conceptually separate name resolution from typing. In section 9 we
review related works. Finally we conclude with a summary of our contributions and
present our plan for the future.

All examples presented in this paper have been typed-checked and evaluated using
our SCALETTA compiler. Both the complete versions of the examples and the compiler
can be found on the SCALETTA home page [6].

2 Inner Classes

Our calculus is about inner classes and virtual types. In this section, we introduce our
terminology about inner classes and explain what we call an inner class. We remind
also some, maybe not so well-known, facts about inner classes.

2.1 Terminology

A nested class is a class declared within another one. We distinguish two kinds of nested
classes: inner classes which can access the current instance of their enclosing class and
static nested classes which can not. Within an inner class the current instance of its
enclosing class is called the current enclosing instance and given an instance i of an
inner class, it is called the enclosing instance of <.

Static nested classes are equivalent to top-level classes with some privileged rights
to access static members of their enclosing class. These rights pose some interesting and
non-trivial issues. However these issues are beyond the scope of this paper. Here, we
are only interested in the additional issues posed by the presence of a current enclosing
instance in inner classes. The rest of this section illustrates these issues with some
examples written in JAva [7].

2.2 Enclosing Instances

In JAvA, any non-static class declared within some class C is an inner class. Within the
inner class, the current enclosing instance is denoted by the expression C.this which is
of type C. The code below declares an inner class I nested in a class R. It makes explicit
the presence of a current enclosing instance of type R by declaring a field outerI of
that type and initializing it with that instance.

public class R {
class I { final R outerI = R.this; }
}



This example explicitly declares a field outerI that holds the current enclosing
instance. However, every inner class really has a hidden field that holds this instance
and the syntax C.this is just a way to access this hidden field. In fact, an inner class
is nothing else than a static nested class with an additional field holding the current
enclosing instance. We call this additional field the outer field of the inner class.

When an inner class is declared within another inner class, it can access the current
instances of both of its enclosing classes. For example, within class M in the code below,
the expression R.this denotes the current instance of the (indirectly) enclosing class R.
This instance is, by definition, equal to R.this evaluated within class I. In other words,
in class M, R.this is equal to this.outerM.outerI.

public class R {
class I {
final R outerI = R.this;
class M {
final I outerM = I.this;
}
}
}

So, although an inner class may have access to the current instance of several
enclosing classes, a single outer field per class is sufficient to access all these instances.
In the general case, within a class Cy nested in a class Cy, ..., nested in a class C,,
the expression C;.this is equal to this.outerCy ... .outerC,;_;. Therefore, the syntax
C.this would be superfluous if the outer fields were not hidden and were automatically
initialized. It could always be replaced by a succession of outer field selections.

2.3 Instance Creations

To create a new instance of an inner class D, an instance of its enclosing class C has to
be provided. In JAVA, the syntax ezpr.new D(args) is used to that effect. It creates
a new instance of class D whose enclosing instance is the result of the expression ezpr.
The enclosing instance may be omitted if the instance creation is enclosed, possibly
indirectly, in a subclass E of C. In that case, the expression new D(args) is equivalent
to the expression E.this.new D(args). We illustrate this by augmenting the class R
above with the two fields declared below. The value i is an instance of class I whose
enclosing instance is the current instance of class R (the expression new I() really
means this.new I()) and the value mis an instance of class M whose enclosing instance
is the value i.

final I i = new IQ);
final I.M m = i.new MQ);

Every inner class introduces a single outer field, but an instance of an inner class
may have several outer fields because it inherits one from each inner class it is an
instance of. For example, every instance of the class J declared below has two outer
fields, namely outerI and outerJ, and every instance of the class N has the two outer
fields outerM and outerN.



public class R {

class I {
final R outerI = R.this;
class M {
final I outerM = I.this;
}

class N extends M {
final I outerN = I.this;
N(I i) { i.superQ); }
}
}
class J extends I {
final R outerJ = R.this;

¥

final I i = new IQ);
final J j = new JQO);
final I.N n = i.new N(j);

}

For the same reason instance creations of inner classes require an enclosing instance,
super constructor calls of inner classes also require an enclosing instance. These super
constructor calls have the syntax expr.super(args) where expr must evaluate to
an instance of the enclosing class C of the super class. As with instance creations, the
enclosing instance may be omitted if the super constructor call is enclosed, possibly
indirectly, in a subclass E of C. In that case, the expression super(args) is equivalent
to E.this.super(args).

2.4 Aliasing

In the code above, the class J has no explicit constructor; it gets a default con-
structor containing a call to the super constructor, super (), which is here equivalent
to R.this.super (). This implies that for any instance of class J, its two outer fields
outerI and outerJ hold exactly the same value. The constructor of class N specifies
that the enclosing instance of its superclass M is its argument i. Therefore, the two
outer fields of a given instance of class N may hold different values. For example, for
the value n, n.outerN is equal to i while n.outerM is equal to j. In fact, the two values
are even of different types.

The next example illustrates that it is sometimes possible to statically establish
that two outer fields hold the same value. It implies that the two fields can be assumed
by the compiler to share their typing knowledge.

public class R {

class A {

final R outerA = R.this;

class X { final A outerX = A.this; }
}

class B extends A {
final R outerB = R.this;



class Y extends X { final B outerY = B.this; }
}
}

Instances of the class Y declared above have two outer fields: outerX and outerY.
One can establish that both will always hold the same value, but both are not perfectly
equivalent; outerY is of type B while outerX is only of type A. However, we know
that outerX holds an instance of class B. Thus, we know that each time something is
accessed via outerX, it is accessed on an instance of class B. The next section will show
that this information is crucial in the context of virtual types.

2.5 Summary

To sum up, an inner class can be viewed as a top-level class with an additional field
(the outer field) holding the current enclosing instance. This instance must be provided
to all instance creations and all super constructor calls. An instance of an inner class
inherits one outer field from each inner class it is an instance of. All those fields may
hold different values, but sometimes it is possible to formally establish that some of
them necessarily hold the same value.

3 Virtual Types

In this section we review virtual types and identify the kind of analysis a type system
has to perform when virtual types are used in combination with inner classes.

3.1 Definition

In some object-oriented languages, it is possible to declare abstract type members,
i.e. type members that are bounded by a type but have no exact type value. These
members may then be given different type values in different subclasses. This means
that the exact value of such a type member depends on the exact class of the value
from which it is selected. These type members are called virtual types. We illustrate
virtual types with the following example written in SCALA:

abstract class M {
type T <: Object;
val x: T;
val y: T = x;

}

class N extends M {
type T = String;
val x = "foo";

}

In class M, the fields x and y are both declared with the type T. It is therefore legal
to assign x to y. Within class M, the exact value of T is unknown. It is only known
that this value is bound by (is a subtype of) Object. Although "foo" has type String
and String is a subtype of Object, it would be illegal to assign "foo" to x in class M



because in subclasses of M, T may be assigned any subtype of Object and the value of x
has to be an instance of that type. In the subclass N, T is assigned the type String.
As in SCALA type assignments may not be overridden in subclasses, it is possible to
assign "foo" to x in class N.

3.2 Virtual Types with Inner Classes

We show now that typing virtual types in the presence of inner classes requires some
kind of alias analysis. To illustrate this we consider a SCALA version of the example of
Section 2.4 augmented with a type member T in class A and a field x in class X.

abstract class A {
type T <: Object;
abstract class X {
val outerX = A.this;
val x: T; // T = A.this.T = this.outerX.T
¥
¥
class B extends A {
type T = String;
class Y extends X {
val outerY = B.this;
val x = "foo";
¥
}

The code above and in particular the assignment of field x in class Y is well-typed.
This might be a bit surprising because the field x is declared in class X with the type T
and T is an abstract type member of class A. The exact value of T is not known, at
least not in class X. So, how could one assign "foo" to x in one of its subclasses? The
answer comes from the observation we made in Section 2.4: for all instances of class Y,
the fields outerX and outerY hold the same value. The field x is declared with the
type T. In class X, T is a shorthand for A.this.T and by definition A.this is equal
to this.outerX, so T is equal to this.outerX.T. As for any instance of Y, outerX is
equal to outerY, we conclude that in class Y, the field x has the type this.outerY.T
which is obviously equal to String. The assignment of "foo" to x in class Y is therefore
well-typed.

This example illustrates the fact that typing virtual types in the presence of inner
classes requires some kind of alias analysis on outer fields. In this example, it is possible
to establish that x has the type String in class Y only because it was possible to
establish that, for any instance of Y, the fields outerX and outerY hold the same value.
Without that information, one would only know that x has the type T and that T is
bound by Object.

3.3 Outer This vs. Outer Fields

In the ScALA compiler, the alias analysis mentioned above is performed by a rather
complex method called asSeenFrom. This method takes as arguments a type T, the
class C where this type occurs and a subclass D of C'. It returns the reinterpretation
of T in class D. Here is an application of that method:



asSeenFrom(A.this.T, X, Y) — String

To obtain this result the asSeenFrom method first does some alias analysis to estab-
lish that the expression A.this occurring in class X once reinterpreted in class Y denotes
the same value as the expression B.this interpreted in class Y. From this asSeenFrom
determines that A.this.T reinterpreted in class Y is equal to B.this.T. Finally, it
applies the fact that T is given the type String in class B and returns String.

One reason the method asSeenFrom is rather complex is that its input types are usu-
ally well-formed only in the class where they occurred. For example, the type A.this.T
is not well-formed in class Y because A is not an enclosing class of Y. It is also possible
to construct examples where the input type is well-formed in both of the input classes
but has a different meaning. This has to do with the fact that in general expressions
of the form C.this may not be moved from the body of a class to the body of one of
its subclasses.

In our calculus, we avoid that problem by translating all expressions of the form C.this
into a sequence of outer fields selections on this. This has the great advantage that
the resulting expressions are well-formed in the class where they occur and in all of
their subclasses and have the same meaning in all those classes. For example, the
type this.outerX.T of the field x in class X is also well-formed in class Y and has the
same meaning than in class X.

3.4 Parameterized Classes

In this section, we show that the combination of parameterized classes and inner classes
induces the same kind of analysis as the combination of virtual types and inner classes.

Parameterized classes have been presented as an alternative to virtual types [8]. For
instance, the code example of the previous subsection can also be written in a language
with parameterized classes and inner classes like JAVA 5.0. The idea of the translation
is to let an abstract type member of a class be a type parameter of this class.

class A<T extends Object> {
abstract class X {
final A<T> outerX = A.this;
abstract T x();
}
}
class B extends A<String> {
class Y extends X {
final B outerY = B.this;
String x() { return "foo"; }
}
}

The code above is well-typed JAVA 5.0 code. In particular, the method x in class Y
effectively implements the method x declared in class X. This is true for exactly the
same reasons the assignment of the field x was well-typed in the SCALA example.
The well-formedness proof requires exactly the same alias analysis to determine that
the fields outerX and outerY hold the same value for any instance of class Y and



that therefore the type T occurring in class X reinterpreted in class Y is equal to the
type String.

This observation shows that our calculus which can be used to type virtual types
in the presence of inner classes can also be used to understand the interaction between
inner classes and parameterized classes or at least all aspects related to alias analysis.

3.5 Summary

To sum up, typing virtual types in the presence of inner classes requires some kind of
alias analysis. This analysis is needed when a virtual type has to be reinterpreted in a
different context from the one where it occurs. It can be performed by reinterpreting
expressions of the form C.this. However, it can also be performed by reinterpreting the
translation of these expressions into sequences of outer field selections. The translated
expressions have the advantage of being relocatable; they remain well-formed and keep
the same meaning in subclasses of the class where they occur which is not the case for
expressions of the form C.this.

4 Untyped Calculus

This section describes the untyped fragment of our calculus and explains its semantics.
The syntax and all deduction rules are summed up in Figure 1.

4.1 Syntax

A SCALETTA program consists of a list of class declarations and a main expression.
Given a meta-variable x, we use the notation T to represent a potentially empty se-
quence z1,...,I,, of elements denoted by z. Each class has a name, zero or one parent
and a list of field valuations. Within a program, classes are referred to through their
name, therefore all classes must have a globally unique name.

Although all classes are declared at the top-level, all are inner classes; indeed each
one has an implicit outer field and an enclosing instance has to be provided to instan-
tiate them. To bootstrap the whole thing, there is also an implicit root class Root that
may never be explicitly instantiated and whose unique instance is provided from the
outside.

Our calculus implements inheritance through delegation. This means that any in-
stance ¢ of a class C' with inherited members contains a value that implements those
members. This value is called the delegate of c. Each time an implementation for a
member is requested on ¢, one is first searched in class C'. If none is found, the request
is forwarded to the delegate of c¢. In our calculus, the parent of a class C is a term ¢
that is used to compute the delegate of new instances of class C. Note that this term
is evaluated in the context of the enclosing class of C.

Terms are of four different kinds. The traditional this denotes the current instance.
The field selection ¢ . f denotes the evaluation of the field f on the term ¢. The instance
creation t ! C corresponds to the JAVA expression t.new C'(). It creates a new instance
of class C with the enclosing instance t. In other words, it creates a new instance of
class C' whose implicit outer field is initialized with ¢. The outer field selection ¢ @C'
corresponds to the JAVA expression ¢.outerC where outerC denotes the implicit outer



Syntax

Class name B,C
Field name f
Class declaration D = class C extendsp {d}

Class parent p  u=t|nothing
Class member d n=field f =t field valuation
Term t,u = this current instance

| t'C instance creation
| ¢.f field selection
| teC outer field selection

Program P =Dt
Evaluation context FE == ()| E!C|E.f]|FEeC
Values v n=this | v !C

Auxiliary Relations
class C extends p {d} | class C extendsp {d}

Extend Decl
(Extends) C extends p C declares d; (Declares)
Reduction Expansion

t< C t < C
(= Field) C declares (f ielc.i f=u) C' extends .u (<_Fxt)
t.f — [t/this]u t < [teC/this]u
t<u!C t—u
(—_Outer) P Tolen 2 (<_Red)
t—u + reflexivity (=_Refl)
(—_Context) E{t) — E{u) + transitivity (<_Trans)
Instance
t<u!C
_— N
t<C (<_New)

Fig. 1. The untyped calculus




field of class C. It returns the contents of that field, provided t is an instance of class C'.
We remind here that a value has as many outer fields as inner classes it is an instance of.
That is the reason we need the name C; it identifies the class whose outer field should
be returned. In some sense, the operation ¢ @C' is the opposite of t ! C; it extracts from
an instance of class C' the enclosing instance that was used to create it. One could
expect that for any term ¢ and any class C, the expression t ! C' @C' is equal to ¢. Later
in this section we will see that this is indeed true.

4.2 Semantics

The semantics of SCALETTA is defined by three inductive relations and two auxiliary
relations. All are implicitly parameterized by the list of class declarations of the pro-
gram; when a class declaration D appears in the premises of a rule, it simply means
that D belongs to this list.

Among the three semantics relations, there is a reduction relation ¢ — u which
states that ¢ reduces to u. The two others are the expansion relation ¢ < v which states
that u is a delegate of ¢ and the instance relation ¢ < C which states that ¢ is a (direct
or indirect) instance of class C.

Values are terms that consist only of instance creations. The initial this of values
and also of all terms that appear in the deduction rules of the three semantics relations
designates the unique instance of the implicit root class.

The expansion relation extends the notion of delegate of a term ¢ to include not
only the direct delegate of new instances (<__Ext), but also the term ¢ itself (<_ Refl),
all delegates of any of its delegate (<_ Trans) and the reduction of any of its delegate
(<_Red). The outer field selection ¢@C in rule (<_Ext) expresses the fact that the
parent term ¢ of a class C' has to be evaluated in the context of the enclosing class of C'
(i.e. in the parent term, this designates the current enclosing instance of class C'). We
use the notation [t/this]u to represent the term obtained by substituting ¢ for this
in u.

The instance relation consists of the single rule (<_ New) which states that a term ¢
is an instance of a class C if one of its delegates is a (direct) new instance of class C.
Strictly speaking, this relation is not really necessary here; its single rule could easily be
inlined in the two other relations. We introduce it in anticipation of the typed calculus
which adds two other deduction rules.

The reduction relation imposes no order on evaluation, as expressed by the de-
duction rule (—_ Context). In this rule the notation E(t) represents the term obtained
from the context E by replacing the hole () with the term ¢. Field selections are reduced
the same way as parameterless methods are evaluated in standard object-oriented lan-
guages (—_ Field) by a lookup of the field starting from the receiver object. Note that,
as our calculus is purely functional, this behavior is indistinguishable from one where
fields are evaluated only once and cached. The rule (—_ Outer) expresses the fact that
the outer fields of a value are split over its delegates; each delegate stores the contents
of one outer field, namely the one of the class it is a direct instance of. It expresses also
the fact that given the exact class of a value ¢t and the contents of the outer field of that
class, the contents of all other outer fields can be computed simply by recomputing the
delegates of ¢.
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4.3 Examples

First, we prove that, as stated earlier, for any term ¢ and any class C, the term ¢ ' C' @C'
reduces to t. Here is the proof:

(= Ref) e—71¢

trceC —t

(—_ Outer)

Now, let us try to encode positive integers with a base class Int and two sub-
classes Zero and Succ. The idea is to encode 0 with the value this!Zero and any
strictly positive integer n with an instance of class Succ whose enclosing instance stores
the predecessor of n. Thus, any positive integer n is represented by the value this!Zero
followed by n instance creations of class Succ. For example, the number 2 is repre-
sented by the value this!Zero!Succ!Succ. For now, we equip our integers with only
two fields: pred and succ which return respectively the predecessor and the successor
of the receiver integer.

class Int extends nothing {
field succ = this!Succ;
class Succ extends this@Int!Int {
field pred = this@Succ;
}
}
class Zero extends this!Int {
field pred = this;
}

Note that although in the calculus all classes are declared at the same level, in our
code examples we nest classes that are logically nested. For example, in the code above,
the class Succ is nested in class Int because we expect that the enclosing instance of
any instance of class Succ will always be an instance of class Int.

Now, let us try to reduce the term this!Zero.succ.pred. We start by proving
that this!Zero is an instance of class Int:

(<_Refl)

this !Zero < this !Zero
this !Zero < Zero

Zero extends this !Int

this !Zero < this !Zero @Zero !Int

(<_New)

(<_Ext)

(—__Outer)
this !Zero < Int

As class Int declares that field succ is equal to this!Succ, we may apply the
rule (—_ Field) to reduce this!Zero.succ to this!Zero!Succ. This is an instance of
class Succ which declares that field pred is equal to this@Succ. We may therefore again
apply the rule (—_ Field) to reduce this!Zero!Succ.pred to this!Zero!Succ@Succ
which, by applying our previous result about terms of the form ¢ !C @C, reduces
to this!Zero. Altogether, with some additional applications of the rule (—_ Context),
this lets us conclude that this!Zero.succ.pred reduces to this!Zero.

11



4.4 Syntactic Sugar

In order to make our next examples a bit easier to read, we introduce some syntactic
sugar. First of all, we will omit the extends clause of classes that extend nothing.
We also introduce the JAVA syntax C.this to designate the current instance of an
enclosing class C. The translation of such an expression into a sequence of outer field
selections is explained in Section 2.2. To terminate, we make the initial this of a term
optional.

Here is the integer example rewritten with the newly introduced syntactic sugar.

class Int { // "extends nothing" -> ""
field succ = !Succ; // "this" -> nn
class Succ extends Root.this!Int { // "this@Int" -> "Root.this"

field pred = Int.this; // "this@Succ" -> "Int.this"

3

}

class Zero extends !Int { // "this" ->
field pred = this;

}

4.5 Methods

Methods are not part of the calculus but they can be encoded using classes. An im-
plementation of a method m is encoded by an auxiliary class M and a field m that
returns a new instance of the class M. The class M has one abstract field for each pa-
rameter of m and a result field whose value is the encoding of the body of the method.
This encoding simply replaces all references to parameters of m by references to the
corresponding fields of class M. The values of the parameter fields are provided when
the method is applied.

To illustrate this, we define for our integers a method add that computes the sum
of the receiver object and its argument. We use a field that to encode the method
parameter and a field result for its result.

The implementation of add in class Zero is simple; the method simply returns its
parameter. We augment the class Zero with the following declarations.

class AddInZero {
field result = that;

}

field add = !'AddInZero;

Note that in the untyped calculus abstract fields are not declared at all. That
explains the occurrence of the undeclared field that in class AddInZero.

The implementation of add in class Succ is a bit more difficult because it involves
a method application, namely a recursive call to itself. For now, let us assume that we
know how to encode method applications. This leads to the following declarations in
class Succ where add (that.succ) is syntactic sugar for the application of method add
to the argument that.succ.
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class AddInSucc {

field result = Succ.this.pred.add(that.succ);
}
field add = !AddInSucc;

An application t .m(@) of a method m with the receiver object ¢ and arguments @
is encoded by the term this !N .r where N is an auxiliary class and r the result
field name of the method m. The class N extends the term ¢ .m and contains a field
valuation for each argument wu;.

We can now rewrite the class AddInSucc without syntactic sugar for method appli-
cation:

class AddInSucc {
class Apply extends Succ.this.pred.add {
field that = AddInSucc.this.that.succ;
}
field result = !Apply.result;
}

All instances of class Succ have the same single delegate this!Int. That is not
true for the class Apply for which the value of the parent varies from one instance to
the other. For example it can be shown that the only delegate of 1!'AddInSucc!Apply
is 0'AddInZero while the only delegate of 2!'AddInSucc!Apply is 1!AddInSucc. Such a
behavior is only possible because in our calculus classes extend arbitrary terms instead
of classes. We call this mechanism abstract inheritance. Abstract inheritance is the key
element that lets us encode methods.

4.6 Blocks

As a second demonstration of the simplicity for encoding classical high-level program-
ming constructs in SCALETTA, we show now how we can encode blocks. We introduce
the syntactic sugar {Dd t} for expressing a block consisting of a list of definitions
(classes and fields) D d and of a main expression ¢ representing the value of the block.
Such a block expression is translated into the class

classC{D d fieldresult = t}

and the expression

this ! C .result

where C' is a fresh class name and result a fresh field name for accessing the result
of the block.

4.7 Functions

Using inner classes, methods and blocks, it is possible to encode functions as objects
containing a method apply and function applications as calls to this method. It follows
that our calculus has first-class functions and therefore can trivially encode the lambda-
calculus.

13



We formally define here the translation (M) from a term M of the lambda-calculus
into an untyped SCALETTA program Dt consisting of a list of classes D and a main
term t. For expressing the result of the translation, we use the already introduced
syntactic sugar for methods and blocks, and we spatially nest classes that are logically
nested.

(Varlable) <Jj>7:x
— —
(Application) (M) = thi,<N> =Du
(M N)=DD t.apply(u)
(Abstraction) (M)=Dt  C fresh class name

(Ax.M) = class C' { method apply(x) = { D t } } this!C

For instance the encoding of the term Af. \x.f x is

class C1 {
method apply(f) = {
class CO {
method apply(x) = {
f.apply(x)
}
}
this!CO
}
}
this!C1

4.8 Safety and Confluence

The calculus presented here is neither safe nor confluent. It is unsafe because the
reduction of field and outer field selections may both be stuck. The reduction of a
field selection ¢ . f is stuck if the value denoted by the term ¢ has no valuation for the
field f. The reduction of an outer field selection ¢ @C' is stuck if the value denoted by the
term ¢ is not an instance of class C'. These two issues are addressed by Section 5 which
augments the calculus with type annotations and presents a well-formedness predicate.

The calculus is not confluent for two reasons. Firstly, a value may inherit a field
valuation for a given field f from several classes. If the field f is selected on such a
value, the rule (—_ Field) does not specify which valuation should be used. Therefore,
anyone can be used. Secondly, it is possible to build values that inherit several times
from some class C' but with different enclosing instances. If the outer field of class C' is
selected on such a value, the rule (—_ Outer) does not specify which enclosing instance
should be used. So, here again, anyone can be used. Both problems could be solved by
somehow ordering the inherited field valuations and enclosing instances and modifying
the rules (—_ Field) and (—_ Outer) to pick the first one. However, we do not do that
because our well-formedness predicate described in Section 5 can not tolerate programs
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where such things may arise. In Section 6 we describe the additional rules needed to
reject such programs.

4.9 Alias Analysis

We terminate this section with an example showing that our calculus can indeed be
used to do some alias analysis. The code below is the SCALETTA version of the example
given in Section 2.4.

class A {
class X {}
}
class B extends !'A {
class Y extends !X {} // "'X" means "this!X"
}

As in SCALETTA all classes have an implicit and accessible outer field, the explicit
outer fields have been omitted. In Section 2.4, we established that for any instance of
class Y, its two outer fields hold the same value. We show here that with the given rules
it is already possible to formally establish that, for a given instance of class Y, its two
outer field hold the same value.

We do here the proof for the value this!B!Y. We have to show that this!B!Y@X
and this!B!Y@Y denote the same value. The formal proof below demonstrates that
the first term reduces to the second one.

<_ Refl
( - )this!B!Y<this!B!Y

this !BIlY <Y
Y extends this !X
this !B!Y< this IB!Y@Y !X
this !B 'Y @X— this !B !Y @Y

(<_New)

(<_Ext)
(—__Outer)

5 Type System

In this section we introduce a type system for the untyped calculus presented in the
previous section and show how it can be used to perform the alias analysis required to
type the example described in Section 3.2.

5.1 Types

Typing a program written in an object-oriented language requires to approximate ab-
stract fields. In our calculus we follow the classical solution that consists in attaching
a type to a field.

Abstract type fields and abstract term fields share the property of being wvirtual;
their value depends on the exact class of the value from which they are selected. For
term fields the computation of their value takes place at runtime and is called late
binding or polymorphism. For type fields this computation happens at compile time.
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To keep our calculus as small as possible we want to factorize the mechanism that
governs the virtuality of term and type fields. To achieve this, we choose the most
naive solution we can think of: using terms as types.

Type T =1t

However we have to find an interpretation of terms as types. Here is this interpre-
tation: a term t is of type w, where u is another term, if the value resulting from the
evaluation of u is a delegate of the value resulting from the evaluation of ¢. It makes
sense to approximate objects by their delegates because they inherit field valuations
and enclosing instances from them.

The unification of types and terms lets us simulate type fields with term fields, as
illustrated later in the example of Section 5.5.

5.2 Annotations

To make type-checking feasible we add to a program a list of top-level annotations as
presented in Figure 2.

Class annotation A ::= class C inside B
Field annotation a = field f: T inside B
Program with annotations Aa P

Fig. 2. Annotations

There are two kinds of annotations, one for classes and another for fields. A class
annotation class C inside B constraints the enclosing instance of an instance of C' to
be an instance of B. In our code examples this requirement is implicitly expressed by
nesting classes. Classes declared at the top-level are implicitly nested in a class Root
where Root is a distinguished class name with no corresponding class declaration.

A field annotation field f : T inside B declares a bound T for the field f. The
inside clause states that field f may only be selected on instances of class B. In our
code examples this clause is implicitly expressed by nesting the field annotation in class
B.

5.3 Abstract Evaluation

In Section 3 we have seen that typing virtual types in the presence of inner classes
requires to establish some equalities between outer fields. In the example of Section 4.9
we have established the equality between two outer fields of a particular instance of Y
by evaluating them in our calculus. To apply this result to typing we have to establish
that property for all instances of Y. A priori we can not use the same technique because
we can not evaluate the two outer fields of all instances of Y and check that they denote
the same value. We have to abstract over the particular instance of Y, but we want to
keep the appealing principle of establishing equality by evaluation.

In conclusion we need to evaluate terms in a partially unknown context, i.e. a
context where the exact class of the current instance is not known, but also where

16



Abstract Reduction

Abstract Expansion

Bt < C Bt < C
. C declares (field f = u) C extends u
abs Field abs Ext
(=7 _Field) Brt.f— [t/thisju | BFt < [teC/this|u (=*7_Ext)
BFt<u!C BrFt—u ,
abs abs
(—%°_Outer) BrieC S u Brizu (=%°*_Red)
BFt—u + reflexivity (<**_Refl)

(=% _Context)

BF E(t) — E(u)

+ transitivity (<*"*_Trans)

field f : u inside C'
Brt.f <[t/this|u

(<" Def)

Abstract Instance

BrFt<u!'C
Bkt < C

B this < B

class C inside C’

BFteC < C’

(<% New)

(<***_This)

(< _Outer)

Fig. 3. Abstract Evaluation
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some fields are abstract. Such an abstract evaluation is easily obtained by adding a
class context B to each evaluation rule. The class context specifies the class in which
the terms have to be interpreted. In other words the class B denotes the class this is
the current instance of.

The relations that constitutes abstract evaluation are summarized in Figure 3. They
are implicitly parameterized by the lists of class declarations, class annotations and field
annotations that constitute the program.

Compared to evaluation there are three new rules: one expansion rule and two
instance rules. The first new instance rule (<?*_This) tells us that in the class context
B the current instance this is indeed an instance of B.

The second new instance rule (<**__Outer) and the new expansion rule (<***_ Def)
have similar roles. The former lets us approximate the value of the outer field of a class
C to an instance of the enclosing class of C. The latter lets us approximate the value
of a field to its declared bound. This rule can compensate the absence of a valuation
for a field.

We want now to prove two claims; first that abstract evaluation is a generalization
of evaluation and second that abstract evaluation can be used to compute in a partially
unknown context.

The first claim is equivalent to the theorem below, whose proof is trivial, and the
second claim is demonstrated by Section 5.5 which computes the value of a field in a
partially unknown context.

Theorem 1. t — u implies Root -t — u

5.4 Well-formedness

Abstract evaluation is the core of our type system. We present now typing rules that
make use of abstract evaluation to express the well-formedness of terms, class declara-
tions, field declarations and programs. The rules are summarized in Figure 4. They are
implicitly parameterized by the lists of class declarations, class annotations and field
annotations that constitute the program.

A particularity of this type system is that the relation that checks if a term is
well-formed does not assign a type to this term. That is not necessary in our calculus
because as types are terms, the more accurate type that can be given to a term is itself.

The well-formedness relation for terms is parameterized by a class B which has the
same meaning as the one appearing in the abstract evaluation rules.

Note that in the rule (¢__Class) for classes the parent clause of the class must be
interpreted in the context of the enclosing class.

In the rule (o_Val) for field valuations, the premise B F u —* ' contains the
central idea that the bound u of a field f is reinterpreted in the context of the class B
containing the field valuation and that we get the more accurate value u’.

The type system presented above is not sound. For instance, it does not ensure that
a term ¢ has no abstract fields when used as an enclosing instance, like in ¢ !'C, or as
prefix of a selection, like in ¢ . f or t @C. This problem is solved in Section 6 where we
address the problem of typing abstract inheritance. However it should be clear that
this type system can already reject a lot of invalid programs, namely those that select
fields or outer fields on terms that do not even inherit a declaration for that fields. Our
problem is that we accept programs that select fields and outer fields on terms that
declare them but not implement them.
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Term w.f. Class w.f.
(¢__This) Brthiso class C inside B
p=t= 5 Fto
BFto ¢rde = (0_Class)
B+t < C' F class C extends p{d} o =
class C inside C’
(o_New) BriiCs Field w.f.
Brhto field f : u inside C’
Bt < C C'huo
(0. Cet) field f: T inside C’ Bl this < ('
- Bri.fo Brto
BFu—"u
BrFt=<u
BkFto 1
Brt < C Bl field f=to (o_Val)
(o_Outer)  —ecs
Program w.f.
FD o Roothto
i p
FAaDto (o_Prog)

Fig. 4. Well-formedness Relations

5.5 Alias Analysis

In Section 3.2 we have informally explained why the assignment of field x in class Y
was valid in the given SCALA code example. We give here a formal proof that the
corresponding field valuation in a SCALETTA version given below of that code is well-
formed.

class A {
field T: Root.this!Object;
class X {
field x: A.this.T; // "A.this.T" means "this@X.T"
}
}

class B extends !'A {
field T = Root.this!String; // "Root.this" means "this@B"
class Y extends !X { // "X means "this!X"
field x = "foo";
}
}

Note that we assume the presence of a top-level class String and that "foo" is an
instance of that class.
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To show that the field valuation is valid we have to apply the rule (¢_ Val) to prove
the following judgment:
Y field x = "foo" ¢

This rule has several premises. However, the main difficulty is to prove the judgment
given below. This judgment denotes the intuition that within class Y it is known that
T is equal to String. This is the most difficult part because it is this judgment that
requires some alias analysis.

Y this@X .T —* this @Y @B !String

We prove first that in the context of class Y, this @X and this @Y denotes the same
enclosing instance, i.e. that Y - this @X — this @Y.

abs Thi
(< This) s = v

Y extends this !'X
YF this < this @Y !X

Y F this @X — this @Y

(=abs_Ext)

(=% _Outer)

Then we use this result to reduce the prefix of this@X .7T.

Y this @X — this @Y

(—_Context)
YF this@X .T — this@Y.T

Finally we make use of the value of the field T in class B.

class Y inside B
YF this@Y < B
B declares (field T = this @B !String)

YF this@Y .T — this @Y @B !String

(<%= _Outer)

(—_Field)

6 Typing Abstract Inheritance

The choice of abstract inheritance, i.e. the possibility for a class to inherit an arbitrary
term instead of just a class, implied until here simplifications in the syntax, semantics
and typing rules. However, with abstract inheritance it becomes far more challenging
to detect the accidental overriding of a type field or an outer field than in a language
where the class hierarchy is statically known, like SCALA. In this section we illustrate
by examples why it is not safe to allow overriding of type fields and outer fields.

The type system presented before does not take into account these two problems.
One way of solving these problems is to add dynamic tests that check at runtime that
an object does not define two values for a same field and that it has no two different
enclosing objects corresponding to a same class. But if we want a safe statically typed
calculus we need mechanisms to resolve these problems at compile time. So, in this
section we also present our solutions to statically prevent these overridings.
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6.1 Field Roles

In SCALETTA a field can conceptually play different roles depending on where it is
used. We introduce some terminology for describing these roles: we call template field
a field that is indented to be used in an extends clause, we call type field a field that
is used in the bound of another field, and we call value field a field that is used as
an object. Note that in SCALETTA all fields can simultaneously play all these roles, to
simplify the formalization we treat all the fields uniformly because they share the same
characteristic of being potentially redefined in a subclass.

In real object-oriented languages, fields (also called members) have a statically
determined role. In SCALA there are type fields and value fields, but no template fields;
a field is categorized to be a type or a value from the moment of its declaration through
the use of different keywords.

In order to have a safe type system, we need to forbid the overriding of type fields,
as shown by the example of the next section. And in order to have an expressive type
system, we need to allow the type system to exploit the actual value of a type field. Our
choice of treating uniformly the different field roles forces us to extend these constraints
to all kinds of fields. For instance, it forces us to abandon the overriding of value fields,
even if it is harmful, and it allows us to exploit the value of a value field at compile
time, a thing that most compilers do not do.

6.2 Overriding of Type Fields

In the type system presented so far, the typing rule (—%*_Field) which approximates
terms like ¢ . f by [t/this]u in presence of a field valuation field f = w implicitly
assumes that field f = u is the only existing valuation for f inherited by t. Another
valuation with a different value would introduce an inconsistency in the type system and
would break type safety. But let us illustrate this problem with a "concrete" example.

The following SCALA program is clearly unsafe because in class C the string "foo"
held by the field x is added to the integer 3.

abstract class A {
type T;
val x: T;

}

class B extends A {
type T = String;
val x = "foo";

}
class C extends B {
type T = Int;
val y: Int = x + 3;
}

However a naive type system would accept it because:
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— in class B, the bound T of the field x resolves to String, so it is legal for x to hold
the value "foo".

— similarly, in class C the bound T of the field x resolves to Int, so it is legal to
consider x as an integer and add it to 3.

The problem comes from the fact that when type-checking class B, we make the
implicit assumption that the value of T is equal to String in any instance of B which
is not always the case if we allow the overriding of this type field in the subclass C.

In languages with a static class hierarchy it is easy to prevent overriding of type
fields, by checking that there is no path in this hierarchy that contains two valuations
for the same field, as the path C — B — A in our example that contains two valuations
for the field T.

But let us have a look at the following SCALETTA code which is a variant of the
previous example.

class A {
field T;
field x:
¥

T;

class B extends 'A {
field T = !String;
field x = "foo";

}
field b: !'A = IB;

class C extends b {
field T = !Int;
field y: !Int = x + 3;
T

Note that the only difference is that class C inherits now from an instance b of B
instead of directly inheriting from B. For the purpose of our argumentation, we "hide"
the exact value of b behind the bound !A.

Now, without extra mechanism the only way of detecting an overriding of the field
T in class C is to use the information that b holds an instance of B. But what if this
value is hidden, as in our example, or even worse if b is an abstract field?

field b: !A;

Then, clearly we need an additional mechanism to follow the absence or presence
of a valuation for a field in a given term, in our example in the term b used as parent
of the class C.

6.3 Holes
In SCALETTA a term can be an instance of a class that has abstract fields. We say that

such a term is incomplete and we call the fields that have no valuation in the term the
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holes of the term. We propose to add an annotation to field definitions to specify the
holes of the value contained by this field. The key idea is that holes become the only
fields that can be overridden. In our example we would write:

field b: !'A misses {};

to specify that b is an instance of A with an empty set of holes. This way it becomes
possible to reject the overriding of the field T in class C, because T is not a hole of b.
More generally, a field definition

field f: t misses {f1,...,fn};

means that f holds a value that expands to ¢ and for which valuations of fields
fis- .., fn are missing.

Let us see an example where the hole annotation is not empty. In fact such annota-
tions appear in the encoding of methods. In these case the holes will correspond to the
method parameters. If the method has type parameters, they will corespond to type
fields. As our previous discussion has shown, it is important to forbid the overriding of
this kind of the fields.

For instance, encoding the following add method declaration in class Int
field add(that: 'Int): !Int;
results in the following declarations?

class Int$add$def {
field that: !Int;
field result: !Int;
}
field add: !Int$add$def misses {thatl};

The last line means that the field add holds an instance of Int$add$def with
a missing valuation for the field that. It allows a class extending add to provide a
valuation for the field that. Such classes appear in the encoding of an application of
the method. For instance, the method call

40.add(2)
is encoded as®

class Apply extends 40.add {
field that = 2;

}

'Apply.result

2 We use the special character $ as a normal character in the names of classes generated by
the method encoding. It must not be confused with an operator of the calculus.

3 For clarity reasons, we use the numbers 40 and 2 to denote objects built from the classes
Zero and Succ.
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In the encoding of an implementation for the method add we subclass the field add
and provide a body, as for example in class Zero:

class Zero$add$val extends !Int$add$def {
field result = that;

}

field add = !'Zero$add$val

The above valuation for add is legal because !Zero$add$val conforms to the de-
clared type of add: it is indeed an instance of Int$Add$def and its only missing field
valuation is the one for that.

We conclude the informal presentation of holes with the special hole annotation *
that works as a wildcard for holes. Holes are mainly useful for value fields and template
fields: an empty set of holes for a value field will ensure that the held value is complete
and can consequently be used as receiver object, for template fields, holes allow to
avoid overriding conflicts. As we want a uniform treatment of fields, type fields must
also receive a hole annotation, but we can not give an exhaustive list of holes for type
fields. For instance, a type field T bounded by !0bject could receive the value !Int
in one subclass and the value !'List in another. If classes Int and List are abstract,
values ! Int and !List have a priori unrelated holes. To handle this kind of cases where
the set of holes is not predictable we use the annotation * that matches an arbitrary
set of holes:

field T: !Object misses {*};

6.4 Formalizing Holes

To prevent multiple valuations for a field, we define a relation on terms that returns
the list of fields for which the term inherits a definition but no valuation. We call these
fields the holes of the term. The judgment

BF holes(t) = H

express the fact that in the context of the class B the set of holes of term ¢ is H.

With that relation it is easy to prevent multiple valuations simply by allowing a
field valuation in a class only if the field is included in the holes of the class parent. In
order to be able to define this relation on terms, we need to know for each field its list
of holes. For this reason, we augment field types with a list of holes (see Figure 5). In
addition to field names, this list may contain the symbol * which means that the field
can contain more holes than the ones explicitly given.

In addition to multiple valuations, the holes let us solve another problem related
to field valuations, namely missing field valuations. Indeed, the typing rule (¢_ Get)
states that the term t . f is well-formed iff ¢ inherits the declaration of field f. This
does not guarantee that ¢ inherits a valuation for the field f. To prevent this, we use
the holes information to forbid any selection on terms that have any hole. This for sure
will prevent any selection of a field f on a value that inherits no valuation for f.

All the modified and newly introduced rules to handle holes are summarized in
Figure 5. The accessors defs(C') and vals(C'), used for instance in rule (holes New),
return respectively the set of field definitions and the set of field valuations directly
contained in a given class C'.
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Syntax (modifications only)

Types T' ::= t misses H
Holes H == {I} | {lI, *}

(holes_ This)

(holes_ New)

(holes__Get)

(holes_ Red)

(holes_ Droping)

(holes_ Opening)

Hole Approximation

B |- holes(this) = {}

class C extends p {d}
B+ holes([t/this|p) = H

B F holes(t 'C) = (H U defs(C))\vals(C)

field f : t misses H inside C
BFholes(t.f)=H

BFt—u
B F holes(u) = H
B F holes(t) = H

B - holes(t) =
frcf
B+ holes(t) =

B F holes(t) = {
B F holes(t) = {f, *}

(¢_New)

(o_Val)

Path and Declaration Well-Formedness (modifications only)

B I holes(t) = {}
BrEt!Co

+ same addition to rules (¢_Get) and (¢_Outer)

field f : umisses H inside A
B F holes(t) = H
class B extends p {d}
B - holes([this @B/this|p) = H’
f € H' Udefs(B)

Bl field f=to

Fig. 5. Hole resolution
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6.5 Overriding of Outer Fields

We have already explained the parallel between outer fields and normal fields, saying
that outer fields were a special kind of field that come implicitly with the declaration of
a class and whose value cannot make reference to the current instance of this class. Like
type fields, outer fields are resolved at compile time, and like type fields they cannot
suffer arbitrary overriding.

We start with a theoretical argument for this last claim: the typing rule (—®*_ Outer)
that lets one reduce the term ¢t @C to the term w if ¢ expands to a term of the form
u 'C implicitly assumes that ¢ does not expand to a term u’ !C where u # u'. If such
other term v’ exists, the danger is to choose one term at compile time and the other
one at runtime. It would mean that the approximation made by the type-checker for
t@C' was in fact wrong, which opens an obvious breach in the type safety.

We now illustrate the problem with a concrete example. The following SCALETTA
example shows that it is generally not safe to allow overriding of outer fields. An outer
field is overridden if some object has two different enclosing instances corresponding to
the same class. The following example is a variant of the one presented in Section 6.2.
It suggests also how mixins can be encoded in SCALETTA.

class M {
field T: !0Object;
field s: !0Object;
class N extends s {
field x: T;
}
}

class M1 extends M { field T = !String; field s = !Object; }
class A extends 'M1!N { field x = "foo"; }

class M2 extends M { field T = !'Int; field s = 'A; }
class B extends !M2!N { field y: !'Int = x + 3; }

The program above is unsafe because in class B the string value "foo" held by the
field x is added to the integer 3. However a naive type system would accept it because:

— in class A, the bound this@N.T of the field x resolves to !String, so it is legal for
x to hold the value "foo".

— similarly, in class B the bound this@N.T of the field x resolves to !Int, so it is legal
to consider x as an integer and add it to 3.

The problem is that class B has two incompatible enclosing instances corresponding
to the class N, namely !'M1 and !'M2. More precisely we have the following expansion
chain:

!B < IM2IN < IM2.s = 1A < IM1IN

To break the inheritance cycle, we need a way to forbid class N to inherit an instance
of itself. But the parent s of N is abstract, so we need to attach a field annotation to
the declaration of s to specify that it cannot hold an instance of N. We call such a
mechanism class exclusion and formalize it in the next section. The syntax for such
annotations is:
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def s: !Object excludes {N};

With this definition a field valuation for s may not contain an instance of N. The
field valuation field s = !A in class M2 becomes illegal because ! A is clearly an instance
of N and the whole unsafe program gets rejected as expected.

6.6 Formalizing Class Exclusion

The problem of multiple enclosing instances arises if a value inherits different instances
of a same class. Therefore, to avoid the problem, we make it impossible for a value
to inherit more than one instance of a given class. To do that, we define a relation
that associates to a term a list of classes of which the term inherits no instance. This
relation is then used to make sure that the parent of a class does not already inherit
an instance of that class. The definition of this class exclusion relation requires an
additional annotation for field types, namely a list of classes of which the field is not
an instance.
The judgment

B F notlnst (¢, C)

expresses the fact that in the context of the class B the term t is not an instance of
any of the classes C. Note that for extensibility reasons the list of classes C is generally
not exhaustive.

The Figure 6 summarizes the modified and the newly introduced rules to handle
class exclusion.

The basic rules for class exclusion are already powerful enough to avoid the inheri-
tance of a mixin by itself, as in our example. In the next section we show the limitations
of these rules and suggest a natural extension.

6.7 Group Exclusion

The idea of class exclusion is very simple but unfortunately it does not cover all inter-
esting uses of abstract inheritance; for type-checking the encoding of a method call we
need to extend the mechanism of class exclusion with the concept of group of classes.
Remind that a method call e.m(3) is encoded as

class Apply extends e.m {
field arg = 3

}

'Apply.result

For this class declaration to be well-formed, we must prove that e.m is not already
an instance of Apply. So at the moment when we define the method m we can just write

field m: M$def misses {arg} excludes {Apply}

to specify that m can only hold values that are not instance of Apply. If there are
more than one call to m in the program we can extend the class exclusion annotation
accordingly:
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Syntax (modifications only)

Types T ::= t misses H excludes C

Class Exclusion Approximation

BFt—u B F notlnst(u, C)
B F notInst(t, C)

(notInst Red)

field f : t misses H excludes C inside C

(notInst_Field) B+ notInst(t . f, C;)

C extends p B + notInst([t/this]p, C") C'#C

(notInst_New) B+ notInst(t ' C, C")

Declaration Well-Formedness (modifications only)

class C inside B p =t = BF notlnst(t, C)

Class —
(o_Class) F class C extends p {d } ©
field f : umisses H excludes C inside C
Vi. B  notInst(t, C;
(o Val) i notInst(¢, C;)

Bl field f=to

Fig. 6. Class exclusion annotations
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field m: M$def misses {arg} excludes {Applyl, ..., Applyn}

The problem with such a schema is that it is not extensible, in the sense that the
number of possible application will necessary be bounded. And we do not want to
restrict the use of a method to a particular number of applications because it precludes
the idea of separate compilation. So a simple idea is to group classes and to exclude
groups instead of classes.

In this case we declare a group called ApplyGroup

group ApplyGroup;
And we let the field m exclude this group:
field m: M$def misses {arg} excludes {ApplyGroup}
Now when declaring a class Apply, we link it to the group ApplyGroup.

class Apply in ApplyGroup extends e.m {
field arg = 3

}

'Apply.result

The key idea is that if m excludes the group ApplyGroup, it will a fortiori exclude
the class Apply which is a member of this group.

The adding of groups looks as a natural and harmful extension of our mechanism
of class exclusion. But rather than formalizing groups directly we prefer simulate them
with classes, which has the advantage to avoid enriching unnecessarily the syntax with
new concepts. We consider that each class defines implicitly a group and that a class is
member of a group if it inherits from the corresponding class. This idea is formalized
by adding a new rule to the class exclusion relation:

B | notlnst(t, C)
class ('’ extends u {d} class C’ inside B’
B'tu < C

(notInst_ Group) B+ notlnst (¢, C")

Now, to make all methods member of a group Apply, we first define a "mixin" Apply:

class MixApply {
def s: !Object excludes {Apply};
class Apply extends s;

}

And we declare all fields corresponding to methods to exclude the group Apply.
def m: M$def misses {arg}l excludes {Applyl;
Now, when calling a method, we first apply the mixin:

class MixApplyl extends MixApply { field s = e.m; }
class Applyl extends MixApplyl!Apply {
field arg = 3
}
'Applyl.result
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7 Undecidability and Typing Strategies

Typing in the field of programming languages can be seen as a way of approximating
the result of an expression without evaluating it. Evaluating an expression consists of
replacing abstractions by their value. So a good reason not to evaluate an expression at
compile time is that some abstractions have no value. Even when abstractions have val-
ues, typing algorithms usually prefer to approximate the abstraction using its declared
interface (or type), instead of its value, in order to prevent the compiler from looping
(types usually do not loop). From this point of view typing can be seen as a kind of
abstract evaluation. SCALETTA makes this close link between typing and evaluation
completely explicit because the typing relations generalize the evaluation relations, as
explained in Section 5.

It follows that typing is undecidable because it can happen that the only way of
checking that an expression conforms to a bound is to evaluate it. A naive solution
to "approach decidability" is to never use the value of a field during type-checking but
always use its bound. But if we do that we can not simulate type fields with term fields
anymore because the main property of type fields is precisely that their value is used at
compile time. There is clearly a trade-off between the need of making the type-checking
"more decidable", i.e. that it terminates on more programs, and the need of being able
to write typed solutions to interesting problems.

Having identified that a source of undecidability in the typing of SCALETTA is an
excessive usage of field valuations, we define a typing strategy as a policy that restricts
this usage. From a theoretical point of view, such a policy controls the usage of the rule
(—2*_Field). It is important to note that a proof of type-safety for our type system
would still hold if the usage of the deduction rules was restricted by a typing strategy.
A type-checker using a restrictive typing strategy would just accept less programs than
one using a more liberal strategy, but all accepted programs would still be guaranteed
not to cause errors at runtime.

In conclusion we have a type system with a degree of decidability and expressive-
ness which is parameterizable by a typing strategy. We considered two simple typing
strategies: one that requires that the programmer explicitly annotates field valuations
that can be followed by the type-checker and another that infers from the context this
right, for instance if a field plays the role of a type field. In our compiler we adopted the
second strategy because it does not require additional annotations from the program-
mer and because there are in principle cases where a same field could be considered as
a type or as a value in different contexts. Our experience with our interpreter seems to
indicate that the choosen strategy works well; it accepts non-trivial programs, signals
useful error messages and does not unexpectedly loop.

8 Globally Unique Names

Our calculus requires that all declared classes have a globally unique name. This seems
a rather strong restriction, but we show here that this is not more restrictive than what
exists in other programming languages.

In JAvA, classes declared in different scopes may have the same name. However, the
declared name of a class is only what is called its short name. A class has also a full
name which is built by prefixing its short name with the short names of all it enclosing
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classes and the name of its package. This full name has to be globally unique. So, even
a mainstream language like JAVA has the same kind of restriction as our calculus.

In fact, one should distinguish between the identity of an entity and the name of
that entity. In any language, each entity (class, field, variable, ...) has its own unique
identity. Often, it has also a name, but that is just an attribute of that entity. In many
languages, where code is just a string of characters, an entity may only be referenced
through its name. In order to be more programmer-friendly, most of these languages
allow the reuse of the same names in different scopes. These languages define also a set
of rules which given a name and a scope determine which entity is referenced by that
name. This process is called name resolution. Once name resolution has been applied,
every name is linked to a particular entity. At that point, all entities can be alpha-
renamed to obtain a program that exhibits the same behavior but where all entities
have globally unique names.

The requirement for globally unique names in our calculus simply means that we
consider only programs for which name resolution has already been performed. This
means that we do not need to define rules that regulate name resolution. That is an
advantage because in this paper we are concerned by semantics and typing issues, not
name resolution issues.

We acknowledge that name resolution is not an easy problem, especially in lan-
guages like JAVA where it relies on types and has to be performed in parallel with type-
checking. However, a bit like syntactic sugar, name resolution is just a way to make
programming more friendly. It does not contribute to the expressive power of the lan-
guage. For example, JAVA without import statements would still be the same language
(same semantics and typing rules), but it would just be a bit less programmer-friendly
as classes would have to be referenced through their full name. Separating conceptu-
ally name resolution and type analysis is also similar to separating conceptually type
inference and typing.

In our calculus, it pays off to have no name resolution rules because our semantics
and typing rules do not involve the duplication of name binders. Thus, assuming that
names are globally unique effectively simplifies the calculus. It has also the advantage
that any entity can be referenced from any point of the program. In calculi of the
A-calculus family, there are usually many rules that duplicate name binders and thus
create different entities with the same name. Thus, starting with globally unique names
would not bring much and that is why those calculi usually have no such restriction.
However, to avoid name captures, their semantics and typing rules usually use, now
well-known but still non-trivial, alpha-renaming rules. Our calculus does not require
such rules.

After explaining why it is justified to conceptually separate name resolution and
typing in SCALETTA, we describe briefly how these two mechanisms are closely inter-
linked in our implementation of the calculus. The problem is always the same: there
is an occurrence of a field name f in the program and we want to link it with a field
declaration. When we fail to do it, we reject the program as ill-typed, when we succeed
we can exploit the declared type attached to the found declaration in the rest of the
analysis. There are two cases: either the field name f starts a term, either it is selected
on a non-empty term as in ¢t . f. We say a declaration of a field f is a member of a term
t, if ¢ is an instance of a class C that contains a declaration for f. For a field name f
starting a term in a class C, it is first searched if f is a member of the current instance
of C, otherwise the search is recursively launched from the enclosing class C' of C. For
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a remote selection ¢ . f, f must necessary be a member of ¢. Note that f will never be
interpreted as a member of an enclosing instance of ¢.

9 Related Work

Both concepts, inner classes and virtual types, have been studied and well understood
separately. Inner classes are described in [3] and virtual types are formalized in [4].

The interaction between inner classes and virtual types is less well understood. We
know only about four works related to this problem.

In [9] the authors aim at formalizing the type system of the SCALA programming
language. They do not especially focus on inner classes and virtual types. They describe
a calculus that also includes other concepts like object identity, mixins and first-class
class constructors. Its type system is proved to be sound. However the calculus is rather
complex and therefore is very hard to use as a basis to understand the interaction
between inner classes and virtual types. We claim to have a simpler calculus with just
the required concepts to formalize inner classes and virtual types.

BETA is an object-oriented programming language with inner classes and virtual
classes. Virtual classes in BETA are equivalent to the notion of virtual types described
in our paper. In [10] the author considers the problem of typing virtual classes in the
presence of inner classes in BETA. The main difference between his and our work is
that he describes the algorithms used by the BETA compiler to perform the semantic
analysis of a program whereas we give a calculus with a type system that formally
defines well-formed programs. We do not describe in the paper an algorithm to build
well-formedness proofs. However we have written an interpreter which incorporates
such algorithms. The algorithms presented for BETA performs simultaneously name
and type analysis. A contribution of our work is to show that it is possible to specify
the static semantics without having to include rules to perform name analysis. Note
however that our interpreter implements a name analysis and thus does not impose
globally unique names. The same paper contains interesting examples describing more
intricate situations than our examples.

GBETA [11] is an extension of BETA with the possibility to extend virtual classes.
This mechanism is similar to our notion of abstract inheritance. Our understanding of
GBETA is very weak, and we would be interested to know if our solutions for typing
abstract inheritance could somehow be used to type virtual classes in GBETA.

We lately discovered in [12,13] that the author had developed ideas and solutions
for a calculus of classes and objects very close to the ones we developed for SCALETTA.
The author distinguishes in his work two approaches to inheritance: the modification-
ist approach that views classes mainly as code libraries whereas the specialisationist
approach insists on considering them as abstractions. As we do, he recommends the
later, claiming that overriding is not essential. He develops also a mechanism similar
to holes and uses it in exactly the same way as we do for encoding methods. However
he is more extremist than we are when he claims that only one kind of names is nec-
essary. On the contrary we think after our experience that it is important to make a
clear distinction between class names and field names and that any unification of both
concepts is likely artificial. His work goes beyond the work presented in this paper
when he tries to integrate in his formalism a kind of structural subtyping for handling
full polymorphism. Finally, the author is also missing a soundness proof that would
validate his interesting ideas.
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10 Conclusion and Future Work

The main contribution of this work is a better understanding of the interaction between
inner classes and virtual types through a simple and novel calculus of classes and
objects. We describe formally the non-trivial mechanism needed to type virtual types
in the presence of inner classes. We explicit the required alias analysis and show that it
requires only a few simple rules provided that each inner class comes with an implicit
and accessible outer field.

This work has application for the design of type checkers for languages that combine
inner classes and virtual types. It can also be used to understand type systems of already
existing programming languages that combine these two aspects like BETA or SCALA.
It may even be used to understand, at least partially, languages with inner classes and
parameterized classes like JAVA 5.0 which require the same alias analysis as the one
formalized in our calculus.

Another contribution of this work is our calculus. It can be seen as an intermediate
language for object oriented languages because it has no notion of binder and does not
use alpha-renaming, but still remains perfectly appropriate to support a powerful type
system. The unification of terms and types lets us define typing as abstract evaluation
of the program. We are not aware of another similar result in the field of oriented
programming languages. Finally we hope our solutions for the typing of abstract inher-
itance can be of interest for people working on the difficult problem of typing virtual
classes.

Our priority in the future is to prove the soundness of our type system. We are
also interested in designing a variant that includes the concepts of object identity and
state. The main implication of such a change would be the introduction of the notion
of stable term which describes a term whose evaluation always return the same object
reference.
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