
From a Static Impossibility to an Adaptive Lower Bound:

The Complexity of Early Deciding Set Agreement∗

Eli Gafni1 Rachid Guerraoui2 Bastian Pochon2

eli@cs.ucla.edu rachid.guerraoui@epfl.ch bastian.pochon@epfl.ch

(1) Department of Computer Science, UCLA
(2) Distributed Programming Laboratory, EPFL

Abstract

Set agreement, where processors decisions constitute a set of outputs, is notoriously harder to
analyze than consensus where the decisions are restricted to a single output. This is because the
topological questions that underly set agreement are not about simple connectivity as in consensus.
Analyzing set agreement inspired the discovery of the relation between topology and distributed
algorithms, and consequently the impossibility of set agreement.

Yet, the application of topological reasoning has been to the static case, that of asynchronous and
synchronous tasks. It is not known yet for example, how to characterize starvation-free solvability of
non-terminating tasks. Non-terminating tasks are dynamic entities with no defined end. In a similar
vain, early deciding synchronous set agreement, in which the number of rounds it takes a processor
to decide adapts to the actual number of failures, falls in this category of dynamic entities.

This paper develops a simulation technique that brings to bear topological results to deal with
the dynamic situation that arises with early decisions. The novelty of the new simulation is the
ability of simulators to look back at the transcript of past rounds of the simulation to influence their
current behavior. Using our new technique, we not only re-derive past results, but we propose and
prove a lower bound to synchronous early stopping set agreement. We then provide an algorithm to
match the lower bound. Our technique uses the BG simulation, in the most creative way it was used
to-date, to obtain a rather simple reduction from a static asynchronous impossibility. This reduction
is a simple alternative to yet unknown topological argument, and in fact may suggest the way of
finding such an argument.

∗Technical Report ID: IC/2004/93

1 Introduction

Results about the complexity of set agreement are intriguing, as they present an intrinsic trade-off
between the number of processors in a system, the degree of coordination that these processors can
reach, and the number of failures that are tolerated [7]. The complexity of early deciding [9] set
agreement is even more intriguing as it brings to the picture the number of failures that actually occur
in a given computation.

Set agreement is a generalization of the widely studied consensus problem [11]. In set agreement,
each processor is supposed to propose a value, and eventually decide on some output that was initially
proposed, such that every correct processor eventually decides (just like in consensus). Processors are
restricted not to decide on more than k distinct outputs. We talk about k-set agreement, and consensus
is the special case where k = 1.

Set agreement was introduced in [6] where it was conjectured that, in an asynchronous model,1 the
problem has a solution if and only if strictly less than k processors may crash. This conjecture has
sparked a fruitful line of research, applying algebraic topology arguments to distributed computing [3,
14, 17]. After proving the conjecture, researchers applied topological arguments to prove a lower bound
on the complexity of set agreement in the synchronous model [7, 12, 13].2 In short, the result states
that any synchronous k-set agreement algorithm that tolerates t failures (where t < N and N is the
total number of processors in the system) has at least one run where at least one correct processor
does not reach a decision before round bt/kc+ 1. This lower bound does not however say much about
the existence of algorithms that would expedite a decision in runs where f (f < t) failures actually
occur. In particular, one would expect that, in runs where few failures occur, a decision can be reached
earlier than in those with more failures. Roughly speaking, early deciding algorithms are those that
have that adaptive flavor: their efficiency depends on the effective number of failures that occur in
a given computation, rather than (only) on the (total) number of failures that can be tolerated [9].
In practice, failures rarely happen, and it makes sense to devise algorithms that decide earlier when
fewer failures occur. For consensus, a significant efficiency improvement has been established when
considering the effective number of failures [5, 10, 15]. In particular, it was shown that for any integer
f ≤ t, any consensus algorithm has a run with at most f failures in which some processor decides not
earlier than in round min(f + 2, t + 1), and there is an algorithm where all correct processors decide by
round min(f + 2, t + 1) for all f [5, 15].

Here we consider set agreement, yet even for consensus, the early deciding synchronous lower bound
is involved. The bound has been argued recently [15] in an ad-hoc manner through similarity between
computations, rather than by using the more modern methods developed with the emergence of the
topological techniques [3, 4, 7, 14].

This is not surprising. Early decision argumentation is evocative of the analysis that is called for
when arguing one-shot vs. long-lived object implementations [2]. The issue there is whether a processor
can obtain an output in face of continual arrival and departure of other processors. This is in fact not
surprising as the topological method as to-date has not helped in resolving this matter. The topological
method characterizes the topological structure of views of processors at the end of the computation,
and has not been adapted yet to deal with evolving computation. The early decision question seems
to fall into the category of evolving dynamic computations. Hence, the lack of lower bound for early
deciding set agreement, and the involvement of the early deciding synchronous consensus lower bound.

1In an asynchronous model of distributed computation, (1) processors execute the algorithm assigned to them unless
they crash, in which case they stop all their activities and they are said to be faulty (not correct), as well as (2) there is
no bound on processor relative speed and message communication delay.

2In a synchronous model of distributed computation, processors execute in a lockstep manner, moving incrementally
from a round to the next, and exchanging messages in every round; if a processor p does not receive a message from a
processor q in a round r, then no processor ever receives any message from q in any subsequent round r′ > r.

1

This paper proposes to deal with the dynamic situation of early decision in a round-about way, rather
than through a head-on attack. It does not apply topology directly. Rather, similar to [12] which
uses algorithmic reduction, it reasons about the dynamics of the synchronous computation through
reduction. Unlike [12] where the simulation proceeds forward without “looking back”, here we propose
a simulation technique using the BG-agreement protocol [3, 4]. This allows simulators to go back and
look at the transcript of the simulation (in shared memory) and by that allows us to argue about the
dynamics of the computation rather than just its end.

Our result supports the tradition in computer-science that once few cornerstone impossibility or
complexity results have been proved using direct (topological) arguments, from there on one should use
reductions rather than argue (topology) anew. In the same vain that one proves NP-completeness by
reduction rather than rehashing Cook’s proof of the SAT NP-completeness [8].

Nevertheless, it is intriguing to understand the analogue of our simulation in the pure topological
domain. Unfortunately, our experience shows that the distributed domain is loaded with semantics and
interpretations and that consequently finding the topological analogue may not be an easy undertaking.
On the encouraging side, we hold the hope that the technique we present in this paper will prove useful
in arguing about non-terminating tasks.

The rest of the paper is organized as follows. Section 2 gives some preliminaries about distributed
computing models that are needed to state and prove our results. Section 3 states and proves our lower
bound result. Section 4 presents our optimal early deciding algorithm. Due to space limitation, the
correctness proof of the algorithm is postponed to the optional Appendix.

2 Preliminaries

In the following we present the main elements of the synchronous message-passing model, in which we
state the lower bound and design our optimal algorithm, and the asynchronous shared memory model,
which we use for the reduction in our lower bound proof. Then we briefly recall the set agreement
problem, and finally we present the BG-agreement protocol, the simulation technique that underlies
our lower bound proof.

2.1 The Synchronous Message-passing Model

We consider a set of N = n + 1 processors Π = {p0, . . . , pn}. Processors communicate by message-
passing. Communication channels are reliable. Processors execute in a synchronous, round-based
model [16]. A run is a sequence of rounds. Every round is composed of three phases. In the first phase,
every processor broadcasts a message to all the other processors. In the second phase, every processor
receives all the messages sent to it during the round. In the third phase, every processor may perform
a local computation, before starting the next round. Processors may fail by crashing. A processor that
crashes does not execute any step thereafter, and is said to be faulty. Processors that do not crash are
said to be correct. When processor pi crashes in round r, a subset of the messages that pi sends in
round r (possibly the empty set) is received by the end of round r. A message broadcast in round r by
a processor that does not crash in round r is received, at the end of round r, by every processor that
reaches the end of round r. We say that a processor pi sees f crashes at the end of any round r, if pi

receives messages from all processors but f . We consider that there are at most t < N processors that
may fail in any run. The state of a processor pi, at the end of round r, consists in the content of its
local memory, including the messages received in each round r′ ≤ r, as well as the local variables pf pi.

2

2.2 The Asynchronous Shared Memory Model

We prove our result by reducing computations in the synchronous message-passing model, recalled
above, to computations in the asynchronous shared memory model, which we recall here. For clarity
reasons, processors are called simulators in the asynchronous shared memory model. Precisely, we
consider a set of k + 1 simulators {sim0, . . . , simk}. Simulators communicate through asynchronous
shared memory. In the asynchronous shared memory model, there exists no bound on the processor
relative execution speed. Shared memory is organized in cells (sometimes called registers), where
each memory cell may contain an infinite number of bits. Cells of the shared memory support three
operations: the write(v) operation atomically writes value v into the cell; the read() operation atomically
returns the content of the cell; the snapshot() operation returns an atomic view of all the cells (i.e., at
a certain point in time between the invocation to the operation and the return of the operation) [1].
Any cell may be written by a single simulator, and read by all of them. To simplify the presentation,
we assume in the following that after executing an operation snapshot(args), the variables args are
accessible by the simulator in its local memory with the content as by the time of the snapshot()
operation. Without loss of generality, we consider that the simulators execute full-information protocols
in shared memory [14]. In a full-information protocol, any simulator simi writes its entire state into a
memory cell, whenever simi writes anything into this cell. Any simulator that later reads the cell reads
the entire history of the states of simulator simi.

2.3 The k-Set Agreement Problem

We recall here the k-set agreement problem. Each processor proposes a value v from a set of inputs
V , and is supposed to eventually decide on an output v′ of V , such that every output is a proposed
value, and there are at most k distinct outputs. Solving k-set agreement in a wait-free manner means
that every correct processor eventually decides (no matter how many processors fail). Wait-free k-set
agreement is proved impossible in an asynchronous shared memory model of k+1 processors [3, 14, 17].

2.4 The BG-Agreement Protocol

In our lower bound proof that follows, we make extensive use of the BG-agreement notion [3, 4]. For
completeness and self-containment of our lower bound proof we briefly review this notion here.

A BG-agreement protocol is a distributed algorithm in the asynchronous shared memory model.
Basically the protocol consists of a wait-free code, with the exception of the last statement of the
code, which is a wait statement. The BG-agreement protocol is an election protocol. It elects one of
the participating processors, which is called the winner. Consequently, if each participating processor
writes a proposal in shared memory before starting the protocol, the protocol decides on one of the
proposals. The protocol is guaranteed to elect a leader when all participating processors arrive at the
wait statement. While waiting for other processors to reach the wait statement, the outcome of the
election may not be known and, in our terminology, the BG-agreement is not resolved. Consequently, if
the BG-agreement is not resolved, one of the participating processors must be in the middle of the code
rather than at the wait statement (we say that this processor is blocking the BG-agreement). Thus, if
processors that are waiting time-share and execute other protocols while waiting, and the BG-agreement
is not resolved, we can conclude that at least one processor does not participate in other protocols.

An instantiation of the BG-agreement protocol is illustrated in Figure 1. Variables vi, xi and Si

(for any 0 ≤ i ≤ n) are in shared memory, written by simulator simi and read by all. The ∗ in front
of the parameter result indicates an output parameter. The wait statement spans over lines 7 to 9. A
processor proposes a value v to a BG-agreement instance by invoking BGpropose(v, result) and expects
the result of the agreement to be stored in local variable result. The intuitive idea underlying how the
BG-agreement protocol goes is as follows: a processor writes its proposed value and its identifier in

3

1: in shared memory: vi ∈ V, init ⊥, xi ∈ {true, false}, init false, Si ⊆ {0, . . . , n}, init ∅

2: procedure BGpropose(v, ∗result)
3: vi := v
4: xi := true
5: snapshot(x1, . . . , xn)
6: Si := { j | xj = true, 0 ≤ j ≤ n }
7: do {The do loop is the wait statement}
8: snapshot(S0, . . . , Sn)
9: until ∀j ∈ Si : Sj 6= ∅

10: winner := min(Sj), where j ∈ Si and ∀k ∈ Si : |Sk| ≥ |Sj |
11: ∗result := vwinner

Figure 1: BG-agreement protocol (code for simulator simi)

BG-agreement in Rr,1

Purpose agree upon the state of a processor pj at the beginning of round r + 1 (i.e.,
whether pj crashes in round r and, if not, which messages pj receives in round r)

Input values “failed”, “pj receives messages from all processors in a set correct ⊆ 2Π”

BG-agreement in Rr,2

Purpose agree upon a correct processor at the beginning of round r + 1
Input values “no processor”, “kill pl ∈ Π”

Figure 2: Series of BG-agreements in Rr,1 and Rr,2

shared memory (we say that the processor “registers”), takes a snapshot of the registered processors,
and writes its snapshot into shared memory. The processor then continuously takes snapshots of the
shared memory, until all the registered processors have written their snapshots into shared memory.
The processor then returns the value of the processor with the smallest identifier in the smallest set
corresponding to the snapshot of a processor.

3 The Lower Bound

Theorem 1 For any integer f ≥ 0 there is no algorithm C(k, f) that solves k-set agreement in a
synchronous message-passing model, under the following conditions:

1. In runs in which eventually no more than k − 1 processors fail in each round, eventually every
correct processor decides.

2. A processor that sees f failures for some fixed f , decides at the latest after bf/kc+ 1 rounds.

Theorem 1 generalizes the result of [5, 15] on early deciding consensus. Indeed taking k = 1 in the
above theorem leads to the early deciding lower bound of consensus.

The proof is by contradiction and the main idea is to reduce the problem of solving wait-free k-set
agreement in the asynchronous shared memory model to an algorithm C(k, f) solving k-set agreement
and satisfying the two conditions of Theorem 1. In short the reduction consists in simulating, with

4

1: In shared memory: stater,j , init ⊥, FinalFaultyr,j , init ∅, r ≥ 1, 0 ≤ j ≤ n

2: procedure Simulate(C, f)
3: r := 0, Correct := Π
4: { {Execute two coroutines in parallel}
5: ResolveInputs() {Coroutine 1: the simulation}
6: for r := 1 to ∞ do
7: r := +1
8: Execute Rr,1

9: Execute Rr,2

10: SimulateRound(C, r)
11: } || { {Coroutine 2: finding a decision}
12: for scan := 1 to r do
13: if ∃pj ∈ Π : statescan,j = “failed” then
14: Correct := Correct− { pj }
15: if ∃pj ∈ Π : statescan,j = “decided v” then
16: decide v
17: else if ∃pl ∈ Π : statescan,j = “killed” then
18: add or subtract messages to pl from faulty processors to have exactly f failures
19: re-simulate C(k, f) with the new messages to pl; pl decides on v
20: decide v
21: else if |Correct | ≤ N − f then
22: select the faulty processor pl from which all correct
23: processors receive a message in round scan
24: add or subtract messages to pl from faulty processors to have exactly f failures
25: re-simulate C(k, f) with the new messages to pl; pl decides on v
26: decide v
27: }

Figure 3: Simulation of algorithm C (code for simulator simi)

algorithm C(k, f), an execution of an algorithm in asynchronous shared memory that wait-free solves
k-set agreement among k + 1 processors, called simulators.

Notice that, in the BG-agreement, a simulator, after taking a snapshot, has a set of candidate
winners—the ones that appear in its snapshot. No simulator registering later may win the agreement,
and, in general, no simulator registering after any other processor arrived at the wait statement, may
win the agreement. Thus, if a simulator, after arriving to the wait statement, observes that all current
proposals are the same, this simulator may determine the resolution of the agreement. This means also
that a BG-agreement instance is not a black box, but rather an “open” box. Any simulator may access
the shared memory used in a particular BG-agreement instance, without invoking BGpropose, e.g., to
read all the proposals to this instance and determine the resolution of this instance.

3.1 Overview

We first give here an intuitive idea of the lower bound proof. In the simulation of each synchronous round
of the algorithm C(k, f), the k + 1 simulators use a series of BG-agreements to decide which messages
any processor pj received and which messages pj did not receive (this determine the new state of pj).
When a simulator simi decides, in any of the BG-agreements, to fail a processor pj (we also say that pj

5

1: procedure ResolveInputs()
2: for each pj ∈ Π do
3: BGproposej,0(i, state1,j)

Figure 4: Resolving inputs of algorithm C (code for simulator simi)

1: procedure Execute Rr,1

2: snapshot(stater,0, . . . , stater,n)
3: Fr,i := { pj | stater,j ∈ {⊥, “failed”, “killed”}} ∪ Suspectedr,i

4: for each pj ∈ Fr,i do
5: BGproposej,r,1(“failed”, stater+1,j)
6: snapshot(stater+1,0, . . . , stater+1,n)
7: FinalFaultyr+1,i := { pj | stater+1,j = “failed” or BGproposej,r,1 has only “failed” proposals}
8: for each pj ∈ Correctr+1,i := Π\FinalFaultyr+1,i do
9: BGproposej,r,2(“pj receives messages from all processors in Correctr+1,i”, stater+1,j)

Figure 5: First asynchronous phase Rr,1 (code for simulator simi)

was chosen to be failed), this means that simi is simulating a run of C(k, f) where processor pj crashes.
The exact simulation performed by simulator simi depends on the particular BG-agreement, according
to Figure 2. Any simulator simi that blocks a BG-agreement does not let the other simulators, involved
in the same BG-agreement, decide upon the state of processor pj ; as a simulator may block at most one
BG-agreement, then in each round at most k BG-agreements may be unresolved. In the simulation,
this is translated into at most k new failures per round of the synchronous run. If a BG-agreement
in the “far past” is not resolved, then a simulator is blocked in this BG-agreement, which means that
the simulation proceeds from some round on with less than k + 1 simulators, and therefore generates
less than k failures per round. This, according to condition 1, will force the processors to decide, and
allows the simulators to read any processor decision, and then decide on the same value. On the other
hand, if no simulator is blocked in any past BG-agreement, then the simulators will identify a processor
that is correct and which decides according to condition 2. The simulators may read the decision of
this processor, and decide on the same value. The processor that decides will not interfere with the
simulation after it decides, because the simulation ensures that this processor fails immediately after
deciding. Accomplishing that feat of guaranteeing an a-priori unknown processor to decide according
to condition 2 and failing it immediately after deciding, is the crux of the proof.

3.2 Proof

The proof is divided into three parts. The first part inductively explains how a synchronous round r
of the algorithm C(k, f), designed for the synchronous message-passing model, may be simulated in
the asynchronous shared-memory model. The second part exploits the two conditions of Theorem 1,
so that each simulator can reach a decision with the simulation of C(k, f) presented in the first part.
The third part shows how to initiate the simulation by instantiating the first part with r = 1.

Proof: Assume by contradiction that such an algorithm C(k, f) exists. We will exhibit how k +
1 simulators sim0, . . . , simk, solve k-set agreement asynchronously in a wait-free manner (i.e., while
tolerating k simulator crashes) in shared-memory, using C. This has been proved impossible [3, 14, 17].

Part I: the simulation. The simulators execute 2 asynchronous phases Rr,1 and Rr,2 for every
synchronous round r of algorithm C(k, f). In the first asynchronous phase Rr,1 simulating round r of

6

1: procedure Execute Rr,2

2: snapshot(stater+1,0, . . . , stater+1,n)
3: snapshot(FinalFaultyr+1,0, . . . ,FinalFaultyr+1,n)
4: if (i) pl = ⊥ and

(ii) ∃simq : |FinalFaultyr+1,q| ≥ f and
(iii) @(pj ∈ Π, r′ ≥ 1) : stater′,j = “killed” and
(iv) @(pj ∈ Π, r′ ≥ 1) : BGproposer′ has only “kill pj” proposals then

5: processorToKill := minj{ pj | stater+1,j /∈ {⊥, “failed”, “killed”}}
6: BGproposer(“kill processorToKill”, pl)
7: else
8: BGproposer(“no processor”, pl)
9: if pl /∈ {⊥, “no processor”} then stater+1,l := “killed”

10: snapshot(stater+1,0, . . . , stater+1,n)
11: for all proposed pj 6= pl in BGproposer do
12: Suspectedr+1,i := Suspectedr+1,i ∪ { pj }

Figure 6: Second asynchronous phase Rr,2 (code for simulator simi)

1: procedure SimulateRound(C, r)
2: execute round r of C using stater,0, . . . , stater,n:
3: • if a processor pj decides on a value v, then stater+1,j := “decided v”
4: • otherwise generate the content of the messages to be sent in round r + 1

Figure 7: Simulating the code C (code for simulator simi)

C(k, f), the simulators will tentatively agree on the state of each processor at the beginning of round
r + 1 (i.e., on what messages are received by each of the processors in synchronous round r, if any). In
the second asynchronous phase Rr,2 simulating round r of C(k, f), the simulators will tentatively agree
on a correct processor, and simulate this processor failure at the beginning of round r+1. Asynchronous
phases Rr,1 and Rr,2 are executed using several BG-agreement instances. The simulation algorithm is
shown in Figures 3 to 7, and is detailed hereafter.

In the first asynchronous phase Rr,1, any simulator simi takes a snapshot, and gathers in a set Fr,i

the processors (a) for which the state at the beginning of round r is not determined, or (b) for which
the state at the beginning of round r is determined and indicates that the processor is faulty. Simulator
simi proposes, in a first series of BG-agreements to determine the state of each of the processors in Fr,i

at the beginning of round r + 1, to fail each processor in Fr,i. Simulator simi, after finishing all these
BG-agreements (many of which are possibly unresolved), then takes another snapshot, and gathers in
a set FinalFaultyr+1,i ⊆ Fr,i the processors in Fr,i which are faulty at the beginning of round r + 1.
(These are the processors decided to fail by resolved BG-agreements, plus the processors in Fr,i for
which all proposals are to fail them in the corresponding BG-agreement.) For any processor pj in the
complement set Correctr+1,i = Π − FinalFaultyr+1,i, simi obtains the state of pj at the beginning of
round r, either from the first or the second snapshot in Rr,1. Simulator simi writes FinalFaultyr+1,i

in shared memory, and then proposes, in a second series of BG-agreements in Rr,1 to determine the
state of each of the processors in Correctr+1,i at the beginning of round r + 1, that each processor in
Correctr+1,i receives a message from every other processor in Correctr+1,i.

Simulator simi now moves to the second asynchronous phase Rr,2; simi first takes a snapshot to
observe the state of the processors at the beginning of round r + 1. In a single BG-agreement to agree

7

upon a correct processor, simi proposes a correct processor, chosen as follows:

1. there is a simulator simq in the snapshot taken by simi, such that simq sees f or more processor
failures, and

2. simi has not yet chosen a correct processor, nor observed such a processor being chosen, nor
guaranteed to be chosen,3 in a previous asynchronous phase Rs,2, s < r.

Otherwise there is no such processor and simi proposes a special “no processor” value. The idea is to
simulate the failure of the processor agreed upon, at the beginning of round r + 1.

Following the BG-agreement of Rr,2 (not necessarily resolved yet), simulator simi takes a snapshot
of the proposals to the BG-agreement of Rr,2, and starts to simulate synchronous round r + 1. For
each correct processor that appears in the last snapshot taken, that is, a correct processor that may
be chosen as the result of the BG-agreement in Rr,2, its state at the beginning of synchronous round
r + 1 is not determined until the BG-agreement of Rr,2 is resolved (we say that the processor is “sus-
pected”). Consequently, in Rr+1,1, all the simulators propose to fail these processors at the beginning
of synchronous round r + 2, that is, in the first series of BG-agreements in Rr+1,1.

Part II: finding a decision. Throughout the simulation, simulator simi continuously reads the
shared memory in order of increasing rounds starting at round 1, to determine the first processor pl

that has been agreed upon as the result of Rr,2, for some round r. Because all simulators have the same
rule to determine this processor, they will all agree on the same pl (if one exists). There are two cases
however, in which there may never be such a processor:

(i) the simulation goes almost lockstep and less than f processors fail in the simulation, or
(ii) the simulators cannot determine pl because a past BG-agreement is not yet resolved.

In any of these cases, there will eventually be less than k faulty processors per round. Therefore, the
synchronous simulated processors eventually have to decide, according to the algorithm C(k, f).

Now, suppose that none of these cases happen, i.e., every BG-agreement is eventually resolved, but
there are forever synchronous rounds with k failures in each round (i.e. the opposite of eventually
strictly less than k failures per round). Thus, the number of faulty processors grow without bound as
the simulation proceeds far enough. In this case, when reading the shared memory, the simulators will
all determine a round m such that m is the first round in which f or more processors are faulty at the
beginning of round m. Since for each simulator simi each processor in the set FinalFaultym−1,i is faulty
at the beginning of round m, it follows that in round m− 2 or less, no correct processor was chosen to
fail in Rm−2,2.4

Since at the beginning of round m, there are more than f failures, and at the beginning of round
m − 1, there are at most f failures, there must be, at the beginning of round m, a processor pj that
fails, and all correct processors at the beginning of round m receive a message from pj in round m− 1.
There are two cases:

(i) A correct processor pl is chosen by the BG-agreement in Rm−1,2.
(ii) No correct processor is chosen by the BG-agreement in Rm−1,2.

In the latter case, there necessarily exists at least one simulator simi which proposes that nobody be cho-
sen in that BG-agreement, i.e. simulator simi observes no other simulator simq with FinalFaultym−1,q ≥
f . Since simi finished all the BG-agreements in Rm−1,1, no simulator simq with FinalFaultym−1,q ≥ f

3For instance, because a BG-agreement, though not yet resolved, may guarantee that a processor will be chosen, if all
propositions are to fail the same processor, and no proposition is to fail no processor.

4To see why, suppose by contradiction that a correct processor was chosen to fail at round m − 2. Then at least one
simulator simq has FinalFaultym−2,q ≥ f . Since these processors will be faulty at the beginning of m−1, and additionally
one correct processor was chosen to fail, there are more than f failures at the beginning of round m− 1 contradicting the
assumption that m is the first such round.

8

imposed its proposal in any BG-agreement of Rm−1,1. Consequently, all processors do not receive mes-
sages from at most a set FinalFaultym−1,j < f , for some simulator simj . Since there are now more than
f faulty processors, the set of faulty processors at the beginning of round m must contain a processor
from which all messages are received by correct processors. This processor is chosen to be pl by all the
simulators (ties broken by the lowest processor identifier in case of two such processors.)

In both cases, pl is a correct processor, and we may add or withdraw enough messages to pl from
other faulty processors in the simulation, to get exactly f failures. (Every simulator can do that in the
same deterministic way.) This is possible, since at the beginning of round m − 1, there are at most f
failures.

As round m is the first round in which we choose a correct processor to fail in the second asyn-
chronous phase Rm−1,2, there are at most k failures per round until round m, as the result of asyn-
chronous simulators being late in a phase. Processor pl has to decide at the beginning of m, exactly
when we fail pl. Its decision may now be read by all the simulators, which can decide on the same
value. This concludes the simulation.

Notice that proposing and chosing a correct processor in one of the second asynchronous phases
Rr,2, in order to simulate its failure, is a transient phenonemon, as a result of the second condition in
the choice of pl. Eventually no processor will be proposed to be faulty after round s for s large enough
(in fact in case the number of failures is greater than f then s = m + 1). Thus, if a simulator is forever
late, then eventually the number of failures in each round is less than k since failures occur only because
of asynchrony of simulators, and less than k + 1 simulators proceed thereafter in the simulation.

Part III: starting the simulation. To start the simulation, each simulator proposes in a series of
BG-agreements, one for each processor, its simulator identifier as the value proposed by this processor
in code C(k, f). Following these BG-agreements, a simulator starts R1,1. The initial state of a processor
is determined when the corresponding BG-agreement is resolved. �

4 An Early-Deciding Algorithm

Figure 8 presents an early deciding k-set agreement algorithm. For t < N − k (or equivalently,
t ≤ n − k), this algorithm achieves the following bounds: (1) for 0 ≤ bf/kc ≤ bt/kc − 2, every
processor that decides, decides by round bf/kc+2, and (2) for bf/kc ≥ bt/kc− 1, every processor that
decides, decides by round bf/kc + 1. Note that this is a strict generalization of the upper bound on
consensus [5, 15],5 and of (non early deciding) set agreement [7]. For space limitation, we postpone the
proof of the algorithm to the optional Appendix.

The algorithm works as follows. Each processor pi keeps an estimate value esti, initialized with its
proposal value. Processor pi sends its estimate in every round. At the end of every round, pi updates
esti with the minimum estimate received from any other processor. Processor pi also records in halti
the processors from which it does not receive any message. At the end of any round r, if |halti| < rk,
then the estimate of pi is a possible decision value. In the next round, pi sends this estimate with a
special Dec decision tag, and decides on its estimate at the end of the round. Any processor pj that
receives a Dec message, adopts the decision value as its new estimate, sends a Dec message in the
next round with the decision, and decides on the estimate at the end of that round.

The intuition behind how the algorithm achieves set agreement is as follows. In round r, if pi

observes that |halt| < rk, this means that there exists one round r′ ≤ r where pi sees at most k − 1
processor crashes.6 Hence processor pi “knows” all but at most k− 1 values among the smallest values

5For uniform consensus, which we consider by default in this paper, the tight lower bound is f + 2, for 0 ≤ f ≤ t− 2,
and f + 1, for f ≥ t− 1 [5].

6An alternative way to detect the same situation is when pi sees k − 1 or less new crashes in round r.

9

At processor pi:
1: halt := ∅ ; decided := deciding := false
2: Sr := ∅, 1 ≤ r ≤ bt/kc+ 1

3: procedure propose(vi)
4: esti := vi

5: for r from 1 to bt/kc+ 1 do
6: if decided or deciding then send (r,Dec, esti) to all
7: else send (r,Est, esti) to all
8: if deciding then
9: decide(esti) ; return

10: else if decided then
11: return
12: else if received any (r,Dec, estj) then
13: esti := estj ; deciding := true
14: else
15: Sr := {(estj , j) | (r,Est, estj) is received in round r from pj}
16: halt := Π\ ∪(estj ,j)∈Sr {j}
17: esti := min{estj |(estj , j) ∈ Sr}
18: if r = bt/kc and |Sr| ≥ N − kbt/kc+ 1 then
19: decided := true ; decide(esti)
20: else if |halt| < rk then
21: deciding := true
22: decide(esti)
23: return

Figure 8: An early deciding k-set agreement algorithm (code for processor pi)

remaining in the system. Processor pi can thus safely decide on esti if pi reaches the end of the next
round. (As pi sends its decision in the next round, we know that every processor that reaches the end
of the next round receives pi’s decision if pi is able to decide.)

We give an intuition of why the algorithm is faster when bf/kc = bt/kc − 1. Note that in this case,
every processor that decides, decides by round bf/kc+1. At the end of round bt/kc−1, the processors
have more than k distinct estimate values only if there remain 2k − 1 processors or less that are still
allowed to crash. In round bt/kc − 1, every processor that detects k− 1 or less new crashes may safely
decide at the end of round bt/kc. The reason is the following. First, if k − 1 or less processors crash
in round bt/kc, then at most k − 1 distinct estimate values remain in the system, and it is safe to
decide for any processor. In contrast, if more than k − 1 processors crash in round bt/kc, then k − 1
or less processors may still crash. Denote by x the number of processors that detect less than k − 1
processor crashes in round bt/kc. These x processors decide at the end of round bt/kc. Assume that
they immediately crash after deciding. Thus there are at most k− 1−x processors that may still crash
in the last round bt/kc + 1. At the end of round bt/kc + 1, at most k − x values may be decided (if
k − 1− x processors crash). In total, processors decide at most on x + (k − x) distinct values.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of shared
memory. In Proceedings of the 9th ACM Symposium on Principles of Distributed Computing, pages

10

1–14, 1990.

[2] Y. Afek, G. Stupp, and D. Touitou. Long-lived and adaptive atomic snapshot and immediate
snapshot. In Proceedings of the 19th ACM Symposium on Principles of Distributed Computing,
pages 71–80, 2000.

[3] E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous com-
putation. In Proceedings of 25th ACM Symposium on the Theory of Computing, pages 91–100.
ACM Press, 1993.

[4] E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm.
Journal of Distributed Computing, 14:127–146, 2001.

[5] B. Charron-Bost and A. Schiper. Uniform consensus harder than consensus. Technical Report
DSC/2000/028, École Polytechnique Fédérale de Lausanne, Switzerland, May 2000.

[6] S. Chaudhuri. More choices allow more faults: set consensus problems in totally asynchronous
systems. Information and Computation, 105(1):132–158, July 1993.

[7] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. Tight bounds for k-set agreement.
Journal of the ACM, 47(5):912–943, 2000.

[8] S. Cook. The complexity of theorem proving procedures. In Proceedings of the 3rd ACM Symposium
on the Theory of Computing, pages 151–158, 1971.

[9] D. Dolev, R. Reischuk, and H.R. Strong. Early stopping in Byzantine agreement. Journal of the
ACM, 37(4):720–741, 1990.

[10] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183–186, June 1982.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–382, 1985.

[12] E. Gafni. Round-by-round fault detector–unifying synchrony and asynchrony. In Proceedings of
the 17th ACM Symposium on Principles of Distributed Computing, 1998.

[13] M. Herlihy, S. Rajsbaum, and M. Tuttle. Unifying synchronous and asynchronous message-passing
models. In Proceedings of the 17th ACM Symposium on Principles of Distributed Computing, pages
133–142, 1998.

[14] M. Herlihy and N. Shavit. The topological structure of asynchronous computability. Journal of
the ACM, 46(6):858–923, 1999.

[15] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are no faults – a
tutorial. Technical report, MIT Technical Report MIT-LCS-TR-821, 2001. (Preliminary version
in SIGACT News, Distributed Computing Column, 32(2):45–63, 2001.

[16] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

[17] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: the topology of public
knowledge. In Proceedings of 25th ACM Symposium on the Theory of Computing, pages 101–110,
1993.

11

Proof of the Algorithm

In the following, we denote the local copy of a variable var at processor pi by vari, and the value of
vari at the end of round r by varr

i . crashedr denotes the set of processors that crash before completing
round r, estsr denotes the set of estimate values of every processor at the end of round r. By definition,
round 0 ends when the algorithm starts. No processor decides by round 0. We first prove three general
claims about the algorithm of Figure 8.

Claim 2 estsr ⊆ estsr−1.

Proof: The proof of the claim is straightforward: for any processor pi, estri ∈ estsr−1. �

Claim 3 If at the end of round 0 ≤ r ≤ bt/kc no processor has decided, and at most l processors crash
in round r + 1, then |estsr+1| ≤ l + 1.

Proof: Consider that the conditions of the claim hold and assume by contradiction that |estsr+1| ≥ l+2.
By assumption, there are l+2 processors with distinct estimate values at the end of round r+1. Denote
by q0, . . . , ql+1 these processors, such that estr+1

qi
≤ estr+1

qi+1
, for 0 ≤ i ≤ l+1. Processors q0, . . . , ql do not

send estr+1
q0

, . . . , estr+1
ql

in round r + 1; otherwise, ql+1 receives one of the smallest l + 1 estimate values
in round r + 1. Thus there are l + 1 processors which send values corresponding to estr+1

q0
, . . . , estr+1

ql
in

round r + 1 and which crash in round r + 1; otherwise, ql+1 receives one of the smallest l + 1 estimate
value in round r + 1. This contradicts our assumption that at most l processors crash in round r + 1.
�

Claim 4 If, at the end of round 1 ≤ r ≤ bt/kc, no processor has decided, and |estsr| ≥ k + 1, then
|crashedr| ≥ rk.

Proof: We prove the claim by induction. For the base case r = 1, assume that the conditions of
the claim hold. That is, at the end of round 1, there exist k + 1 distinct processors q0, . . . , qk with
distinct estimate values. By Claim 3, |crashed1| ≥ k. Assume the claim for round r − 1, and assume
the conditions of the claim hold at round r. We prove the claim for round r. By assumption, there
are k + 1 processors q0, . . . , qk at the end of round r with k + 1 distinct estimates. By Claim 2, k + 1
processors necessarily reach the end of round r−1 with k +1 distinct estimates. Thus Claim 4 holds at
round r−1 (induction hypothesis), and thus, |crashedr−1| ≥ (r−1)k. By Claim 3, at least k processors
crash in round r. Thus |crashedr| ≥ k + |crashedr−1| ≥ rk. �

The next proposition asserts the correctness of the algorithm.

Proposition 5 The algorithm in Fig. 8 solves k-set agreement.

Proof: Validity and Termination are obvious. To prove k-ket agreement, we consider the lowest round
r in which some processor decides. Let pi be one of the processors that decides in round r. We consider
three mutually exclusive cases: (1) pi decides in round 2 ≤ r ≤ bt/kc − 1, (2) pi decides in round
r = bt/kc, and (3) pi decides in round r = bt/kc + 1. (In the algorithm, no processor decides before
round 2.)

Case 1. pi necessarily decides at line 9, and thus executes line 21 in round r−1, where deciding is set
to true. (Because no processor decides before pi, pi may not receive any dec message before deciding;
and because r ≤ bt/kc − 1, pi may not decide at line 19.) In round r − 1, pi executes line 21 only if pi

12

evaluates |crashedr−1| < rk at line 20. Thus, from Claim 4, there are at most k distinct estimates at
the end of round r − 1, which ensures agreement.

Case 2. There are two cases to consider: (1) pi decides at line 9, after executing line 21 at the end
of round r− 1, or (2) pi decides at line 19. (Because no processor decides before pi, pi may not receive
any dec message before deciding.) In case (1), pi executes line 21 in round r − 1 only if pi evaluates
|crashedr−1| < rk at line 20. Thus, from Claim 4, there are at most k distinct estimates at the end of
round r − 1, which ensures agreement. In case (2), we consider estsr−1. If |estsr−1| ≤ k, agreement is
ensured thereafter. Thus consider that |estsr−1| ≥ k+1. By Claim 4, there exist k+1 distinct processors
with different estimates at the end of round r−1 only if |crashedr−1| ≥ k(r−1) = k(bt/kc−1) ≥ t−2k+1,
or, equivalently, only if at most 2k−1 processors may crash in the two subsequent rounds (rounds bt/kc
and bt/kc+1). In round bt/kc, pi decides at line 19 only if pi receives at least n− kbt/kc+1 messages.
Thus, by Claim 3, the processors that decide at the end of round bt/kc, including pi, decide on at most
k distinct values. Denote by x the number of processors that effectively crash in round bt/kc, and
by y the number of processors that decide at the end of round bt/kc. We distinguish two cases: (a)
x ≤ k − 1, and (b) x ≥ k. In case (a), by Claim 3, k − 1 values or less remain in the system at the
end of round bt/kc; agreement is then ensured. In case (b), at most 2k− 1− x ≤ k− 1 processors may
crash among the processors that decide at the end of round bt/kc and the processors that take part
to round bt/kc + 1. We claim that the total number of distinct decision values is at most k. Indeed,
denote by ycrash the number of processors that decide at the end of round bt/kc and then immediately
crash. In round bt/kc+ 1, at most k− 1− ycrash may crash. By Claim 3 processors that decide at the
end of round bt/kc+1 may decide on at most k− ycrash distinct estimate values. Hence the maximum
number of decided values is (k − ycrash) + ycrash = k.

Case 3. By contradiction, consider that, at the end of round bt/kc + 1, there exist k + 1 distinct
processors q0, . . . , qk with different estimates, and which decide on their estimates. By Claim 2, there
exist k + 1 processors with distinct estimates at the end of round r − 1. By Claim 4 and because
r = bt/kc+1, |crashedr−1| > k(r−1) = kbt/kc > t−k. By Claim 3, there exist k processors that crash
in round bt/kc+ 1. Thus |crashedr| ≥ k + |crashedr−1| = k + kbt/kc > t. A contradiction. �

The next proposition asserts the efficiency of the algorithm.

Proposition 6 In any run with 0 ≤ f ≤ t failures, any processor that decides, decides

1. by round bf/kc+ 2, if 0 ≤ bf/kc ≤ bt/kc − 2, and

2. by round bf/kc+ 1, if bf/kc ≥ bt/kc − 1.

Proof: We proceed by separating both cases.
Case 1. Assume a run with f failures, such that bf/kc ≤ bt/kc − 2. By contradiction, assume that

there exists a processor pi for which |haltri | ≥ rk, for r = bf/kc + 1. (If |haltri | < rk, then pi decides
at line 9 in the next round.) Processor pi does not decide in round r; in particular, pi does not receive
any dec message in round r. We have |haltri | ≥ rk = (bf/kc+ 1)k = bf/kck + k > f . A contradiction.

Case 2. Assume a run with f failures, such that bf/kc ≥ bt/kc − 1. First assume that bf/kc =
bt/kc − 1, and assume by contradiction that there exists a processor pi that does not decide by round
r = bf/kc+ 1. Thus pi does not receive any dec message in round r. Assume by contradiction that pi

does not decide at line 19. Thus |Sr| < N − kbt/kc+ 1, and f > kbt/kc − 1. This implies in turn that
bf/kc > bt/kc − 1. A contradiction. When bf/kc = bt/kc, then any processor that decides, decides by
round bf/kc+ 1 = bt/kc+ 1. �

13

