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Abstract

This paper describes an event dissemina-
tion algorithm that implements a topic-based pub-
lish/subscribe abstraction in mobile ad-hoc net-
works (MANETs). Our algorithm relies on (1)
the mobility of the processes and (2) the valid-
ity period of the events to ensure the reliability
of the dissemination (under reasonable condi-
tions) with a thrifty usage of the memory. The
algorithm is inherently portable and does not as-
sume any specific routing protocol. Old events
are collected to save the memory and the en-
ergy consumption is, in some sense, related to
the size of the event scope a subscriber is in-
terested in. We give simulation results in differ-
ent mobility models and highlight the advan-
tages/drawbacks of our approach as well as we
expose some interesting relations between valid-
ity periods and reliability.

1. Introduction

The publish/subscribe (pub/sub) communi-
cation abstraction is a very appealing candi-
date for disseminating events in a wireless mobile
ad-hoc network (MANET). In such a network, pro-
cesses are mobile, they may not know each other
and might not always be up. With a pub/sub ab-
straction, remote processes can communicate in a
decoupled manner by playing two roles: the pub-
lishers produce events that are disseminated in the
network and subscribers receive events they are in-
terested in. Publishers and subscribers are decou-
pled in time, space and flow ([11]).
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supported by the Swiss National Science Foundation un-
der grant number 5005-67322.

Whereas the writing of MANETs applications
is appealing with a pub/sub abstraction, the imple-
mentation of such abstraction is not an easy task. In
particular, ensuring a reasonable level of reliability
of the dissemination is problematic without flood-
ing the entire network. Typically, processes can di-
rectly broadcast information in their geographical
neighbourhood but need multiple indirections to
reach far away processes. In addition, mobile pro-
cesses do sometimes have a limited memory and
the dissemination algorithm cannot use a large por-
tion of it for buffering events. Similarly, the battery
power of a process is dynamically limited and a
process might not want use it for receiving and for-
warding events it is not interested in.

This paper presents an event dissemination al-
gorithm to implement a topic-based pub/sub ab-
straction in MANETs. Events are arranged accord-
ing to a topic-hierarchy and subscribing to a spe-
cific topicTi, implies being interested in events re-
lated to topicTi and all its subtopics.

Our algorithm ensures that, under reasonable
conditions, subscribers receive the events they are
interested in with high probability. Events are as-
sumed to have a validity period that depicts the
time interval after which they are of no use. Our al-
gorithm exploits this notion together with the mo-
bility of the processes to reliably propagate events
to the subscriber processes. Basically, a process
keeps propagating events, as long as their validity
period have not expired, and as long as there are
new neighbours which are interested in the events
and did not receive them yet.

As we will discuss in Section 6, several attempts
have been made to implement pub/sub abstractions
in MANETs. To our knowledge, our algorithm is
the first to exploit the mobility of the processes
and the validity periods of the events to ensure a
level of reliability of the dissemination. Our sim-
ulations highlight lower bounds for validity peri-
ods to achieve a certain level of reliability, accord-
ing to the different mobility patterns and processes



speeds. Our algorithm is inherently portable and
does not assume any specific multicast routing pro-
tocol (we only rely on a standard wireless layer,
e.g., Bluetooth [3], 802.11 [1]). Old events are col-
lected to save the memory and we prevent pro-
cesses from spending energy in forwarding events
they are not interested in (we call these eventsnoise
events, with respect to the process in question).

The rest of the paper is structured as follows:
Section 2 describes our model. Section 3 gives an
overview of our algorithm. Section 4 details our
pub/sub algorithm. Section 5 gives some simula-
tion performance. Section 6 discusses related work
and Section 7 draws some concluding remarks and
future directions.

2. Model

In this section we present some basic elements
of the underlying MANET we consider. Namely
we discuss the communication medium, the net-
work topology and the processes involved in the
pub/sub interaction.

2.1. Overview

We assume a set of mobile processes that com-
municate directly (i.e., one-hop) with their imme-
diate neighborhood.

The architecture depicted in Figure 1(a) is
that of a typical pub/sub system with an under-
lying routing protocol for event dissemination in
MANETs, whereas Figure 1(b) describes the archi-
tecture we consider: the pub/sub layer lies between
the application layer and the MAC (Medium Ac-
cess Control) layer.

Pub/SubLayer

RoutingLayer

MAC Layer

(a) (b)

ApplicationLayer
ApplicationLayer

Pub/SubLayer

MAC Layer

Figure 1. Pub/Sub architectures.

2.2. Communication Medium

The communication between one process and
its neighbors in range is done using thesendprim-
itive of the underlying MAC layer of the wireless

infrastructure. We call the range of a process the
geographical zone within which the process can
send messages to other processes. It is not possi-
ble for a process to send a message to only one
of its neighboring processes (i.e., no unicast possi-
ble). The communication is one-hop1 and hence it
is not possible for a process to directlysenda mes-
sage to processes multiple hops away (no underly-
ing unicast/multicast routing algorithm).

2.3. Network Topology

We assume that the network is completely
ad-hoc and no fixed infrastructure is present. We
moreover do not make any assumption on the con-
nection graph of the processes (i.e., the graph does
not need to be fully connected at a given point
in time). The processes are assumed to be mo-
bile. We will study two different mobility models:
(1) Random Waypoint[16] and (2) City Sec-
tion [10], which we explain below.

Random Waypoint.In this mobility model, a pro-
cess moves from its current location to a new lo-
cation by randomly choosing a direction and speed
in which to travel. The new speed and direction are
chosen from pre-defined ranges, [speedmin, speed-
max] and [0, 2π] respectively. The Random Way-
point mobility model includes pause times between
changes in direction and/or speed [16]. A mobile
process stays in one location for a certain period of
time (pause time). Once this time expires, the pro-
cess choses a random destination and moves with
a speed as mentioned before.

City Section.In the City Section mobility
model [10], the simulation area is a street net-
work that typically represents a section of a city
where a MANET exists. In this model, the pro-
cesses follow predefined guidelines like speed lim-
its, one way lanes, and other traffic laws. Each pro-
cess begins the simulation at a predefined point on
some street, and randomly chooses a destination.
It is also common to consider some characteris-
tics like pause times, acceleration and deceleration
in certain intersections. This model can be de-
scribed using a Random Waypoint model with
constraints.

2.4. Processes, Topics and Events

Each processpi has a unique identifieri. All
processes have to deal with limited bandwidth, en-
ergy and memory. A process can move in and out

1 In the one-hop communication pattern, processes can com-
municate only with their immediate neighbourhood.



of the range of other processes as well as crash and
recover at any time. When two processes can com-
municate directly (i.e., are in range), we call them
neighbors. The neighbourhood of a processpi is,
by extension, the set of processespi can communi-
cates directly with. The number of processes in the
network is unbounded.

Each eventeTk
j published by a processpi,

has (1) a unique identifierj, (2) a validity pe-
riod, i.e.,val(eTk

j ) = t after which the information
carried by the event is of no use in the sys-
tem, and (3) is associated to a specific topic, e.g.,
Tk.2 Topics are arranged in a hierarchy (e.g.,
.seattle.conferences.mobisys) and a subscriber
that subscribed to a specific topic (e.g.,.seat-
tle.conferences) is expected to receive events
of this topic and all its subtopics (e.g.,.seat-
tle.conferences.mobisys). The root topic of the
topic tree is denoted by thedot (.) sign. Fi-
nally, an event which topic a process has not
subscribed to, is called anoiseevent for that pro-
cess.

3. Algorithm Overview

We give here an overview of the algorithm be-
fore detailing it in subsequent sections. Basically,
our algorithm goes through in three different main
parts: (1) neighbourhood detection, (2) event dis-
semination and (3) garbage collection. We first in-
troduce these phases and then give a short example
to illustrate their execution.

3.1. Neighbourhood detection

The processes periodically send heartbeat mes-
sages (see Figure 7). These heartbeats contain the
following element: (1) the identifier of the process,
(2) a list of its subscriptions and, (3) its current
speed3. The subscriptions are gathered in a list of
topics, (e.g.,”Ti, Tj , Tk, ...,Tn”)4. Each processpi

uses the heartbeat messages it receives to construct
a dynamic one-hop neighbourhood table, contain-
ing the identifiers of the processes in the neighbor-
hood along with their subscriptions and their cur-
rent speed. Only the processes whose subscriptions
intersect with the ones ofpi, are kept inpi’s table,
other one-hop neighbours are ofno interestto pro-
cesspi. The neighbourhood table is continuously
garbage collected and updated (depending on the

2 We assume that the event identifier is smaller than the size
of the data carried by the event.

3 This information is only useful for optimization purpose
and is not mandatory.

4 Remember that subscribing to a topicTi induces subscrip-
tion to all its subtopics.

periodicity of the heartbeats). If the speed informa-
tion is available, the process can adjust the period-
icity of the heartbeats. Otherwise, this periodicity
is set to a static value (see Section 4.2).5

When processes detect each other (with the help
of the heartbeat messages), they exchange a list of
event identifiers of the events, which are still valid,
they have both subscribed to and they already re-
ceived (i.e., events identifiers of the same topics (or
subtopics) of interests). With this information, each
process can check if its neighbour is interested in
an event it does not already received. If this is the
case, the processes proceed to the next phase of the
algorithm, namely the dissemination.

3.2. Dissemination

When a process detects that one of its neigh-
bours needs an event, it sends the required event
to its neighbourhood together with the list of its
neighbours, after a back-off period. The calcula-
tion of the back-off is presented in details in Sec-
tion 4.2.

When receiving the event, the neighbour-
ing processes of the sender might decide to send
the event again according to a retransmission pol-
icy (see Section 4.3). If the processes that re-
ceive the events have subscribed to the topic of
this event and have not received it yet, they de-
liver it to the application and store it, till it
is garbage collected. If the processes receive
events they either already have or have not sub-
scribed to the events’ topics, they simply drop
the events (in this sense we minimize the bur-
den induced by noise events and save battery
power).

3.3. Garbage collection

Throughout the two previous phases of our al-
gorithm, we mainly use two main data structures
(see Section 4.1) at every process.6 The first one is
used for storing the neighbours that share the same
subscriptions as the process itself (neighbourhood
table) and the second one is used for storing the
events. The neighbourhood table is constantly up-
dated (based on the periodicity of the heartbeats)
and its size is upper bounded7.

5 We will see in Section 5, having a heartbeat periodicity
based on the speed of the processes minimizes the num-
ber of messages sent.

6 As we will see, other data structures are involved in the al-
gorithm, but those cannot induce memory problems.

7 The upper bound corresponds to the maximum number of
neighbours a process can handle. This bound depends on
the structure of the network and on the amount of memory
of the processes.



The data structure used to store the events can
grow rapidly. This is because the total number of
events sent in the system is unbounded and the
processes have to store them until their validity
period expires. Hence, it can happen that a pro-
cess receives an event and cannot store it because
its memory is full. Our garbage collection scheme
collects the events according to their validity and
the number of times they have been propagated
(sent/forwarded) by the processes.

3.4. Example

Figure 2 depicts a simple scenario illustrating
our algorithm. The hierarchy is made of three top-
ics: T0, T1 andT2; T1 is a subtopic ofT0 whereas
T2 is a subtopic ofT1. Three processes,p1, p2 and
p3 are involved:p1 has subscribed toT1, p2 has
subscribed toT2 andp3 has subscribed toT0. Three
events have been published in the system:eT1

3 , eT2
4

andeT2
5 . We assume that processp1 has already re-

ceivedeT1
3 and processp2 has already receivedeT2

4

andeT2
5 .

In part I of Figure 2, processesp1 andp2 be-
come neighbours and hence know their common
subscriptions. They then exchange the events iden-
tifiers corresponding to the topics they have com-
monly subscribed to and as a consequence,p2

sends top1 eventseT2
4 andeT2

5 (asT1 is a super-
topic ofT2).

In part II of Figure 2, all three processes become
neighbours and exchange their event identifiers and
realize thatp3 misses events,eT1

3 , eT2
4 andeT2

5 . As
bothp1 andp2 have events to send, they both send
them after a back-off period. Asp1 has more events
to send thanp2, p1 has a smaller back-off period
thanp2 (see Section 4.3).p1 then sends eventseT1

3 ,
eT2
4 andeT2

5 .

In part III of Figure 2,p1 moves on, butp2 and
p3 still remain in the range of each other. Asp2 was
in the range ofp1 when it sent the events last,p2

heard the events thatp1 sent forp3. Now,p2 andp3

know that they do not have to exchange any more
events.

4. Algorithm Description

In this section we describe the algorithm in
more details focusing first on the data structures
involved in the algorithm. Then we describe the
neighbourhood detection scheme, the dissemina-
tion technique and finally the garbage collection.

idinterests
3T0.T1 3T0.T1

T0.T1.T2 4,5

interests id
4,5T0.T1.T2

interests id

T0

interests id

p3

p2
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p3

3

id
T0

4,5
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p2
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p2

p3
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Figure 2. A simple scenario

For each processpi

1: {The subscriptions of the process}
2: pi.subscriptions =∅
3: {The neighbourhood table}
4: neighbourhoodTable =∅
5: {The event table}
6: eventsTable =∅
7: {The structure containing the events to send}
8: eventsToSend =∅
9: {The default heartbeat delay}

10: HBDelay = 15000
11: {The default neighbourhood garbage collection delay}
12: NGCDelay = HBDelay*HB2NGC
13: {The default back-off delay}
14: BODelay =HBDelay

HB2BO

Figure 3. Data structures.

4.1. Data Structures

The data structures used in the algorithm
are gathered in Figure 3. These consist of a
list of subscriptions for every processpi (i.e,
pi.subscriptions), aneighbourhood table(i.e.,
neighbourhoodTable) and an event table (i.e.,
eventTable). These two tables are presented in
more details below. There is also the list con-
taining the events to send(i.e., eventsToSend).
Furthermore, different values used in our al-
gorithm are depicted in Figure 3, namely the
heartbeat delay (i.e.,HBDelay), the neighbour-
hood garbage collection delay (i.e.,NGCDelay)
and the back-off delay (i.e.,BODelay).

Subscriptions of a process.The different subscrip-
tions of every processpi are stored in a list denoted
pi.subscriptions. We assume, without loss of gen-
erality, that the size of this list is upper bounded.
Indeed, the number of subscriptions of a process is
usually limited, and especially in the topic-based
scheme (because in this scheme a process only has
to subscribe to a topic to receive all the events re-
garding this topic and all its subtopics).



Neighbourhood Table.Figure 4 shows the neigh-
bourhood table of a process. The first column of
this table stores the identifiers of the neighbours
of a process. The second column stores the topics
those processes have subscribed to. The third col-
umn stores the identifiers of the events the neigh-
bours have received, the forth column contains the
speed of the neighbors (this column is not manda-
tory) and the last column contains the time (i.e., the
storetime) when the entry has been stored/updated
into the table. This last entry is used to garbage
collect the information of the table. We discuss in
more details the use of the neighbourhood table in
Section 4.3 and present its garbage collection algo-
rithm in Section 4.4.

Events
ID

20 [mps]

– [mps]

1 [mps]

Speed StoreTime

07:45:23

07:43:20

07:44:45

Topics

1, 2T0

T0.T4 210

10T0.T1.T2

Neighbors

32

1

542

Figure 4. The neighbourhood table.

Event Table.Each process stores an event table as
shown in Figure 5. This table contains a list of top-
ics the process has subscribed to, together with the
list of events this process has received and/or pub-
lished. These events are stored according to the
topic hierarchy (from the partial topic tree infor-
mation the process has). Each event has a unique
identifier (i.e.,id), a validity period (i.e.,validity),
a counter (i.e.,counter), a topic (i.e.,topic) and its
internal data information (i.e.,data, this informa-
tion is not shown in Figure 5). The validity period
expresses the time interval after which the event
can be removed. The counter represents the num-
ber of times an event has been forwarded; it is used,
together with the validity period, in the garbage
collection sub-protocol, see Section 4.4.

Validity CounterTopics Events

5

1

2

12

100[s]

60 [s]

20 [s]

120[s]

eT2
10

eT2
5

eT3
3

eT3
143

T0.T1.T2

T0.T1.T3
T2

Topic Hierarchy

T4T1

T3

T0

Figure 5. The event table.

For each processpi

1: {The subscription algorithm}
2: upon SUBSCRIBE(Tk) do
3: pi.subscriptions =pi.subscriptions∪ Tk

4: if (HEARTBEAT not started)then
5: startHEARTBEAT

6: end if
7: if (NEIGHBOURHOODGC not started)then
8: startNEIGHBOURHOODGC
9: end if

10: end upon

11: {The unsubscription algorithm}
12: upon UNSUBSCRIBE(Tk) do
13: pi.subscriptions =pi.subscriptions\ Tk

14: if (pi.subscriptions ==∅) then
15: stopHEARTBEAT

16: stopNEIGHBOURHOODGC
17: end if
18: end upon

Figure 6. Subscription, Unsubscrip-
tion.

The events to send.This structure contains the
events a process will send to its neighbours. This
structure can be, at most, as big as the event table
(if a process has to send all its events to its neigh-
bours). However, this structure is always reset each
time the events are sent (i.e., after each back-off).
The size of this structure is upper bounded and it is
reset periodically.

4.2. Neighbourhood Detection

Before being able to detect neighbours, the pro-
cesses have to subscribe to topics they are in-
terested in. The subscription/unsubscription sub-
protocol is given in Figure 6. Basically, when a pro-
cess wants to subscribe to a specific topic, it adds
this topic to its list of subscriptions and starts the
heartbeatandneighbourhoodGC8 tasks. A process
that wants to unsubscribe to a topic, removes this
topic from its list of subscriptions. When the list
of subscriptions is empty, theheartbeatandneigh-
bourhoodGCtasks are stopped.

The heartbeats of a process carry the list of sub-
scriptions of the process (e.g., “T0, T1,..., Tn”)
along with its process identifier and its current
speed. Note that the information about the speed
of the processes is not mandatory and is only used,
as an optimization, to reduce the number of heart-
beats messages (see Section 4.2). After receiving
the heartbeat messages, each process is able to

8 TheneighbourhoodGCtask is used for garbage collecting
the neighbours from the neighbourhood table and is pre-
sented in more details in Section 4.4.



For each processpi

1: {The heartbeat task}
2: task HEARTBEAT

3: SEND(i,pi.subscriptions, [currentSpeed])
4: end

5: {When receiving a heartbeat message}
6: upon RECEIVE(j,subscriptions,[speed])do
7: if subscriptions∈ pi.subscriptionsthen
8: RAISE new neighbourEvent(j,subscriptions)
9: if (j /∈ neighbourhoodTable)then

10: neighbourhoodTable∪
(j,subscriptions,[speed],currentTime)

11: else
12: UPDATENEIGHBOURINFO(j,subscriptions,[speed],

currentTime)
13: end if
14: end if
15: COMPUTEHBDELAY (neighbourhoodTable)
16: COMPUTENGCDELAY (neighbourhoodTable)
17: COMPUTEBODELAY (neighbourhoodTable)
18: end upon

19: {A new neighbour has been detected}
20: upon new neighbourEvent(j,subscriptions)do
21: if subscriptions∈ pi.subscriptionsthen
22: SEND(i,GETEVENTSIDS(subscriptions,eventsTable))
23: end if
24: end upon

25: {Reception of a list of events identifiers}
26: upon RECEIVE(j, eventsIDs)do
27: if j ∈ neighbourhoodTablethen
28: for all eventID∈ eventsIDsdo
29: UPDATENEIGHBOUREVENTINFO(j, eventID, cur-

rentTime)
30: end for
31: RETRIEVEEVENTSTOSEND()
32: end if
33: end upon

Figure 7. Neighbourhood detection.

build a view of its neighbourhood, together with a
list of their subscriptions. If two neighbouring pro-
cesses do not share any common topics, these top-
ics are not stored in their respective neighbourhood
table. The neighbourhood information of a process
is stored in the table presented in Figure 4 and
updated accordingly (using theUPDATENEIGH-
BOURINFO() method9).

If the subscriptions of a process match the
ones of its neighbour, they then exchange the
events identifier they respectively have sub-
scribed to (the events identifiers are retrieved
via the GETEVENTSIDS() method). Once those
events identifiers are received, the process up-
dates its neighbourhood table with those and
checks if it has to send events to its neigh-

9 This method is not described in the algorithm for space
limitations. However it simply consists of updating the in-
formation (i.e., subscriptions, speed and store time) corre-
sponding to the right neighbour.

For each processpi

1: {Computation of the hearbeat delay}
2: function COMPUTEHBDELAY (neighbourhoodTable)
3: averageSpeed =

AVERAGESPEED(neighbourhoodTable)
4: if averageSpeed6= null then
5: HBDelay = x

averageSpeed

6: end if
7: HBDelay =MIN (HBDelay, heartbeat upper bound)
8: HBDelay =MAX (HBDelay, heartbeat lower bound)
9: end

10: {Computation of the neighbourhood garbage collection
delay}

11: function COMPUTENGCDELAY (neighbourhoodTable)
12: NGCDelay = HBDelay*HB2NGC
13: end

14: {Computation of the back-off delay}
15: function COMPUTEBODELAY (neighbourhoodTable)
16: BODelay = HBDelay

HB2BO∗sizeof(eventsToSend)

17: end

Figure 8. Computing delays.

bour (via the RETRIEVEEVENTSTOSEND()
method, see Section 4.3). The events identi-
fiers are exchanged instead of the plain events
for minimizing the size of the duplicates mes-
sages. It may happen that a process and its neigh-
bour, has the same set of events; in this case, there
is no use for them to exchange the events. The only
possibility for preventing this situation is by ex-
changing events identifiers before sending the real
events.

The computation of the time intervals for
(1) the heartbeat messages, (2) the neighbour-
hood garbage collection and (3) the back-off
period are determined at the reception of the heart-
beat messages, via respectively the (1)COM-
PUTEHBDELAY (), (2) COMPUTENGCDELAY ()
and (3) COMPUTEBODELAY () methods. Fig-
ure 8 gives a possible implementation of these
methods.

4.3. Dissemination

Our dissemination algorithm is described in
Figure 10. Basically the process uses thePUB-
LISH() method to send the event to the neigh-
bouring processes if at least one of those has
subscribed to the topic of the event. More-
over, in calling this method, the process updates
the neighbour information in its neighbourhood ta-
ble (via the UPDATENEIGHBOUREVENTINFO()
method10).

10 For space limitation this method is not shown in the algo-



For each processpi

1: {Computation of the events to send}
2: function RETRIEVEEVENTSTOSEND()
3: for all neighbour∈ neighbourhoodTabledo
4: if neighbour.subscriptions∈ pi.subscriptionsthen

5: for all e
Tj

k ∈ eventTabledo
6: if Tj ∈ neighbour.subscriptions&&

k /∈ neighbour.eventsIDs&&

val(e
Tj

k ) < currentTimethen

7: eventsToSend∪ e
Tj

k
8: end if
9: end for

10: end if
11: if eventsToSend6= ∅ then
12: COMPUTEBODELAY (neighbourhoodTable)
13: if backOff not started && BODelay != nullthen
14: start backOff with computed BODelay
15: end if
16: end if
17: end for
18: end

Figure 9. Retrieval of the events.

As soon as a process receives an event, it up-
dates its neighbourhood table (using theUP-
DATENEIGHBOUREVENTINFO() method) with
the list of neighbour identifiers it received with
the events. The process then checks if it has sub-
scribed to the topic of that event and if so, it deliv-
ers it to the application and adds it to its event table
(after checking that the event table is not full, oth-
erwise it calls theGARBAGECOLLECT() method).
If the process has not subscribed to the topic
of the event, it simply drops it. Once it has de-
livered the event to the application, the process
checks if it has to forward its events to its neigh-
bours (i.e.,RETRIEVEEVENTSTOSEND() method,
Figure 9).

If a processpi finds out that some of its neigh-
bours have subscribed to the topic of the events
pi owns,pi starts a back-off period (the back-off
delay is determined by the functionCOMPUTE-
BODELAY ()11). Taking into account the events
that have been received by the processes reduces
the number of useless retransmissions and hence
saves power and bandwidth.

Once the back-off delay expires, the events to
send are recomputed (in case the neighbourhood
of the process has changed between the beginning
and the end of the back-off) and the new events are

rithm; it basically consists in updating the list of events a
neighbour is supposed to have received with its event iden-
tifier.

11 A possible implementation of this method is shown in Fig-
ure 8. In this implementation, the back-off delay depends
on the heartbeat delay and on the total number of events to
send.

For each processpi

1: {Executed when the back-off expires}
2: upon backOff expirationdo
3: RETRIEVEEVENTSTOSEND()
4: if eventsToSend6= ∅ then
5: SEND(i, eventsToSend, neighboursIDs)
6: eventsIDs =GETEVENTSIDS(eventsToSend)
7: for all neighbourID∈ neighbourhoodTabledo
8: for all id ∈ eventsIDsdo
9: UPDATENEIGHBOUREVENTINFO(neighbourID,

id)
10: end for
11: end for
12: INCREMENT(eventsToSend, eventsTable)
13: end if
14: end upon

15: {Publication of a new evente
Tj

k }
16: function PUBLISH(i, e

Tj

k , neighboursIDs)
17: for all neighbour∈ neighbourhoodTabledo
18: if neighbour.subscriptions∈ pi.subscriptionsthen
19: interested = true
20: break
21: end if
22: end for
23: if interestedthen
24: SEND(i, e

Tj

k , neighboursIDs)
25: for all neighbourID∈ neighbourhoodTabledo
26: UPDATENEIGHBOUREVENTINFO(neighbourID, k)
27: end for
28: end if
29: end

30: {Reception of a list of events}
31: upon RECEIVE(j, events, neighboursIDs)do

32: for all e
Tj

k ∈ eventsdo
33: for all neighbourID∈ neighboursIDsdo
34: UPDATENEIGHBOUREVENTINFO(neighbourID, k)
35: end for
36: if Tj ∈ pi.subscriptionsthen
37: interested = true
38: STOPbackOff timer
39: if eventsTable is fullthen
40: garbageCollect(eventsTable)
41: end if
42: eventsTable∪ e

Tj

k

43: DELIVER(e
Tj

k )
44: end if
45: end for
46: if interestedthen
47: RETRIEVEEVENTSTOSEND()
48: end if
49: end upon

Figure 10. Dissemination.

send, together with a list of its neighbours identi-
fiers. The sending process then updates its neigh-
bourhood table and increments the counter of each
events that have just been sent.

4.4. Garbage Collection

We collect old information both in the neigh-
bourhood table and in the event table.



For each processpi

1: {Garbage collection of the neighbourhood table}
2: task neighbourhoodGC
3: for all neighbour∈ neighbourhoodTabledo
4: if currentTime - NGCDelay> neighbour.storeTime

then
5: REMOVE(neighbour,neighbourhoodTable)
6: end if
7: end for
8: end

9: {Garbage collection of the events table}
10: function garbageCollect(eventsTable)
11: gc = null

12: for all e
Tj

k ∈ eventsTabledo

13: if
val(e

Tj
k

)

(fwd(e
Tj
k

)+val(e
Tj
k

))
≤ val(gc)

(fwd(gc)+val(gc))

then
14: gc =e

Tj

k
15: end if
16: end for
17: REMOVE(gc,eventsTable)
18: end

Figure 11. Garbage collection.

Subscription list of a process.As stated in Sec-
tion 4.1, we can assume that the size of this struc-
ture is limited and the information it contains is
constantly updated when the process decides to
subscribe or unsubscribe to a specific topic.

Neighbourhood table.Each time the neighbour-
hood garbage collection delay expires, all the pro-
cess identities which storetimes have expired, are
collected from the neighbourhood table (see Fig-
ure 11). As this task is executed periodically and
as we can assume that the total number of simulta-
neous neighbours is limited, the size of the table is
upper bounded.

Event table.As our algorithm exploits the valid-
ity period of the events, those are simply collected
when their validity period expires. However, be-
sides the validity parameter, the number of times
an event was propagated is also considered in or-
der to best propagate all the events. As a mat-
ter of example, events with high validity periods
that have been propagated several times have to be
collected before events with short validity periods
that have never been forwarded, otherwise these
events will never be disseminated in the system.
Equation 1 captures the way we collect the events,
based on their: (1) validity period (i.e., val(e

Tj

k ))
and (2) the number of times an event has been
forwarded (i.e., fwd(eTj

k )). This equation ensures
that if an event with a high validity period has
been sent a certain number of times, it is collected
before an event with a short validity period that

has never or rarely been forwarded. The garbage
collection function for an eventeTj

k is given as

(∀val(eTj

k ), fwd(eTj

k ) ∈ N∗):

gc(eTj

k ) =
val(eTj

k )

(fwd(eTj

k ) + val(eTj

k ))
(1)

In Figure 12, we present the shape of the
garbage collection function (i.e., gc(e

Tj

k )), for dif-
ferent validity values and different forwarding
values12. When the event table is full, we re-
move the event with the lowest garbage collection
value (Figure 12).
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Figure 12. The garbage collection
function

As an example, we can see in Figure 12, that an
event with a validity period of 2 that have been for-
warded less than 2 times, will be collected after an
event with a validity period of 5 that has been for-
warded 5 times.

The events to send.As discussed in Section 4.1,
the data structure capturing the events to be sent
does not need to be garbage collected as it is reset
every back-off period. Moreover, its size depends
on the size of the event table, but as this last struc-
ture is efficiently garbage collected, hence the size
of the events to send structure cannot grow indefi-
nitely.

5. Performance

In this Section, we present the performance re-
sults obtained from simulating our algorithm ac-
cording to various mobility patterns. Basically, we
show that, for different mobility patterns, it is pos-
sible to achieve the same reliability while vary-
ing the speed of the processes and the validity of

12 This information is available using the events table (i.e.,
counter column)



the events. We first describe the simulator we use,
present the overall settings and finally we give the
actual performance measurements.

5.1. Environment

We simulated our pub/sub algorithm us-
ing Qualnet (3.7) [28], directly on the 802.11b
MAC layer, in two different mobility mod-
els, : (1) Random Waypoint[16] and (2) City
Section[10].

5.2. Experimental Settings

We first give the settings underlying our al-
gorithm implementation and then the settings un-
derlying Qualnet for the different mobility pattern
considered.

Our algorithm. Regarding the common configura-
tion parameters of our algorithm, we have set the
size of the events to 400 bytes,x to 40,HB2BOto 2
andHB2NGCto 2.5. The upper bound value for the
heartbeat period varies13, as well as the mobility
of the processes and the validity of the events (see
the following performance measurements configu-
ration). The choice of these values (i.e.,x, HB2BO
andHB2NGC) can be subject to discussion and, as
usual, is a matter of trade off between the overall
number of messages sent (heartbeats, events iden-
tifiers, and actual events) and the reliability of re-
ceiving those (as we will see in Section 5.3). More-
over, for the special case of the Random Waypoint
model, we have run the experiments after the first
600 seconds of the simulation time (due to the high
variability in the neighbourhood percentage during
these first seconds [25]).

Random Waypoint in Qualnet.The Qualnet sim-
ulator let the user choose between the following
properties: (1) the minimum speed of the pro-
cesses, (2) the maximum speed of the processes
and (3) the pause time between each destination
transition. In our experiments, the pause time has
always been set to 1[s]. The maximum and min-
imum speed vary during the entire set of experi-
ments, see Section 5.3. Moreover, in this model,
we have done our experiments on a virtual area of
25[km2], populated randomly with 150 processes.

Regarding the overall settings of the simulator,
we have used a “standard” 802.11b ad-hoc net-
work. We have used the default values provided
by the Qualnet simulator. Namely, the transmis-
sion power rate is of 15[db] for all the 1,2,6 and

13 The heartbeat upper bound determines the upper bound of
the heartbeat period.

11[Mbps] and the reception sensitivity is -93[db], -
89[db], -87[db] and -83[db] for 1,2,6 and 11[Mbps]
respectively.14 The channel frequency is 2.4[Ghz]
and it uses a statistical propagation model, with a
limit of -111[dbm] and a two ray path loss model.
The MAC protocol used is the 802.11 one. Each
process has an omni-directional antenna with an ef-
ficiency of 0.8.

City Section in Qualnet.Qualnet let also the user
define its own mobility patterns for each process in
the system and hence allows to simulate a city with
its traffic. For this model, we have taken the map
of our campus at EPFL and created a specific mo-
bility pattern for each of 15 processes. The EPFL
campus covers 1200x900 square meters. The pro-
cesses do not walk/drive randomly in each of the
roads. We have tried to follow the real traffic con-
ditions, in the sense that some roads are more often
used than others.

Regarding the overall settings of the simulator,
they are the same as for the Random Waypoint,
except for the reception sensitivity which is of -
65[db] for all rates (1,2,6 and 11[Mbps])15. We
have modified these values to try to simulate the
real radio range in a city.

5.3. Results

We first focus on the Random Waypoint model
and then on the City Section model.

Random Waypoint Model.We have conducted
the simulation for different speed values: 0[mps],
1[mps], 5[mps], 10[mps], 20[mps], 30[mps] and
40[mps]. All the simulation were ran 30 times
with different seed values and the results pre-
sented in each figure are averages of the 30
obtained values. There is only one event pub-
lished by one original publisher.

In the first experiment, each process has sub-
scribed to the topic of the event. This event has
a validity of 60[s]. We have varied the speed of
each process as well as the heartbeat upper bound
limit (15[s], 10[s], 5[s] and 1[s]). Not surprisingly,
more mobility implies more reliability. Regarding
the upper bound limit, we can see that if we try to
have a small upper bound, the better the reliability,
even in networks with low mobility. It is interesting
to notice that sending heartbeats often in a low mo-
bile network, in our algorithm, increases the relia-
bility. This can be explained by the fact that a mes-
sage loss is more critical in a network where the

14 This corresponds to a radio range of a sphere which radius
is 442[m], 339[m], 321[m] and 273[m] respectively.

15 This corresponds to a radio range of a sphere which radius
is 44[m].



heartbeat periods are long. Indeed, the propagation
of the event to other processes is much longer and,
as the validity is low (60[s]), the probability that all
processes receive the event is also low. However,
sending more often those heartbeats (and conse-
quently the events identifiers messages), has a cost:
the number of total messages sent with a heartbeat
upper bound of 1[s] is 2.5 more than with a heart-
beat upper bound of 15[s].

Upper Bound = 5 [s]
Upper Bound = 10 [s]
Upper Bound = 15 [s]

Upper Bound = 1 [s]
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Figure 13. Probability of event recep-
tion as a function of the heartbeat pe-
riod.

In the second experiment, we consider the va-
lidity of the events and the speed of the processes
(the heartbeat period is set to 1[s]). The plain and
dashed graph represent reliability values obtained
when only 20%, respectively 80%, of processes
have subscribed to the topic of the event. We can
see that, when a few processes have subscribed
to the topic of the events, it is very difficult to
achieve high reliability. Only a combination of a
high mobility of the processes and a high valid-
ity of the events can lead to a fairly good relia-
bility. For instance, when the processes move at a
speed of 30[mps], events with a validity of 150[s]
are received by 75% of the subscribers. We can ex-
plain this with the fact that the simulating area is far
too big with respect to the number of subscribers.
If only 20% of them have subscribed to the topic
of the event, this means that we have only 30 pro-
cesses for a region of 25[km2]; the network is too
sparse.

However, when more processes have subscribed
to the topic of the events (80%), we can achieve
a fairly high reliability with different validity val-
ues and different speed of the processes. For exam-
ple, processes moving at 10[mps] and publishing
events of 180[s] validity, have the same 95% reli-
ability than processes moving at 30[mps] and pub-
lishing events which validity is 90[s]. Interestingly,
it is hence possible, according to different mobil-
ity patterns and speed of the processes, to give the

lowest validity value for achieving a specific relia-
bility.
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Figure 14. Probability of event recep-
tion as a function of the validity, the
speed of the processes and the num-
ber of subscribers.

In Figure 15, we depict the same experiments as
before, except that now we have a more heteroge-
neous mobile network, in which the processes ran-
domly move between 1[mps] and 40[mps]. With a
low subscriber number, the reliability is low also.
However, even if only 60% of the processes have
subscribed to the topic of an event with a valid-
ity of 120[s], then almost all of them will receive
it. We can relate these results with the ones of a
network in which all processes move at a speed of
20[mps]. Indeed, according to our results the over-
all reliability of reception depends on the average
speed of all the processes in the network rather than
on the specific speed of each process.
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Figure 15. Probability of event recep-
tion as a function of the validity and
the number of subscribers, in a het-
erogeneous mobile environment.

City Section Model.As mentioned previously, the
simulation is composed of 15 processes driving in



Heartbeat upper bound period [s]

1 2 3 4 5
76.9% 75.1% 65.5% 69.9% 54.0%

Figure 16. Probability of event recep-
tion as a function of the heartbeat pe-
riod.

a 1200 x 900 [m2]. All processes walk/drive at a
given speed which is the speed limit of the road
they are currently walking/driving on (which is be-
tween 8[mps] and 13[mps]) and it may happen that
they stop for a while for several reasons (red light,
...). In all the different experiments, all processes,
in turn, become the original publisher. Again all ex-
periments have been conducted 30 times and re-
sults we present are an average over these 30 times
on all the 15 publishers.

In the first set of experiments, we also tested the
importance of the heartbeat period over the over-
all reliability. Recall that, in such a network, with
the upper settings and with no upper bound set, the
processes send heartbeats every 4[s] (which is the
fraction of x over the average speed of 10[mps]).
Figure 16 depicts the different results obtained
when varying the heartbeat upper bound period
from 1[s] to 5[s], where all the processes have sub-
scribed to the topic of the event and where the va-
lidity of this event is 150[s]. The presented results
are an average on the values obtained for all the
processes being once the original publisher.

One of the conclusions of our experiments is
that there is not a real difference of reliability be-
tween the heartbeats sent every 1[s] or 2[s]. How-
ever, between 1[s]-2[s] and 5[s], we have a lost of
22% reliability, which can be quite important. An
interesting think to notice is the fact that having
heartbeats every 4[s] is better than having them ev-
ery 3[s]. This surprising result can be explained by
the fact that, with this heartbeat period of 3[s], the
messages sent by the processes are more likely to
collide than with the predefined mobility environ-
ment. Hence, it may happen that, given a mobil-
ity environment, a heartbeat periodicity both com-
bining the interval delay and the reliability can be
found and that this periodicity might not be the
smaller one. We are still investigating this area.

In the second set of experiments, we have set
the heartbeat upper bound period to 1[s] and we
have varied the number of subscribers from 20%
to 100%. Again, the values presented in Figure 17
are an average on all the processes being in turn the
original publisher.

Interestingly, these results are not comparable to

Subscribers [%]

20% 40% 60% 80% 100%
58.1% 59.7% 62.5% 68.6% 76.9%

Figure 17. Probability of event recep-
tion as a function of number of sub-
scribers.

Subscribers [%]

20% 40% 60% 80% 100%
40.9% 44.7% 47.9% 53.9% 60.0%

Figure 18. Difference of reliability be-
tween the processes.

the ones obtained in the Random Waypoint model.
Even if only 20% of the processes have subscribed
to the topic of the event, almost 60% of them will
receive the event which was not the case in the pre-
vious model. Again, this can be explained by the
fact that, in this model, the processes do not move
randomly and follow specific paths defined accord-
ing to specific rules. Indeed, they are more likely to
become neighbours than in the Random Waypoint
model, especially if several roads have more im-
portance than others (which is the case in our sim-
ulations).

We also point out the importance of the path
of the processes when we compare the reliabil-
ity achieved according to each of the publishers
specifically. In Figure 18, we depict the maximum
difference between the minimum reliability and the
maximum reliability between the publishers, for
different percentage of subscribers.

There can be a huge difference of reliability
between the publishers that originally publish the
event and this difference is due to the path taken by
the publisher.

In the final set of experiments, we have set the
heartbeat upper bound period to 1[s] and we have
made vary the validity of the events from 20[s] to
150[s]. Figure 19 shows the results.

Event Validity [s]

25 50 75 100 125 150
11% 27% 44% 52% 69% 77%

Figure 19. Probability of event recep-
tion as a function of the event valid-
ity.



On the contrary of the subscriber percentage,
we can see that the validity of the event has a
crucial importance on the overall reliability. This
comes from the fact that, in this specific model,
we cannot distinguishwherethe processes become
neighbours withwhenthey become neighbours. In
the Random Waypoint model, the processes ex-
change information uniformly during the simula-
tion, there is no real hot point where the processes
meet. Whereas in the City Section model, the pro-
cesses meet and exchange their information more
likely at social meeting points, hence the huge dif-
ferences in reliability.

6. Related Work

This section relates our work to alterna-
tive ways to implement pub/sub in MANETs.
We first discuss some general purpose dissemina-
tion algorithms which could be used to implement
pub/sub in MANETs. Then we focus on al-
gorithms specifically designed with MANETs
pub/sub in mind.

6.1. Dissemination algorithms

Many algorithms ([19, 20, 12, 13, 21, 22, 24,
23, 6]) tackle the issue of disseminating events in
a MANET. In [19], thebroadcast stormproblem is
introduced, raised when flooding is used for broad-
casting an event in a wireless network. Different
schemes are compared: (1) a probabilistic scheme,
(2) a counter-based scheme, (3) a distance-based
scheme, (4) a location-based scheme and (5) a
cluster-based scheme. The last two schemes (i.e.,
(4) and (5)) rely on a GPS device and on clus-
ter heads respectively: assumptions that we do not
make in our implementation. It has been shown
in [19] that the first scheme is outperformed by
other algorithms (like the counter-based scheme).
The second and third schemes have been revisited
in [26] and present very interesting characteristics.
We however do not focus on the distance-based
technique as it implies more calculation for the mo-
bile devices and requires more computing power.
Moreover, the distance-based scheme together with
the counter-based one are outperformed by the
neighbouring scheme [27]. Our pub/sub algorithm
is close to this last scheme with several modifica-
tions we discuss in the following.

The neighbouring scheme has been often stud-
ied ([6, 13, 21, 22, 24, 23, 26]). These algorithms
follow roughly one of two different patterns: (1)
one-hop neighbour information and (2) two-hops
neighbours information. The first pattern is called
self-pruning and the decision of rebroadcasting an

event depends on the one-hop knowledge of the
neighbours of the processes ([6, 13, 26]). This ap-
proach achieves fairly good performance while not
taking too much processing time, which is not the
case with the second approach ([13, 22, 24, 23]),
where the processes rebroadcast either according
to their two-hops neighbourhood knowledge ([22,
24, 23]) or according to the decisions of other pro-
cesses ([13]). As the decision of rebroadcasting is
often based on a greedy algorithm ([17]), this deci-
sion takes processing time and is not suited in high
mobile networks. To limit the number of duplicates
messages, the neighbouring schemes can be mixed
with a back-off mechanism (like in [21]). In the
model we consider, the processes are mobile and
only have information about their one-hop neigh-
bours. Basically this means that our algorithm be-
longs to the one-hop category. In our approach, a
processpi disseminates an event according to: (1)
the validity of the events ofpi, (2) the subscrip-
tions of the neighbours ofpi and (3) the events
those neighbours have received.

Algorithms like in [20, 12] rather make assump-
tions on the stabilization of the network, use cluster
heads and switch to flooding when network parti-
tions are frequent. We make no assumption on the
network (except that the processes are mobile) and
do not rely on cluster heads.

6.2. Publish/Subscribe in Mobile Ad-Hoc
Networks

In [14, 8], the authors present a topic-based
pub/sub algorithm for MANETs. The algorithm re-
lies on brokers, like in Siena [5], in which each
broker is responsible for buffering the events the
subscribers are interested in. When the subscribers
connect again to one of the brokers, they ask for
the events they have not yet received and the bro-
kers are responsible for providing them. Speed-
ing up the bootstrapping latency has been tackled
in [7, 4], where client proxies are responsible for
collecting the events and dispatch them to the real
clients when those connect back to the brokers. All
these schemes are based on brokers and enhance
them to support client mobility whereas our algo-
rithm in completely decentralized.

The approaches described in [2, 9, 18, 15] do
not rely on brokers. In [2] a direct acyclic graph
is maintained between the subscribers and the pub-
lishers. To maintain this graph, the network is sup-
posed to remain unpartitioned for some period of
time: we do not make this assumption.16

16 Moreover, in [2], there can be a huge latency before a pub-
lisher is allowed to publish an event, which is not our case.



A generic way to store data at the most inter-
ested mobile processes is described in [9]. The dis-
semination scheme is not detailed and it is not clear
how flooding is avoided when different subscribers
have subscribed in the same content. A specific
kind of validity is considered in the sense that each
data is associated with a counter which is kept up to
date only if the data is used, but the authors do not
take into account the limited memory of the pro-
cesses. In our approach, each event is associated
with a timeout that never changes during the en-
tire lifetime of the publication and after which the
event is garbage collected.

A pub/sub implementation based on a weakly
connected multicast tree is given in [15]. The root
of the multicast tree is responsible for publishing
the events. This scheme has two drawbacks: the
maintenance is time consuming in a high mobile
environment and the processes located at the root
of the multicast tree have more work than the ones
at the leaves. Our approach does not need to cre-
ate and maintain a multicast tree. In addition, pro-
cesses that have not subscribed in a topic do not
need to forward events of that topic.

In [18], a proximity-based algorithm is de-
scribed. The subscribers only receive events asso-
ciated to a certain geographical region. Filtering
techniques to minimize the burden at publish-
ers and subscribers are used. Our approach is not
limited to a specific location, supports the inclu-
sion of topics and exploits the mobility of the
processes to disseminate events.

7. Concluding remarks

This paper presents an event dissemina-
tion algorithm to implement a topic-based pub-
lish/subscribe abstraction in MANETs. Our algo-
rithm is the first to exploit the mobility of the pro-
cesses and the validity periods of the events
to ensure a reasonable high level of reliabil-
ity of the dissemination, while making a thrifty
usage of the memory and the battery power.
It is inherently portable and it prevents pro-
cesses from spending energy on forwarding events
they are not interested in. Our performance mea-
sures highlight a lower bound on the validity
period of an event in order to ensure a reliable dis-
semination according to the chosen mobility pat-
tern.
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