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Abstract

We present a real-time method for detecting deformable sur-
faces, with no need whatsoever for a priori pose knowl-
edge.

Our method starts from a set of wide baseline point
matches between an undeformed image of the object and the
image in which it is to be detected. The matches are used not
only to detect but also to compute a precise mapping from
one to the other. The algorithm is robust to large defor-
mations, lighting changes, motion blur, and occlusions. It
runs at 10 frames per second on a 2.8 GHz PC and we are
not aware of any other published technique that produces
similar results.

Introducing deformable meshes, along with a well de-
signed robust estimator, is the key to dealing with the large
number of parameters involved in modeling deformable sur-
faces and rejecting erroneous matches for error rates of up
to 95%, which is considerably more than what is required
in practice.

1 Introduction
Rigid object detection and tracking have been extensively
studied and effective, robust, and real-time solution pro-
posed [30, 21, 20, 23]. The two are of course complemen-
tary since trackers require initialization and, no matter how
good they may be, will sometimes lose track, for example,
because of severe occlusions. Non-rigid object tracking has
also been convincingly demonstrated, for example in the
case of animated faces [8, 7, 2] or even more generic and de-
formable objects [3]. However, the automated detection of
such deformable objects still lags behind and existing meth-
ods [5, 10] are far less convincing for real-time applications.
They tend to be computationally intensive and are usually
geared more towards recognition or segmentation than pro-
viding the kind of fast initialization that a tracker needs to
recover from potential failures.

In this paper, we propose a method that fits this require-
ment by allowing fast and robust detection and registration
of an object that can be subjected to very large non-affine
deformations such as the piece of foam of Fig. 5. It relies on
wide-baseline matching of 2–D feature points, which makes
it resistant to partial occlusions and cluttered backgrounds:
Even if some features are missing, the object can still be de-
tected as long as enough are found and matched. Spurious
matches are removed by enforcing smoothness constraints
on the deformation, which is done very quickly in our ap-
proach.

More specifically, at the heart of our approach is a very
fast wide-baseline point matching technique that allows us
to establish correspondences between keypoints extracted
from a training image of the undeformed object to those
that can be found when the object deforms [19, 20]. Given
such correspondences, if the target object were rigid, detect-
ing it and estimating its pose could be implemented using a
robust estimator such as RANSAC [11]. However, for a
deformable object, the problem becomes far more complex
because not only pose but also a large number of deforma-
tion parameters must be estimated.

The main contribution of this paper is the introduction
of deformable 2–D meshes, along with a well designed ro-
bust estimator, as the key to deal with this large number
of parameters. The keypoints positions are expressed as
weighted sums of the mesh vertices in the model image and
change as the mesh is deformed. Fitting then amounts to
minimizing a criterion that is the sum of two terms. The
first is a robust estimate of the square distances of the key-
points in the model image to that of the corresponding ones
in the input image. The second is a quadratic deformation
energy [12]. As was the case for the original snakes [18],
this quadratic term allows the use of a semi-implicit mini-
mization scheme that converges even when the initial esti-
mate is very far from the solution, which, in our context, is
what happens when the object is severely deformed. When
combined with an appropriately defined robust estimator for
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the keypoint distances and optimization schedule, this ap-
proach to minimization allows detection in under 100 mil-
liseconds on a 2.8 GHz desktop while being robust to large
deformations, severe occlusions, and changes in lighting.
In fact, we have verified that our method keeps on working
with 95% of point matches being erroneous, which is key to
robustness because no real-time matching technique can be
expected to work perfectly well in the presence of clutter,
orientation changes, shadows, or specularities. We do not
know of any other technique able to produce similar results.

In the remainder of the paper, we first review briefly the
existing literature and present an overview of our algorithm.
We then discuss its most critical steps and present our re-
sults.

2 Related work
Many approaches to registering a model on an image have
been proposed. Some feature-based algorithms first estab-
lish correspondences and then find the best transformation
explaining them, while eliminating outliers. Others simul-
taneously solve for both correspondence and registration,
without the need for correspondences and with or without
using feature characterization. Finally some techniques do
not even rely on features. We review them briefly below
and show that these existing approaches have not yet been
shown to be suitable for real-time detection of deformable
objects.

2.1 Feature-Based Methods
These approaches rely on establishing correspondences be-
tween image-features of the target object in one or more
images and those that can be found in an input image in
which it is to be detected. These correspondences are then
used to estimate the transformations.

2.1.1 Establishing Correspondences

For detection purposes, the methods used to extract and
match them should be insensitive to viewpoint and illumi-
nation changes. Scale-invariant feature extraction can be
achieved by using the Harris detector [16] at several Gaus-
sian derivative scales, by considering local optima of pyra-
midal difference-of-Gaussian filters in scale-space [22], or
extremal regions [24]. Mikolajczyck et al. [26] have also
defined an affine invariant point detector to handle larger
viewpoint changes, but it relies on an iterative estimation
that would be too slow for our purposes. Given the ex-
tracted feature points, various local descriptors have been
proposed: Schmidt and Mohr [28] propose a rotation in-
variant descriptor that are functions of relatively high order
image derivatives to achieve orientation invariance. Baum-
berg [4] uses a variant of the Fourier-Mellin transformation

to achieve rotation invariance. He also gives an algorithm
to remove stretch and skew and obtain an affine invariant
characterization. Allezard et al. [1] represent the keypoint
neighborhood by a hierarchical sampling, and rotation in-
variance is obtained by starting the circular sampling with
respect to the gradient direction. Tuytelaars and al. [29]
fit an ellipse to the texture around local intensity extrema
and use the Generalized Color Moments [27] to obtain
correspondences remarkably robust to viewpoint changes.
Lowe [23] introduces a descriptor called SIFT and based on
several orientation histograms, that is not fully affine invari-
ant but tolerates significant local deformations.

This last descriptor has been shown in [25] to be one of
the most efficient to detect planar objects. However, in our
own experience, its performance degrades somehow in the
presence of non planar deformations and its computational
requirements are too high for our real-time performance re-
quirements.

Shape contexts [5] are an interesting alternative. They
are powerful tools for matching shape patterns but are less
suited for image registration. Designed to compute a dis-
tance between two shapes, they first characterize edge areas
on both patterns and then try to establish one to one corre-
spondences using bipartite graph matching. Although this
method handles some outliers and slightly different num-
bers of feature detected on both shapes, it is not ideal to
extract objects from a cluttered background.

In practice, we therefore treat wide baseline matching of
these keypoints as a classification problem, in which each
class corresponds to the set of all possible views of such a
point. This formulation [19, 20] gives us access to powerful
classification methods to achieve both very fast matching
and robustness to non affine deformations.

As will be shown in Section 4, we have actually success-
fully tested all three approaches to matching – SIFT, clas-
sification and shape context characterization – in conjunc-
tion with our approach to detection, thus showing that its ef-
fectiveness is independent from the specific technique used
to establish the point correspondences. However, only the
classification tree based technique has proved fast enough
for our purpose: real-time without loss of accuracy.

2.1.2 From Correspondences to Detection

Whatever the matching technique used, the correspon-
dences can then be used to detect the object in several dif-
ferent ways.

The simplest is to eliminate outliers and find a globally
consistent interpretation using a robust estimator. Having
each local match vote for a global transformation is the ap-
proach used by the Hough transform and its many varia-
tions. This is effective for rigid transformations but imprac-
tical for those of deformable objects because they have far
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Figure 1: In order to achieve surface detection, we use a model image (a). Then, our method computes a function mapping the model
to an input image (b). To illustrate this mapping, we find the contours of the model using a simple gradient operator and we use them
as a validation texture (c) which is overlaid on the input image using the recovered transformation (d). Additional results are obtained in
different conditions (e to i). Note that in all cases, including the one where the T-shirt is replaced by a cup (j), the white outlines project
almost exactly at the right place, thus indicating a correct registration and shape estimation. The registration process, including image
acquisition, takes about 100 ms and does not require any initialization or a priori pose information.

too many degrees of freedom to discretize the different pos-
sible transformations into a vote accumulator. The same can
be said of the popular random sample consensus algorithm
(RANSAC) [11]: With 25% of outliers and 100 degrees of
freedom, 1012 samples are required to guarantee with 90%
probability of that at least one sample does not contain out-
liers [17].

An alternative strategy is to proceed iteratively. TPS-
RPM (thin plate spline - robust point matching, [6]) and
EM-ICP (expectation maximization - iterative closest point,
[14, 9]) are two well-known representatives of the family
of algorithms that simultaneously solve for both correspon-
dence and transformation using an iterative process. At each
step, the current transformation estimate is first used to es-
tablish correspondences and assign weights to them, and,
then, is refined using those correspondences. These meth-
ods use an entropy term—be it called temperature param-
eter, scale or blurring factor, or variance—that is progres-
sively reduced. It controls the assignment of weights to the
correspondences and has an important role in insuring con-
vergence towards a desirable solution. As will be discussed
in more detail in Section 3.2, our algorithm follows a sim-
ilar strategy but makes use of local characterization to re-
duce the correspondence problem difficulty and to achieve
real-time performance.

Image exploration [10] constitutes a third strategy that
hooks on a first set of correspondences and then gradu-
ally explores the surrounding area, trying to establish more
matches. It can handle deformable objects but this com-
plex process is slow and takes several minutes on a 1.4 GHz

computer.

2.2 Direct Methods

For objects such as faces whose deformations are well un-
derstood and can be modeled in terms of a relatively small
number of deformation parameters, fitting directly to the
image data without using features is an attractive alternative
to using correspondences because it allows the use of global
constraints to guide the search. This has been success-
fully demonstrated in the context of face tracking [8, 7, 2]
but this typically requires a good initialization because the
criteria being minimized tend to have many local minima.
An interesting variation has been proposed recently in [3]
where flow is used in conjunction with radial basis functions
(RBF) to track objects that are less constrained than faces.
However, this approach assumes there is an affine transfor-
mation that approximates the deformation well enough to
lead RBF centers not too far to their destination so that min-
imizing an image-based criterion yields the correct answer.
This is a strong assumption that may not be correct for a
deformation as severe as the one shown in Fig. 5.

By contrast, methods able to automatically detect, as op-
posed to track, deformable objects are few. A method to
instantiate the shape of applicable surfaces, such as paper,
has been proposed [15] but requires that the whole outline
be detected, which severely limits its applicability.
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3 Non-rigid Surface Detection
To detect a potentially deformable object, we rely on estab-
lishing correspondences between a model image in which
the deformations are small and an input image in which they
may be large. To this end, we use the fast wide-baseline
matching algorithm [19] discussed in Section 2.1.1. Given
a set C of correspondences between the two images, some
of which might be erroneous, our problem can be formally
stated as follows: We are looking for the transformation
TS mapping the undeformed model surface M into the de-
formed target one TS (M) and for the subset G ⊂ C of
correct matches such that the sum of the square distances
between corresponding points in G is minimized while the
deformations remain as smooth as possible.

3.1 2–D Surface Meshes
We represent our model M as a triangulated 2–D mesh of
hexagonally connected vertices such as the one shown in
Figure 2. The position of a vertex vj is specified by its im-
age coordinates (xj , yj). By computing barycentric coordi-
nates, this representation allows to define a transformation
TS mapping any point on the original model to the trans-
formed mesh, parameterized by the vector S = (X, Y ). In
other words, we can transform with respect to S a point p
on the original surface to

TS(p) =
3

∑

i=1

Bi(p)

[

xi

yi

]

,

where Bi(p) are the three barycentric coordinates computed
on the original mesh.

The mesh deforms to minimize an objective function
ε(S) whose state vector S is the vector of all x and y co-
ordinates. In practice, we write

ε(S) = λDεD(S) + εC(S) , (1)

where εC is a data term that takes point correspondences
into account, εD is a deformation energy that should be ro-
tationally invariant and tend to preserve the regularity of the
mesh, and λD is a constant. We take εD(S) to be an approx-
imation of the sum over the surface of the square derivatives
of the x and y coordinates. Because the mesh is regular,
εD(S) can be written using finite differences as

εD(S) = 1/2(XT KX + Y T KY ) , (2)

where X and Y are the vectors of the x and y coordinates
of the vertices, and K is a sparse and banded matrix [13].
This regularization term serves a dual purpose. First it con-
vexifies the energy landscape and improves the convergence
properties of the optimization procedure. Second, in the
presence of erroneous correspondences, some amount of

smoothing is required to prevent the mesh from overfitting
the data, and wrinkling the surface excessively. To mini-
mize ε(S), we use the semi-implicit scheme so successfully
introduced in the original snake paper [18]: We are looking
for a minimum of the energy and therefore for solutions of

0 = ∂ε
∂X = ∂εC

∂X + KX ,

0 = ∂ε
∂Y = ∂εC

∂Y + KY .
(3)

Since K is positive but not definite, given initial vectors
X0 and Y0, this can be solved by introducing a viscosity
parameter α and iteratively solving at each time step the
two coupled equations

KXt + α(Xt − Xt−1) +
∂εC

∂X

∣

∣

∣

∣

X=Xt−1Y =Yt−1

= 0 ,

KYt + α(Yt − Yt−1) +
∂εC

∂Y

∣

∣

∣

∣

X=Xt−1 ,Y =Yt−1

= 0 ,

which implies

(K + αI)Xt = αXt−1 −
∂εC

∂X

∣

∣

∣

∣

X=Xt−1,Y =Yt−1

,

(K + αI)Yt = αYt−1 −
∂εC

∂Y

∣

∣

∣

∣

X=Xt−1,Y =Yt−1

.

Because K is sparse and regular, solving these linear equa-
tions using LU decomposition is fast and upon convergence
Xt ≈ Xt−1 and Yt ≈ Yt−1 . This iterative scheme there-
fore quickly yields a solution of Eq. 3, even when starting
with completely random guesses for X0 and Y0 as will be
shown in Section 4.

3.2 Correspondence Energy
εC , the data term of eq. 1, is designed so that minimizing
it tends to reshape the mesh so that it matches the target
object in the input image. Let C be a set of correspondences
between the model and the input image, in which a point can
potentially be matched to several ones. For c = {c0, c1} ∈
C, let c0 be the 2–D coordinates of a feature point in the
model image and c1 the coordinates of its potential match
in the input image. We take the data term to be

εC = −
∑

c∈C

wcρ (‖c1 − TS (c0)‖ , r) , (4)

where ρ is a robust estimator whose radius of confidence is
r and wc ∈ [0, 1] a weight associated to each correspon-
dence. In our experience the choice of ρ is critical to ensure
the elimination of outliers and convergence towards the de-
sired minimum while the choice of the wc has much less
impact, as will be discussed below. Note that a particular
feature point c0 in the model image is usually associated to
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(a) (b) (c) (d)

Figure 2: Comparing three different keypoint matching algorithms. (a) Model image and validation texture shown in white. Results using:
(b) Real-time classification trees, (c) shape context reimplementation, and (d) SIFT.

several corresponding points in the input image, in which
case c0will appear in several elements of C.

Minimizing ε therefore results in a mesh that moves to-
wards the desired solution but whose progression can be
blocked by outliers. To overcome this, we introduce a sim-
ple optimization schedule in which the initial radius of con-
fidence r0 = 1000 is progressively reduced at a constant
rate η = 0.5: rt = ηrt−1. For each value of r, we minimize
ε and use the result as the initial state for the next mini-
mization. When r reaches the noise level expected in the
correspondences, around one or two pixels, the algorithm
stops. In practice, reducing r 10 times, with 5 mesh opti-
mization iterations each time, proved sufficient for precise
registration, which is key to real-time performance.

Once the algorithm has proposed a solution, counting
compatible correspondences is a very discriminative mea-
sure to know if the solution is correct or not. A simple
threshold allows to gracefully handle cases where the sur-
face is completely hidden.

3.2.1 Robust Estimator

We choose ρ (δ, r) =

{

3(r2−δ2)
4r3 δ < r
0 otherwise

.

As shown in Fig. 3 the shape of ρ is that of a quadratic ridge
that gets narrower and taller when r decreases. In other
words, r acts as a confidence measure. When it is large,
most correspondences, potentially including poor ones, are
given some weight. But as r becomes smaller, ρ becomes
more peaked and selective.

Note that ρ is normalized so that

∫ ∞

−∞

ρ(x, r)dx = 1 ∀r > 0 ,

which means that values of εC computed using different
r values remain commensurate to the λDεD term of Eq.1.
Therefore, we do not need to adjust either the λD parameter
or the wc weights of Eq.4. This is in contrast to methods
such as SoftAssign[6] in which the surface rigidity must be
progressively reduced according to a schedule that is not
necessarily easy to synchronize with the annealing of r and
may change from case to case.

The quadratic behavior of ρ within the ridge of confi-
dence whose size is controlled by r yields a relatively con-
vex εC that is easy to minimize. Furthermore, the magni-
tude ρ’s derivatives is inversely proportional to r, which is
a desirable behavior: At the beginning when r is large, the
gradients of εD are comparatively larger than those of εC ,
preventing erroneous matches from crumpling the surface
while allowing correct and consistent correspondences to
produce the right global deformation. As the process goes
on and r decreases, the ρ derivatives and the gradients of
εC become larger. The triangulation then bends more easily
and outliers are rejected.

3.2.2 Disambiguating Multiple Matches

Recall that a point from the model image can have several
potential matches in the input image. One can simply rely
on the increased tightness ρ function of the previous section
to disambiguate those cases as the r parameter decreases or
use a more sophisticated weighting scheme. In other words,
we can set the the wc weights of Eq.4 in one of the following
ways:

1. wc = 1 for all correspondences,

2. wc = 1 for the closest match, and zero to all others as
in ICP,
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Figure 3: The ρ function of Section 3.2.1 is quadratic for dis-
tances smaller than the radius of confidence, elsewhere it is zero.
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Figure 4: Comparing weighting schemes. Success rate as a func-
tion of erroneous correspondences percentage, for each one of the
five schemes described in Section 3.2.2.

3. wc =
exp(−‖c1−TS(c0)‖

2/2σ2)
∑

d∈C,do=co
exp(−‖d1−TS(d0)‖

2/2σ2)
,with σ =

r
3 , as in EM-ICP [14],

4. wc = ρ(‖c1−TS(c0)‖,r)
∑

d∈C,d0=c0
ρ(‖d1−TS(d0)‖,r)

, a variation of EM-

ICP in which the Gaussian is replaced by ρ,

5. a weight computed by normalizing rows and columns
of the correspondence matrix, as in SoftAssign [6].

To compare these weighting schemes, we generated ran-
dom synthetic data with 500 model and target features, 300
good matches and a variable number of erroneous corre-
spondences. Fig. 4 shows the success rate as a function of
the outlier rate. SoftAssign is the only method that takes
into account not only the case where a single model point
is matched to several destinations, but also the ambiguity
of different model points matched to the same destination.

Not surprisingly, it yields an improved success rate for very
large numbers of outliers but at the cost of a substantial in-
crease in computational complexity. In any event, for out-
lier rates below 90% which they are in practice, all five
weighting schemes are roughly equivalent and we choose
the simplest, that is wc = 1 , ∀c ∈ C. Note that this is only
true because the ρ function does a good job of disambiguat-
ing matches. Note also that, here, we have only compared
weighting schemes for our specific purposes as opposed to
complete implementations.

4 Results

The method has been tested in conjunction with three dif-
ferent feature point recognizers: the publicly available SIFT
implementation [23], a reimplementation of shape con-
text characterization [5], and the classification trees-based
method [19]. Because our technique is robust, the results
are almost indistinguishable, as shown in Fig. 2.

However, because the classification-based method is
much faster than the others, it is only when using it that we
obtain true real-time performance. In this example, given
the optimization schedule of Section 3.2, the algorithm runs
at 10 frames per second on a P4 2.8 GHz machine. Because
we detect, as opposed to track, we can find objects as soon
as they become visible and our method is robust to both
perspective distortion and severe deformations. For exam-
ple, in the example of Fig. 1, the ICCV logo on the shirt is
detected very quickly and well before its deformation has
become roughly planar. Similarly, the logo is equally well
detected when worn by different people or seen on the ICCV
mug. Fig. 7 describes similar speed and robustness to de-
formations when detecting a newspaper page, and Fig. 5
shows detection result on a piece of foam. For well textured
objects, we get no false positives and only false negatives
when the deformations or occlusions are so severe that the
target object is almost impossible to make out, as in the first
few frames of Fig. 6. Of course, the performance degrades
in the absence of texture and this is one of the issues we will
address in future work.

Because the point matcher we use is relatively insen-
sitive to light changes or motion blur, they do not hinder
the registration process. Our technique can therefore also
be used for Augmented Reality applications, i.e. superim-
posing an artificial element in a natural video sequence, as
shown in Fig. 8. Note that in this example, we used the raw
results produced by our real-time algorithm, based only on
wide baseline matching. If greater quality were required,
it would be easy to refine them by seeking more informa-
tion from images, using the result of our algorithm as initial
transformation.
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(a) (b) (c) (d) (e)

Figure 5: Deforming a piece of foam. (a) Model image and validation texture. (b) to (e) detection results. A video sequence showing this
piece of foam is submitted as supplementary material.

Figure 6: A progressively folding and unfolding T-shirt without any false positive detection. As indicated by the symbol on the upper
right corner of images, the system knows whether the logo is present or not and overlays the validation texture only in the first case. The
full video sequence is submitted as supplementary material.

5 Conclusion
We have demonstrated a very fast and robust approach to
detecting deformable surfaces. It is robust to large defor-
mations, changes in lighting, and motion blur and runs at 10
frames per second on a 2.8 GHz PC. It takes advantage of
wide-baseline matching, deformable mesh and robust esti-
mation techniques in such a way that the resulting algorithm
has very few parameters and they do not require fine tuning.

The current computations are performed using 2–D
meshes but the formalism presented in this paper naturally
extend to 3–D, with only a very limited additional computa-
tional burden. This should be key to handling even more se-
vere self-occlusions than the ones shown in this paper and,
also, to incorporate physical knowledge about the deforma-
tion modes of the surface if they are known. This should
help us handle less textured objects than the ones we have
worked with so far, that is objects for which fewer inter-
est points can be detected and matched. An alternative way

to deal with relatively bland surfaces would be to broaden
the definition of interest points to include those that can be
found along contours, as opposed to corners, and could also
be considered within our framework. We intend to pursue
both avenues of research in future work.
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