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Abstract

Reputation systems offer a viable solution to the old problem of en-

couraging trustworthy behavior in online communities. Their key pre-

sumptions are that the participants of an online community engage in

repeated interactions and that the information about their past doings

is informative of their future performance and as such will influence it.

Thus, collecting, processing, and disseminating the feedback about the

participants’ past behavior is expected to boost their trustworthiness. We

investigate and classify the possibilities appeared so far in the literature

to do this in the context of P2P networks. We identify three broad classes

of approaches: social networks formation, probabilistic estimation tech-

niques and game-theoretic reputation models. They differ greatly in the

accompanying trust semantics, mainly reflected in the possibilities offered

to the decision makers, and the implementation overhead they incur. The

paper bridges the gap between the existing works on trust and reputation

management in decentralized networks, driven by the characteristics of

the target environment and the formal game-theoretic treatment of repu-

tation, aiming at a clear and analytical decision making. This view leads

us to identify the open research issues, oriented towards both efficient and

analytical usage of reputation to build trust in P2P networks.

Keywords: P2P Systems, Trust, Reputation

1 Introduction

Recent empirical studies have shown that a great deal of the commercial success
of eBay, the largest online auctioning site, can be attributed to its reputation
mechanism (Feedback Forum) as a means of deterring dishonest behavior. The
analysis of eBay data carried out by Resnick and Zeckhauser (2002) has shown
that “reputation profiles were predictive of future performance”, while more
specific analyses of Houser and Wooders (2001) and Melnik and Alm (2002)
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brought the conclusion that Feedback Forum fulfilled its promises: the positive
feedback of the sellers was found to increase their prices, while the negative one
reduced them.

eBay’s Feedback Forum is just a well known example of what Resnick, Zeck-
hauser, Friedman, and Kuwabara (2000) calls reputation systems and define as
“systems that help people decide whom to trust, encourage trustworthy behav-
ior, and deter participation by those who are unskilled or dishonest through
collecting, distributing, and aggregating feedback about the participants past
behavior.”

Reputation systems appear to be the only way to achieve these goals in P2P
networks as open and decentralized electronic communities, where no conditions
on who can join and when one can join and leave the community are imposed.
The classical assurance mechanisms, such as contractual agreements and litiga-
tion, are practically ineffective and no help of central authorities, trusted third
parties in particular, can be assumed. However, mostly due to the mentioned
characteristics, designing reputation systems for this class of online environ-
ments is not at all an easy task and must be done with great care. In this paper
we will address this question by classifying and discussing different alternatives
appeared so far in the literature. We will identify their stong and weak points
with respect to boosting trust and implementation overhead of the involved
algorithms.

The paper is structured as follows. We start in Section 2 by introducing
the problem that P2P reputation systems address and giving their general def-
inition. We also outline here the main dimensions around which we center our
classification of the existing works. In particular, the definition of trust we will
be using in the paper along with a categorization of the underlying peer be-
havior is given. Our view on trust is simple but powerful in the sense that it
enables a clear classification of various reputation models with respect to how
and to what degree they promote trust in a community in which they are de-
ployed. Section 2.3 introduces the P2P aspect of the problem, with a particular
emphasis on the possibilities to manage the reputation data. Sections 3, 4,
and 5 describe the main classes of approaches we identified: Section 3 offers
an overview of the concept of social networks and their (in)appropriateness for
P2P environments. Section 4 deals with probabilistic approaches for making es-
timation of the likely future behavior of the peers given their past actions, while
Section 5 discusses game-theoretic reputational models. In Section 6 we provide
a comparative analysis of the identified solution classes, while in Section 7 we
conclude by pointing out open research issues. For completeness, we provide a
more detailed overview of the P2P paradigm and main concepts of game theory.
They are given in Appendices A and B.

2 P2P Reputation Systems

In the following we introduce a general view on P2P reputation systems design,
broad enough to cover all specific works we are aware of. The purpose of the
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section is to describe in general the problem that trust and reputation manage-
ment considers. Sections 3, 4 and 5 then describe particular classes of solutions
of the problem in the P2P context.

Our starting assumption is that the peers engage in bilateral interactions
and that this process results in forming a directed weighted (trust) multigraph.
Its node set coincides with the set of peers and the set of edges with the set of
interactions between the peers. Because any pair of peers may have multiple
interactions the formed graph is actually a multigraph. The requirement that
the multigraph is directed is an implication of the assumed semantics of the
underlying interactions. Namely, we suppose that in any interaction the service
provider and the service consumer can be identified and that the service con-
sumer is the source of the correspoding edge. Generally, the weight assigned
to an edge represents the service consumer’s feedback of the service provider’s
trustworthiness in the corresponding interaction. Examples of the set of all
weights (we will also call it feedback set and denote it W from now on) include:
the interval [0, 1], the two element set {0, 1} or any discrete grading such as
the four element set {very good, good, bad, very bad}. In any case, the set W
as well as the semantics associated with its individual elements are assumed
to be universally known and agreed upon. In particular, we are assuming that
there is a binary partial ordering relation (call it “greater than”) defined on W

with the interpretation that “greater” elements mean better feedback. Worth
mentioning is also that the contexts of the interactions may be separated. In
this case the set of weights has the form C ×R, where C denotes the set of all
contexts and R the set of all ratings. For instance, let W = {r, d}× [0, 1]. Here,
we assume two possible interaction contexts: (1) recommendations, when the
destination node acts as a recommender of other nodes capable of performing a
specific task or other recommenders (context r), and (2) the task performances
themselves (context d).
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Figure 1: A P2P Trust Multigraph

Figure 1 presents an example. The way we should understand this figure
is as follows. Node a had three interactions with node b: once node b acted
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as a recommender of other entities (flag r) and node a’s contention with the
recommendation was evaluated 0.8 and twice node b provided the service in
question to node a (flag d) and a’s evaluations of the service provisions were 1
and 0.9 respectively.

To better understand the multigraph formation process consider a group of
people, some of which can be close friends, some acquaintances and some even
complete strangers. Assume that they meet and provide a specific service to
one another. Any service provision is followed by the service consumer’s making
opinion about the service provided (or the service provider himself). Sticking to
the above example of two contexts, this results in adding a new edge with the flag
d to the multigraph. These opinions can be spread to the service consumers’s
friends, acquaintances or even unknown parties, who, after possibly processing
or reinterpreting them, spread them further to their friends and so on. Any
time such an opinion is spread, its receiver may use his own knowledge about
the target of the opinion to form a new opinion about the sender’s ability to
recommend other service providers or other recommenders. This corresponds to
adding a new edge with the flag r in the multigraph. In this way social networks
are formed and, as social sciences argue, people find their ways to judge and
make informed decisions about people they never met before. The challenging
part of the task of “digitizing” these human networks is what information to
transfer among the neighbors, how to aggregate the gossip along a chain of an
arbitrary length and how to combine those from different chains.

More generally, the core of any P2P reputation system is in the answer to
the following question: how can a given peer use the information on experi-
ences between the peers, that it can retrieve from the network, to evaluate the
trustworthiness of any other peer?1

In the example from Figure 1 a rough answer might read: to assess the
trustworthiness of a node (say, peer j), propagate direct experiences of the
nodes which interacted with that node (peers u and v) through the graph down
to the node doing the assessment (peer i), filtering them out by the recommen-
dation experiences among the neighboring nodes along the paths to decide on
their credibility. Different works propose different strategies for doing this. We
stress that most of the existing works do not model explicitly the context of
recommendations but rather use direct experiences as credibility filters. This
can be thought of as weighting one’s reports by his trustworthiness to perform
a sevice rather than his ability to recommend.

In a word, to assess peers’ trustworthiness we need an algorithm, denote it
A, that operates on the formed multigraph, aggregates the feedback available
in it, and for any peer given as its input it outputs a value t ∈ T denoting the
estimate of that peer’s trustworthiness. Just as with the feedback set W , the
trustworthiness levels, represented by the elements of the set T , have globally
agreed upon semantics. Note that the feedback set W and the trustworthiness
levels set T may coincide, but we do not impose this constraint.

1A bit of caution is needed here: we do not say that every peer knows the whole trust
multigraph. Instead, we assume that it is reconstructed (the whole graph or a part of it) by
querying the other peers, which may not be available or may simply misreport.
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All this reasoning leads us to define P2P reputation system as follows:

Definition 2.1 (Reputation System). A P2P reputation system is a quad-
ruple (G,W,A, T ), where G is a directed weighted multigraph (P, V ) with P

being the set of peers and V the set of edges which are assigned weights drawn
from the set W . A is an algorithm that operates on the graph and outputs a
specific value t ∈ T for any peer given as its input.

The problem of trust management based on the peers’ reputations can be
now stated simply as follows: define the type of feedback to be taken from inter-
acting peers about their partners’ trustworthiness (set W ) and define a strategy
to aggregate the available feedback (algorithm A) and output an estimate of the
trustworthiness of any given peer (set T ) so that the trustworthy behavior of the
peers is encouraged.

2.1 Classification Criteria

A clear categorization of P2P trust management solutions based on managing
peers’ reputations must consider in the first place their properties with respect
to the following two dimensions:

• Trust related model semantics and

• Incurred implementation costs.

In the context of Definition 2.1, these dimensions are determined by the choices
of the triples (W,A, T ). Let us describe each of these dimensions in greater
detail.
Trust related model semantics. The notion of trust is accompanied by
quite some disagreement in the literature. In this paper we will adopt a simple
definition of trust that will lead to a clear classification of various trust models
with respect to how and to what degree they promote trust in a community in
which they are deployed. Namely, deriving from Usunier (2001), we view trust
as being inseparable from vulnerability and opportunism associated with the
interacting parties. Consequently, we say that

agent A (as trustor, or source of trust) trusts agent B (as trustee or
target of trust) if the interaction:

• generates a gain to be shared with and by agent B;

• exposes agent A to a risk of loss, if agent B takes a too large
portion from the joint gain.

As further pointed out by Usunier (2001), “a general issue of trust man-
agement is to assess vulnerability and risks in interactions assuming that the
interactants are self-interested.” These assessments must be made in such a way
that they enable:

• reducing the opportunism of the trustee (before it occurs),
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• reducing vulnerability of the trustor and

• deciding if and when to enter an interaction, after everything
has been done to properly address issues related to the above
two points.

The main goal of any trust and reputation management mechanism is, if
possible, completely reducing the opportunism and/or vulnerabilities of the in-
teracting parties. However, if this is not possible then the mechanism should
assess the risks and enable the participants to unambiguously decide whether
to interact or not.

Inseparable from the trust semantics are the assumptions on the peers’ be-
havior that any given model targets. Broadly, the following two classes of peer
behavior have been treated in the literature: rational and probabilistic.

Rational behavior normally implies that there is an underlying economic
model in which utilities are associated with various choices of the peers and
that the peers act as to maximize their utilities. This behavioral assumption
makes it possible to analytically prove that trustworthy behavior is in the best
interest of the peers under given feedback aggregation strategies. We will not
further elaborate on this type of peer behavior as it has been broadly studied in
the literature and normally the reader’s intuition is quite sufficient to understand
it.

On the other hand, the mentioned analyticity is not present in the models
dealing with the probabilistic behavior of the peers. In principle, this class
implies that a joint probability distribution is associated with the set of all
peers, describing their innate characteristics and determining how they behave
in the context of trust and when reporting on others’ performance. Thus any
event in the form

(. . . , pk performes wk . . . , pl reports wl when pm performs wm . . .),

where wk, wl, wm ∈ W , should have an assigned probability. For instance, a
given distribution may specify

P [p1 misreports on p3|p2 misreports on p3] 6= P [p1 misreports on p3],

meaning that peers p1 and p2 misreport on peer p3’s performance in a coor-
dinated manner, forming thus a collusive group. Needless to say, the exact
distribution in not known in advance. The goal of a trust management solution
is to devise a method for any trust computation source peer pj to assess the
marginal probability of any trust computation target peer pi performing in spe-
cific ways P [pi performs wm]. From this we can easily formulate measures for
evaluating performances of the solutions in this class as being dependent on two
important parameters: estimation accuracy of the above marginal distribution
and range of possible distributions for which this accuracy is achieved.
Incurred implementation costs. The second of the above mentioned classi-
fication dimensions is important because P2P networks normally involve large
numbers, e.g. millions, of nodes. Thus, particular attention should be paid to
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cutting down the total implementation overhead introduced by the employed
reputation management solution. Generally, it consists of:

• the communication costs associated with the process of retrieving the nec-
essary feedback,

• the involved storage costs,

• and the computation overhead related to the feedback aggregation.

The communication costs are mainly determined by the amount of the nec-
essary feedback on which a given algorithm operates, while the storage costs
become important primarily in the case a caching scheme is used to cut the
communication costs. The employed feedback aggregation strategy determines
the computation overhead.

2.2 Solution Classes

In the above definition of trust and trust management we said that any trust
management solution should first try to completely reduce the opportunism
and/or vulnerabilities of the interacting parties, or when this is impossible, to
provide the participants clear decision making procedure on whether to interact
or not. The degrees at which different mechanisms achieve these goals vary. We
see the following three broad classes:

• social networks formation,

• probabilistic estimation techniques and

• game-theoretic models.

This division is followed in the rest of the paper so that each of these three
classes will be discussed in a separate section. In short, both social networks
and probabilistic estimation approaches target probabilistic behavior we just
described. Another commonality of these two classes is that neither of them
does completely remove possibilities to misbehave. However, they differ with
respect to how they enable decision making. As a consequence of ad hoc feed-
back aggregation which does not make the probabilistic behavioral assumption
explicit, it is pretty vague how the outputs of social networks can be used to
decide when to enter an interaction. This is much clearer with probabilistic
estimation because their outputs are probabilities of specific behaviors of the
peer in question. Performance quality makes another distinction between social
networks and probabilistic estimation. Generally, social networks tend to cover
broader ranges of unknown behavioral probability distributions, while proba-
bilistic techniques require more knowledge on them.

On the other hand, the game theoretic reputational models, targeting ratio-
nal behavior, make a step even further towards a clean decision making process
by prescribing the exact behavior of the interacting parties in the form of their
equilibrium strategies. In some cases trustworthy behavior (for instance a seller
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always delivering goods even after payment reception) can be enforced as the
only equilibrium of the game being played. Thus, game theoretic models may
in principle completely remove any possibility to misbehave.

2.3 P2P Systems Perspective

From a systems perspective P2P computing can be seen as sharing of computer
resources (disk storage, processing power, exchange of information, etc.) by
direct communication between the participating computing systems avoiding
central control. Thus, it takes advantage of already existing computing resources
allowing a network of computers to more effectively make use of their collective
power. A more comprehensive technological overview of the existing possibilities
to achieve this in the context of data sharing is given in Appendix A. In this
section we will give a brief high level overview of the existing solutions, with
a particular emphasis on the possibilities to manage the reputation data in a
trust multigraph.

Managing reputation data can be seen as the problem of managing a simple
database consisting of a binary relation storing (key, value) pairs, where key is
the identifier of a peer and data holds the associated reputation information.
In a P2P architecture this data is distributed among a dynamically evolving set
of peers so that basic data access operations, such as search and update, are
efficient and the storage space required at each peer is small in comparison with
the size of the database. In addition, no central control is used and the system
should tolerate dynamically leaving and joining peers. In order to achieve these
tasks peers organize themselves in so-called P2P overlay networks.

There exist two fundamental approaches to construct P2P overlay networks:
(1) unstructured P2P networks, e.g. Gnutella (2001), and (2) structured P2P
networks, e.g. Aberer (2001), Ratnasamy, Francis, Handley, Karp, and Shenker
(2001), Stoica, Morris, Karger, Kaashoek, and Balakrishnan (2001). In unstruc-
tured P2P networks peers are connected in a randomized fashion with a small
number of neighbors. (key, value) pairs are randomly associated with peers and
broadcasting mechanisms are used for searching. In structured P2P networks
peers are associated with keys from the key space and consequently become
responsible to store (key, value) pairs that correspond to their chosen key, typi-
cally close-by keys. They maintain routing tables with references to neighboring
peers that are constructed such that search requests to a responsible peer can
be routed with a low number of hops. Normally, unstructured P2P networks
exhibit high lookup costs of O(E) generated messages, E being the number of
the edges, while in most of the structured networks this cost is logarithmic in
the number of the nodes. On the other hand structured P2P networks incur
higher maintenance cost, be it for data insertion and update, or in the presence
of node joins and failures.

Having clarified this, it should be clear that the trust graph can be actually
stored in an underlying P2P system. In the case of an unstructured P2P network
every peer can store its outgoing edges from the trust graph (the identifier of
the destination node and possibly time stamp may act as the key), while in the
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case of a structured P2P network the triples (destination, source, timestamp)
may act as the keys for the trust graph edges and be stored at peers just as
dictated by the P2P network, as described by Aberer and Despotovic (2001), not
necessarily at the peers that made the corresponding feedback. This imposes
a new problem for structured P2P networks. Namely, the peers storing the
feedback may find it profitable to misreport. To this end we are assuming that
the underlying structured overlay network is configured in such a way that the
feedback is replicated (the same edge from the trust graph is stored at multiple
peers) and that an appropriate voting scheme to eliminate possible misreports
of the feedback stores is employed, e.g. Aberer and Despotovic (2001).

In the cases of both structured and unstructured P2P networks the weights
of the edges may act as the values. Thus, exploring the trust graph reduces
actually to searching the underlying P2P network. More specifically, retrieving
feedback about any specific peer is subdued to searching for the data items with
the keys starting with that peer’s identifier.

It is also possible to use the trust graph directly as a new overlay network
on top of the existing P2P overlay network to retrieve the necessary reputation
data. However, we do not believe that this is a good idea. In the case of an
underlying structured P2P network the reputation data about any specific peer
can be retrieved with O(logN) overhead (O(N) to retrieve the entire trust net-
work). The case of the underlying unstructured networks is somewhat different
but the conclusions are the same. Namely, the trust network should normally
have a lot more edges than the P2P overlay network. Assuming that both the
networks are explored in a flooding or breath-first search like fashion, in which
the number of the edges matters, we reach the conclusion that the P2P overlay
should be used.

3 Social Networks

Social networks target probabilistic peer behavior and are mainly characterized
by ad hoc feedback aggregation strategies. Normally they imply the aggregation
of all reputation information available in the formed trust network, as illustrated
in Figure 1. A natural interpretation of this process involves the following steps:
1) enumerating all paths from the trust computation source to the target node,
2) aggregating the trust values along the paths to give a path wide gossip and
3) merging these gossips into a final value.

Beth, Borcherding, and Klein (1994) present one of early examples charac-
terized by the distinction between the contexts of recommendation and direct
trust. The feedback is binary in the both contexts so that W = {r, d} × {0, 1}.
The feedback aggregation algorithm starts by aggregating all direct and recom-
mendation interactions between neighboring nodes. Given its p “positive” direct
experiences with any peer j, any peer i computes the direct trust vijd (p) = 1−αp,
0 < α < 1; having at least one negative experience with peer j, peer i should put
v
ij
d = 0. On the other hand, given p positive and n negative experiences with a
recommender the recommendation trust becomes vijr (p, n) = 1− αp−n if p > n
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and 0 otherwise. The exact value of parameter α was left unspecified. Thus the
initial multigraph gets transformed so that for any ordered pair of nodes there
are at most two edges between them, one per context, carrying these aggregated
values. Further, the source node enumerates all paths to the destination node,
selects only those such that the last branch carries direct trust (let us denote it
vk for a generic path path i) while all intermediate ones carry recommendation
trust (denote them v1, . . . , vk−1) and propagates the trust of the destination
node through them according to the formula vpath i = 1 − (1 − vk)

v1v2···vk−1 .
The path path 1 from Figure 1 presents an example. Then, it groups together
the paths with a common penultimate node (paths path 1 and path 2 from
Figure 1 should be grouped, for instance) and merges their trust values aco-
ording to formula vgroup j = m

√

∏m

i=1(1− vpath i), where m is their number
and vpath i their values. Finally, it merges computed trust values of all groups
v = 1 −

∏s

l=1 vgroup l. As can be easily seen, the output value v ∈ [0, 1] and
thus T = [0, 1].

A simple analysis of the presented algorithm shows that, because all paths
between the two concerned nodes must be explicitly taken into account, the
algorithm complexity may be exponential in the number of the nodes in the
network. This is clearly not acceptable in P2P networks in which this number
can easily reach the order of magnitude of millions. Note that we are not strict
here in the sense that this explosion must happen if we consider all the paths.
As we will see shortly there is a way around this problem through a synchronous
computation if the feedback is conveniently propagated and aggregated. How-
ever, the above algorithm does not fulfill this requirement and its computation
complexity is in fact exponential, as the authors show.

Yu and Singh (2000) offer a polynomial time feedback aggregation algorithm.
Unlike Beth, Borcherding, and Klein (1994) this approach does not consider the
context of recommendations separately. Again, the direct experiences are rated
binary (good and bad, W = {0, 1}). The feedback aggregation algorithm starts,
just as with Beth, Borcherding, and Klein (1994), with aggregating the interac-
tion outcomes between the neighbors, which transforms the initial multigraph
into a graph such that only one edge remains for any ordered pair of nodes. To
this end, the authors propose a well known machine learning technique, delta
learning namely, resulting in values between −1 and 1. To propagate the values
over chains the authors use multiplication, with the constraint that trust over
a chain with at least one negative link must be negative. When merging the
values of multiple chains they choose only those chains carrying maximal values
from the source to all the neighbors of the destination node. In the example
from Figure 1 only one of the two chains from peer i to peer u would be selected,
the one having the larger associated value. The mean value of all these chains is
selected as the algorithm output. Thus, the output values remain in the interval
T = [−1, 1]. This computation is polynomial in the number of nodes (both find-
ing all j’s neighbors and selecting the maximum weighted chains toward those
neighbors are polynomial operations and so is their union) and thus presents a
considerable improvement as compared to Beth, Borcherding, and Klein (1994).

Richardson, Agrawal, and Domingos (2003) discuss another possibility for

10



an efficient aggregation of the feedback in a trust multigraph with the above
interpretation of exploring all the paths between two given nodes and then
merging their aggregated trust values.2 It is characterized by the synchronous
feedback aggregation in which trustworthiness values of all peers are computed.
On the other hand, it is important because it provides a feedback merging
method with more efficient computation.

Consider a trust multigraph with the feedback set W ⊂ R (thus W is one-
dimensional, the recommendation context is not modeled) and assume that the
multigraph has been transformed into a graph by merging individual interactions
between neighbors. At the moment it is not important how exactly this merging
is done, any of the previously discussed strategies will do. Consider now the
matrix M ≡ [Mij ]

N
i,j=1 (N is the number of the peers) corresponding to the

obtained graph and assume that it has been normalized so that for any 1 ≤
i, j ≤ N :

0 ≤Mij ≤ 1 and
N
∑

k=1

Mik = 1.

Central to the approach are two binary operators: trust concatenation (propa-
gation), the symbol ◦ will be used to denote it, and trust aggregation, we will
use the symbol ¦. Normally, the former is applied on two consecutive edges in
a chain of trust, while the latter applies to two chains. Simple multiplication
and addition are good examples of these operators. The authors then intro-
duce a matrix “multiplication” operation • defined as C = A • B such that
Cij = ¦(∀k : Aik ◦Bkj). If A = B ≡M , where M is the matrix representation
of a given trust graph then the interpretation of Cij is aggregated trust that i
puts on j over all chains of length 2. Again, if ◦ and ¦ are ordinary multiplication
and addition then • becomes the ordinary matrix multiplication.

Now, the most interesting result is that if ¦ is commutative and associative
and ◦ is associative and distributes over ¦ then the aggregated value of all paths
(of any length) between any pair of users can be obtained by the following simple
algorithm:

Q(0) = M , Q(k) = M •Q(k−1) until Q(k) = Q(k−1). (3.1)

The computation will converge after a finite number of steps if the matrix M

(or the trust graph) is irreducible and aperiodic. It is important to see that the
computation can be performed locally, after each iteration k all the peers can
retrieve from their neighbors the currently computed opinions of those neighbors
about all other peers and then do the computation of the step k+1. It turns out
that this algorithm requires at most O(N 3) computations per peer.3 However, it
is not clear what should be the overall latency the algorithm introduces because

2Semantic Web is the exact setting considered by Richardson, Agrawal, and Domingos
(2003) but most of the results can be without any change transferred to P2P networks. Also,
the terminology used in the paper is slightly different from the one we used so far. However,
to be consistent with the previous discussion we will use continue to use our terminology.

3The complexity depends on the underlying graph connectivity. It is slightly less for low
connected graphs.
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it is determined by the number of iterations and this number is in turn affected
by the network graph connectivity.

For completeness we have to say that a number of other works can be con-
sidered as special cases of Richardson, Agrawal, and Domingos (2003). Page,
Brin, Motwani, and Winograd (1998), used as Google’s method for Web pages
ranking, and Kamvar, Schlosser, and Garcia-Molina (2003), targeting P2P net-
works, present two examples. They both use the ordinary matrix multiplication
as the matrix operation from (3.1).

Xiong and Liu (2004) presents the only work we know about that avoids
aggregation of the individual interactions (transforming the interaction multi-
graph into a graph) but rather operates on the multigraph directly. It does not
consider the recommendation context and uses ratings from the interval [0, 1], so
again W = [0, 1]. The main idea of this work is to compute the trustworthiness
of a given peer as the average feedback about it weighted by the trustworthiness
of the feedback originators themselves. This can be expressed by the formula:

tj =
∑

e∈incoming(j)

we
tsource(e)

∑

f∈incoming(j) tsource(f)
, (3.2)

where incoming(j) is the set of all edges ending at node j, we is the feedback
belonging to the edge e and tsource(e) the trustworthiness of the originator of
this feedback. As the authors claim, this formula can be computed by using an
iterative computation, similar (but still different) to (3.1). As such, it suffers
from more or less the same problems: the computation is inefficient and the
whole network must be retrieved. But, the authors also develop a simple caching
scheme in which the trust values of the feedback originators are taken from a
cache (default values are used in the case of cache miss) and the computed trust
of a peer replaces its corresponding cache value.

Building on Dellarocas (2000) and Zacharia, Moukas, and Maes (1999), the
same work (Xiong and Liu (2004)) proposes another approach based on so called
collaborative filtering technique. The idea is very similar to the previous one, the
only change is that the weights in (3.2) are replaced with “similarity coefficients”
between the raters and the trust computing peer. They are computed by finding
a common set of peers that interacted with the computation source and a given
rater and calculating the standard deviation between the two corresponding
vectors.

3.1 Trust Semantics

Let us assume now that we used one of the above approaches to compute the
trustworthiness of a peer and that we got a value, say 0.3. The question we
ask now is: how can we use this value to decide whether to interact with this
peer or not? Higher values should imply more trust but is this particular value
high enough for us? From the way how the value has been computed in any of
the above methods it is clear that it cannot be interpreted as the (estimated)
probability of the trustworthy behavior of the target peer. So, what does the
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value actually represent? The lack of a plausible answer to this question is what
all the discussed approaches have in common. Precisely, the computed values
lack a plausible interpretation on an absolute scale and therefore only scenarios
in which they can be used should involve ranking the trust values of many peers
and selection of the most trustworthy one(s) among them. Such scenarios are
certainly relevant for P2P networks - selecting the most reliable source for file
download being a well known example.

There is another interesting point we would like to mention. Consider al-
gorithm (3.1) again and assume that the operations ¦ and ◦ are addition and
multiplication so that • becomes the simple matrix multiplication. Now, if the
trust graph is irreducible and aperiodic then the k-th power of the correspond-
ing trust matrix M from (3.1) converges for sufficiently large k to a matrix in
which all the rows are the same and sum up to 1. (In parlance of matrix cal-
culus, this is the primary Eigenvector of matrix M .) Thus the trust values of
the peers, as computed in (3.1), have global meaning - they are independent
of the computation source. On the other hand, because all the values sum up
to 1, it seems as if the trust was distributed among the peers. Some authors
argue that this is a desirable property. But, if we have the value for only one
peer (suppose that we used some approximate method to compute it or simply
evaluated all the paths to the target) does it mean that the value is low because
the concerned peer is malicious or because it is trustworthy but had to “share
the trust” with other trustworthy peers. Further, even if we have the values
for all the peers, but they are approximately close we are in doubt whether the
whole network is trustworthy or it is malicious.

3.2 Performance Analysis

All the mentioned works deal with the probabilistic behavior of the peers, as we
explained in Section 2.1. Thus, elaborate analyses of the performances of the
proposed methods require numerous tests under many different settings. More
specifically, the proposed feedback aggregation strategies must be evaluated
against various types of malicious behavior represented by different probability
distributions, including uncoordinated (i.e. independent) misbehavior of the
peers as well as forming collusive groups of different sizes and varying collusion
patterns. However, only Kamvar, Schlosser, and Garcia-Molina (2003) and
Xiong and Liu (2004) offer informative simulations, whose condensed view we
now present.

Kamvar, Schlosser, and Garcia-Molina (2003) and Xiong and Liu (2004) re-
port good performance when the fraction of malicious peers is small (below 45%
approximately) and their maliciousness is uncoordinated - they cheat indepen-
dently in the interactions and distort their ratings of other peers. To a large
extent this is true irrespective of whether they cheat always or also cooperate
with some non-zero probabilities. The robustness of the methods in this case
lies primarily in the fact that, as long as the cheating population size is below
the mentioned threshold, the fraction of misclassified peers remains almost con-
stant and very low (within 5%). Interestingly, the approximate computation of
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Xiong and Liu (2004) exhibits very similar behavior, the only difference is that
the rise of the misclassification rate falls into a wider region starting at around
35%.

Xiong and Liu (2004) further report the complete breakdown of the original
mechanism, given by (3.2), and the approximate one when the cheaters take
more than a half of the overall population or when they collude. Making nu-
merous fake interactions and giving good ratings to the partners was identified
as the right collusion scheme to defeat the mechanism. With respect to this we
believe that certain improvement can be achieved by not taking into account all
interactions reported by peers in (3.2) but only a (random) fraction of them.

On the contrary, Kamvar, Schlosser, and Garcia-Molina (2003) claim almost
full effectiveness of the presented mechanism even when the malicious peers
make the larger fraction of the population and collude in various ways. This
results from the assumption that a number of pretrusted peers exist each of
whom is assigned some non-zero trust by the rest of the community, including
the malicious peers. Thus, there must be an edge with a non-zero weight lead-
ing from any node in the trust graph to any of the pretrusted nodes. (This is
actually a well known technique studied in so called “random walker” models
for Web pages ranking.) However, we do not see a clear way to enforce this
behavior in a distributed computation. On the other hand, it can be simulated
if the computation is performed centrally at one peer after all feedback in the
network has been retrieved. But in this case the computation overhead grows
by an order of magnitude. It would be interesting to study various approxima-
tions of the method that could be done locally and at the same time retain good
performances of the original approach. The authors also analyze various collu-
sion scenarios and identify the following as the most effective one. Malicious
peers split into two groups. The peers from the first group cheat always, while
the peers from the other group never cheat in direct interactions and give high
ratings to the peers from the first group. We add that such collusion scenarios
can be defeated only by separating the contexts of recommendations and direct
service provisions.

Xiong and Liu (2004), the similarity based technique, may offer a solution to
this problem. According to the authors, this scheme stays effective even when
the majority of the peers are malicious and they form collusive groups that make
fake interactions. It would be interesting to check its performance in presence
of the collusive behavior explained in the previous paragraph.

Needless to say, both Kamvar, Schlosser, and Garcia-Molina (2003) and
Xiong and Liu (2004) report high benefits in the system performance from the
employment of a trust management scheme.

3.3 Implementation Overhead

It should be obvious from the above discussion that in the most of the mentioned
approaches all available information in the network is used when assessing the
trustworthiness of a single peer. This immediately implies that all the peers in
the network are affected and that the associated communication costs are high.
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Further, some of the discussed methods require exploring all the paths between
two given nodes incurring thus a considerable computation overhead. We see
this as the most serious obstacle to their usability in practice in the context
of P2P computing. Polynomial complexity of Yu and Singh (2000) offers a
certain improvement, though a considerable fraction of the peers may be still
affected by a single trust computation. The approximate method of Xiong and
Liu (2004) imposes the least overhead as only the direct witnesses of the target
peer’s performance are involved in the computation.

Kamvar, Schlosser, and Garcia-Molina (2003) and Richardson, Agrawal, and
Domingos (2003) propose a synchronous polynomial complexity. However, even
if we see its total overhead as acceptable, we do not believe that the algorithm
as just specified is feasible in a P2P network. Simply, P2P networks are highly
dynamic systems - peers go offline and come online at unpredictable time in-
stants, the trust values between neighbors keep changing constantly and the
recomputation of the algorithm triggered by any such event would be highly
impractical, if not impossible. Instead, we believe that an incremental compu-
tation is something worth further investigation. Caching schemes proposed by
Xiong and Liu (2004) offer important insights with respect to this.

4 Probabilistic Estimation

As we have just seen, an important problem with social networks formation
based approaches is their implementation overhead. A natural way to eliminate
this problem is to consider only own experiences with a peer whose trustwor-
thiness is being estimated or, in the lack of (a sufficient number of) these, to
take into account the second level judgments, i.e. reports of the other peers
about its past behavior. Under these circumstances it becomes easy to con-
struct probabilistic models, i.e. models whose outputs can be interpreted as
probability distributions over the possible behaviors. The importance of such
models becomes clear if we recall the view on trust we presented in Section 2.1.
If the opportunism of the trustee and the vulnerability of the trustor cannot
be reduced completely then it becomes important for the trustor to be able to
estimate the risks of the interaction and decide whether to enter it or not. If
the individual outcomes of the interaction are assigned the probabilities and the
trustor can assign them utilities as well then this task becomes easy - the trustor
just needs to compute whether entering the interaction has a higher utility than
staying out.

A typical probabilistic model would do the following. First, it would explic-
itly introduce the assumptions about the probabilistic behavior of the peers,
just as we explained in Section 2.1. For instance, such an assumption might
be that any peer is trustworthy with a certain, but unknown probability. Or,
when reporting its own experiences with others, each peer may lie with some,
again unknown probability. Second, it would use well known probabilistic esti-
mation techniques to learn all unknown parameters, each time it obtains new
information, either a direct experience from an interaction or a new report from
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a peer.
Bayesian estimation is a typical representative of these techniques and can

be used for this purpose. Its main idea is to assign a prior probability distribu-
tion to an unknown parameter and, given an observed set of samples, calculate
its posterior. We will here describe in short how it can be used for estimating
the unknown parameter of a Bernoulli distributed random variable. Such a task
can be encountered for example when the trustworthiness of the peers is treated
as a Bernoulli random variable and the probabilities of their trustworthy behav-
ior have to be estimated. According to the notation we established in Section
2 this would mean W = {0, 1} and T = [0, 1]. Any prior knowledge on the
distribution of the unknown parameter in this case can be easily modeled as a
beta distribution with appropriately chosen parameters. Interestingly, posterior
realizations of the variable lead only to a change in the beta distribution param-
eters, they do not change the distribution type. Thus, the unknown parameter
remains beta distributed, but now with different parameters. Formally, let us
assign the unknown probability θ of the trustworthy behavior of a specific peer
the prior distribution Beta(a, b).4 If we now observe n realizations of the peer’s
behavior k of which were trustworthy then the posterior distribution of θ be-
comes Beta(a+k, b+n−k). The Bayes’ estimator of θ is the expected value of
Beta(a+ k, b+ n− k). It can be shown that this value equals a+k

a+b+n and that
the estimator is asymptotically unbiased and consistent.

All this applies directly to the case of allowing only for own experiences.
Mui, Mohtashemi, and Halberstadt (2002) present an example in which this
approach is used. Apart from this the authors also provide the minimum bound
on the number of encounters one has to have with another peer in order to
retain the probability of a specific error of the estimation within given bounds.
It is given by the following inequality:

m ≥
1

2ε2
ln (

δ

2
),

where ε and δ are the estimation error and confidence level respectively. How-
ever, it was left unspecified how to apply the method to integrate reports from
direct witnesses when no meaningful decision can be made based on own ex-
periences only. Buchegger and Le Boudec (2003) make a step towards this.
However, even though the authors discuss a number of possibilities to deal with
the “second hand” opinions they use an intuitive approach in which all second
level information sources are given equal weights. To the best of our knowledge,
there is no P2P reputation model extending the Bayesian estimation technique
in the most natural way (so called “super Bayesian estimation”) to take these
or higher level beliefs into account as well. In comparison with the “one source”
Bayesian models the only difference would be that the samples do not come
from the same distribution representing the service provider’s trustworthiness

4A random variable Θ is distributed Beta(a, b) if its probability density function is f(θ) =
1

B(a,b)
θa−1(1− θ)b−1, 0 < θ < 1, a > 0, b > 0, where B(a, b) =

∫ 1
0 xa−1(1− x)b−1dx. a and

b are the parameters of the distribution, the case a = 1 and b = 1 corresponds to the uniform
distribution.
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but from different ones as the original samples now pass through the second
level sources who may misreport. But, the probability distribution of these
misreports can be also estimated and updated with new experiences so that
calculating the posterior distribution of the unknown parameters is not harder
at all. This also enables an easy separation of the contexts of recommendations
and direct service provisions, that we found in Section 3.2 to be quite robust.
Thus the approach has some common points with the previously mentioned
similarity based computation of Xiong and Liu (2004), the key difference is that
it has a stronger theoretical foundation. In a similar way it can be extended to
cover third and even higher level experiences.

Another way to make statistical inferences is the method of maximum like-
lihood estimation. As compared to the Bayesian estimation technique it does
not provide a method of assessing unknown parameters probability distributions
but gives instead their most likely values given a set of samples. Assume that
we know the form of the probability distribution of a random variable but do
not know the exact values of involved parameters. The gist of the approach
is to compute the likelihood of the observed sample for general values of the
unknown parameters and fit the values that maximize it. For instance, let us
suppose that we get reports from a number of peers about the trustworthiness of
another peer. Now, assuming that the witnesses lie and the target peer is trust-
worthy with some unknown, possibly different, probabilities it becomes easy
to compute the probability of the obtained sample. Then a set of values that
maximize this probability is the maximum likelihood estimate of the unknown
parameters. Despotovic and Aberer (2004) apply this method in a setting in
which peers are characterized by two Bernoulli distributed random variables:
one characterizes their trustworthiness and the other one their behavior when
reporting the other peers’ performances. Thus there are two parameters asso-
ciated with each peer: the probabilities of trustworthy behavior and reporting
honestly about others. Consequently, W = {0, 1} and T = [0, 1]. The main idea
of the approach is to use maximum likelihood estimation to assess the former
one of these two parameters, while the latter one is approximated by check-
ing reports about own performances. As the authors show, the computation is
highly efficient. However, a good performance of the method has been reported
only in non-collusive setting, i.e. when peers act independently.

Aberer and Despotovic (2001) present another approach to managing trust
in P2P networks built explicitly on probabilistic assumptions. It does not pro-
vide any prediction of a likely future performance of the peers in terms of a
probability distribution over the possible performances. Instead, it just tries to
assess whether a given peer has ever cheated in the past. Precisely, the inter-
actions considered in this work are binary (the peers either cheat or cooperate)
and so is the feedback. After any interaction its participants can file complaints
against each other. It is assumed that after cheating in an interaction any peer
will file a complaint against its partner, trying to hide in this way its own mis-
behavior. Then, the mentioned decision is made by analyzing and separating
the probability distributions of the filed and received complaints of any peer.
Though it is very questionable how precisely the information on whether a peer
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ever cheated or not can be used to make decisions on entering an interaction
with it, it is clear that it provides a certain insight to its trustworthiness.

4.1 Trust Semantics

As we pointed out at the beginning of this section, the main reason for sepa-
rating the discussion on the probabilistic estimation techniques from the social
network approaches is the clear interpretation of the resulting values. They are
probabilities of specific behaviors of the computation target. Thus, they have a
meaningful and theoretically founded interpretation on the absolute scale [0, 1]
and no rescaling or comparing with the values of other peers is necessary.

Despotovic and Aberer (2002) present a scenario in which this can be of
interest. Safe exchange (Sandholm (1996)) offers an approach to gradual ex-
changes of goods and money in which both payments and goods are chunked
with their deliveries scheduled in such a way that both exchange partners are
better off by continuing the exchange till its end than by breaking it at any step
before. Despotovic and Aberer (2002) provide a trust aware extension of the
original approach; they take expected utility inputs from the exchange partners
(where expectations are computed with respect to their predicted trustworthi-
ness) and provide an efficient algorithm to find a safe schedule of deliveries of
goods and payments that satisfies the partners’ expectations.

4.2 Performance Analysis

It is hard to give precise judgment on the performance of the probabilistic
estimation approaches because of the lack of informative simulation results in
the papers we reviewed. Normally, they are more focused in the sense that they
consider a narrower range of possible peer behaviors by introducing constraining
assumptions on the unknown behavioral probability distribution. For instance,
collusive misreporting is often excluded. Therefore, one can intuitively expect
their better performance as compared to the social networks if the introduced
behavioral assumptions are satisfied. Despotovic and Aberer (2004) confirm
this intuition. The authors report the average estimation error within several
percents even when misreporters take up to 20-30% of the peer population and
relatively small numbers of interactions per peer are considered (up to 30). On
the other hand, the assessment quality is highly dependent on the amount of
information used. This explains why the mentioned performance is just slightly
better than that of the social networks, why the social network approaches
perform well even under varying assumptions on the peer behavior and why it
makes sense to consider probabilistic techniques involving higher level reports.

4.3 Implementation Overhead

The reputation information on which all previously mentioned probabilistic ap-
proaches operate is localized around the trust computation target peer and thus
one can expect that the communication costs associated with the computation

18



are low. Despotovic and Aberer (2004) make this precise by specifying that
even a total of 30-40 reports on the performances of the target peer are enough
for making good estimates. The computation overhead and storage costs are
virtually negligible.

However, probabilistic estimation techniques may span a larger fraction of
the network if many levels of reports are considered. An interesting question to
investigate with respect to this is evaluation of dependency of the estimation
quality on the used information scope.

5 Modeling Reputation in Game Theory

The phenomenon of reputation has been extensively studied in economics, game
theory in particular. The game theoretic framework for analyzing reputation is
that of repeated games in which some players are uncertain about the payoff
structures of their opponents. Needless to say, the main underlying assumption
on the behavior of the involved economic agents is that they act as to maximize
their utilities. As will be seen, it is exactly this assumption that brings the
advantages to the game-theoretic reputation systems in terms of a clean decision
making process when considering past doings as a predictor of one’s future
behavior.

The right game-theoretic tool for modeling the mentioned uncertainties is
that of games with incomplete information (Bayesian games) in which different
players may have different information about some important aspects of the
game, including a special case in which some players know more than others
and may use this informational asymmetry to get better payoffs. Central to
Bayesian games are types of the players by which the players’ private information
is modeled. In most of the models the types simply correspond to different payoff
structures of the players.

On the other hand, the repeated interactions are modeled by well studied
models of repeated games, where a given stage game is played many (finitely or
infinitely) times and the players maximize their long-run payoffs.5 Generally,
the set of players can vary among the stages, but the current literature focuses
on the following two extreme cases: (1) the models in which all the players
stay active in each stage (long-run players) and (2) the models in which one
or more players stay active in each stage (long-run players) while the others
play at one stage only (short-run players). We will concentrate here on the
latter, because the large number of participants in today’s online groups makes
repeated interactions between the same players highly improbable. Our main
concern in the rest of the section will be to show how trustworthy behavior
of the long-run player, perceived as the trustee, can be induced by making the
feedback on his past play available to the short-run players, seen as the trustors.

Let us first show how game theory formalizes the concept of reputation.
Figure 2 (adapted from Kreps and Wilson (1982), a seminal work in the area)

5We consider here only δ-discounted (0 < δ < 1) repeated games in which any k-stage
payoff is δ discounted as compared to that of the stage k − 1.
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presents an example. Assume that player 1 is a firm already established in a
market (monopolist hereafter) and that player 2 is another firm that decides on
entering the market or staying out (entrant hereafter). The monopolist can be
weak or strong but the entrant is uncertain about which of these two types it
is actually facing. In both cases the monopolist can choose to fight the entry
(say, it may opt to a sharp price cut) or to acquiesce (to share the market
peacefully), while the entrant chooses whether to enter or stay out. The payoffs
of the two firms are as shown in Figure 2. It is important to notice that a strong
monopolist prefers fighting the entry (1 > 0) and the entrant prefers staying out
if he believes that the fight will occur (0 > −1). If the entrant stays out the
monopolist gets the best payoff he can get in the game.

�

�
��

���

�����	
�	

���
�

�����

������

�����

�

�
��

���

�����	
�	

���
�

�����

������

�����

��������
���	�� ��������
��
�����

Figure 2: Bayesian Chain Store Game

Assume now that a weak monopolist plays this stage game against a finite
number of entrants each of whom plays only once but is informed about the
whole previous play. Assume also that all the entrants assign a common prior
probability distribution to the set of the monopolist’s types (weak and strong)
and update at each stage their beliefs on the types according to the monopolist’s
previous move as well as that both the distribution and the entrants’ beliefs
update function are common knowledge in the game (thus the monopolist knows
them too). The question we ask here is: does it make sense for the monopolist
to fight eventual early entries in order to deter later ones (to develop reputation
for “toughness”)? Intuitively, this might make sense because not sharing the
market in later stages may offset losses from fighting early ones (recall that the
monopolist is actually weak).

Kreps and Wilson (1982) offer the answer. Namely, if all the entrants know
that the monopolist is weak (so the prior probability of being strong equals 0)
then there is only one equilibrium of the repeated game in which all entrants
enter and the monopolist acquiesces at all stages. So, a monopolist that is known
to be weak will never fight an entry under these conditions. Put differently,
the monopolist cannot develop reputation for being strong when its opponents
cannot believe that it can be strong. But, as soon as this probability is non-zero
there are equilibria in which the monopolist would fight some early entries and
the affected entrants would consequently stay out. This is exactly the effect of
the monopolist’s reputation, or more precisely the possibility to develop it. The
point is that fighting these early entries would convince future entrants that
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the monopolist is strong so that the losses incurred by these moves would be
offset by not sharing the market at later stages. Therefore, the entries might
occur only in a number of last stages. Interestingly, this number depends only
on the initial probability that the monopolist is strong, it is independent of the
total number of stages played. Thus, the payoff the monopolist receives when
the total number of stages grows approaches 3, the payoff corresponding to the
monopolist’s most preferred stage game outcome.

The idea behind this reasoning was generalized by Fudenberg and Levine
(1989). It considers the setting with one long-run player facing an infinite
sequence of short-run opponents and define so called Stackelberg payoff as the
best payoff the long-run player could get by committing himself to a specific
strategy (which is called Stackelberg strategy). The authors introduce then a
new type of the long-run player for which playing Stackelberg strategy is the
dominant strategy in the repeated game. Finally, the authors prove that under
these conditions the limit of the long-run player’s payoff in the repeated game
when his discount factor δ approaches 1 (the long run player is sufficiently
patient) is exactly his Stackelberg payoff. Applied to the above example, this
means that a monopolist with a sufficiently high discount factor can always get
his Stackelberg payoff (which equals 3) when playing against an infinite sequence
of short-run entrants.

An underlying assumption in these models is that the short-run players are
perfectly informed about the history of play. Or, put differently, they perfectly
observe the long-run player’s moves and report them honestly. In real-world on-
line settings this assumption is not always satisfied. Much closer to the reality
are the models with so called imperfect monitoring in which the players do not
observe the past actions but only their imperfect signals. If the signals are com-
mon for all the players (public signals) then the monitoring is said to be public,
otherwise it is private. Surprisingly (or not), this seemingly small change in
the information structure of the repeated games makes an important difference
in the tractability of these two classes of the models. While some convenient
mathematical tools for analyzing the imperfect public monitoring games have
been found (Abreu, Pearce, and Stachetti (1990)) and the long-run player’s pay-
off characterization results have been obtained (Fudenberg and Levine (1992)),
there is a lack of similar results of the imperfect private monitoring class of
games. Instead, only specific games (mostly the Prisoners’ Dilemma) have been
analyzed and their equilibria derived. Kandori (2002) offers an introduction to
the imperfect private monitoring games and explains why this is the case.

5.1 Why and why not game-theoretic modeling?

The example we just saw demonstrates how game theory formalizes the con-
cept of reputation. However, it does not show how reputation helps promoting
trustworthy behavior. We see two reasons for this.

First, the setting of the game was such that the socially desirable outcome
(sharing the market) was impossible in the long run. Or, put another way,
the Stackelberg outcome was socially undesirable. Quite often this is not the
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case. To see this, consider another example (adapted from Dellarocas (2003a)).
Assume that a sequence of short-run player 2’s, call them buyers, plays the
stage game from Figure 3 against a long-run player 1, a seller. At each stage
the buyer can bid high or low to buy an item the seller is about to sell.6 Upon
receiving the payment the seller can cooperate (deliver a high quality item) or
cheat (deliver a low quality one).
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Figure 3: Auction Game

The problem with this game is precisely that the inefficient outcome (bid low,
cheat) will happen at all stages. On the other hand, the efficient outcome (bid
high, cooperate) is the Stackelberg outcome of the seller. Now, the reasoning
from the previous section, applied to this example, reads: if the buyers assign
a non-zero probability to the event that the seller is honest (will deliver high
quality after receiving the payment) then the seller can develop reputation for
being honest and the preferred outcome (bid high, cooperate) will be observed
in most of the stages.

The second reason is the key one for understanding game-theoretic reputa-
tion system design as a systematic and analytic discipline. It happens, just as
in the case of the game from Figure 2, that given a stage game representing the
identified interaction in the considered community and the way the information
about the past play is shared among the participants, no “good” equilibrium
(say, one promoting trust or any other socially desirable outcome) actually ex-
ists. But there is a solution to this problem: by processing the raw feedback
properly (choosing a proper feedback aggregation strategy) game-theoretic rep-
utation systems designers can tune the equilibria set according to their wishes
and, in the ideal case, narrow down this set to only one equilibrium, presum-
ably the socially most desirable one. Needless to say, this is exactly the main
purpose of the reputation mechanisms. The point is here that there is a clear
link between the feedback aggregation strategy and the actual behavior of the
participants, reflected in the chosen equilibrium. It is exactly this link that
enables the mentioned systematics and analyticity.

With all this reasoning in mind we can derive quite precise steps in game-
theoretically founded reputation mechanisms design:

6Think about an auction in which only the winning buyer is considered.
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• Analyzing interaction patterns in the considered community and identifi-
cation of the stage game.

• Defining of the feedback (past play) type along with a solution for incen-
tivizing short-run players (if any) to provide it.

• Defining the way the feedback is aggregated.

In the rest of this section we will briefly describe how the current literature
addresses the last two tasks. (We believe that the first task is clear in itself.)

Let us start with outlining how the game-theoretic models fit the general
picture we introduced in Section 2 and what benefits they bring as compared to
the other two classes of approaches, social networks and probabilistic estimation
techniques. First, after the stage game has been identified, the feedback set
W on the long-run player’s behavior is easy to determine. It coincides with
the set of possible stage game outcomes, or the signals if the stage game is
with imperfect monitoring. The output set T can be understood as the action
set of the considered long-run player’s opponents. The algorithm A is just
mapping from the feedback on the long-run player’s past play to the set T

representing the actually implemented equilibrium. It should be clear from
this that the implementation overhead does not impose a problem with game-
theoretic reputation models. Only first level reports are considered and the
associated implementation cost are not considerable. Regarding the benefits, we
know that with both social networks and probabilistic approaches the trustee’s
opportunism and the trustor’s vulnerability are reduced but not completely
removed. Thus, the decision making process based on the feedback is error-
prone. The power of game-theoretic reputation systems, as based on an analytic
discipline, is precisely that they eliminate this problem: given that the players
are rational utility maximizers then they cannot do anything better than playing
exactly what is specified by an equilibrium, whichever is actually implemented.

All the models discussed so far involved short-run players sharing informa-
tion about the long-run player’s actions among themselves. In economic models
of online settings, where there is a cost associated with communicating this
information (leaving feedback), this cannot be taken for granted. Another diffi-
culty is that even if the short-run players are incentivized to leave feedback how
can we make sure that this is done truthfully. Miller, Resnick, and Zeckhauser
(2002) and Jurca and Faltings (2002) analyze exactly this problem and propose
a payment-based system based on the application of proper scoring rules to the
reports. They prove that honest reporting is a Nash equilibrium and that, on the
other hand, the budget is balanced by charging involved players for payments
that are based on the reports of others.

The last task in the above list is certainly the core one. Unfortunately, it
turns out that in general it is not at all easy. Deriving reputational equilibria
can be quite complicated even when the stage game has a simple structure,
the reverse task of devising a game with specific equilibria is in principle even
more complicated. This is particularly true for private imperfect monitoring
games and, unfortunately, exactly this class of games is the most frequent in
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online settings because any aggregation of the feedback makes the monitoring
imperfect, while in the models with one long-run player playing against a se-
quence one-shot opponents it becomes necessarily private. This is exactly why
the game-theoretic reputational models of online environments are very rare.

Dellarocas (2003b) presents one such model in which an eBay-like setting
with a long-run seller facing an infinite sequence of one-shot buyers was con-
sidered. In each round the seller sells an item that can be perceived on the
buyers’ side as being of high and low quality and the buyers compete to buy
the item in an auction. The seller can exert high or low effort when delivering
the item influencing thus the quality observations on the buyers’ side. Both low
and high quality perceptions of the buyers are possible under both high and
low effort. The setting is clearly with private imperfect monitoring because the
seller’s actions (high and low effort) are not observed by the buyers. Instead,
their imperfect signals (high and low quality) are. The feedback on the sellers
past play then consists of the observed signals. As the feedback aggregation
strategy the author proposes maintaining a fixed size window of the reports on
the observed past qualities in which any new report replaces an old, randomly
chosen, one. The sellers optimal strategy in this setting is to always exert high
effort if he has zero low quality reports, otherwise he should follow a mixed
strategy in which the probability of exerting high effort is a linearly decreasing
function of the current number of low quality reports. However, it turns out
that there is an efficiency loss in comparison with the case where seller can
commit to exerting high effort. But there is no efficiency loss in comparison
with the case where the entire feedback history of the buyer reports is publicly
known. The author also shows that the whole mechanism is pretty robust in
the presence of buyers’ misreporting the seller’s actions.

Apart from the mentioned complications that the game-theoretic modeling
of reputation normally involves, there are also some very practical arguments
against it. There is a concern about how well the described models approximate
the real-world settings. For instance, is the model with one long-run player and
many one shot opponents a good approximation of a typical eBay scenario
in which one seller sells items to many buyers or this interaction cannot be
considered in isolation from other interactions of the seller and the buyers?
Some other concerns deal with the discounting criterion and the exact values of
the players’ discount factors. In the case we need them, how can we discover
the discount factors or what happens if two or more (long-run) players have
different factors. These practical issues are not usually studied in the literature.

Finally, there is a huge body of work proving that humans do not normally
act as rational economic agents (Fehr and Gächter (2002), for example) raising
the question of the practical usability of the game-theoretic modeling in general.
More specifically, Bolton, Katok, and Ockenfels (2002) report on some peculiar-
ities in how people treat reputation systems which can be again explained by
their irrationality.
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5.2 Game-Theoretic Reputation Models and P2P

In P2P networks the hard problem we just described becomes even considerably
harder. An implicit assumption of the above discussion was that the feedback
aggregation was done by a central authority (eBay, for example) that did not
have any incentive to distort it in any other way. Unfortunately, this assumption
is not valid in P2P networks where the aggregation can be performed only by
the peers themselves. But then the peers may find it profitable to distort the
feedback or simply to reenter the network under a different identifier and abuse
their knowledge of the complete feedback in the interactions it covers. These
possibilities must be considered a part of the peers’ strategic choices. To the best
of our knowledge, there is no game-theoretic model dealing with this problem.

Nevertheless, we believe that these models are worth investigation. The
reason is, as explained above, that the question of whom to trust is clearly
solved. Implementation overheads are also minimized because the feedback
used in the computation is localized around long-run players.

6 Comparative Analysis

���������	��
�

��
������	
����

������


��������	����

���������	��
�

�������	
��

�������
�	���


������	


����	��

��������

����	��������

�����	���


�	������������

��
���

����	��������
 
���	��
������
�

�	��
!

"���������	�

��
���	
!�����

������	�����

#�!�$�

%�������	����&��	���

������	���
�

����	��������

"	���
	� '��	�
���������	�����

��������
%��

'��	�
"���������	�


	������	
!�����

������	�����

%��

Table 1: Main Properties of various Trust Management Approaches

Table 1 summarizes our findings about the approaches we discussed through-
out the paper. Let us briefly comment on them.

Social networks target probabilistic behavior. One of the problems we iden-
tified with them is unclear decision making. Namely, they output values that
are hard to interpret and it is not clear how precisely they contribute to building
trust. On the other hand, social networks appear to be robust to a wide range
of misbehaviors. Put differently, they do not require particular knowledge on
the underlying peer behavior. This is mainly an implication of their aggregating
of a large amount of reputation data that is available in the network. However,
this also has an undesirable effect: high implementation overhead.
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Probabilistic estimation methods start with the assumption that the under-
lying behavior is probabilistic and try to estimate the parameters of the peer
behavior characterizing distributions. As such, they enable clean decision mak-
ing. Normally, probabilistic models explore only a small fraction of the available
feedback. Thus, they incur small implementation overhead, that is acceptable
for P2P networks. However, they require more knowledge about the assumed
peer behavior than social networks and are less robust.

Game-theoretic models are based on the assumption that the peers are ratio-
nal utility maximizers. Thus, their behavior is fully determined by the equilibria
of the underlying game they are playing. This is why we say that decision mak-
ing is clean: equilibria precisely specify a move after any history of play. Due
to the mentioned schemes that incentivize players to leave truthful feedback
we say that no misbehavior is possible. Implementation overhead is acceptable
because, just as in the case of probabilistic estimation, only a small portion of
the available feedback is aggregated.

As for the application of the approaches, the exact characteristics of the tar-
get environment and the expected behavior of the peers determine the solution
that should be chosen. Normally, if peers behave as rational, utility maximiz-
ing economic agents one would opt for a game-theoretic solution. However,
where such an assumption is not valid, probabilistic or social network solutions
should be used. Probabilistic techniques should be favored if no formation of
large collusive groups is expected, otherwise a social network approach with the
recommendation context included or, if the network is small, with centralized
“pretrusted peers” based computation should be employed.

7 Conclusions and Research Issues

In this paper we reviewed the literature on trust and reputation management
and established its classification that is primarily based on two dimensions we
find important for the context of P2P systems: trust semantics and implemen-
tation overhead. There are a number of conclusions we can draw from the
presented analysis.

First, reputation management does matter. Many empirical studies confirm
that managing participants’ reputations helps building trust in the concerned
communities.

Second, there is a need for reputation management in many areas. We
saw that besides P2P networks, reputation management was studied in such
diverse contexts like the semantic web, centralized e-commerce settings, resource
allocation in mobile networks etc.

Further, we identified many possibilities that differ in what type of the un-
derlying behavior they target, what trust semantics with respect to decision
making they offer and what implementation costs they impose. However, we
believe that the research in this area is still in its infancy. This statement can
be justified as follows.

Rational peer behavior requires game-theoretic modeling. But, the repu-
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tational game-theoretic models are extremely hard to analyze and so far no
effective mathematical tool to deal with imperfect private monitoring has been
devised. We believe that research in this area should go in this direction. As
well, models considering feedback aggregation possibilities as an explicit strat-
egy space constituent must get in the focus of the researches targeting P2P
networks specifically.

Probabilistic behavior raises certain concerns as well. First of all, we are
not aware of any confirmation that this type of behavior characterizes typical
online communities and P2P networks in particular. This is where a tighter
collaboration with social sciences is necessary. Even if this is the case there are
still problems such as: unclear decision making and implementation overhead
of the social networks and too strong limiting assumptions of the current work
based on probabilistic estimation. We believe that devising new methods that
will merge good properties of the two classes of approaches is what the future
research should focus on.

APPENDIX

A P2P - A Technology Overview

The limitations of client-server based systems become evident in an Internet-
scale distributed environment. Resources are concentrated on a small number
of nodes, which must apply sophisticated load-balancing and fault-tolerance
algorithms to provide continuous and reliable access. Additionally, network
bandwidth must be increased steadily to handle requests to and from successful
Internet servers. Caching and replication were introduced a posteriori to remedy
these problems in a client-server setting when the World Wide Web, as the most
successful Internet service, developed into a network bandwidth nightmare.

Peer-to-peer systems offer an alternative to traditional client-server systems
for some application domains. In P2P systems, every node (peer) of the system
acts as both client and server (servent) and contributes a part of the resources
necessary to provide a service. The P2P approach circumvents many problems
of client-server systems but requires considerably more complex mechanisms for
node organization, resource location and security. A central problem for P2P
systems is resource location without centralized control. Resources R required
to provide a service, in our case, for example, providing reputation data on a
specific peer, are distributed over peers and identified using application-specific
identifiers chosen from a key space K. The problem to be solved is then the
following: any peer participating in a P2P system should be enabled to locate
a peer with (Internet) address p ∈ P , that holds a specific resource r ∈ R that
is identified by a key k ∈ K. In order to perform this task the peers maintain
knowledge about some other peers (typically a small number) and can forward
resource requests to them. From another perspective this amounts to construct-
ing an application specific overlay network that allows to address resources by
their application-specific keys, instead of using application-independent physi-
cal peer addresses. The problem is of how to realize such an overlay network
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efficiently, i.e. of how to realize basic operations of overlay network maintenance
and routing (respectively search) with low consumption of physical resources,
in particular network bandwidth.

This reasoning leads to the following abstract definition of P2P systems:

Definition A.1 (P2P System). A P2P system is a tuple (P,R,K,G,RA,

MA), where P is a set of peers, R is a resource set to be distributed among
the peers P , K is a set of keys used to identify resources, G is a directed graph
(P, V ) representing the overlay network, RA and MA are algorithms operating
on the graph G and enabling resource lookup and network maintenance.

The algorithm RA is implemented by using a mapping forward : P ×K →
2P such that forward(p, k) is a subset of the peers reached by outgoing edges of
p in G. The outdegree of the nodes in the graph G is usually but not necessarily
low, since the purpose of the maintenance algorithmMA is to keep the outgoing
links consistent in the presence of peer joins, leaves and failures.

Based on this abstract view two important classes of P2P systems can be
distinguished.

• Unstructured P2P systems: In unstructured P2P systems the distribution
of resources over the peers and the structure of the overlay network G are
not correlated. Thus searches are performed in an exhaustive fashion, e.g.
by using broadcasts. Examples are Gnutella (2001) and Lv, Cao, Cohen,
Li, and Shenker (2002).

• Structured P2P systems: The distribution of resources of the peers and
the graph structure are correlated. Thus searchs can be performed in a
directed fashion, e.g. by greedy routing. Examples are FreeNet [Clarke,
Miller, Hong, Sandberg, and Wiley (2002), Clarke, Sandberg, Wiley, and
Hong (2000)], Chord [Dabek, Brunskill, Kaashoek, Karger, Morris, Stoica,
and Balakrishnan (2001), Stoica, Morris, Karger, Kaashoek, and Balakr-
ishnan (2001)], CAN [Ratnasamy, Francis, Handley, Karp, and Shenker
(2001)], Pastry [Rowstron and Druschel (2001)], Tapestry [Rhea, Wells,
Eaton, Geels, Zhao, Weatherspoon, and Kubiatowicz (2001)], Viceroy
[Malkhi, Naor, and Ratajczak (2002)], Symphony [Manku, Bawa, and
Raghavan (2003)] (based on the small world graphs theory of Kleinberg
(2000)) and PGrid [Aberer, Punceva, Hauswirth, and Schmidt (2002),
Aberer (2001)].

In the sequel we will adopt this division and give high level overviews of the
two mentioned paradigms. To precisely evaluate each of them we will consider
how they deal with the following questions.

• What is the structure of the overlay network?

• How efficient and flexible is search in the overlay network?

• How is the overlay network maintained efficiently and reliably?
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• How autonomuous are the peers?

For a more detailed analysis of these questions as well as for analyzing other
important properties, such as load balancing, security and proximity-based rout-
ing, just to name a few, a number of overview papers have been recently ap-
pearing or are about to appear [Gummadi, Gummadi, Gribble, Ratnasamy,
Shenker, and Stoica (2003), Manku (2003), Aberer and Hauswirth (2004)]. It
also important to recognize that lookup of (key, value) pairs, as needed for
reputation-based trust management, is only one among many possible applica-
tions of P2P systems. Others that have recently been discussed in the literature
are publish-subscribe systems, data broadcast, and data aggregation.

A.1 Unstructured P2P Networks

As a distinctive property of unstructured P2P systems, as compared to struc-
tured P2P systems, peers do not commit or restrict themselves to manage any
specific type of resource, since the distribution of resources over the peers and
the structure of the overlay network G are not correlated. Thus any peer could
hold any resource from R. In order to obtain access to resources managed by
other peers, peers use the graph G to implement a request forwarding scheme
that has to be designed such that it eventually reaches any peer in the P2P
network.

Definition A.2 (Unstructured P2P System). An unstructured P2P system
is a P2P system in which the distribution of the resources R among the peers
and the structure of the overlay network G are independent.

Example A.1. An early example of an unstructured P2P network has been
Gnutella. In Gnutella each peer is connected to a constant number of neigh-
bors, a typical value being 4. Resource requests are flooded through the whole
network, by forwarding them recursively to all known neighbors. However, in
order to control the number of messages, requests are only forwarded a bounded
number of times, known as the time-to-live (TTL) and a typical value being 7.
Request messages carry identifiers such that requests returning along a cycle to
the same peer can be dropped. The number of messages generated by broadcast
is thus linear in the size of the network. However, it is important to realize that
the search latency depends on the diameter of the overlay network, which is
typically logarithmic in the number of nodes, such as for random graphs and
small world graphs. For constructing and maintaining an unstructured network
Gnutella uses a similar mechanism. Peers joining the network flood the net-
work with a discovery message. From the responding peers the joining peer
then selects its local neighbors. If peers fail to operate they are dynamically
replaced from a list of known peers in the network. It has been shown that this
mechanism leads approximately to a power law distribution of incoming links,
as peers tend to attach preferentially to stable peers. Similar behaviors have
been discovered for many self-organizing networks, including the web.
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Taking advantage of the emergent structure of Gnutella-like P2P networks,
there have been several attempts to improve search cost, measured in number
of messages, by optimizing the request forwarding scheme. These approaches
include the use of random walkers, where a depth-first search strategy is used,
and taking advantage of results from percolation theory, to precisely estimate the
number of links that need to be traversed in order to reach the whole network.
Also a number of replication and caching strategies have been studied in order
to improve search performance. However, the fundamental problem of lack of
knowledge which peer is managing which resource makes search in unstructured
P2P networks inherently expensive in terms of communication overhead.

On the other hand unstructured P2P networks are very efficient in terms of
updates to the resources and maintenance of network structure since there exist
no dependencies among peers and among peers and resources and thus these
operations can be performed by the peers autonomously. Also, since routing
of resource requests does not depend on the type of request, unstructured P2P
networks can be easily employed to handle complex requests, such as complex
queries.

A.2 Structured P2P Networks

In structured P2P networks peers commit to manage a specific type of resource,
since the distribution of resources over the peers and the structure of the over-
lay network G are correlated. The correlation among peers and resources is
established by associating the peers with a key taken from key space K and to
associate with this key a partition of the key space such that the peer becomes
responsible to manage all resources identified by keys from the associated par-
tition. Typically the key partition consists of all keys closest to the peer key in
a suitable metric. Thus in structured P2P systems the key space K is equipped
with a distance function d. For forwarding resource requests peers form a rout-
ing network by taking into account the knowledge on the association of peers
with key partitions.

Thus we have the following definition:

Definition A.3 (Structured P2P System). A structured P2P system is a
P2P system in which the distribution of the resources R among the peers and
the overlay network G are correlated. The correlation is present through the
following three functions: a function key : P → K that associates peers with
keys and, given key(P ), a function partition : K → 2K associating peers with
partitions of K and a function neighbors : K → 2P that associates peers with
their neighbors in graph G.

The function neighbors can be either deterministic or randomized, which
leads to the further distinction among non-randomized and randomized struc-
tured P2P networks. Using the metric of the key space, typically peers maintain
short-range links to all peers with neighboring keys and in addition long-range
links to some selected peers, where the probability of having a long-range link
to a peer decreases with the distance to the peer’s key. The standard approach
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that has been used in most of the structured P2P networks is to choose long-
range links with exponentially decreasing probability depending on the distance.
Using the routing network peers then forward resource requests in a directed
manner to the closest peers that they know from their routing table. The stan-
dard structured P2P overlay networks achieve by virtue of this construction
lookup with a number of messages logarithmic in the size of network by using
routing tables which are also logarithmic in the size of the network. However,
there are also some works that achieve constant outdegree graph topologies
and consequently constant sized routing tables, e.g Viceroy Malkhi, Naor, and
Ratajczak (2002).

The specific designs of these structures, frequently termed as distributed
hash tables, depend on the choice of key space, key partitioning, and linking
strategy. They have been subject of intensive research over the recent years and
resulted in numerous designs of structured overlay networks. We summarize
in Table 2 the main properties of some representative solutions that have been
proposed.
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Table 2: Main properties of various structured P2P systems

For constructing and maintaining a structured P2P network peers have to
deal in particular with the problem of node joins and failures. Since the freedom
to choose neighbors in a structured P2P network is constrained by the conditions
imposed by the function neighbors, maintenance algorithms are required to re-
establish the consistency of routing tables in the presence of network dynamics.
Depending on the type of guarantees given by the network different determinis-
tic and probabilistic maintenance strategies have been developed. Maintenance
actions can be triggered by various events, such as periodical node joins and
leaves or routing failures due to inconsistent routing tables. The different main-
tenance strategies trade-off maintenance cost versus degree of consistency and
thus failure resilience of the network.

Despite the apparent advantages of structured P2P networks in terms of
reducing network bandwidth consumption for resource location one has to un-
derstand that this comes at various costs. First, dependencies among peers are
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introduced and network maintenance is required as has been described before.
The main reason to keep the sizes of routing tables small is actually not the
required storage overhead, but rather the maintenance cost induced by hav-
ing large routing tables. Second, as opposed to unstructured P2P networks,
changes to the resources themselves, i.e. insertions, updates and deletions, are
not localized to the peers that maintain the resources, but affect other peers
as well. Third, resource request are constrained to simple key-based lookups.
Even slight generalizations, such as requesting ranges of keys require non-trivial
algorithms for implementation. From another perspective, in structured P2P
networks the peer autonomy is more constrained as in unstructured P2P net-
works. This is the result of requiring commitments of peers to manage specific
resources.

B Game Theory Overview

B.1 Game Theory Basics

Game theory describes mathematical models of conflicting and cooperative in-
teractions between rational, utility maximizing, decision makers (players in the
parlance of game theory). The presence of interaction is the most important
ingredient of this definition - the utilities of the players are affected not only by
their own strategic choices but also by those of all other players as well.

In this text we will concentrate on, so called, strategic games, in which players
choose their actions simultaneously, at the same time.

Definition B.1 (Strategic game). A strategic game consists of: a set of
players N = {1, 2, . . . , n}; for each player i, a pure strategy (or action) set Ai
and a utility function ui : A→ R, where A = ×i∈NAi.

The definition is illustrated in the following example.

Example B.1 (Stag hunt game). Consider a situation two hunters might
face. Assume that they have the possibilities to hunt a stag (together) or hares
(separately). Thus we have that the set of players is two-element set N = {1, 2}
and that the players’ strategy sets are A1 = A2 = {Stag, Hare}. To have a
fully defined game we need also to define the players’ utility functions on the
set A1×A2. They can be neatly presented by a table, as done in Table 3. Each
cell in the table contains two entries corresponding to the utilities players 1 and
2 respectively receive when the corresponding combination of actions has been
chosen.

The above definition also introduces some notational conventions we will be
using. Apart from the symbols given there we use the symbol ∆(B) to denote
the set of all probability distribution over the set B. For any player i the set
A i = ∆(Ai) will be called the set of player i’s mixed strategies. The set of
all mixed strategy combinations, ×i∈N∆(Ai) will be denoted A . Any mixed
strategy profile α = (α1, . . . , αn) ∈ A induces a probability distribution over
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Table 3: Two-player Stag Hunt game.

the set of all pure strategy profiles A in the obvious way. For any such mixed
strategy profile α we define ui(α) as the expected value of player i’s payoff with
respect to this distribution. Also, any strategy profile (a1, . . . , ai, . . . , an) will
be denoted (ai, a−i) when we want to emphasize that player i uses action ai.

We now ask the question: what strategies maximize the players’ utilities?
This questions is central to game theory and the solution concept game theorists
prescribe is that of Nash equlibrium, formally defined as follows.

Definition B.2 (Nash equilibrium). A strategy profile α∗ = (α∗1, . . . , α
∗

n) ∈
A is a Nash equilibrium if no player can gain by unilateraly deviating. So,
denoting α∗ = (α∗i , α

∗

−i), we have that for any player i and any of her strategies
αi 6= α∗i the following must be satisfied:

ui(α
∗

i , α
∗

−i) ≥ ui(αi, α
∗

−i) (B.1)

By inspecting Table 3 we can see that the profiles (Stag, Stag) and (Hare,
Hare) are Nash equlibria of the stag hunt game. For instance, given that one
player plays Stag the other player cannot increase his utility by switching to
any randomization between Stag and Hare that puts a positive probability on
Hare. But, apart from these two there is another equilibrium involving mixed
strategies, in which both players randomize between their two pure strategies
with probabilities of 0.5.

The question of the equilibria existence is resolved by the following theorem.

Theorem B.1. For any finite game there is at least one Nash equilibrium in
A = ×i∈NAi.

B.1.1 Bayesian Games

In many games of interest different players may have different information
about some important aspects of the game. To model such situations the con-
cept of Bayesian games (or games with incomplete information), introduced
by Harsanyi (1968), has been widely adopted. Informally, central to Bayesian
games are types of the players by which the players’ private information is
modeled. Each player learns his own type at the beginning but the types of
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other players remain unknown to him. The utility functions now specify ordi-
nal payoffs for combinations of chosen strategies and realized types rather than
strategies only. Another important assumption is that the types are drawn from
a common prior probability distribution, known to and agreed upon by all the
players, so that every player can derive the probability distributions of the com-
binations of the other players’ types given any of his own types. Then, the goal
of every player is to maximize his payoff for any of his types. The concept of
Bayesian game and its equlibria are defined formally as follows.

Definition B.3 (Bayesian game). A Bayesian game consists of a set of
players N = {1, 2, . . . , n} and for each player i: a set of possible actions Ai
and a set of possible types Ti, a probability function pi : Ti → ∆(T−i), where
T−i = ×j∈N−iTj and a utility function ui : A×T → R, where A = ×i∈NAi and
T = ×i∈NTi.

Definition B.4. Any strategy profile σ∗ ∈ ×i∈N ×ti∈Ti
∆(Ai) is a Bayesian

equlibrium if for any type ti of any player i mixed strategy σ∗(ai|ti) optimizes
player i’s expected payoff where the expectation is taken over all combinations
of types of the other players.

Example B.2 (First-price sealed-bid auction). Auctions present a typical
example of Bayesian games. In this example we will describe the first price
sealed-bid auction. Let us assume that n bidders are competing to buy an
auctioned item by submitting sealed bids. The owner of highest bid wins and
pays the price of his bid. Assume also that any bidder has a private valuation
of the item, denoted vi, and that each player’s valuation is independent of those
of the other players. However, the distribution from which the valuations are
drawn are known. Here we assume the uniform distribution on the interval
[0, 1]. So, it should be obvious that this makes a Bayesian game in which the
item valuations are the players’ types and all distributions pi for any player i
are uniform on [0, 1]. The utility functions are such that for any player i and
any valuation-bid tuple (v, b) = (v1, . . . , vn, b1, . . . , bn)

ui(v, b) =

{

vi − bi if bi = max(b1, . . . , bn)
0 otherwise.

It can be shown that in this setting the optimal bid for any bidder i with
valuation vi is

n−1
n
vi. In other words, the equilibrium is made of the set of n

functions B(v) = n−1
n
v for n bidders and v ∈ [0, 1].

B.2 Repeated Games

To model repeated interactions game theorists use the concept of repeated games
in which the same stage game is repeated finite or infinite number of times
whereby the sets of players who participate in the stages can vary from stage
to stage. In this section our primary concern will be infinitely repeated games
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with discounting, in which the stage game is repeated infinitely many times
and the players discount their future payoffs as compared to those received at
present. Our main goal will be to show that repeated play can differ greatly
from one-shot encounters in the sense that it can allow for a whole range of
equilibria which are not normally found in the constituent, one-shot games.

To define a repeated game and its equilibria we need to define the players’
strategy sets and payoffs for the entire repeated game given the strategies and
payoffs of its constituent stage game. Therefore, assume that the stage game
is an n-player strategic form game and that the action set of each player i, Ai,
is finite. Let The ui denote the stage game payff of player i. Assuming that
the players observe each other’s realized pure strategies at the end of each stage
we can proceed as follows: let at = (at1, . . . , a

t
n) be the pure strategy profile

realized in period t and ht = (a0, . . . , at−1) the history of these profiles for all
periods before t. Let, finally, H t denote the set of all such period-t histories.
Then a period-t mixed strategy of player i in the repeated game is any mapping
σti : H

t → Ai. A mixed strategy player i for the whole repeated game is then a
sequence of such maps σi = {σ

t
i}

∞

t=1.
To define the repeated game payoffs we must have a way to compare, possibly

infinite, sequences of the stage game payoffs. In this text we concentrate on so
called discounting criterion for this purpose. So if uti is the payoff player i

receives in the period t then the δ-discounted (0 ≤ δ < 1) payoff of this player
is defined as:

gi = (1− δ)

∞
∑

t=0

δtuti (B.2)

The reasoning behind this definition is that the players see future gains as
less valuable than those of the present or that there is uncertainty regarding the
ending time of the game with 1−δ being the probability that the next stage will
be the last. For obvious reasons, a repeated game in which the players discount
their future payoffs with a common discounting factor δ will be denoted G(δ).

Any strategy profile σ = ({σt1}
∞

t=1, . . . , {σ
t
N}

∞

t=1) induces a probability dis-
tribution over the set of all infinite histories. We define the players’ payoffs in
the repeated game as the expected values of δ-discounted payoffs the players
receive when the paths of play follow each of these histories. With this clarifi-
cation we finally define that a Nash equilibrium of the repeated game G(δ) is
every strategy profile ({σt1}

∞

t=1, . . . , {σ
t
N}

∞

t=1) such that no player can gain by
switching to a different strategy given that all other players implement it.

An important problem in the theory of repeated games is what payoff sets
can be supported in equilibria of the repeated game given the structure of its
constituent, stage game. Intuitively, because the players can condition their
future play on the past play of their opponents and retaliate if the opponents
do not play in a specific way, many payoff allocations, not supportable in the
one shot game, might become supported in an equilibrium of the repeated game
provided the future is not discounted too much. The theorems formalizing this
intuition are known in the literature as folk theorems. As seen from the per-
spective of engineering of online reputation mechanisms, they are important as
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the starting points determining what outcomes are feasible for a given mecha-
nism. If socially desirable outcomes are not among the feasible ones then the
mechanism must be redesigned as to include them.

We will state here a folk theorem corresponding to the most commonly
studied type of repeated interactions: the one with all players participating in
all stages of the game (hereafter such players will be termed long-run). To state
it precisely we need to introduce several notions. We define the minmax value
of player i to be

vi = min
α−i∈×j∈N−iAj

max
αi∈Ai

ui(αi, α−i). (B.3)

Thus, player i’s minmax value is the lowest payoff he can achieve in the stage
game provided he correctly foresees the choice of actions of his opponents. Any
payoff vi > vi is called individually rational for player i.

Further, putting u(a) = (u1(a), . . . , un(a)), we can define the set of feasible
payoffs as

V = convex hull{v|∃a ∈ A s.t. u(a) = v}. (B.4)

Theorem B.2 (Fudenberg and Maskin (1986)). For any feasible payoff
allocation v that is individually rational for all players there is a δ such that for
all δ ∈ (δ, 1) there is a Nash equilibrium of the repeated game G(δ) with payoffs
v.

Example B.3. As an example, let us apply this theorem to the Prisoner’s
Dilemma game, shown in Table 4. It is easy to see that the minmax values
of both players are v1 = v2 = 1 and that the payoff allocation (5, 5) is in
the set V . Thus, we can conclude that the socially most desirable outcome of
both players cooperating in every stage of the repeated game is possible in long
term interactions provided the players are sufficiently patient (their discount
factors are sufficiently close to 1). It is also easy to construct such a strategy
profile that results in this cooperative equilibrium. For instance, if the players
implement the strategy “cooperate as long as no player cheated in the past
stages, otherwise cheat” then no player has incentive to deviate if his short-
term gain from the deviation is less then his long-term gain from cooperation.
This will be the case if receiving 5 utils in every stage is better than receiving 6
today and 1 in all future stages, or if 5 ≥ (1− δ)6+ δ, which implies δ ≥ 1

5 . For
an elaborate exposition of this phenomenon and its empirical confirmations we
refer to Axelrod (1984).

We stress that similar results obtain for other types of repeated interactions
in which some players may participate at specific stages only, as opposed to
the participation in the whole repeated game. Of particular importance for
application to online world is the special case with one long-run player facing a
(possibly infinite) sequence of short-run players each of whom plays the stage
game only once as opposed to the long-run player who stays in the game till its
end. This model closely approximates a typical online setting, P2P in particular,
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Table 4: Payoff Matrix of the Prisoner’s Dilemma Game

in which a large number of participants makes multiple interactions between
the same players highly improbable. However, for the lack of space, we will not
cite here the folk theorem corresponding to this setting. Instead, we point the
interested readers to Fudenberg, Kreps, and Maskin (1990).
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