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Abstract

The spi calculus is an extension of the pi calculus with cryptographic primitives, designed
for the verification of cryptographic protocols. Due to the extension, the naive adaptation
of labeled bisimulations for the pi calculus is too strong to be useful for the purpose of veri-
fication. Instead, as a viable alternative, several “environment-sensitive” bisimulations have
been proposed. In this paper we formally study the differences between these bisimulations.

1 Introduction

The spi calculus, proposed by Abadi & Gordon (1999) as an extension of the pi calculus by Milner,
Parrow & Walker (1992), is a process calculus designed for the description and formal verification
of cryptographic protocols.

According to Abadi & Gordon (1999), many correctness properties for cryptographic protocols
are naturally expressed through may-testing equivalences between certain process terms, but proofs
of such properties are notoriously hard due to the requirement of infinitary quantifications (usually
quantifications over infinitely many process contexts). In contrast, the standard bisimulation-
based notion of equivalence due to Park (1981) on process terms provides a coinductive proof
technique, usually avoiding infinitary quantifications. The interest in bisimulation notions for the
spi calculus follows from the fact that bisimilarity (usually defined as the largest bisimulation) is
a sound, although not complete, approximation to the above-mentioned may-testing equivalence.

Bisimilarity is an observational equivalence, based on the idea of an environment observing a
pair of processes to see whether it may distinguish one from the other. The environment typically
observes the labelled transition system derived from the operational semantics of processes. In
usual process calculi, the two points of view of an observing environment and of an observed
process are symmetric: any transition that a process can do according to its semantics is also
observable by the environment. This symmetry is no longer valid in the case of the spi calculus.

In Figure 1, we show some transitions intended to show that the labelled transition system of the
spi calculus, in contrast to the pi calculus, contains what one may call “meaningless transitions”.
The various labels represent the input a b of a name b along channel a, the output @b of a message b
along channel a, or the bound counterpart (vb)ab for a fresh name b, and the (bound) output
(vbk) a(Eg (b)) along channel a of a message Ex(b) representing the encryption of cleartext b using
key k. The displayed transitions represent the possible observations about a process from the point
of view of an environment interacting with the process. For example, an environment observing P

might see the bound output (vb) @b, upon which the environment performs a corresponding input
b)ab
operation. After the transition P & P’, the fresh name b received by the environment may
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Figure 1: Environment Transitions in pi and spi calculi

be used to interact with P’ as seen in Figure 1. Essentially, once the environment receives a name,
it may freely use it in interactions.

In the spi calculus there are also more complex transitions, such as in the transition from S
to S’ above, where exchanged messages are encrypted. Note that both the key & and the datum b
are bound, but when S transmits the encrypted message neither the key nor the clear text b are
accessible to the environment. Therefore, none of the dotted transitions are possible for S’ in
interaction with an environment: since the environment does not know the key k itself, it cannot
interact with S’ using the cleartext (the name b) hidden inside the ciphertext Eg(b), neither to
communicate on the channel b nor to send back b to the process. However, this becomes possible
when the key & is sent in the clear to the environment, as in the transition from S’ to S”.

Summing up the previous examples, a proper treatment of transitions with respect to bisim-
ulation in the spi calculus must, in contrast to the pi calculus, explicitly take into account the
knowledge of an environment about a process. As a means to capture this environment knowledge,
the notion of environment-sensitive bisimulation has been developed for the spi calculus, in various
styles:

e Abadi & Gordon (1998) introduced framed bisimulation by imposing on every bisimulation
pair a common frame-theory pair that represents the knowledge of the environment about
the pair. The frame is the set of names (channels, keys) that the environment has learned
so far, while the theory is the set of pairs of non-name data items received from the pair of
processes during the bisimulation game that the environment must believe to be “the same”,
because it has no means (e.g., decryption keys) to distinguish them.

e Boreale, De Nicola & Pugliese (1999) introduced another notion under the generic name
of environment-sensitive bisimulation. Here, each of the processes in a bisimulation pair is
accompanied by an environment, which (roughly) lists the messages received from the process
in the past. In this paper, we call their variant alley bisimulation, pictorially reminding of
the separate environments. To express the identification of non-distinguishable data items,
an explicit condition of equivalence on the environments is imposed.

e Elkjeer, Hohle, Hiittel & Overgaard (1999) introduced fenced bisimulation, an approximation
to framed bisimulation by getting rid of one of its infinitary quantifications.

All of the above notions of bisimulation are, assuming that the observing environments know all
free names of the related processes, sound approximations of may-testing equivalence.

Comparing Bisimulations

The immediate questions on the various competing notions of bisimulation are (1) how they relate
to each other, and (2) how each of them relates to barbed equivalence, which is a uniformly defined
contextual notion of bisimulation that is usually considered prime among all bisimilarities (Milner
& Sangiorgi 1992). So far, these questions have only been treated in parts and not always fully
correctly.
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Figure 2: Comparing Bisimulations

e Boreale et al. (1999) proved that alley bisimilarity is a sound approximation of barbed
equivalence. However, as we show in Section 3.4, their proof was flawed (although recently
repaired by Boreale (2004)). Moreover, alley bisimilarity is complete w.r.t. barbed equiva-
lence for the class of structurally image-finite processes, i.e., processes that are image-finite
up to structural equivalence.

e Abadi & Gordon (1998) proved framed bisimilarity sound with respect to barbed equivalence,
but were aware that their notion of framed bisimulation is strictly stronger than barbed
equivalence. Their conjectured counterexample uses pairing; in the absence of pairing, no
result has been published.

e Elkjeer et al. (1999) proposed that fenced bisimulation would coincide with framed bisimu-
lation, but their proof is also flawed and the set inclusion only holds in one direction (see
Section 4.1): framed bisimilarity is not contained in fenced bisimilarity.

e Two different notions of alley bisimilarity were defined by Boreale et al. (1999) (The journal
version (Boreale, De Nicola & Pugliese 2002) only contains one of the notions.). The weaker
notion, alley bisimilarity, is complete with respect to barbed equivalence (see above), the
stronger notion, called trellis bisimilarity in this paper, was shown by Frendrup, Hiittel &
Jensen (2001) to coincide with fenced bisimilarity.

As in the pi-calculus (Milner et al. 1992), bisimulations exist in early and late variants, as well
as strong and weak. As the weak early alley bisimulation has been proven to have a significant
degree of completeness with respect to barbed equivalence we study the weak early variants of all
bisimulations. However, the results of this paper should apply without modifications to strong
and/or late bisimulations.

In Figure 2, we pictorially summarise the various relations, which also lets us more easily
explain the scientific contribution of the current paper.

Contributions

In this paper, we formally highlight the differences between the above-mentioned environment-
sensitive bisimulations by introducing a general framework for comparing environment-sensitive
bisimilarities and an improved version of framed bisimulation, called hedged bisimulation. In
summary, all of the question marks in Figure 2 are supported by proofs for the positive results
and both counterexamples and disproofs for the negative results. In particular, we prove that
hedged bisimulation coincides with alley bisimulation, and thus also with barbed equivalence.
However, being defined in the style of framed and fenced bisimulation, hedged bisimulation allows
us to easier formalise and more intuitively assess the differences between the earlier notions, as
shown in Figure 2. We also exhibit, by means of a counterexample, that fenced bisimulation is not
complete w.r.t. framed bisimulation, contradicting the results of Elkjeer et al. (1999). To further
clarify the structural differences between the bisimilarities, we first describe the bisimilarities
as categories. Then, we attempt to relate these categories in terms of embedding functors and
equivalences. To obtain these results, we also need to interpret up-to techniques in this setting.



Related Work

The spi calculus fragment studied in this paper has symmetric encryption and pairing as construc-
tors for composite messages. Cortier (2002) extends alley bisimulation to a more general calculus.
The additions include public key encryption, composite keys, arbitrary regular guards and func-
tion symbols. In spite of this involved calculus, environment equivalence is decidable because of
the regularity of the guards and an equational theory that only admits functions that are either
one-way, completely invertible or partially invertible (i.e., encryption).

An even more general setting, with arbitrary term constructors and equivalence was studied by
Abadi & Fournet (2001). There, the focus is on manual studies, as term equivalence may turn out
to be undecidable due to the underlying equational theory. Environment knowledge is represented
by substitutions, resembling the environments of alley bisimulation.

Hiittel (2002) proved that framed bisimilarity is decidable for finite spi, a spi calculus without
complex keys, replication and recursion. He also showed that finite-control (i.e., recursion, parallel
composition only at the top level) spi calculus is Turing-powerful, as opposed to finite-control pi
calculus.

Overview

The spi calculus used in this paper is presented in Section 2. Definitions of the environment-
sensitive bisimulations and some relevant up-to techniques can be found in Section 3. In Section 4
we exhibit some examples showing the differences between framed, fenced and hedged bisimilar-
ities. A framework for relating environment-sensitive bisimilarities is given in Section 5. In
Section 6 we proceed by comparing the different ways of defining environments. The main work
is done in Section 7, where we show that hedged bisimulation is equivalent to alley bisimulation
and compare hedged bisimulation to framed and fenced bisimulation. Moreover, we disprove the
existence of any “fully abstract” relations between many of the notions, further reinforcing the
counterexamples of Section 4.

In the Appendix, we briefly discuss the addition of pairing to the calculus. Finally, we compare
the bisimulations as categories, and express some up-to techniques in this setting.

2 Language

The spi calculus used in this paper is the same as used by Boreale et al. (2002), with some changes
in notation. We also build on the same assumptions on the underlying system of shared-key
cryptography, which read as follows:

1. Perfect Encryption: A ciphertext Ex(M), i.e., a message M encrypted under a key k, can
only be decrypted using k. The only way to produce the ciphertext Ex (M) is to encrypt M
under k. If k is secret, no attacker can guess or forge k.

2. There is enough redundancy in the structure of messages to tell whether decryption of a
message with a given key has actually succeeded or not.

3. There is enough redundancy in the structure of messages to tell their role (name or compound
ciphertext).

4. The only way to form a new key is to get a fresh name from a primitive set of names.

Assumption 3 is necessary since the spi-calculus only permits communications on channels
corresponding to a name (i.e., a encrypted message cannot be used as a channel). To explicitly
check for this distinction we have a guard is_name(d), the semantics of which can be found in
Table 2 on page 6.



a,b,c....k,l,m,n... x,y, 2 names N

¢n == a | E{ | DcQ) expressions €
) = a | Es(0) decryption-free expressions D
M,N == a | Eip(M) messages M
o0 a= & | ohe | o guards G
| letz=(in¢ (decryption)
| is_name(9) (is a name)
| [6=10] (equality)
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|  4(x).P (input prefix)
| 8(6).P (output prefix)
| P+P (choice)
| P|P (parallel)
|  (va)P (restriction)
| P (replication)
| oP (boolean guard)
| letz=(inP (decryption)
Table 1: Syntax of the spi calculus
2.1 Syntax

We assume a countably infinite set A/ of names. Names are untyped, meaning that the same name
can be used as a channel, a key, a variable or the clear-text of a message. The lower case letters
a,b,c,k,l,m,n, x,y,z are used to range over names. In examples, a, b, c are used for channels, k, [
for keys, m,n for messages and x,y, z for variables.

The syntax of expressions, guards, and processes is given in Table 1.

In contrast to the pi calculus, the spi calculus offers next to mere names another kind of trans-
missible messages, namely ciphertexts, which are provided by the addition of primitive constructs
to encrypt (E.(+)) and decrypt (D.()) data using a shared-key cryptographic system. Encryptions
can be arbitrarily nested, but (in contrast to (Abadi & Gordon 1999)) only proper names can be
used as encryption keys. While expressions ¢ are formed arbitrarily using the encryption and de-
cryption operators, messages M represent proper decryption-free ciphertexts where the encryption
keys are names. The role of decryption-free expressions ¢ is to formalise that decryption construc-
tors can only occur within let-constructs, as indicated by the occurrences of . This property will
be preserved by the operational semantics later on.

Logical formulae ¢ generalise the usual equality operator of the pi calculus by conjunction
and negation. Moreover, the predicate is_name(d) tests for the format of §, i.e., whether it is a
plain name or not. The formula let z = ¢ in ¢ binds the value of the expression ¢, computed by
evaluation as defined in Subsection 2.2, to the name z within formula ¢.

Processes are formed as in the pi calculus, except for the following aspects:

e Input and output forms have to take into account that the channel and message positions
might be (decryption-free) expressions; however, in a channel position only names make
sense, otherwise the process will be stuck.

e Guarded processes generalise the standard matching construct.

e There is a let-construct, both in guards and in processes, which is the only place where
message decomposition occurs.

For the main text we leave out the treatment of tuples in messages; see the Appendix for details
on this extension.

Free and bound names of terms are inductively defined as expected: a is bound in “(rva) P”, x is
bound in “§(x).P”, in “let = ¢ in P”, and in “let x = ¢ in ¢”. Two processes are a-equivalent if
they can be made equal by conflict-free renaming of bound names. Substitutions ¢ are mappings
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Table 2: Evaluation (decryption) in the spi calculus

{M/x} from names = to messages M. Substitutions are applied to processes, expressions and
guards in the straightforward way, obeying the usual assumption that name-capture is avoided
through implicit a-conversion: for example, P {M/m} replaces all free occurrences of = in P by M,
renaming bound names in P where needed.

2.2 Semantics

To define operational semantics we need to be able to evaluate both expressions and boolean
guards. The evaluation function for expressions [-] : € — MU{L} and guards [-] : G — {tt, ff}
is defined recursively according to Table 2.

The operational semantics (see Table 3) follows Boreale et al. (2002). It uses an early input
style semantics, where the actions are given by pu:=7 | a M | (vb)@M. In (vb)@M, b is a tuple of
fresh names, and is omitted when empty. The semantics is standard from the pi calculus, except for
the rules (GUARD) and (LET) which provide the only attempts to decrypt messages. A process ¢P
behaves like P provided that ¢ evaluates to true; otherwise, ¢ P is stuck. A process let z = ( in P

behaves like P{[[C]]/Z} provided that the evaluation of { succeeds; otherwise, let z = ( in P is stuck.
We do not give the symmetric variants of (PAR), (COM) and (SuMm). By (ALP) we have that a-
equivalent processes have the same transitions, so all relations on processes based on transitions
will also be defined up to a-equivalence.

3 Environment-Sensitive Bisimulations

As motivated in the Introduction, bisimulations in the spi calculus must take into account the
knowledge of the observing environment—potentially any kind of malicious attacker—at any mo-
ment in time. Since the interaction between an environment and a process is fully described by
the exchange of messages, it is important to spell out the power of attackers in the spi calculus
model. Inspired by Dolev & Yao (1983), (1) the environment learns new messages by reading any
kind of data that the process sends on public channels; (2) the environment may then independent
of any further message exchange update its knowledge by

detecting whether a known message is a name or an encrypted message,
using known names to decrypt known messages (usually called analysis),
comparing known messages to other known messages,

storing known messages for later comparison, encryption or decryption;
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Table 3: Operational semantics of the spi calculus

(3) the environment may then send on public channels any message that it is able to create (a
procedure that is usually called synthesis) by using its current knowledge, plus fresh names that
it might create itself. Summing up, in environments we need to represent knowledge in such a
way that we may at any time calculate from this knowledge those messages that it can currently
synthesise according to the above operations.

One straightforward approach is to jointly model the behaviour of a pair ep - P, where ep
contains the current knowledge as the list of all messages ever received by the environment from
the observed process that is now in state P. Any input action of P is governed by the environment
in that we consider inputs for only those messages that can be synthesised by ep. Any output
action of P resulting in P’ is used to increase the knowledge of ep resulting in ep, by simply
appending the new message to the list.

An alternative approach is to represent the knowledge “more efficiently” in irreducible form
by carrying out the full analysis after every process output. An advantage is that the required
data structure becomes smaller, and that the synthesis can be carried out directly. Note that we
cannot represent the full synthesis, because it usually is infinite.

The mode of observation changes slightly under the regime of bisimulation. Instead of observing
only a single process (as in ep - P), an environment now observes a pair of processes “at the same
time” (as in epg F P S @, where S denotes a bisimulation relation, and where epg simply may
be a pair (ep,eq) of single environments). The spi calculus principle of distinguishing between
possessing a message (e.g., Er(a)) and knowing it (e.g., knowing that k is the encryption key,
such that a becomes known as well) comes into play again: while in standard process calculi it
is required that the messages emitted by processes P and @) must coincide syntactically, the spi
calculus must be more permissive. A common environment for the bisimulation game must permit
different messages to be sent to the environment by P and @, but only under the requirement that
they lead to corresponding analyses in the respective environment component of epg. This idea
is captured by the notion of consistency which guarantees that an environment can not decrypt
a message received from P unless it can also decrypt the corresponding message received from Q.
As a consequence, environments must also properly keep track of the association of the messages
received from P and Q.



Depending on the type of the data structure e as introduced below (frame-theory pairs, hedges,
or substitution pairs) the notions of analysis, synthesis, and consistency appear in different forms
or only implicitly, which renders their comparison non-trivial. Irreducibility may be enforced on
the data structure. Synthesis may be expressed explicitly by means of substitution on expressions.

To relate two processes P and @), one usually wants to find a bisimulation S such thate P S @
for some environment e that knows at least all the free names of both processes. Free names are
public, so under a worst case assumption a malicious attacker might take advantage of any and
all of them.

We use some meta-variables for denoting bisimilarities and their corresponding environments.
Let ~x and =, denote bisimilarities with corresponding environments ey € Ex and e, € FEj.
Whenever R C E x P x P is an environment-sensitive relation for some kind of environments E
we define R"1:= { (e71,Q, P) | (e, P,Q) € R} for some suitably defined inversed environment e~
We write that e - P R Q if (e, P,Q) € R, otherwise e I/ P R Q. R is symmetric if R = R™L.

3.1 Framed and Fenced Bisimulations

Framed bisimulation, as introduced by Abadi & Gordon (1998), was the first environment-sensitive
bisimulation proposed for the spi calculus. The original definition was for a strong and late
bisimulation. Here, we study a weak and early variant in order to sharpen the comparison with
the bisimulation defined by Boreale et al. (1999, 2002). Abadi and Gordon also used a different
calculus, with a complex set of messages containing integers, pairing and general encryption keys
but without general guards, choice and general “let”. However, the examples distinguishing the
bisimularities, that we will exhibit in Section 4, can be expressed in the original spi calculus (Abadi
& Gordon 1999).

In framed bisimulation the environment consists of a frame and a theory. A frame is a set of
names known to the environment. A theory is a set of pairs of messages considered equivalent by
the environment.

Definition 3.1.1 A frame is a finite subset of N'. A theory is a finite subset of M x M. FT is the
set of all frame-theory pairs. If B - M is  finite then we define
Idg := {(b,b) | b € B}. Ifth is a theory, we define th™" := {(N,M) | (M,N) € th},
mi(th) == {M | (M,N) € th} and ma(th) := {N | (M,N) € th}. The names of a theory is
defined as n(th) := n(m (th) U ma(th)).

A frame-theory pair is consistent if the theory only contains pairs of encrypted messages that
the environment can not decrypt. Moreover, the theory may not relate a given message to two
different messages.

Definition 3.1.2 A frame-theory pair (fr,th) is consistent iff for all messages M and N such
that (M, N) € th we have that

1. M,NgN
2. If (M',N") € th then M =M’ < N =N’
3. If M = Eo(M') and N = Ep(N') then frn{a,b} = 0.

Example 3.1.3 One consistent and three inconsistent frame-theory pairs:

({a,b}, {(Ex(a),Ex(a)), (Ei(a),Ei(b))}) is consistent.

(fr, th) = ({a, b}, {(Ex(a), k)}) violates condition 1 for consistency.
(fr',th’) = ({a, b}, {(Er(a), Ey(a))}) violates condition 3 for consistency.
(frufr’,thuth’) = ({a, b}, {(Ex(a), k), (Ex(a),Es(a))}) violates all three

conditions for consistency.



The synthesis S(-) of a frame-theory pair is the set of message pairs constructed by encrypting
message pairs from the theory with keys from the frame. This models the ability of the intruder
to construct new messages from previously received ones. The environment considers equivalent
any message pair in the synthesis.

Definition 3.1.4 If (fr, th) is a frame-theory pair, we let S(fr, th) be the smallest subset of M x M
containing thUldg and satisfying

(M, N) € S(fr, th) (a,b) € S(fr,th)

(sYN-BNC) (Eq (M), Eyp(N)) € S(fr, th)

We write (fr,th) = M < N for (M,N) € S(fr, th); otherwise (fr,th) t/ M < N.
To compare the knowledge of environments we use the following pre-order:

Definition 3.1.5 (fr,th) < (fr’, th’) iff S(fr,th) C S(fr’, th’). Two frame-theory pairs (fr,th) and
(fr',th’) are M-equivalent, written (fr,th) = (fr’,th’), when S(fr,th) = S(fr’, th’).

A framed process pair is a triple ((fr,th), P,Q) where fr is a frame, th is a theory and P and
Q are processes. A framed relation R is a set of framed process pairs. R is consistent if (fr, th) is
consistent whenever (fr, th) - P R Q. Now we have enough notation to define framed bisimilarity.

Definition 3.1.6 A consistent framed relation R is a framed simulation if whenever
(fr,th) F P R Q we have that

1. If P 5 P’ then there exists Q' such that Q = Q' and (fr,th) - P’ R Q.

2. f P M. P aefr, BCN is finite, BN (ln(P,Q) U frUn(th)) = 0, N € M, and
(r UB,th)F M < N,
then there exists Q'
such that Q LN Q' and (fr UB,th) - P' R @’

3. 1P 2N pr g e fr, and (&} N (fa(P) U fr Un(m (th))) = 0,
then there exist Q', N,d with {d} N (fn(Q) U frUn(my(th))) =0 and
(a) Q :WN Q', and
(b) there exist fr' th” with (fr,th) < (ft',th’) and (ft',th’) - M < N
such that (fr' th') - P’ R Q'.

R is a framed bisimulation if both R and R~' are framed simulations.

It is worth noting how the new environment after output transitions is characterised: names and
message pairs can be freely added as long as the synthesis is extended conservatively and the new
output messages are kept indistinguishable.

Since any union of framed bisimulations is a framed bisimulation there exists a greatest framed
bisimulation, denoted =2¢, which is the union of all framed bisimulations.

Fenced bisimulation was defined by Elkjeer et al. (1999), who proved it to be a sound and
complete approximation to framed bisimulation. (In Section 4.1, we show that this is in fact not
the case.) The difference between the definitions is that fenced bisimulation replaces the existential
quantification over frames and theories in case 3.(b) of Definition 3.1.6 with a function £, defined in
Table 4, that extends a given frame-theory pair with a new pair of messages. The function £ works
by recursively decomposing the pair of received messages and adding the cores to the environment,
verifying consistency whenever anything has been added. Elkjaer et al. showed that £ creates a
manimal consistent extension whenever there exists one. Since our message grammar is simpler
the definition of & can be simplified for our case.



1. &(fr,th, M, N)

2. IF ((fr,th) H M < N) THEN RETURN (fr, th)
3. IF (M =N eN)DO

4. (fr',th’) := (fr U{M}, th)

5. A=10

6 FOR EACH (Ex(M"),E;(N’)) € th DO

7 IF (k=1= M) THEN DO

8 th' := th’ \{(Ex(M’),E;(N"))}

9. A= AU{(M',N")}
10. DONE
11. ELSIF (k=M vi= M) THEN RETURN L
12. DONE
13. FOR EACH (M',N’) € A DO
14. (fr',th') := £(f, th', M, N')
15. DONE
16. RETURN (', th)
17. ELSIF (M = Ex(M') AN = E;(N")) DO
18. IF (k=1 € fr) THEN RETURN £(fr, th, M’, N')
19. IF (k € frvl € fr) THEN RETURN L
20. RETURN (fr, th U{(M, N)})
21. DONE
22. RETURN L
23. DONE

Table 4: An algorithm for the function &

Definition 3.1.7 A consistent framed relation R is a fenced simulation if whenever
(fr,th) F P R Q we have that

1. Ifp =P
then there exists Q' such that
Q= Q" and (fr,th) - P R Q'.
2. fP M. P aefr, BC N is finite, BN (fn(P,Q) U frun(th)) = 0, N € M, and
(frUB,th) - M < N,
then there exists Q' such that
Q =% Q' and (frUB,th) - P' R '

3. 1P M bt and (&) N (fn(P) U frUn(m (th)) = 0

there exist Q', N,d with {d} N (fn(Q) U fr Un(my(th))) =

such that Q =220 ' and €(fr, th, M, N) - P' R Q'

R is a fenced bisimulation if both R and R~ are fenced simulations.

Since any union of fenced bisimulations is a fenced bisimulation there exists a greatest fenced
bisimulation, denoted ~4, which is the union of all fenced bisimulations.

3.2 Alley and Trellis Bisimulations

Boreale et al. (1999, 2002) define environment-sensitive semantics and a corresponding weak bisim-
ulation for the spi calculus. As mentioned earlier, their bisimulation is called alley in this paper
in order to distinguish it from the other bisimulations, which are also environment-sensitive. The
authors also prove that alley bisimulation is a sound approximation of barbed equivalence, and
that the approximation is complete for the class of “structurally image-finite” processes. They
also study a number of “up-to” techniques for this bisimulation.
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Formally, Boreale et al. define two levels of operational semantics, one for the behaviour of
processes, and another one for the corresponding behaviour of environments. Following Frendrup
et al. (2001), we adapt this formalisation to the style where the environment behaviour instead is
part of the definition of bisimulation.

In alley bisimulation, the environment is a pair of substitutions.

Definition 3.2.1 A substitution ¢ is a finite partial function N — M. We let the domain
dom(o) of a substitution be {x | IM € M : (x, M) € o}, and the range range(c) be {M | Jx € N :
(x, M) € o}. We write J{M/T} for o U{(z, M)}, where x ¢ dom(c). To add several messages,
we write U{Ml/wl, o Mefo Y for o U (2, M;) | i = 1,2,...,n} where the z; are assumed to
be pairwise different and not in dom(c). The set of free names of a substitution is defined as
fn(o) := n(range(c)). We denote by SS the set of all alleys, i.e., the set of all substitution pairs.

Any set of messages, e.g., the messages in the codomain of a substitution, might be reduced
via decryption using the notion of analysis.

Definition 3.2.2 The analysis A(S) and the irreducibles Z(S) of a set S C M are defined as
follows: A(S) is the smallest subset of M containing S and satisfying

E.(M) € A(S) ae€ A(S)
M e A(S)

(SET-DEC)

and Z(S) := A(S)\ {E.(M) | a € A(S) }.

The function core, (M) decrypts a message M as far as possible, i.e., peels out the core of M
using the knowledge of a substitution o. We use the shorthands Z (o) for Z (range(o)) and A(0o)
for A(range(o)). We define

cove, (M) {coreU(M’) if M = Eq(M') and o € Z(0)

M otherwise
Thus, we can decompose any message M into Ey, (- Ep, (Ep, (core, (M))) - - ) for any substitu-
tion o with {by...,b,} C Z(0); if core, (M) = E,(N), then a € Z(0). As a special case, we define
C(o,x) := core,(o(x)). Therefore, Z(o) = {C(0,z) | x € dom(o)}.

Boreale et al. define a substitution pair to be consistent if the two substitutions have the same
domain  and  enable the same  guards, ie., (o,p) is  consistent if
dom(c) = dom(p) and V¢ € G such that n(¢) C dom(co) we have [¢o] = [¢p]. They also
give an alternative characterisation, for this choice of guard and message language, that avoids
the infinite quantification over guards above. In this paper, we work with this alternative charac-
terisation, stating that a pair of substitutions is consistent if they allow us to decrypt corresponding
messages in precisely corresponding ways. In other words, it does not simply suffice to decrypt to
corresponding cores, but we must also use corresponding keys for the decryption.

Definition 3.2.3 A pair of substitutions (o, p) is consistent, written o ~ p, iff o and p have the
same domain {x1...,x,} and the following conditions hold:

1. C(o,z;) EN <= C(p,xi) N
2. C(o,z;) = C(o, ‘Tj) < C(p,zi) =Clp, ‘Tj)
3. For each i € {1,2,...,n} there is a tuple T = t1..t,, such that

O'(l‘z) = EC(a,w,,m)(' v EC(U,$L2) (EC(U,le)(C(Gv Iz>)) te )
p(l‘l) = EC(p,sz)(' e EC(p,wQ)(EC(p,le)(C(pa 731))) e )

11



Example 3.2.4 To illustrate this definition, we let

o :{a/w }{Ea(b)/gg }{Ek(Ea(C))/gJ }
p :{a/z }{Ea(b)/x }{Ek(Ek(d))/m }
- :{a/.l‘l}{EQ(C)/QCQ}{Ek(Ek(C))/xg}

Then we have that o ~ p, o ~ 7 and p ~ 7. Note that we must allow two different names (b and
¢) to correspond, in order to relate o and 7. If both o and p acquire knowledge of the key (name)

k we get that O’{k/y} ol p{k/y}, since they violate condition 8 of ~ by using different encryption

keys in the decryption of the third message. We also have that p{k/y} b T{k/y}, since they violate
condition 2 by having ¢ in Z(7) correspond to both b and d in I (p).

We also define a notion of the synthesis of a consistent substitution pair.

Definition 3.2.5 If 0 ~ p we write (o,p) F M <« N iff there is ( such that
n(¢) € dom(o), [Co] = M and [{p] = N. The synthesis of a consistent pair of substitutions is
defined as S(o,p) :={(M,N) | (o,p) F M — N}.

An alley process pair is a triple ((o, p), P, @) with dom(c) = dom(p). An alley relation R is a set
of alley process pairs. R is consistent if (o, p) F P R Q implies that o ~ p.

Definition 3.2.6 A consistent alley relation R is an alley simulation if whenever
(o,p) F PR Q the following conditions hold:

1. If P -5 P’ then there exists Q' such that Q = Q' and (o,p)F P RQ.

2. If P M P and there are ¢, b,b } 3
such that [Co ] = M with (o,p) = a < b, b=n(¢{) \ dom(c) and bN (P, Q,p,0) =0, then
there exist ¢, Q" with ¢ C N, [é| = [b], ¢ N dom(o) = 0
such that @ =X2% ' and (o{"}, p{"k}) F P' R Q.

3. If P O pr it f(P,o)N{c} =0, (o,p) Fa < b and x ¢ dom(o)

then there are Q', N, d with fn(Q, p) N {d} =0
wdbN ., M N , /
such that Q ——= Q' and (U{ /w},p{ /x})I—P R Q.

R is an alley bisimulation if both R and R~ are alley simulations.

Note the difference with respect to the previous bisimulations. Here, the environment is extended
simply by mechanically adding the new messages (for output) or the new names (for input), with-
out reducing the environment at all. This also gives a minimal extension (cf. fenced bisimulation)
since no extra information may be added. Since we use substitutions as environments, consistency
is vital. Otherwise, the creation of message pairs by applying both substitutions to the same
formula gives meaningless results.

Trellis bisimulation is a strengthened variant of alley bisimulation, studied (not under this
name) by Boreale et al. (1999). There, two different notions of consistency of environments were
proposed, of which one was rejected since it was considered too strong. It constitutes the basis
for trellis bisimulation.

Definition 3.2.7 A consistent pair of substitutions o ~ p is strongly consistent, written o ~ p,
if C(o,z) € N implies that C(o,z) = C(p, x).

This resembles the definition of consistency of frame-theory pairs in that two different names may
never be considered equal. Strong consistency has a corresponding bisimulation, called trellis in
this paper, that was defined and compared to fenced bisimulation by Frendrup et al. (2001). We
recapitulate and strengthen the results of the comparison in Section 7.

12



Definition 3.2.8 An alley relation R is strongly consistent if (o,p) = P R Q implies o ~, p. We
call trellis bisimulation a strongly consistent alley bisimulation.

Since any union of alley/trellis bisimulations is an alley/trellis bisimulation itself there ex-
ists a greatest alley/trellis bisimulation, denoted ~,/=2s, which is the union of all alley/trellis
bisimulations.

3.3 Hedged Bisimulation

Hedged bisimulation is introduced in this paper in order to clarify the differences between framed,
fenced, and alley bisimulation. Recall that alley bisimulation, unlike its counterparts, does not
force two processes to always send the same names; it rather remembers that the respective names
correspond to each other. The basic idea of hedges is to mimic the lack of correspondence in frame-
theory pairs by dropping the separate frame component, but to include corresponding names as
part of the theory. The resulting theory is then called a hedge.

Definition 3.3.1 A hedge is a theory, i.e., a finite subset of M x M. We denote by H the set
of all hedges. The synthesis S(-) of a hedge is defined as S(h) = S(0,h). We write h = M «— N
for (M,N) € S(h), ht/ M < N otherwise.

A hedge is consistent if the hedge only contains pairs of names and pairs of encrypted messages
that can not be decrypted by the environment. We also require that no message is considered to
be equivalent to two different messages.

Definition 3.3.2 A hedge h is consistent iff whenever (M,N) € h

1. MeN < NeN
2. If (M',N") € h then M = M’ < N =N’
3. If M =Eo(M') and N = Ep(N') then a & m1(h) and b & ma(h).

Example 3.3.3 A consistent hedge and four inconsistent hedges:

g =1{(a,a),(b,c),(c, k), (Ex(b),Ei(a))} is consistent.
( c
(
(

a,Eg(a)), (b,
a,c), (b, c), (Ex(b),Ei(a))} violates condition 2 for consistency.
a,a), (k,c), (Ex(b),Ei(a))} violates condition 3 for consistency.

), (Ex(0),E;(a))} violates condition 1 for consistency.

hi
ha
h3

{
{
{

Note that hi U hy U hg wviolates all three conditions. Indeed, if a hedge h is not consistent then
h UM is not consistent for any hedge h'.

The difference between a consistent hedge and a consistent frame-theory pair is that we do not
require that the hedge receives the same names from both processes, so they do not need to
use the same channels and encryption keys. The difference between a consistent hedge and a
consistent substitution pair is that the former only contains undecryptable messages (i.e., cores)
and that no duplicate message pairs are allowed. The third condition for consistent substitutions
(Definition 3.2.3) roughly corresponds to the definition of hedge analysis (cf. Lemma 6.4.2) .

Definition 3.3.4 The analysis A(h) and the irreducibles Z(h) of a hedge h are defined as follows:
A(h) is the smallest subset of M? containing h and satisfying
(Ea(M),Ey(N)) € A(h)  (a,b) € A(h)

(M,N) € A(h)

(HEDGE-DEC)

and T(h) < A(h)\ { (Eo(M),Ey(N)) | (a,b) € A(R) AM,N € M}.
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The analysis of hedges decrypts pairs of messages using pairs of names that are considered equiv-
alent by the environment. The resulting notion of irreducibles corresponds to the result of the
&-function of fenced bisimulation (cf. Lemma 6.3.3).

Now that the environment and notions of consistency are defined, the definition of hedged
bisimulation is straightforward. A hedged relation R is a subset of H x P x P. We say that R is
consistent if h = P R ) implies that h is consistent.

Definition 3.3.5 A consistent hedged relation R is a hedged simulation if whenever h+ P R Q
we have that

1. If P = P’ then there exists Q' such that Q = Q' and h+ P' R Q.

2. fP M P ha e b BCNis finite, BN (a(P,Q) Un(h)) = 0, N € M, and
hUIldg F M < N, then there exists @)’
such that Q =2 Q' and hUldg - P' R Q'.

3. 0P M bbb e b and {&) N (fa(P) Un(mi(h)) = 0

there exist Q', N,d with {d} N (fn(Q) Un(ma(h))) =
such that Q Ao N, Q andZ(hU{(M,N)}))FP' RQ'.
R is a hedged bisimulation if both R and R~ are hedged simulations.

On process output we use Z(:) to construct the new hedge after the transition. This entails
applying all decryptions that the environment can do, producing—as in fenced bisimulation—the
minimal extension of the hedge h with (M, N). As in the other bisimulations, this extension
may turn out to be inconsistent, signifying that the hedge has detected a difference between the
messages received from the process pair.

Since any union of hedged bisimulations is a hedged bisimulation there exists a greatest hedged
bisimulation, denoted &, which is the union of all hedged bisimulations.

3.4 Up-to techniques

Generally, in bisimulation proofs, one needs to exhibit that two related terms P S @ possess
matching transitions that allow them to proceed to terms P’ S ' that are again related by the
same relation S. For this to hold, the relation § is often required to be large or even infinite. So-
called “up-to techniques” are an effective way of reducing the size of the relation S to be exhibited
to prove two processes bisimilar: the obligation to proceed to related terms P’ S Q' is relaxed
by requiring only P’ F(S) Q' for some F(S) (typically, S C F(S)). For example, for ordinary
(i.e., non environment-sensitive) bisimulations, these techniques include “bisimulation up to strong
bisimilarity” for CCS by Milner (1989), where derivatives only need to be related by ~S~. An
up-to technique is sound for a certain bisimilarity, if one can prove that whenever two terms are
related using this up-to technique, then they are also bisimilar. Sangiorgi (1998) introduced the
concept of respectful up-to techniques, and proved them sound and composable.

In the context of environment-sensitive relations, up-to techniques naturally have to take into
account the additional effects on the environment component. Moreover, there are techniques (as
we will see below) that exclusively affect the environment component.

Boreale et al. (2002) defined several up-to techniques for alley bisimulation. Since these up-to
techniques were later used as the basis for a proof system (Boreale & Gorla 2002), it is interesting
to study them also for other bisimilarities. In the remainder of this section, we define and dis-
cuss up-to techniques for alley and hedged bisimulation; adapting the latter definition to framed
and fenced is straightforward. In Section 4 we then show some cases where up-to techniques are
not sound for framed and fenced bisimilarity. For alley bisimulation, we define up to forgetful-
ness (originally called weakening; we reserve that term for a more general notion), contraction,
additional! restriction, and injective renaming, closely following Boreale et al. (2002).

1We call this technique “up to additional restriction” to distinguish it from a different technique called “up to
restriction” by Milner et al. (1992).
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Definition 3.4.1 If R is an alley relation, we define Ry for t € {f,c,r,i} as the smallest alley
relation containing R and satisfying the following rules:

e up to forgetfulness:

{"} o F PR Q
(U7p) FP Rf Q

e up to contraction:

(0,p)F PR Q if thereisn: M =[no], N =[np]
(U{M/z}yp{N/w}) FPR.Q and (n(n) \ dom(c)) N fn(range(o), range(p), P,Q) = 0

e up to additional restriction:

(0,p) F PR Q ” (0,p) F PR Q
(o) F ) PR, @ T Enlaneclo) e o O

if n & n(range(p))

e up to injective renaming: We let a@{Ml/xl,. Mg b= Ml Mao Y Then

(07 p) P Ri Q
(o'Qo, p'@Qp) - Po’ R; Qp’

if o/, p" : N'— N are injective.

We use words (or tuples) t € {f,c,1,i}* (with the single letters {f,c,1,i} abbreviating the respec-
tive { forgetfulness, contraction, additional restriction, injective renaming }) to denote sequential
composition of up-to techniques by R. := R and R, = (Ri)u-

The concept of alley bisimulation up to t is defined in close analogy to Definition 38.2.6
as follows: all bisimulation clauses of this definition require the derivatives P’', Q' to satisfy
(c',p) B PP R Q for some o',p' depending on the current clause; for the up-to variant we
simply replace those conditions by the weaker (o/,p') - P' R; Q'.

We also define up-to techniques for hedged bisimulation.

Definition 3.4.2 We write h(o, p) for {(Mo,Np) | (M,N) € h}.
If R is a hedged relation, we define Ry fort € {w,r,b} as the smallest hedged relation contain-
ing R and satisfying the following rules:

® up to weakening
h if S(h') C S(h
I(h/) PRW Q ! ( ) - ( )

e up to additional restriction:

h-PR,Q ht=PR:Q

hl—(un)—PRrQ if n & n(m1(S(h))) m if n & n(m2(S(h)))
e up to bijective renaming

hEPRQ
h(o,p) F Po Ry, Qp

if o,p: N — N are bijective

Note that Ry, = Rp and Ryw = Rw, S0 we can take h = P R Q (rather than
h B P Ry Q) as precondition in the rules for up to weakening and up to bijective renaming.
Moreover, we clearly have that RC Ry, RC Ry, and Ryw = Rub-

A consistent symmetric hedged relation is a hedged bisimulation up tot € {w,r,b}* if it satisfies
the definition of hedged bisimulation (Definition 3.5.5) with the condition ' = P’ R Q' on the
derivatives replaced by the weaker h' = P' R; Q'.
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The definitions of framed/fenced bisimulation up to restriction or weakening are the same as
for hedged bisimulation above. Note the definition of weakening; we permit an arbitrary reduction
of the synthesis, and then apply Z(-) to ensure that we end up with a minimal environment. (For
frame-theory pairs, one instead recursively applies the & function of fenced bisimilarity, starting
with an empty theory.)

For environment-sensitive relations, “up to weakening permits discarding environment entries”
(Boreale et al. 2002), thus it denotes the reduction of environment knowledge. This is in contrast to
the field of type systems, where the notion of weakening usually denotes the addition of potentially
unnecessary information to the (typing) environment (cf. up to contraction). In this paper, we
reserve the term weakening for arbitrary reduction of environment knowledge, while forgetfulness
denotes the discarding of individual environment entries. Clearly, weakening is the more general
notion.

In order for an up-to technique to be usable, it must at least be sound.

Definition 3.4.3 An up-to technique t is sound for ~y, (=, ) if every hedged (alley) bisimulation
up to t is contained in =y (=, ).

The following properties prove useful for the analysis of up-to techniques.

Definition 3.4.4 An up-to technique t is an expansion if we always have R C Ri, and monotonous
(with respect to C) if S C R implies that S; C R;.

Note that all of the up-to techniques defined above are monotonous expansions.
Major parts of the proof system of Boreale & Gorla (2002) arise from the following proposition.
We also use its contrapositive in Section 4 to disprove the soundness of certain up-to techniques.

Proposition 3.4.5 If an up-to technique t is a monotonous expansion and sound for =y then
whenever e = P =, Q and (¢/, P',Q") € {(e, P, Q)}; we have ' - P' =, Q'.

The soundness of an up-to technique t is usually proved by showing R; to be a bisimulation
whenever R is a bisimulation up to t. Another way is to use the following property.

Proposition 3.4.6 If @ is an expansion and ti is sound then t is also sound.

As an example of where the usual soundness proof schema does not work, Boreale et al. (2002)
assert (p. 982, proof of Proposition B.5 (4.17)) that R¢ is “straightforwardly” an alley bisimulation
whenever R is an alley bisimulation up to forgetfulness. However, the assertion is false?; as we
will see this is due to a subtle issue regarding name freshness, similarly to the examples on framed
and fenced bisimilarity in Section 4. We here exhibit an alley bisimulation up to forgetfulness R
such that R¢ is not an alley bisimulation.

Example 3.4.7 Fiz a and let P := (vl)@(l). 0. All transitions of P are of the form P BRI
with 1 # a.

Take fized k,x,y such that k # a and z # vy, and let o = {a/z}{Ek(a)/y} and
R = {((0,0),P,P)} U{((c{"}}, o{/t} )|t # 2,y Au # ak}. It is easy to verify

that R is an alley bisimulation. Thus, since forgetfulness is an expansion, R is also an alley
bisimulation up to forgetfulness.
Next, we show that Ry is not an alley bisimulation. We have ({a/r},{a/z}) FPRe P
vk)a(k
y & dom({a/gg}) and p 0
alley process pair in S := {(({a/w}{k/y} { /1}{ /y} ),0,0) | w # a}. This simulated transition is

problematic in two independent ways.

)

0. This transition needs to be simulated by P, resulting in an

2The reader familiar with the notion of respectful up-to techniques defined by Sangiorgi (1998) will note that
this also implies that up to forgetfulness is not respectful, in contrast to what was asserted by Boreale et al. (2002)
(p. 964, footnote 3).
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1. Name-clash in the range: k occurs as a bound output, but was free in the original environ-

vl)a(l
ment o. Thus, all transitions P % 0 that needed to be simulated under the original

environment would have | # k. The possible resulting environments after such a transition

then only contains {l/z} for l # k, and forgetfulness alone does not let us rename [ to k.
2. Name-clash in the domain: The output message k was substituted for a variable y already
used in the original environment. Clearly, there is no way to turn an environment in R

(where {Ek(a)/y}) into an environment of S (where {k/y}) by mere forgetfulness.
Summing up, we have S N Ry = 0, so R¢ is not an alley bisimulation.

Example 3.4.7 does not disprove the soundness of alley bisimilarity up to forgetfulness, because
R¢ C =2, still holds for the R of the example. We have only showed that the “standard” way of
proving the soundness of an up-to technique does not work for this case. As an aside, one of the
main results of Boreale et al. (2002), the proof of the soundness of alley bisimilarity with respect
to barbed equivalence, depends on the soundness of forgetfulness (p. 983, proof of Proposition B.5
(4.17), Up to parallel composition).

Noting that the problems in Example 3.4.7 were due to name clashes in both the range and
the domain of the environment substitutions, we propose to use injective renaming to solve the
first problem and introduce a new up-to technique called domain renaming to deal with the latter.

Definition 3.4.8 If R is an alley relation, we define Rq as the smallest alley relation containing
R and satisfying the following rule:

e up to domain renaming

(o,p) F PRaQ
(Bo,Bp) = P Ra Q

if 3: N — dom(o) is injective.

We define the concept of alley bisimulation up to t € {f,c,r,i,d}* as in Definition 3.4.1.

Indeed, following this proposal Boreale (2004) recently repaired the proof of soundness of alley
bisimilarity up to forgetfulness, using the up-to technique of domain renaming defined above. This
manuscript states that if R is an alley bisimulation up to forgetfulness, additional restriction and
structural equivalence (not defined in our paper) then Ry is an alley bisimulation up to injective
renaming and variable renaming, where the latter up-to techniques are also shown to be sound
and composable. Thus, using Proposition 3.4.6 we get that up to forgetfulness is sound for alley
bisimilarity.

In order to relate framed and hedged bisimilarity, we need to prove the soundness of hedged
bisimilarity up to weakening. In doing the proof, we encounter the same problems as seen in
Example 3.4.7, but they are easier to deal with due to the simpler structure of hedges. To
wit, Theorem 7.4.5 will show that if R is a hedged bisimulation up to weakening and bijective
renaming then R is a hedged bisimulation, i.e., hedged bisimulation is sound up to restriction
and/or bijective renaming.

4 Distinguishing Examples
In this section we exhibit differences between framed, fenced and hedged bisimulation. In Section 7

we show that hedged and alley bisimulation are equivalent, so these examples also distinguish alley
bisimulation from framed and fenced.

4.1 Fenced vs. Framed/Hedged — Fresh Names Should Be Just Fresh

The following example distinguishes fenced bisimulation from its competitors due to a subtle
requirement concerning the data involved in the simulation of output transitions, especially the
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conditions on the choice of bound names:

P = (vnkl) a(E;(Eg(n))).P’ P = (vm)a(m).0
Q = (vnk) a(Egx(n)).Q’ Q = (vm)a(m).0
Although there is no reason for P and @ to be distinguished, fenced bisimulation does so because

it insists that single fresh names be simulated without renaming.
We write pwd(7n) to denote that 7 is a tuple of pairwise different names.

Proposition 4.1.1 ({a},0) / P =4 Q.

(vnkl) a(Ei(Ex(n))).

Proof.  The transitions of P are P P’ where pwd(n, k,l,a). The tran-
(vn' k") a(Eg (n')).

sitions of @ are of the form @ Q' where pwd(n/,k’;a). We then get the
theory {(Ei(Eg(n)),Ex(n))}. Since n,k,l are pairwise different, there must be a name
vz)a

ze{nk, I} \ {n, K}
207 0. We have P/

Now P’ must simulate the transition Q’ ( tm)am 0 for all m # a.

For the resulting frame-theory pair to be consistent, we must have m = z, but since z € n(m; (th))
this transition can not be used. O

Fenced bisimulation fails since it cannot simulate an output of a particular bound name when
this name is already known by the simulating environment. Here, both framed and hedged bisim-
ulation succeed, but in different ways.

Proposition 4.1.2 ({a},0) - P ~; Q.
Proof. A framed bisimulation relating P and @ is given by

R :={(({a},0), P,Q)}
U{(({av k}v {<E1(Ek(n))7 El(n))})’ Pl? Q/) ‘ de(a’ k.1, n)}
U{(({a’ k, m}v {(El(Ek(n))7 El(n))})7 0, 0) ‘ de(aﬂ k,l,m, n)}

Note the addition of k& to the frame, which relieves the process P’ from simulating the critical
bound output of z by Q' (see the previous proof). The name created by Q' must be different from
the names in the current frame and theory, so by simply adding k to the frame—which is allowed
in framed bisimulation, but due to the minimality property not in fenced bisimulation—this name
must be chosen different from k, and thus P’ may also create it. O

Proposition 4.1.3 {(a,a)} F P =}, Q.

Proof. A hedged bisimulation relating P and @ is given by

R
( P,Q") | pwd(a, k,l,n) }
’ (El (Ek(n))? El(n))a (m’ m)}’ 0, O) | de(av k,l,n, m) }
( ( 7El(n))v(w7k)}’050) | de(a7k7l7n7w) }

Note the addition of (w, k) to the hedge, denoting that the environment cannot distinguish the
two different names. O

({(a,a)
({(aa a)? (EZ(E n))>El<n))}7
({(a,a)
({(a,a)

In comparison, we may conclude that ~¢ equates the processes through a non-minimal extension
of the frame (which could be considered “cheating”), while =, equates them (more adequately)
through correspondence.

Corollary 4.1.4 =~ is not a subset of ~4.
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An Up-To Interpretation.

The examples above shows that removing a piece of information (the name k) from a frame-theory
pair actually may increase its power to distinguish between processes. Boreale et al. (2002) call
this removal of knowledge from the environment weakening, which intuitively should be sound with
respect to a bisimulation: An environment with more information at hand has more possibilities
to discover a difference between two processes. While Corollary 7.4.6 will state that hedged
bisimulation is sound up to weakening, the above examples show that this is not the case for
framed and fenced bisimulation.

Proposition 4.1.5 Framed and fenced bisimulations are not sound up to weakening.

Proof. As seen above, we have ({a, k}, {(E;(Ex(n)),Ei(n))}) F P’ ~4 Q' and

({a}, {(E«(Ex(n)), E(n))}) ¥ P~y Q. Clearly, ({a}, {(Ei((Ex(n)), Ei(n))}), P', Q") €

{({a,k},{(Ei(Ek(n)),Ei(n))}), P',Q")},. Since up to weakening is a monotonous expansion,
Proposition 3.4.5 then gives that it is not sound with respect to fenced bisimilarity. The same
reasoning holds for =. O

4.2 Framed vs. Hedged — Unknown Names Must Not Matter

This example is a version without pairing of the example by Abadi & Gordon (1998) showing that
framed bisimilarity is not complete w.r.t. barbed equivalence. We define

P = (vkim) @(Eg(E/(m))). ( a(m).0+a(l).0 )
Q = (vkm) a(Eg(m)). a{m).0

We show that {(a,a)} F P ~y, Q and that ({a},0) / P =~¢ Q. Intuitively, this means that for ~;
the identity of the unknown name matters, although an attacker doesn’t have any means to verify
this identity.

Proposition 4.2.1 {(a,a)} F P =}, Q.

Proof. We show that the relation

{(a,0)}, P,Q) }

h(k,1,m), (@(m).0+a(l).0),a(m).0) | k,I,m € N\ {a}}
h(k,l,m)U{(m,m)},0,0) | k,l,m e N\ {a}}
h(k,l,m)U{(l,m)},0,0) | k,l,m e N\ {a}}

R :={
u{
u{
u{

o~ o~ o~ o~

where h(k,l,m) := {(a,a), (Ex(E;(m)),Ex(m))} and k,I,m are pairwise different wherever they
occur, is a hedged bisimulation. R is “trivially” consistent as we never receive a nor the outermost
keys of encrypted messages.

o As p L) TEREm). (@(m).0+a(l).0) whenever k,l,m and a are pairwise different,
we need to find Q’, N, d such that Q wdal, Q',a & {d} and ~
Z({(a,a),(Ex(E;(m)),N)}) F (a(m).0+a(l).0) R Q. We may choose d = (k,m),
N = Ei(m) and Q' =a(m).0. We also have that Z (h(k,I,m)) = h(k,l,m).

e The output transitions of @) can be handled in the same way.

e As (a(m).0+a(l).0) 2L, 0 we must choose a matching transition of @(m).0. The only
transition is valid. B

e As (a(m).0+a(l).0) = 0 we must choose a matching transition of @(m).0. The only
transition is valid.

e As a(m).0 - 0 we must choose a matching transition of the process
(@(m).0+a(l).0). Both transitions are valid.
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The character of hedges is visible in the possible addition of the pair (I,m) in the last row of
the above bisimulation relation; | and m may be different, but the hedge notes that they should
correspond. O

Proposition 4.2.2 ({a},0) I/ P =~ Q.

Proof. By contradiction: assume that ({a},?) F P ~¢ Q.

e As ais in the frame and P —/2tm 2ERE). (@(m).0+a(l).0) whenever k,l,m and a

are pairwise different, we need to check that for all such k, 1, m # a there exist Q’, N, d, fr,th

such that @ (vd)an ,a & {d}, a € fr and
(fr, th) F (@(m). 0+a<> )~fQ’

Any transition of @ is of the form @

(vk',m’)a E./ (m))

a(m’).0.
e Since (a{m).0+a(l).0) L0 we need to check that @(m'). 0 can do a matching transition.

As the only possibility is a( ).0 2™ , 0 there is a consistent frame—theory pair (fry,th;)
such that (fry,thy) -1 < m’, which can only be the case if I = m' € fry.

e Since (@(m).0+a(l).0) —"= 0 we need to check that a(m’). 0 can do a matching transition.

As the only possibility is a(m'). 0 2™ . 0 there is a consistent frame-theory pair frog, thy
such that (fra, thy) - m < m/, which can only be the case if m = m’ € frs.
e We thus have that m = [, which is a contradiction.
(I

Note that P contains nondeterministic choice, a construct that is not present in the original spi
calculus. However, this example works equally well if we replace the nondeterminism as expressed
by choice either by an input and two mutually exclusive guards, as in

a(z).( [z = ala(m).0 | [z =b]a(l).0),

or with communication over a private channel, as in

(ve) (@) 0 | e(x).am). 0 | c(x).a(l).0).

The details are left as an exercise to the reader.

4.3 Framed vs. Hedged — Encryption Should Be Perfect

The following example exhibits a striking deficiency of framed bisimulation that is remedied by
hedged bisimulation: a frame-theory pair can distinguish between the plaintext of an encrypted
message (n in the example) and another random piece of data (m in the example).

P (vk,n)a(Eg(n)).P’ P = (vm)a(m). O
Q (vk,n)a(Ex(n)).Q’ Q = a{n). 0 where n # a.

We show that {(a,a)} + P =~ Q and ({a},0) ¥/ P ~¢ Q. We first study the same rela-
tions for just the processes P’ and @’. (Note in passing that fu(P,Q) C n({(a,a)}), although

m(Q") £ n({(a;a)}).)
Proposition 4.3.1 {(a,a)} - P’ ~, Q’.

Proof. We show that the relation

= {{(e,0)}, P, @)} U{({(a, a), (m,n)},0,0) [ m € N'\ {a}}

is a hedged bisimulation. R is consistent, since for all hedges h such that h € 7 (R) conditions
1 and 3 are trivially satisfied and condition 2 follows from n # a # m. As neither P’ nor @’ do
input or internal computation we only have to check the conditions for output. As the output is
on a pair of names known to the environment we need to check whether the environment accepts
the input.
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(vm)am

o As P’ 0, we check that for all m +# a there are Q”,N,d with

Q@ YN on fa,ny 0 {d} = 0 and T({(a,a), (m, N)}) F 0 R Q". Clearly, d is cmpty,
N = n and Q" = 0. Immediately, we also have that Z({(a,a),(m,n)}) =
{(a,a), (m,n)}. Finally, {(a,a), (m,n)} - 0 R 0.

(vd)a N

o As Q' an, 0, we need to check that there are P” | N,d with P === P”,a ¢ {d} and

Z({(a,a),(n,N)}) F P” R 0. We may choose d = n, N = n and P” = 0. Clearly, by
inspection, Z ({(a,a), (n,n)}) F 0 R 0.

O
The result can be strengthened as follows:

Proposition 4.3.2 Whenever h is a consistent hedge such that (a,a) € h, n ¢ ma(h) and
ma(h) N{E,(M) | M € M} =0 we have that h = P' =y Q'.

Proof. The previous proof also holds for
R:={(h, P, Q)}U{(hU{(m,n)},0,0) | m €N \n(mi(h))}
since R is a consistent hedged relation by the preconditions. O

Note that in the above R the names m and n just correspond. They are previously unknown, can
not be used as decryption keys, and there is no way to distinguish between them through further
interaction with the process pair.

Since framed bisimilarity does not allow two different names to simply correspond, we have
the following negative result.

Proposition 4.3.3 There is no frame-theory pair (fr,th) such that a € fr and

(fr,th) - P =~¢ Q'.

Proof. Assume the opposite, and fix m # n such that m € N\ (frUn(m(th))). As a € fr and
(vm)a

= dyaN
p 0™ 0 there must exist Q",N,d,fr' th’ such that Q’ % Q", (fr’,th") is consistent,

and (fr’,th’) - m < N. As the only transition of Q' is Q' ——— 0 we have that N = n. Clearly
SYN-ENC (cf. Def. 3.1.4) can not derive (fr’,th’) = m « n. Since (fr’,th’) is consistent, which
implies that (m,n) ¢ th’, we must have that m = n € fr’, which is a contradiction. O

Now, we can use the results for P’ and @Q’ to derive results for P and Q.
Proposition 4.3.4 {(a,a)} + P =~ Q
Proof. As (a,a) is in the hedge, P and @ can do a matching output step. By Proposition 4.3.2,
any resulting hedged process pair is in ~y. O
Proposition 4.3.5 ({a},0) I/ P ~; Q

Proof. As a is in the frame, P and @ can do a matching output step. By Proposition 4.3.3, no
resulting framed process pair is in . (|

An Up-To Interpretation.

According to Boreale et al. (2002), alley bisimulation is sound up to (additional) restriction,
meaning that names that are not present in the knowledge of the environment can be restricted
in one or both of the processes. By the above example this does not hold for framed bisimulation.

Proposition 4.3.6 Framed bisimulation is not sound up to additional restriction.

Proof. As Proposition 4.1.5. O
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5 Intermezzo

Having seen some examples that distinguish the bisimilarities of Section 3, we will now introduce
a general framework for relating environment-sensitive bisimilarities.

As a starting point, let us recall the work of Milner, Parrow & Walker (1993), comparing early
and late bisimilarity (here denoted by ~cary and ~late) for the m-calculus. Since 7 bisimilarities
are simply relations on P, mere set inclusion is good enough: ~carly & ~late-

When moving to environment-sensitive bisimilarities, we must also properly treat the envi-
ronments. Since the environments of framed and fenced bisimilarity are of the same type, the
comparison of the bisimilarities by Elkjeer et al. (1999) could still be done in terms of set in-
clusion. This is no longer possible when comparing framed/fenced to their hedged and alley
counterparts; we must find a more general way to compare environment-sensitive bisimilarities.

5.1 Comparing Environment-Sensitive Bisimilarities

Every environment—independently of the kind of data structure involved—straightforwardly in-
duces a binary relation on processes. E.g., to a frame-theory pair (fr,th) we associate the set
{(P,Q) | (fr,th) F P ~¢ Q}. More generally, we let R® be the set {(P,Q) | ex F P =« Q}.
We then call an environment e, sound with respect to e if e, does not relate any processes not
related by ey, i.e., if the set-theoretic inclusion R C R holds.

It does not make much sense to compare R* and R for unrelated e, and ex. However,
if Ex and E, are the sets of environments of the bisimilarities ~, and ~, then every function
g : Ex — E, gives us an embedding of the environments of =~ into those of ~,. Such an
embedding ¢ is sound (pointwise), if RIlex) C R for all e, € Ey; and we call it complete
(pointwise), if R9(¢x) D Re* for all e, € E,. Along the same line, we may be inclined to call such
an embedding g a (pointwise) bisimilarity equivalence if R9(®x) = R* for all e, € E,. However,
this definition does not yield symmetry: there may be environments in E, that have no equivalent
counterpart in Ey. Instead, if R9(ex) = R for all e, € Ey we call ¢ a full abstraction: It leaves
unchanged the set of process pairs related by the environments, which we consider to be the
essential property of an environment. Regarding full abstractions as giving rise to a pre-order,
we define a notion of bisimilarity equivalence—reminiscent of the standard algebraic way—as the
kernel of this pre-order: If g : Ex — E, and h : E, — Ey are full abstractions then (g, k) is a
bisimilarity equivalence relating ~, and ~.

To summarise, we have the following definitions.

Definition 5.1.1 Assume that =« and =y are environment-sensitive bisimilarities, where Ey
and Ey denote the sets of environments of =y and =, respectively. Then we define the following
relations between ~y and =2y.

Soundness: =, is g-sound w.r.t. ~y

if g : Ex — Ey is such that Ve, P,Q : g(e) - P =, Q implies e P =, Q.
Completeness: =, is g-complete w.r.t. ~y

if g : Ex — Ey is such that Ve, P,Q : e = P =~y Q implies g(e) - P =y Q.
Full abstraction: =, is fully g-abstract w.r.t. ~

if g : Ex — Ey is such that Ve, P,Q : e P =, Q iff g(e) - P =, Q.
Equivalence: ~, and =~y are (g, h)-equivalent

if =« is fully g-abstract w.r.t. =y and ~ is fully h-abstract w.r.t. ~.

Proposition 5.1.2 Soundness, completeness and full abstraction are reflexive and transitive, in
the following sense:

o 2, is Idg, -sound (complete, fully abstract) w.r.t. itself.

e Ifg:Ex — Ey and h : E; — E, are such that =y is g-sound (complete, fully abstract) w.r.t.
~y and =2, is h-sound (complete, fully abstract) with respect to ~y, then =, is (ho g)-sound
(complete, fully abstract) w.r.t. ~.
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Bisimilarity equivalence is reflexive, symmetric and transitive.

o ~, is (Idg,, Idg, )-equivalent to itself.

o If =y and =y are (g, h)-equivalent,
then =~y and = are (h, g)-equivalent.

o If =, and =y are (g, h)-equivalent and ~, and ~, are (¢', h')-equivalent,
then =y and =, are (g o g',h’ o h)-equivalent.

Above, a bisimilarity equivalence is constructed from two a priori unrelated full abstractions g and
h. Further constraints, such as requiring g and h to be inverse to each other, could be added to
make the relation stronger. However, adding constraints on the functions causes problems for the
robustness and transitivity of bisimilarity equivalence. It is not reasonable to require f and g to be
inverses, since this can be broken by merely adding a “behavioural copy” of an environment to one
of the bisimilarities. A weaker variant of this constraint is to require idempotence of g o h and/or
h o g, but it causes problems for transitivity — assuming that g o h and ¢’ o A’ are idempotent, it
may well be that go g’ o b’ o h is not. (A concrete example is left as an exercise to the reader.)

5.2 Examples: Blindness and Inconsistency

We now give some simple examples of soundness, completeness and full abstraction between
environment-sensitive bisimilarities.

As it turns out, the definitions of g-soundness and g-completeness as defined in Definition 5.1.1
can be satisfied by trivial environment mappings. For completeness, the mapping between environ-
ments might collapse all environments of Ey to a single trivial environment in E, that is equating
any pair of processes, being “blind” for any possible distinction. For soundness we have the dual,
namely that all environments of Ex may be mapped to an environment in E, that discriminates
between all process pairs.

Definition 5.2.1 An environment b is ~y-blind if b= P =y Q) for all processes P and Q.

Proposition 5.2.2 If there is a ~y-blind environment by and By : Ex — E, has
range(By) = {by} then ~y is By-complete w.r.t. =.

Proof. Whenever ex b P =y Q we have By(ex) F P =y Q. O

Proposition 5.2.3 All the previously defined bisimilarities have blind environments:

1. (0,0) is a blind consistent frame-theory pair.
2. (0,0) is a blind pair of equivalent substitutions.
3. () is a blind consistent hedge.

Proof.  All bisimilarities are weak, so we only need to check that all detected process actions
preserve the consistency of the environment. This is trivially true if no process actions can be
detected by the environment.

1. A frame-theory pair with an empty frame can not detect any process actions. Obviously,
(0,0) is consistent.
2. There is no expression 7 such that n(n) C dom(@) = (). Trivially, @ ~ 0.
3. We have that S(0) = (), so # can not detect any process actions. Clearly, @) is a consistent
hedge.
O
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The above propositions imply the following completeness and full abstraction results.

Corollary 5.2.4 Here we let B be a metavariable for functions that maps all environments to a
single blind environment T, as appropriate for its codomain. We also let mt:={T} x P x P, i.e.,
where T+ P =1 @ for all processes P,Q) € P. Then

o o, Ry, Ry, ~y and =g are B-complete w.r.t. ~,, =, Bu, = and ~.
o R, R, Ry, oy and g are fully B-abstract w.r.t. ~T.

The closest candidate to a dual of blindness turns out to be inconsistency. For the sake of
exhibiting this duality, we assume that inconsistent environments are contained in the environment
sets of the bisimilarities, although they don’t relate any process pairs.

Proposition 5.2.5 If there is a ~y-inconsistent environment c, and Cy : Ex — Ey has
range(Cy) = {¢y} then =y is Cy-sound w.r.t. ~.

Proof. Whenever Cy(ex) F P~y @Q (i.e., never), we have that ex - P =~ Q. O

As we have seen, there are inconsistent environments of all types, so if inconsistent environments
are assumed to be in the environment domains we get this dual to Corollary 5.2.4.

Corollary 5.2.6 Here we let C be a metavariable for functions that maps all environments to a
single inconsistent environment L, as appropriate for its codomain. We also let =~ := {1} x () x 0,

i.e., where L/ P =) Q for all processes P,QQ € P. Then

o Ry, R, Ry, Ay and g are C-sound w.r.t. =,, ~f, Ry, =y and .
o 2y, R, Ny, oy and =g are fully C-abstract w.r.t. =~ .

5.3 Full Abstraction and M-equivalence

As we saw above, functions that collapse all environments to a single trivial environment give
us the rather non-intuitive result that all non-trivial bisimilarities are sound and complete with
respect to each other. To avoid this, we require environment mappings to be sound for blindness
(i.e., an environment is blind if its image is blind) and inconsistency.

Another property of all non-trivial environments is synthesis, i.e., the set of message pairs that
the environment considers to be equal. As we can see in the definitions of the bisimulations, the
synthesis of the environment is fundamental for its interactions with process pairs. On process
input, the environment can only generate message pairs in its synthesis (possibly inventing some
fresh names), and on process output, the environment cannot accept a message pair which matches
one in the synthesis on only one side. We now proceed to prove that non-trivial environments
relating the same processes must have the same synthesis.

For the rest of this section, we consider only non-trivial environments, i.e., frame-theory pairs,
alleys and hedges and their corresponding bisimilarities of Section 3. To compare the synthesis of
environments of different types, we extend Definition 3.1.5 as follows.

Definition 5.3.1 If ex and e, are environments, than we write that ex < ey if
ex F M < N implies that e, = M «— N. We say that ex and ey, are M-equivalent, written
ex 2 ey, if ex < ey and ey < ex.

As we are mainly interested in full abstractions, it is convenient to have a shorthand for
“ex and ey relate the same processes”.

Definition 5.3.2 Two environments ex and ey are (~x,~y)-equivalent, written ey =3 ey if for
all processes P and () we have that ex = P~y Q if and only if e, F P =, Q.

The relation between M-equivalence and (=, ~y )-equivalence is given by the following propo-
sition. This result implies that in order to be a full abstraction, the environment mapping
must be faithful for blindness and consistency, and map a consistent non-blind environment to a
Me-equivalent counterpart.
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Proposition 5.3.3 If ex and e, are (=, ~y)-equivalent then either

e e, ey or
e ey and ey are both inconsistent or
o ey is Ry-blind and ey is =y -blind.

Proof. If ey is blind, but e, is not, then there exist P, @ such that e, - P =, () does not hold.
As e, is blind, e, F P =, Q, so ey 3_'5;,‘ ey. The case where e, is blind, but ey is not, is handled in
the same way.

If ey is incomsistent, but ey, is not, then ex F 0 =, 0 does not hold. As e, is consistent,
ey 0=~y 0, s0 e §é§ ey. The case where e, is inconsistent, but ey is not, is handled in the same
way.

If ey is neither blind nor inconsistent then there exist names a,b such that e, - a < b. Let
P, = @{a).0 and Q; = (vk)b(k).0. We have that e, I/ P =~ Q1, since e, can see the differ-
ence between a known name and a fresh name (Compare with Proposition 4.3.3 and Proposi-
tion 4.3.2, noting the difference between a known and a used name.). Since ey =7 ey we get that
ey 7 Pi =~y @1, which implies that e, - a <= n or ey - n < b for some name n. However, if
we let P, = a(z).0 and Q2 = b(2).0 we have that ex = P> ~ Q2. Since e, =} e, we get that
ey = P2 =y @2, which implies that e, - a < b.

Now assume that ex - M < N. Let P3 = a(x).[z = M ]a(a).0 and Q3 = b(x).0. We have
that ex I/ P3 ~x (3, since ex can create and send M. Since ex = ey we get that ey i/ P3 ~y Qs,
which implies that there is e}, obtained from ey by adding fresh names, such that ej = M « N’
for some N'. As n(M) C fn(P5) we have that no name in n(M) can be created as fresh, so actually
ey F M~ N’

Let Py = a(M).0 and Q4 = b(N).0. Since e, - Py ~, Q4 we must have ey b Py =y Q4 which
is true only if ey F M < N, since a consistent environment can not consider M equivalent to two
different messages N and N'.

We have now shown that e; < e,. By symmetry, we have that e, 2 e, when ey =%

v €y and
neither ex nor ey is blind nor inconsistent.

To summarise: An environment mapping should be sound for blindness and inconsistency and
preserve the synthesis. We now turn to the task of finding such mappings, and verifying whether
they are full abstractions.

6 Comparing Environments

Our relations on environment-sensitive bisimulations are based on a comparison of the various
environments. In this section, we introduce mappings between frame-theory pairs (FT), hedges
(H) and substitution pairs (SS).

Accompanying these mappings, we assemble a “toolbox” of auxiliary results that are used to relate
hedges and the other kinds of environments, notably frames and fences.

6.1 Properties of Hedges

As we intend to use hedged bisimilarity, which we have introduced in this paper, as the yardstick
against which all other bisimilarities are measured, a preliminary investigation of the properties
of hedges is offered, and indeed exploited in the proofs later on.
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From the definition of hedges, we immediately get
Lemma 6.1.1 Ifh+ M < N and M € N or N € N, then (M,N) € h.

Proof. Clearly SYN-ENC can not derive h = M < N. |

We define a pre-ordering on hedges as follows:

Definition 6.1.2 ¢ < h iff S(9) € S(h). If g < h and h < g we say that g and h are
M-equivalent, written g 2 h.

< is transitive and reflexive by the same properties for C. For results on antisymmetry, see
Corollary 6.1.12 and this example:

Example 6.1.3 Let
91 = {(a,a), (¢, k), (Ex(b), Er(a)), (Ea(c), Ea(k))}
92 = {(a,a), (¢, k), (Ex(b), Ei(a)), (Ec(Ex(b)), Ex(Ei(a)))}
Then g1 2 g2. More generally, if h is a hedge, hy < h and he < h then hUhy 2 hU hs.
An alternative definition of < is as follows:
Lemma 6.1.4 g < h iff g C S(h)

Proof. g<h=gCS(h),since g CS(g) CS(h).

For the other direction, assume that ¢ C &S(h) and take any M, N such that
g+ M < N. By induction on the derivation of ¢ H M < N, we have that h - M < N.
O

Corollary 6.1.5 Some properties relating < and set operations:

1. If g C h then g < h.

2. Ifg<h and f < h then (fUg) < h.

3. If g1 < hy and g2 < hy then (g1 U g2) < (hy U hy).
Irreducible Hedges

An interesting subset of H is the set of irreducible hedges. These are intuitively hedges that are
reduced as far as possible, in the sense that no pair of messages in them can be decrypted using
the information in the hedge. These results are later used to relate hedges with other types of
environments, especially regarding how the environment reacts to process output.

Definition 6.1.6 A hedge h is irreducible if h = Z(h). h is reducible if h is not irreducible.

An alternative definition is as follows:

Lemma 6.1.7 A hedge h is irreducible iff the following condition holds:
If (Eo(M),Ep(N)) € h then (a,b) & h.

Proof.  1f this holds then we can not apply HEDGE-DEC to any pair in h, so A(h) = h. By the
definition of Z(h) we then have that Z(h) = h.
If h is irreducible then the condition holds by the definition of Z(h). O

Corollary 6.1.8 Z(h) is irreducible for all hedges h.
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Example 6.1.9 All hedges defined in Example 3.3.3 are irreducible, but neither of the hedges
defined in Example 6.1.3. Moreover, if g is reducible and h is any hedge, then g U h is reducible.

As might be expected, the irreducibles of a hedge can be used to generate any message that
can be generated by the hedge.

Lemma 6.1.10 For any hedge h, h < A(h) 2 Z(h).
Proof. As h C A(h) 2 Z(h) Corollary 6.1.5(1) gives that h < A(h) > Z(h). What remains to be

proved is A(h) <  ZI(h). By Lemma 6.1.4, it suffices to show that
A(h) CS(Z(h)). Assuming that (M, N) € A(h), we can show that Z(h) - M < N by structural
induction on M. O

An irreducible hedge is a subset of any M-equivalent hedge.
Lemma 6.1.11 If g 2 h and g is irreducible then g C h.

Proof. Take any (M,N) € g. Asg=2 h, ht M < N. We have two cases:

If M € N or Ne€N then (M,N) € h by Lemma 6.1.1.

Else, M = E,(M') and N = E,(N’). Since g is irreducible (a,b) € g by Lemma 6.1.7. By
Lemma 6.1.1 gt/ a <+ b, so h I/ a <> b and SYN-ENC can not derive h = M < N. This shows that
(M, N) € h. O

Two M-equivalent irreducible hedges are equal, so the pre-order < is an ordering relation on
the set of irreducible hedges.

Corollary 6.1.12 If g 2 h and both g and h are irreducible, then g = h.
The ordering of hedges is preserved by Z(-).
Lemma 6.1.13 If g < h, then Z(g) < Z(h).

Proof. According to Lemma 6.1.10 Z(g) < A(g), so by the transitivity of < we only need to show
A(g) <Z(h). By Lemma 6.1.4 this holds iff A(g) C S(Z(h)), which we show by induction on the
derivation of A(g). Take any (M, N) € A(g).

The base case is that (M, N) € g. By Lemma 6.1.10 h < Z(h), so g < Z(h) by the transitivity
of <. In particular, Z(h) - M < N.

Otherwise we have used ANA-DEC to derive (M, N) € A(g), which means that there are a and b
such that (E.(M),Ey(N)) €  A(g) and (a,b) €  A(g). By induction
Z(h) F Ei(M) < EuN) and Z(h) v a < b. By Lemma 6.1.1 (a,b) € ZI(h), so
(Ea(M),Ep(N)) € Z(h) by the definition of Z(-). Then SYN-ENC must have been used to de-
rive Z(h) F E,(M) < Ep(NV), which gives that Z(h) F M < N. O

The irreducibles of two M-equivalent hedges are equal.
Lemma 6.1.14 If g 2 h, then Z(g) = Z(h).

Proof. Z(g) 2 Z(h) by Lemma 6.1.13. Z(g) and Z(h) are both irreducible by Corollary 6.1.8.
The equality then follows from Corollary 6.1.12. |

We also have this more general variant of Corollary 6.1.8, that is used to prove that hedges
and alleys behave similarly on process output.

Lemma 6.1.15 If g and h are hedges, then Z(Z(h)Ug) =Z(hUg).

Proof. By Corollary 6.1.5(1) ¢ < hUg, so using Lemma 6.1.13 we have that
Z(9) < Z(hUg). By Lemma 6.1.10 g < Z(g), so by transitivity ¢ < Z(h U g). For Z(h) we
know that Z(h) C A(h) C A(hUg) < Z(hUg), where the last relation is due to Lemma 6.1.10.
By Corollary 6.1.5(2) Z(h)Ug < Z(hUg),so Z(Z(h)Ug) <Z(Z(hUg)) by Lemma 6.1.13. Z(hUg)
is irreducible by Corollary 6.1.8, so Z(Z(h) Ug) < Z(hUg).

h < Z(h) by Lemma 6.1.10, so by Corollary 6.1.5(3) we have that hUg < Z(h) Ug. By
Lemma 6.1.13 we have that Z(hUg) < Z(Z(h)Ug),so Z(hUg) =2 Z(Z(h)Ug). The equality now
follows from Corollary 6.1.12. O
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Proper Care for Consistent Hedges

As we have seen in Section 5, an environment mapping should preserve consistency. In order to
show that this holds for the environment mappings we will define, we investigate consistent hedges
and their properties.

Lemma 6.1.16 If h is consistent then h is irreducible.

Proof. By condition 3 for consistency, we have that (E,(M),Ey(N)) € h implies (a,b) € h. By
Lemma 6.1.7 this means that h is irreducible. O

Note that we have only used a special case of condition 3 in the proof of Lemma 6.1.16. The
three conditions for consistency are pairwise disjoint (see Example 3.3.3), so consistency is a much
stronger constraint then irreducibility.

A generalised version of condition 2 for consistency is that a consistent hedge can not generate
two message pairs that differ in only one component.

Lemma 6.1.17 Let h be consistent with h = M < N and h = M' < N’. Then M = M’ iff
N=N'.

Proof. By symmetry we need only study the case M = M’. The proof is by induction on the
derivation of h - M < N.

If (M, N) € h we will first show that (M, N") € h. If M is a name this follows from Lemma 6.1.1.
Otherwise M = E,(K), but since a ¢ 7 (h) by condition 3 of consistency we can not use SYN-ENC
to derive h = M «— N’. Now we know that (M, N) € h and (M, N’) € h, so N = N’ by condition
2 for consistency.

If M =E,(K), N=Ey(L), ht K < L and h+ a < b then a € m1(h) by Lemma 6.1.1. As h
is consistent, M & m1(h), so we must have used SYN-ENC to derive h - M «— N’. This gives that
N’ =E.(L) for some ¢, L' such that h - K < L' and h + a < c. By induction L = L' and b = c.
O

Two M-equivalent consistent hedges are always equal.
Lemma 6.1.18 If g 2 h and both g and h are consistent, then g = h.

Proof. g and h are irreducible by Lemma 6.1.16. The equality follows from Corollary 6.1.12. O

Any irreducible “trimming” of a consistent hedge is consistent.
Lemma 6.1.19 If h is consistent, g is irreducible and g < h then g is consistent.

Proof. Assume that (M, N) € g and note that h = M < N. We only need to show one direction
of the symmetric conditions.

1. If M € N then (M, N) € h by Lemma 6.1.1, so N € N as h is consistent.

2. See Lemma 6.1.17.

3. Assume that M = E,(K). If (M,N) € h then a ¢ 7 (h) by condition 3 for consistency, so
a € m1(g) by Lemma 6.1.1.
Else SYN-ENC has been used to derive h M < N, so N = Eu(L) where
hta< band h = K < L. We then show that there is no N’ such that (a, N') € g by
contradiction. For N = b, (a,b) € g would contradict that g is irreducible by Lemma 6.1.7.
For any N’ # b we have by Lemma 6.1.17 that ht/ a < N’ so (a, N') & g.

O
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Disjoint consistent hedges may be directly combined.
Lemma 6.1.20 If g and h are consistent and n(g) Nn(h) =0, then g U h is consistent.

Proof. Take any (M, N) € g U h. By symmetry we may assume that (M, N) € g.

1. M e N < N € N is clear, since g is consistent.
2. Take any (M',N’) € gUh. As n(M) # 0 # n(N) we have that (M’,N') € g whenever
M =M"or N=N'. Asgis consistent, M = M’ iff N = N".
3. If M = E,(M') and N = Ep(N') then a ¢ m1(g) and b € m2(g) as g is consistent. As
{a,b} C n(g) we have that {a,b} Nn(h) = @) and as a special case of this, a & m;(h) and
b Q 7T2(h).
O

6.2 Frames and Hedges

Since the definitions of hedges and frame-theory pairs are similar, the correspondence is fairly
clear. However, as pointed out in Section 4, hedged and framed bisimilarity do not coincide. In
Section 7, we will prove that framed bisimulation implies hedged bisimulation. We begin with
some results relating frame-theory pairs and hedges.

Definition 6.2.1 The hedge corresponding to a frame-theory pair is defined by:
¥ :FT — H : ¢(fr, th) := Idg U th

Note that S(fr,th) = S((fr,th)), so (fr,th) < (fr’,th’) iff ¥(fr, th) < (fr’,th’). We thus have
that ¢ preserves the synthesis of frame-theory pairs, which was one of the desirable properties
mentioned in Section 5.

Since consistent frame-theory pairs have names only in the frame, we have this obvious
strengthening of Lemma 6.1.1.

Lemma 6.2.2 If (fr,th) is consistent and (fr,th) = M < N where M € N or N € N then
M =N € fr.

Proof. Since SYN-ENC can not derive (fr,th) F M < N we have that
(M,N) € 4(fr,th). There are no names in the theory by condition 1 for the consistency of
(fr,th), so M = N € fr. O

An important result is that if a frame-theory pair is consistent then its corresponding hedge is
also consistent. In other words, 1 preserves consistency.

Lemma 6.2.3 If (fr,th) is consistent then ¥(fr,th) is consistent.

Proof. Take any (M, N) € t(fr, th). We show only one direction of the symmetric conditions.

1. M e N <= N € N by Lemma 6.2.2.

2. Assume that (M,N’) € ¢(fr,th). If {M,N,N'} "N # 0 then M = N = N’ € fr by
Lemma 6.2.2. Else, (M,N) € th and (M,N’) € th, so N = N’ by condition 2 of the
consistency of (fr,th).

3. If M = E,(M’) then according to Lemma 6.2.2 a € 71 (¢ (fr,th)) only if a € fr, which is false
by condition 3 for the consistency of (fr, th).

O

Note that the reverse implication does not hold. For example, (0, {(a,b)}) is not a consistent
frame-theory pair, but (0, {(a,b)}) = {(a,b)} is a consistent hedge.
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We will need an extension of Lemma 6.1.19 to consistent frame-theory pairs.

Lemma 6.2.4 If (fr,th) is consistent, h is irreducible and h < 1 (fr,th) there exist fr’,th’ such
that h = ¢(fr',th’) and (fr',th’) is consistent.

Proof. We show that fr’ = 71 (h N (N x N)),th’ = h\ Ids have the desired properties. Note that
h C S(¢(fr,th)) by Lemma 6.1.4.

1.

6.3

We first show that Idg = hN(N x M) = hN (M x N). Take (M, N) € h such that M € N
or N € N. By Lemma 6.2.2 applied to ¥ (fr,th) - M < N we have that M = N € fr, so
M = N < fr’ by definition. On the other hand, whenever a € fr’ then there is by definition
b such that (a,b) € h. As above a = b by Lemma 6.2.2.

We then show that w(ft;th’) = h. By the definition of (fi’,th’) we have that
p(fr' th') = th'Uldg = (b \ Idg) Uldg = h U Idg 2 h. We have equality if Idg C h,
which follows from step 1.

Now we show the consistency of (fr’, th'). First ¢ (fr, th) is consistent by Lemma 6.2.3, so h is
consistent by Lemma 6.1.19. Take any (M,N) € th’ and note that
P(fr,th) - M < N.

(a) If M € N or N € N then by step 1 we have that (M, N) € h\ Idg = th'.
(b) If (M',N’) € th" then we have that (fr,th) + M’ < N’ so
M =M <= N = N’by Lemma 6.1.17.
(c¢) Assume that M = E,(M’) and N = E;(N’). By the consistency of h we have that
a ¢ m1(h) and b & m2(h), so by step 1 we have that a,b ¢ fr’.
O

Fences and Hedges

Informally, ¢ (see Table 4 on page 10) is a function that extends a given consistent frame-theory
pair with a new pair of messages. If the resulting frame-theory pair is not consistent, £ returns L.
Since the results of Elkjeer et al. (1999) hold for a superset of M it is easy to see that they hold
for the message syntax of this paper. To show the soundness of fenced bisimulation with respect
to hedged we exhibit that £ is a sound approximation of Z(-). We start with two results proved
by Elkjeer et al. (1999).

Soundness: £ always creates a consistent extension.

Lemma 6.3.1 If (fr,th) is consistent and &(fr,th, M, N) #L then

1.
2.
3.

&(fr,th, M, N) is consistent
£(fr,th, M, N) - M < N
(fl‘, th) < f(fl‘, tha Ma N)

Completeness: If there exists a consistent extension then £ is defined and returns the smallest
of all consistent extensions.

Lemma 6.3.2 If (fr,th) and (fi’,th’) are consistent, (fr,th) <  (fi',th’) and
(fr' th') = M « N then £(fr,th, M, N) # L and &(fr,th, M, N) < (fr’, th’).
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Now we can show the relationship between £ and Z(-), namely that whenever a consistent fence
accepts a message pair, its corresponding hedge also does. That the converse does not hold was
shown in Section 4.

Lemma 6.3.3 If (fr,th) is consistent and £(fr,th, M, N) #.1 then
Z(¢(fr,th) U {(M, N)}) = ({(fr, th, M, N))

Proof. Let g = ¢(fr,th), ¢’ = g U {(M,N)} and he = ¢(&(fr,th, M, N)). We first show that
Z(g') < he, then the other direction.

By Lemma 6.3.1 &(fr,th, M, N) - M < N and (fr,th) < £(fr,th, M, N). After application
of ¢ this gives that he - M < N and g < he, so the combined hedge ¢’ < h¢ by Corol-
lary 6.1.5(3). Reducing both sides, Lemma 6.1.13 gives Z(¢g’) < Z(h¢). By Lemma 6.3.1 we have
that £(fr,th, M, N) is consistent, so he is consistent by Lemma 6.2.3. h¢ is then irreducible by
Lemma 6.1.16, so Z(g') < he.

Since Z(g’) is irreducible by Corollary 6.1.8 we can apply Lemma 6.2.4 to Z(g') < he, giving
us a consistent (fr’, th’) such that Z(¢’) = v (fr’,th’). We have by Lemma 6.1.10 that ¢’ < Z(g'),
which can be divided into Z(¢') F M < N and g < Z(¢’). In the framed world, this means that
(fr,th’) = M < N and (fr,th) < (fr’,th’). Then we can apply Lemma 6.3.2, which gives that
&(fr,th, M, N) < (fr’, th’). Going back to the hedges, this means that he < Z(g’).

We have now proved the inequality in both directions, so he 2 Z(g’) and the equality follows
from Corollary 6.1.12. O

6.4 Hedges vs. Alleys

In this section we show that hedges are in a certain sense equivalent to the environments of alley
bisimulation. As the theories are fairly different, we need a number of auxiliary results to tie the
two representations together.

Lemmas on Substitutions
We first recall some lemmas proved by Boreale et al. (2002):
Lemma 6.4.1 Vo,z € dom(o) : 3¢ : n(¢) C dom(c) A[¢c] = C(o,x).

Lemma 6.4.2 For ¢ ~ p where dom(oc) = {x;}ier we let M; = C(o,z;) and
N; =C(p,x;). Then, for every ¢ such that n(¢) C dom(o) either:

1. [¢o] =T¢pl =1L, or

2. There are i and a tuple T of indices from I such that

[¢o]l = Eun,, (- En, (Enr,, (Mi))--)
[¢p] = En, (En,En, (Ni)):--).

As an abbreviation, whenever dom(o) = {z; }icr and {i} C I we write Ez(o;) for
EC(U,ILm)(' o EC(U,mLZ)(EC(U,le)(C(G7 1‘1) ) o )

Lemma 6.4.3 If 0 ~ p and n(¢) C dom(o) with [(o] #L
then, U{[[CU]]/I} ~ p{[[CP]]/z}'

Lemma 6.4.4 If O’{]W/m} ~ p{N/w} then o ~ p.
Lemma 6.4.5 If M € A(o) then there are i and i such that M = E;(o;).

Lemma 6.4.6 fu(c) =n(Z(0))
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From Alleys to Hedges

We first need some natural way to move back and forth between consistent hedges and consistent
pairs of substitutions.
Given a consistent pair of substitutions, we can use the cores to get a hedge as follows:

Definition 6.4.7 The hedge corresponding to a substitution pair is defined by:
¢SS = H: p(0,p) = { (C(0,),C(p,2)) | & € dom(o) }
Lemma 6.4.8 If 0 ~ p then (o, p) is consistent.

Proof. Take any (M, N) € (o, p) and « € dom(o) such that M = C(o,z) and N = C(p, z).

1. By condition 1 for o ~ p we have that M € N iff N € N.
2. Take any (M',N') € ¢(o,p) and 2’ € dom(o) such that M’ = C(o,2') and
N’ =C(p,z"). By condition 2 for o ~ p we have that M = M’ iff N = N'.
3. Since M = C(o,z) € I(o) it can not be further decrypted by any key a € A(o).
By the definition of Z(:), a € A(o) iff a € Z(0) = {C(0,z)|z € dom(o)} = m(p(o,p)).
A symmetrical argument holds for C(p, z;).
O

Corollary 6.4.9 fu(o) = n(m1(p(o,p))) and tn(p) = n(ma(e(o,p)))

The following lemma gives an alternative definition of (o, p), showing that Z(h) computes
exactly matching pairs of cores.

Lemma 6.4.10 Let 0 ~ p and h = { (o(x;), p(;)) | x; € dom(o) }.
Then (o, p) = Z(h).

Proof.

1. First we show that whenever M € A(c) there are 4,i such that M = E;(o;),

E:(p;) € A(p) and (M, E;(p;)) € A(h). We use induction on the derivation of M € A(o).
If M = o(x;) then we get 4,7 such that M = E;(0;) and E;(p;) = p(x;) by condition 3 of
o ~ p. By definition, (M, E;(p;)) € h C A(h)
Else, there is a such that E,(M),a € A(c). By the induction assumption there are 4,7
such that E,(M) = E;(0;), N = E;i(p;), (Eo(M),N) € A(h) and (a,C(p,z,,,)) € A(h)
where m = |i|. If I/ = t149...tm—1 then M = Ey(0;) and using HEDGE-DEC we get that
(M,Ez(p;)) € A(h). As C(p,z,,,) € A(p) we have Ey(p;) € A(p) by SET-DEC.

2. Secondly, we show that if (M,N) € A(h) then there are ¢,i such that

M = Eio;) € A(c) and N = Ei(p;) € A(p) by induction on the derivation of
(M,N) € A(h). The base case follows from condition 3 of o ~ p.
Otherwise, there are a,b such that (a,b) € A(h) and (Eq(M),Ey(N)) € A(h). By the
induction assumption there are j, 4, with a = C(o,2;) € A(o), b = C(p,z;) € A(p),
Eo(M) = E;(o;) € A(o) and Ep(N) = Ez(p;) € A(p). By SET-DEC M € A(c) and
N € A(p). Clearly M = Ey(0;) and N = Ey(p;), where I/ = t1t2. .. typ—1,m = ).

By 2, if (M, N) € A(h) then there are i,7 such that M = E;(0;) and N = Ez(p;). If |i] =m > 0,
we have by 1 that (C(o,z,,,),C(p,z,,)) € A(h), so (M,N) ¢ Z(h). Using 1 we also have that
V; € dom(o) : (C(o,z:),C(p,x;)) € Z(h). O
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From Hedges to Alleys

For the transformation of hedges into substitution pairs, we have to invent the domain for the
substitutions. However, it does not matter which particular domain we select, since the domain of
the substitutions is not important for the definition of alley bbisimulation. Note that M x M and
N are both countably infinite, so there is a bijection between them. To invent the substitution
domain, we may use any such bijection.

Definition 6.4.11 Fiz a bijection f : M x M — N. The alley corresponding to a hedge is defined

by:

! 6/ :H—SS: 6/(n) := (of(h) 0 (h))
o{(h) = {{ /f(MN)}| (M,N) e n}
of(h) = {{ /f(MN)} (M,N)eh}

We sometimes use the projections hi := 0f(h) and h} = 605 (h) to denote the left and right
substitutions corresponding to h (under f).

In the following, we implicitly assume a suitable fixed bijection f.

Lemma 6.4.12 If h is consistent then hi ~ bl and h = (67 (h)).

Proof. Clearly h{ and hg have the same domain. By condition 3 for the consistency of h we have
that hf (z) = C(h!,z) and hi(z;) = C(hS, z;), so
h= {(C(h{, xi),C(h£7xi)) | z; € dom(h{)} as desired.

To show that hi ~h} we fix = € dom(h]).

1. C(h{,z) € N iff C(hd, ) € N by condition 1 of the consistency of h.
2. If y € dom(h!) then C(h!,z) = C(h!,y) and C(h,z) = C(hd,y) iff © = y by condition 2 of
the consistency of h.
3. As above, h{(m) = C(h{, x) and hg(ac) = C(hgw).
(]

Thus, 67 preserves consistency. Also, since ¢ is an inverse of 87 we get that if ¢ preserves
the synthesis, then so does #/. We now proceed to show that it is indeed true that ¢ preserves
environment synthesis.

Sending and Receiving Messages

In this paragraph we always implicitly assume that o ~ p and that h = ¢(0, p).

The following two lemmas show that the hedge derived from a consistent pair of substitutions
can generate exactly the same message pairs as the substitutions. In other words, ¢ preserves the
synthesis of environments.

Lemma 6.4.13 If (6,p) b M < N then h+ M < N.

Proof. By the definition of (o, p) F M < N we get that there exits ¢ such that n(¢) C dom(o),
= [Co]and N = [(p].
By Lemma 6.4.2 we get that ([Co],[¢p]) = (Ez(o;),Ez(p;)) for some i,z. We prove that
ht[¢o] < [¢p] by induction on |7].

o 1£[7] = 0, then ([¢o ], [Cp]) = (C(o, 1), Clp, ) € h.
e Else, if |f]=m + 1 and i’ = t1ta.. .ty then h - Ey(0;) < Ey(p;) by the induction assump-
tion. As (C(o,z.,,,,),C(p,2.,,,)) € hwe can use EQ-ENC to derive that h = Ez(0;) < Ez(p;).
O
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Lemma 6.4.14 Ifht+ M < N then (o,p) - M < N.

Proof.  The proof is by induction on the derivation of h = M < N. First note that for each
x; € dom(o) we can by Lemma 6.4.1 find an n; such that n(n;) C dom(o) and [n;0] = C(o, z;).
By Lemma 6.4.2, ([0 ], [nip]) = (C(o,z;),C(p, ;)).

e If (M, N) € h then there is ¢ such that (M, N) = (C(o,z:),C(p,z;:)) = ([nic ], [nip])-
e Else, (M,N) = (E.(M’"),Ep(N’)) and by the induction assumption there exists ¢ such
that (M',N') = ([¢o],[¢p]). By Lemma 6.1.1, (a,b) € h, so there exists ¢ such that

(a,b) = (C(o,2:),C(p, xl)) = ([[nia]]7 [[nip]D‘ But then

(M, N) = (Epn,o1(I¢o 1), Enip1([€p1) = (TE4. () o 1, [Ey: () pD)- o

We now show that an environment represented by a consistent pair of substitutions can accept
a given message pair iff an environment represented by a hedge can do it, and characterise the
hedge derived under ¢.

Lemma 6.4.15 [f o{""/.} ~ p{"/} then T(h U {(M, N)}) = o(c{"/.}. p{"/u}).

Proof. Let ¢ = {(o(zi),p(zi))|x; € dom(o)}. By Lemma 6.1.15 we have
I(Z(g)U{(M,N)}) =Z(gU{(M,N)}). By using Lemma 6.4.10 to (o, p) we get that Z(g) = h,
and substitution gives that Z(h U {(M,N)}) = Z(g U {(M,N)}). Applying Lemma 6.4.10 to
b {e}) we get ZloU{L N = 9o {"e} p{"}):

Thus Z(hU{(M,N)}) =@(a{" /o },p{ /2 }), as desired. O

Lemma 6.4.16 If Z(hU{(M,N)}) is consistent, then G'{M/x} ~ p{N/z} for any © ¢ dom(o).

Proof. Let g = Z(h U {(M,N)}). By Lemma 6.4.12 ¢/ ~ g¢J. Take any injection
f' ¢ dom(g{) — N such that range(f’) N (dom(gf) U dom(s) U {z}) = 0. We define
g{ — {gf(zl)/f,(ﬁ), o ?gif(zn)/f'(In)}xjedom(g{)' By iterated application of Lemma 6.4.3 we have
that g{ og{ ~ gg ogg, and Lemma 6.4.4 gives that E{ ~ gg. Moreover, since
{(g] (@), 9 (i) | @ € dom(g])} = { (@] (), 54 () | w; € dom(g])}, Lemma 6.4.10 gives
that g = (7], 73)-

By Lemma 6.4.13 we have that Va; € dom(o) : h - o(z;) < p(x;). By Lemma 6.1.10 we have
that h U {(M,N)} < g, so g F ox) <  plz;). By Lemma 6.4.14
@.9) F o(z;) < p(x;), so by definition there are 7; such that [mgl] = o(z),
[7:g3 ] = pl(x:) and n(n;) € dom(g]).

Then, by iterated application of Lemma 6.4.3 we get that g{ oo ~ g{ o p. Similarly,
as g F M < N we have by Lemma 6.4.14 that (g{,gg) F M < N. By definition this
means there is a ¢ such that n(¢) € dom(g)) and [¢g]] = M,[¢g}] = N. By Lemma 6.4.3
§{ o O'{M/z} ~ gg Op{N/x}. Finally, by iterated application of Lemma 6.4.4 G'{M/x} ~ p{N/z}. d

We also need to see what happens when the environment creates fresh names.

Lemma 6.4.17 If B = {by,b2,...,b,} is a finite set of names and B N fn(o,p) = 0 then

hUldp = gp(a{bl/cl,. . ,b"/cn},p{bl/cl, e b) for all sets of names C = {c1,ca,...,cn} such
that C' N dom(c) = 0.

Proof. We write {B/c} for {bl/cl, ...’ /e.}. By Lemma 6.4.8 we have that h is consistent, so
since B is fresh we have that h U Idg is consistent by Lemma 6.1.20. By Lemma 6.4.16 we get

that J{B/C} ~ p{B/C}.
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Since b; € N we have that C(U{B/c}, b;) = b; and C’(,O{B/C}7 b;) = b;. As B is fresh we have for
any x; € dom(o) that C(U{B/c},:vi) =C(0,z;) and C(p{B/C},xi) = C(p, ), 50 U{B/c} - p{B/C}
and o(o{"/c}. p{"Jc}) = hUldp. 2

We use the preceding result to show a variant of Lemma 6.4.14, namely that if a hedge aug-
mented with some fresh names can create a pair of messages then the same pair of messages can be
produced by a corresponding consistent pair of substitutions. Note that in the definition of alley
bisimilarity, the fresh names are required to occur in the expressions, while the other bisimilarities
allow the creation of fresh names that are not used.

Lemma 6.4.18 If B is a finite set of names such that B N fo(o,p) = 0 and
hUldg b M < N then there exists n such that n(n) \ dom(o) = B and [no] = M,[np] = N.

Proof. hUldp = go(a{bl/c17 YA p{bl/Cl y-"" /e }) by Lemma 6.4.17. Then, according to

Lemma 6.4.14 (o{bl/C17 ot p{bl/,m. ) }) E M < N, so there is ¢ : n(¢) € dom(c)UB
and [Co] = M,[¢p] = N. Clearly, n = Dy, (Dp, (- Dp, (Ep, (- - - Ep, (Ep, () -++)) -+ -)) has the
desired properties. O

6.5 Frames/Fences vs. Alleys

The missing component in our relations between the various kinds of environments concerns the
relation between frame-theory pairs and substitution pairs. As a matter of fact, we are only
interested in the case of strongly consistent substitution pairs.

Definition 6.5.1 The frame-theory pair corresponding to a (strongly consistent) substitution pair
is defined by:

7:88 = FT :v(0,p) :== (N Nmi(e(o,p), elo,p) \ (N xN))

Note that this definition indeed only makes sense in the case that o ~ p, because in it we consider
for the frame only the names of 7 (¢(c, p)) while ignoring those of ma(¢(0, p)). Note further that
all of the properties we need later on for « will be derived from the properties of ¢.

6.6 Message Equivalence

As we saw in Section 5, two consistent non-blind environments can be (/, =~ )-equivalent only if
they are M-equivalent (see Definition 5.3.1). With the results of this section, we can fully charac-
terise M-equivalent frame-theory pairs and alleys and, because of this, give necessary conditions
on full abstractions on the corresponding bisimilarities.

As showed in Lemma 6.1.18, two M-equivalent consistent hedges are equal. Using this, we can
show that M-equivalent consistent frame-theory pairs are equal. First we need to show that v is
injective when restricted to the set of consistent frame-theory pairs.

Lemma 6.6.1 If (fr,th) and (f',th’) are consistent and (fr,th) = (fr',th’) then
(fr,th) = (fr’, th’).

Proof. Let h = v(fr,th) = ¢(fr’, th’). By definition, (M,N) € hiff M = N € fr, M = N € fr',
(M,N) € th or (M, N) € th'.

Take (M, N) € h. If M or N is a name then M = N € fr and M = N € fr’ by Lemma 6.2.2.
Otherwise we must have (M, N) € th and (M, N) € th’, since the frame only contains names. O
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Two M-equivalent consistent frame-theory pairs are equal.
Lemma 6.6.2 If (fr,th) and (fr’, th’) are consistent and (fr,th) = (fr’, th") then (fr,th) = (fr',th’).
Proof. Note that ¢ (fr, th) = ¢ (fr’, th’). ¢ (fr, th) and 1 (fr’, th’) are both consistent by Lemma 6.2.3,
so (fr,th) = ¥ (fr’, th") by Lemma 6.1.18. Then (fr, th) = (fr’,th’) by Lemma 6.6.1. O
Corollary 6.6.3 Together with Proposition 5.3.3, this gives that all full abstractions from [framed,
fenced] to [framed, fenced] must be the identity on consistent, non-blind environments.

M-equivalent pairs of substitutions are exactly those that correspond to the same hedge.

Lemma 6.6.4 (o,p) = (¢/,p) if and only if p(o,p) = (o', p’).

Proof. By Lemma 6.4.13 and Lemma 6.4.14 we have that (o,p) = (o/,p') iff
w(a,p) 2 e(a’,p"). v(o,p) and p(o’,p’) are consistent by Lemma 6.4.8, so Lemma 6.1.18 gives
that (0, p) 2 (o', p') iff (o, p) = @(0’, p'). O

Corollary 6.6.5 Together with Proposition 5.3.3, this gives that all full abstractions from [alley,
trellis] to [alley, trellis] must preserve the image under ¢ of all consistent, non-blind environments.

7 Comparing Bisimulations

Having established the relations between the different kinds of environment representations, we
may study the relations between the respective bisimulations. In general, this is done by lifting
the environment mapping functions to consistent environmental relations. In general the lifting is
defined as follows:

Assume that g : Ex — Ey is an environment mapping.
If ey is consistent for =, we let G(ex, P, Q) := (g(ex), P, Q).
If R is a consistent relation (for ~y) we let G(R) := {G(ex, P,Q) | ex - PR Q }.
If S is a consistent relation (for ~) we let G71(S) := {(ex, P, Q) | G(ex, P, Q) € S}.
By abuse of notation, we write G~!(ey, P, Q) for G™'({(ey, P,Q)}).

7.1 Fenced vs. Trellis Bisimulation

These two bisimulations were compared by Frendrup et al. (2001). Here, we recapitulate and add
to their results. We use the environment mapping v and its lifting I', as instances of the above
definition scheme.

These are the main results of (Frendrup et al. 2001):

Theorem 7.1.1 T'(=;) is a fenced bisimulation.
Theorem 7.1.2 I'"!(x4) is a strongly consistent alley bisimulation.

Using the terminology of Definition 5.1.1, these results give us the following Lemma.

Lemma 7.1.3 ~y4 is fully y-abstract w.r.t. ~q.

Proof. Fix ¢ ~, p. We need to check that for all processes P,() we have that
(0,p) F P ~¢ Q if and only if v(0,p) = P ~4 Q. By Theorem 7.1.2 we have the “if” and
Theorem 7.1.1 gives the “only if”. O

Intuitively, this means that ~; can be embedded in ~4. However, this is only one of the full
abstractions needed to prove fenced and trellis equivalent. For the other direction, we must find
an environment mapping going in the opposite direction of 7. The composition of ¥ and 67 is a
reasonable candidate.
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Lemma 7.1.4

1. If (fr, th) is consistent then 67 (4 (fr, th)) ~, 0J (1 (fr, th)).
2. yo6f o) =1d on the set of consistent frame-theory pairs.

Proof.  w(fr,th) is consistent by Lemma 6.2.3, so 07 (¢(fr,th)) ~ 67 (y(fr,th)) according to
Lemma 6.4.12. Since (fr, th) is consistent, the only pairs of names in ¥ (fr, th) are of the type (a, a)
where a € fr. This gives that we actually have 9{ (Y(fr, th)) ~ 9{ (¢ (fr, th)).

By Lemma 6.4.12 we also have that ¢(67 (v (fr,th))) = (fr, th). Since (fr,th) is consistent by
assumption, we have that fr = N Ny (y(fr, th)) and th = o (fr, th) \ (N x N). O

Lemma 7.1.5 = is fully 67 o ¢ -abstract w.r.t. Ry

Proof. Fix a consistent frame-theory pair (fr,th). We need to check that for all processes P, Q
we have that (fr,th) - P ~4 Q iff 6/ (¢ (fr,th)) - P ~ Q.

We have by Lemma 7.1.4 that I'(8/(y(fr,th)),P,Q) = ((fr,th), P,Q). Using this, Theo-
rem 7.1.1 gives the “if” and the “only if” follows from Theorem 7.1.2. O

By combining Lemma 7.1.5 and Lemma 7.1.3, we have the desired equivalence.

Theorem 7.1.6 = is (7,07 o) )-equivalent to ~2y.

7.2 Fenced vs. Hedged Bisimulation

The correspondence between fenced and hedged bisimulation is easy to find, since they have similar
environments and, according to Lemma 6.3.3, the same action on process output. On the level of
the environments the correspondence is given by v, and we lift this to ¥ according to the above
definition scheme.

We immediately get an embedding of fenced bisimulation in hedged.

Theorem 7.2.1 U(~y) is a hedged bisimulation.

Proof. W(my) is a consistent hedged relation by Lemma 6.2.3 and is symmetric by the symmetry
of ~y4. Assume that (fr,th) F P =4 Q.

1. If P -5 P’ then there is a Q' such that Q = Q' and (fr,th) - P’ ~4 Q’,
o (Y(fr,th), P', Q') € ¥(=y).

9. Assume that P —““s P’ (fr,th) - a < b and B C A is finite such that
BN (n(P,Q) Un(y(fr,th))) = 0 and ¢(fr,thyUldg + M < N. By Lemma 6.1.1

(a,b) € (fr,th) and as (fr,th) is consistent we have that ¢« = b € fr. Clearly

n(¢(fr,th)) = frUn(th). Then there exists a @' such that @ LN Q' and
(frUB,th) F P’ =~ @', so (¢(fr,th) Uldg, P, Q') € U(=4).

3. Assume that P~ pr , ¥(fr,th) Fa < b and {¢} N (fu(P)Un(r(h))) = 0. As above

a = b € fr and n(m (1(fr,th))) = frUn(mi(th)) so there are Q',N,d where Q % Q'
(n(Q) U frun(ma(th))) N {d} = 0 and &(fr,th, M,N) F P =4 Q. Clearly
frun(ma(th)) = n(ma (¢ (fr, th))). ¥ (&(fr, th, M, N)) = Z (¢ (fr, th)U{(M, N)}) by Lemma 6.3.3,
so (Z(¢(fr,th) U{(M,N)}), P',Q') € ‘I’(~#) -

We may also state this as

Corollary 7.2.2 =y, is ¢-complete w.r.t. ~4.
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7.3 Fenced vs. Framed Bisimulation

One of the main results of Elkjeer et al. (1999) is the following:
Theorem 7.3.1 If (fr,th) - P ~4 Q then (fr,th) - P ~¢ Q.

The authors enunciate that the converse would also hold, but our counterexamples in Section 4
show that this cannot be the case. Indeed, their proof is flawed®. However, Theorem 7.3.1 can be
restated as

Corollary 7.3.2

o ~¢ is Id-complete w.r.t. 4.
o =2y is Id-sound w.r.t. =.

By transitivity, we also get
Corollary 7.3.3

o =~ is y-complete w.r.t. ~q.
o ~, is 8 o -sound w.r.t. ~;.

7.4 Framed vs. Hedged Bisimulation

In framed bisimulation we can make arbitrary extensions to the environment on process output,
something that is not permitted in hedged bisimulation. Therefore, we can only show a direct
correspondence between framed bisimilarity and hedged bisimilarity up to weakening. We need a
lemma concerning extensions of frame-theory pairs and their corresponding hedges.

Lemma 7.4.1 If (fi’,th') is consistent, (fr,th) < (fr’,th") and
(fr’,th’) = M « N then T ((fr,th) U {(M, N)}) is consistent and
Z(¥(fr,th) U {(M, N)}) < ¢(fr', th').

Proof. By Corollary 6.1.5(2) o(fr,th) U {(M,N)} < (fr',th’). This gives by
Lemma 6.1.13 that Z (v (fr, th)U{ (M, N)}) < Z((fr’,th’)). ¥(fr’, th’) is consistent by Lemma 6.2.3,
so (fr’, th") = Z(y(fr’,th")) according to Lemma 6.1.16.

Z((fr,th) U {(M,N)}) is irreducible by Corollary 6.1.8, so the consistency follows from
Lemma 6.1.19 applied to Z (¢ (fr,th) U {(M, N)}) < o(fr’, th"). O

Theorem 7.4.2 V(=) is a hedged bisimulation up to weakening.

Proof.  Assume that (fr,th) F P ~¢ Q. Internal calculation and input is handled as in the proof
of Theorem 7.2.1.

Assume that P P’ (fr,th) = a < b and {¢} N (fn(P) U n(m(h))) = 0. By
Lemma 6.2.2 we have a = b € fr.

(vé)a M

Clearly n(m (¢(fr,th))) = frUn(m(th)) so there are Q',N,d,fr’,th’ such that
Q =5 Q. ((Q) U fun(m(th) 0 {d) = 0 (th) < (K.,

(fr’ th") = M « N and (fr’,th") = P’ =~ Q’. Clearly frUn(m(th)) = n(m2(¢(fr, th))).

We need to show that there is ' > Z(¢(fr, th) U {(M, N)}) such that A’ - P’ U(=~¢) Q'. By
Lemma 7.4.1 we have that Z(¢(fr,th) U {(M,N)}) is consistent and
T((fr,th) U {(M,N)}) < o(fr',th"), and since (fr',th’) = P’ ~; Q' (see above) we get that
(B, th') P! () Q. O

3In the proof of their Lemma 20, stating (roughly) soundness of framed up to weakening, actions that must
be simulated by the minimal environment but not by a larger one are not taken into account (cf the example in
Section 4).
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In proving this theorem, we needed to weaken the hedges on process output. Actually, since
fenced bisimilarity is not complete with respect to framed, construction of a non-minimal environ-
ment may be required to get a framed bisimulation. Since =2y, only performs minimal extensions,
we get that (=) is not a hedged bisimulation.

We now proceed to show that up to weakening is a sound proof technique for hedged bisim-
ulation. The standard proof for this is to show that for an arbitrary hedged bisimulation up to
weakening R we have that R, is a hedged bisimulation. However, this is in fact not the case, as
this example shows.

Example 7.4.3 We let

R Y {({(a.a), (Ex(a),Ex(a)}, (W) a(l). 0, (v)a(l). 0)}
U{({(a, a), (Ex(a), Ex(a)), (1.1)},0,0) | | # a, k}.

Then R is a hedged bisimulation and thus a hedged bisimulation up to weakening, but Ry is not
a hedged bisimulation similarly to Example 3.4.7.

We instead show that “up to bijective renaming and weakening” is sound, which using commu-
tativity and Proposition 3.4.6 yields the soundness of up to weakening. We first give a simpler
definition of up to weakening for consistent relations.

Lemma 7.4.4 If R is a consistent hedged relation then h = P Ry Q iff h is irreducible and there
s h' such that "' = PR Q and h < h'.

PROOF: By Definition 6.1.2 h < b’ iff S(h) C S(h'). We will use the < notation throughout
this proof.

Assume that h - P R,, Q. By definition, there are h,h’ such that h = Z(h), K - P R Q
and h < h/. By Corollary 6.1.8 h is irreducible. Lemma 6.1.13 gives that h < Z(h'), but A’ is
consistent by the consistency of R so b’ =Z(h') by Lemma 6.1.16. Thus h < &'.

Assume that h is irreducible and there is A’ such that ' F P R Q and h < h/. By Defini-
tion 6.1.6 h = Z(h), so h - P Ry Q. o0

Theorem 7.4.5 Hedged bisimulation is sound up to bijective renaming and weakening.

PROOF: Let R be a hedged bisimulation up to bijective renaming and weakening. We wish to
show that R C=y,. We do this by showing that Ry, is a hedged bisimulation; the result follows
since R C Ry because b and w are both expansions.

If o is a bijective substitution A' — N we write o~! for its inverse. Since R is consistent, we
use the alternative definition of R, due to Lemma 7.4.4.

Assume that h = P Ry, @ and that P 2P By the definition of Ry, h is irreducible
and there are h, P,Q and bijective 0 : N' — AN and p : N' — A such that h - P R Q, Po = P,
Qp=Q, and h < h(a,p).

1. Assume that = 7.
Since ¢ is bijective P 5 P'o~!. Since R is a hedged bisimulation up to bijective renaming
and weakening there is Q' such that Q = Q' and h - P'o~! Ry Q'. This gives that
ht P’ Rywb Q' p. Since Rywt, = Ruw we actually have h = P’ Ry Q'p. We also have that
Q = Q'p since p is bijective, so () can simulate the transition P Ny

2. Assume that 4 = aM, h+ a < b and B C N is finite such that hUIdg + M + N and
BN (In(P,Q)Un(h)) = 0.
Since B are not necessarily fresh for h, P @ we need to invent another set of fresh names.
Let C C N such that |C] = |B| and C N (n(h,h) U fn(P,Q, P,Q)) = 0. Let o’,p’ be
bijective substitutions such that o’(C) = C = p'(C), 0’|, x, myyutm(®) = lu(r (m))ump) and
P |n(71'2 WUm(Q) = P‘ (ma(R))Un(@)- Let n: B — C be a bijective function.
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In this case, P = Po’, Q = Qp’, P = Pn, Q = Qn, hUldc - Mn <+ Nn and h < h(o’,p).
a — ac’™Y) Mno'~1
Moreover, P _aMn, P'n. Since o’ is bijective, we then get that P ( )M P'no’'1.
Since h < h(o’,p') we have h + (ao’~!) « (bp/~1b) and hUIdc + Mno'~! < Nnp'~L.
Then, since R is a hedged bisimulation up to bijective renaming and weakening there is Q’
. /—1 /—1 _

such that @ =222 () and 7 UTdg F P'o’ ! Ruw Q.
By Corollary 6.1.5.3 we have hUIdc < hUIdg. Moreover, since o’'n~! and p/'n~! are
bijective, we get that hUIdg F P’ Ruwbw @ 0'n~ L. As above, Ruwbw = Rbw, and @ can
simulate the transition P~ p’ 7 since Q LALUN Q'p.

3. Assume that u = (vé)a M, hta < band {¢} N (In(P) Un(m(h))) = 0.

— véiec™ 1) (ac—1) Mo~ 1! —

Since o is bijective, P ( Yoo P'o=1. Since h < h(o,p) we have that
h + (ac™1) « (bp~!). Since R is a hedged bisimulation up to bijective renaming and

COODN, o

weakening we have that there are @', d,N such that Q
{d} N (fn(Q) Un(mz(h))) =0 and Z(RU{(Mo~',N)})) F Plo~! Ry Q.

By Corollary 6.1.5.3 we get that h U {(M, Np)} < h(o,p) U{(M,Np)}. Lemma 6.1.13 then
gives that Z(hU {(M,Np)}) < Z(h(o,p) U{(M,Np)}), so

Z(hU{(M,Np)}) F P’ Rbwbw Q'p, where Ruwbw = Rbw as above. Since p is bijective we

dp)bN
get @ MCLILEN Q'p, so Q simulates the transition P —— P’

Corollary 7.4.6 Hedged bisimulation is sound up to weakening.

Together with Corollary 7.4.6, this gives the desired completeness result.
Corollary 7.4.7 =, is -complete w.r.t. .

Together with Proposition 3.4.5, we also get the following corollary.
Corollary 7.4.8 Let g < h be irreducible. If h P =~y Q then g P~y Q.

7.5 Alley vs. Hedged bisimulation

Now it is time to show the equivalence between alley bisimilarity and hedged bisimilarity. Recall
the environment mappings ¢ (Definition 6.4.7) and 67 (Definition 6.4.11). We lift ¢ to ® according
to the definition schema above.

Theorem 7.5.1 ®(=,) is a hedged bisimulation.

Proof. ®(=,) is symmetric by the symmetry of a2, and consistent by Lemma 6.4.8. Assume that
(o,p) F P =, Q and that h = (o, p).

1. If P > P’ there exists Q' such that Q = @’ and (0, p) F P’ =, Q', so
(I)((Ua p),Pl,Q/) = (haP,vQ/) € (I)(%a)'

9. Assume that P -2, P, h v a < b and B C N is finite such that
BN (m(P,Q)Un(h))=0and hUIdg - M < N.
By Lemma 6.4.14 we get that (o,p) F @ < b. By Lemma 6.4.18 there is ¢ such that
n(¢)\dom(c) = Band [(c] = M,[{p] = N. As (0,p) F P =, Q there exist Q’, ¢ such that

Q 25 @ and (et fe b e M) B P x, Q. Let

ey ={err o oo}
By Lemma 6.4.17 we get that hUIdg = w(U{B/C},p{B/C}), S0

o((o{%c}, p{C1c}), P, Q) = (hUTdp, P, Q') € ®(=.).
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3. Assume that P 2", P/ b a o band (fa(P) Un(m (k) N {&) = 0.
By Lemma 6.4.14 we get that (o,p) - a < b. By Corollary 6.4.9 n(m(h )) ( ), 80

ftm(P,o) N{c} = 0. As (a p) F P Na Q there exists @', N,d such that Q ———= @',
n(Q,p) N {d} =0 and o/} p{" ) F P = Q. i

By Corollary 6.4.9 fn(p) = n(ma(h)), so (fu(Q) U n(ma(h))) N {d} = 0. According to
Lemma 6.4.15 @(U{M/x},p{N/w}) = IZ(h U {(M,N)}), SO

({3 p {1 P Q) = (T(hU{(M,N)}), P, Q') € ®(=,). .

Theorem 7.5.2 <I>_1(zh) is an alley bisimulation.

Proof. ®~1(a,) is symmetric by the symmetry of ~,. As ® is only defined for consistent pairs
of substitutions ®~!(a,) is consistent. Assume that h = P ~y, Q where h = ¢(a, p).

1. If P =5 P’ then there exists @’ such that Q = Q' and h - P’ ~, Q. Clearly
((J) p))Pl7 Q/) 6 @71(}7” Pl?Q/)'

2. Assume that (o,p) + a < b and that B = n({) \ dom(c) is such that
BN Mm(P,Q,p,0) = 0. Furthermore, let [(oc] = M,[(p] = N and assume that
P M. p'. Assume that |B| = n and let C = {¢1,¢2,...,¢,} be any set of names

not in dom(c). We write {B/C} for {bl/cl, LA

By Lemma 6.4.17 we have that h U Idp = @(U{B/C},p{B/C}). We also get that
hta<«< band hUIdg F M < N by Lemma 6.4.13. Now, as h - P &y, Q there is Q' such
that @ = @ and hUIdg + P~ Q. Note  that
B B
((0{ /C}»P{ /C})aP/7Q/) = (hUIdBaPl7QI)'

3. Assume that (o,p) - a < b and P o, P’ where in(P, o) N{¢} = 0. By Lemma 6.4.13
we have that A F a < b, and by Corollary 6.4.9 fn(c) = n(my(h)).
As h F P m~, (@ there are Q' N,d such that Q % Q'
(n(Q) U n(ma(h))) N{d} = 0 and Z(hU{(M,N)}) - P ~, Q. By Corollary 6.4.9

5 M N

fn(p) = n(m(h)), so n(Q,p) N {d} = 0. Z(hU{(M,N)}) = @(o{ /o},p{ /s}) by
Lemma 6.4.15, so ®((o{ "'/}, p{ "/ }), P/, Q") = (Z(h U {(M, N)}), P, Q).

O
We now restate these results using the terminology of Definition 5.1.1.
Lemma 7.5.3 =y, is fully p-abstract w.r.t. ~,.
Proof. Fix ¢ ~ p. We need to check that for all processes P, we have that
(o,p) F P =, @Q if and only if ¢(o,p) F P =~ Q. By Theorem 7.5.2 we have the “if” and
Theorem 7.5.1 gives the “only if”. O

Lemma 7.5.4 =, is fully 0 -abstract w.r.t. ~

Proof. Fix a consistent hedge h. We need to check that for all processes P, we have that h
P =, Q if and only if #/(h) F P =~, Q. By Lemma 6.4.12 we have that
®(67(h),P,Q) = (h,P,Q). Using this, Theorem 7.5.1 gives the “if” and the “only if” follows
from Theorem 7.5.2. O

By combining these results, we have

Theorem 7.5.5 =, is (¢, 07 )-equivalent to ~,.
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We can use this theorem to transfer results on hedged bisimilarity to alleys. For instance, we have
that M-equivalent alleys can be substituted for each other in bisimulations.

Lemma 7.5.6 If (o,p) 2 (o/,p') then (0,p) b P =, Q if and only if (o’,p) F P =, Q

Proof. By Lemma 6.6.4 we have that ¢(o,p) = ¢(0’,p’). The result follows from Lemma 7.5.3
which states that (o, p) F P &, Q if and only if ¢(o,p) - P ~p Q. O

7.6 Negative results

Having found the full abstractions above, we can now disprove the existence of full abstractions
between other pairs of bisimilarities.

Proposition 7.6.1 In this proposition, we write “~y is not fully abstract w.r.t. =, ” for “there is
no mapping G such that ~ is fully G-abstract w.r.t. ~=,”.

~s is not fully abstract w.r.t. =y, ~y, <, or ~q.
~y4 15 not fully abstract w.r.t. =y, =t or =,.
/Ry is not fully abstract w.r.t. =¢, =y or =.
R, 15 not fully abstract w.r.t. ~¢, =y or ~s.
~ is not fully abstract w.r.t. ~¢, =y or ~,.

Crds Co o~

Proof.  To show that there is no function g : Ex — Ey satisfying ex =} g(ex), we show that
there is one consistent non-blind environment ey that is not (=, ~y)-equivalent to any of its
Me-equivalent counterparts in E,. Alternatively, we may use the transitivity of full abstractness
to derive a contradiction.

1. (a) The hedge {(a,a)} is consistent but not h-blind, since {(a,a)} t/ @(a).0 =}, 0. We look

for a %’]}—equivalent frame-theory pair (fr, th). Proposition 5.3.3 then gives that such a
frame-theory pair must be consistent and satisty (fr,th) = {(a,a)}.
Since (fr,th) is consistent we have by Lemma 6.2.3 that ¢ (fr, th) is consistent. We also
have that (fr,th) = ¥(fr,th), so the transitivity of = gives that ¢(fr,th) = {(a,a)}.
Since both of these hedges are consistent, Lemma 6.1.18 gives that ¢ (fr, th) = {(a,a)}.
Then Lemma 6.2.2 gives us that (fr, th) = ({a}, ), which has been shown in Section 4.2
not to relate the same processes as the hedge {(a,a)}.

(b) By Proposition 4.1.4 there exists a consistent non-blind (fr,th) such that
(fr,th) #£L (fr,th).  We try to find a frame-theory pair (fi/,th’) that is
(me¢, ~4)-equivalent to (fr,th).

By Proposition 5.3.3 we have that such a frame-theory pair must be consistent and non-
blind, and that (fr',th’) = (fr,th) must hold. Lemma 6.6.2 then gives that
(fr’,th") = (fr, th), but (fr, th) 5_'5; (fr,th).

(c¢) Assume that = is fully g-abstract w.r.t. ~,. We have by Lemma 7.5.4 that ~, is fully
67 -abstract w.r.t. ~,. By transitivity this implies that ~ is fully g o #/-abstract w.r.t.
~,, which contradicts 1(a).

(d) Assume that = is fully g-abstract w.r.t. ~z5. We have by Lemma 7.1.5 that = is fully
6/ oyp-abstract w.r.t. ~y. By transitivity this implies that = is fully go 67 ot-abstract
w.I.t. A2, which contradicts 1(b).

2. As 1(a),(b),(c).

3. (a) By Proposition 4.3.5 there exists a consistent non-blind (fr,th) such that
(fr,th) £ 9 (fr,th). We try to find a hedge h that is (=, ~y, )-equivalent to (fr, th).
By Proposition 5.3.3 we have that such a hedge must be consistent and non-blind,
and that h 2 (fr,th) must hold. Since (fr,th) = ¢(fr,th) we have by transitivity that
h = 9(fr,th). Note that ¢ (fr,th) is consistent by Lemma 6.2.3. Then we can use
Lemma 6.1.18 to derive that h = ¢ (fr, th), which is a contradiction.

(b) As 3(a).
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Alley Hedged | Framed | Fenced Trellis | =1 =

Alley F s,C s,C s,C F F
Hedged F s,C s,C s,C F F
Framed s,C S,C s,C s,C F F
Fenced s,C S,C S,c F F F
Trellis s,C s,C S.c F F F
~T c c ¢ c c c
~1 S S s S s S

In this table, an “s” means that there is a trivial function g making the bisimilarity leading the
row sound with respect to the one heading the column and “c” stands for trivial completeness.
A “S” means that there is a “good” sound environment mapping, “C” stands for the existence of
a “good” complete one and “F” for any full abstraction. We don’t show relations that are
subsumed by stronger ones.

Table 5: Relations between the bisimilarities.

(¢) As 1(d).

4. (a) Assume that =, is fully g-abstract w.r.t. ~¢. We have by Lemma 7.5.3 that =, is fully
p-abstract w.r.t. ~,. By transitivity this implies that ~, is fully ¢ o g-abstract w.r.t.
~¢, which is false by 3(a).

) As 4(a).

c) As 1(d).

) Assume that ~; is fully g-abstract w.r.t. ;. We have by Lemma 7.1.3 that ~ is fully
v-abstract w.r.t. ~5. By transitivity this implies that ~x is fully v o g-abstract with
respect to =, which is false by 2(b).

) As 5(a).

(c) As 5(a).

|

We summarise the relations between the bisimilarities in Table 5. Note that there are no
environment mappings from alleys or hedges to frame-theory pairs preserving both soundness and
the synthesis (cf. Lemma 6.2.2).

8 Conclusions

As an interpretation of the results of Section 4, we may underline two different deficiencies in the
original definition of framed bisimulation. In a sense, it is at the same time both too weak and
too strong with respect to barbed equivalence, for orthogonal reasons.

1. The definition is too weak in the sense that its authors did not impose a minimality re-
quirement on the environment and argue that this “results in simpler definitions, and does
not compromise soundness (w.r.t. testing equivalence)”. However, when adding the mini-
mality requirement, as done in fenced bisimulation, the relation becomes strictly stronger
than barbed equivalence. As seen in the example in Section 4.1, it is not obvious how to
choose the non-minimal extension on process output in order to get a bisimilar framed pro-
cess pair. Thus, for example the purpose of mechanisation, we regard fenced bisimilarity as
better suited than framed, but both bisimilarities suffer from the second problem of being
too strong.

2. The definition is too rigid, because it requires the syntactic coincidence of names received by
the environment from the two processes under observation: whereas framed bisimulation re-
quires identity, hedged bisimulation allows the environment to simply record that the names
respectively received from the processes in a bisimulation step correspond (c.f. Section 4.3).
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This is the main reason why fenced bisimilarity does not coincide with barbed equivalence,
while hedged bisimilarity does.

In Section 5, we developed a uniform framework for comparing environment-sensitive bisimi-
larities based on their environments, because the standard merely set-theoretic framework turned
out not to be sufficiently general. We then used this new framework to reformulate and refine
the results of the two previous comparisons of environment-sensitive bisimilarities by Elkjaer et al.
(1999) and Frendrup et al. (2001). We found that Frendrup et al. (2001) showed only the full
abstraction of ~4 with respect to ~, but not the other direction. Once this was clear, the missing
full abstraction was easy to construct (c.f. Lemma 7.1.5).

We exercise the comparison framework in Section 7. In particular, we find that there exists
a “framed-style” environment-sensitive bisimilarity, namely hedged, that is equivalent to barbed
equivalence. We then use the distinguishing examples of Section 4 to show that we have fully
characterised all full abstractions and equivalences between the bisimilarities.

Furthermore, in Appendix B we propose a (to our knowledge) novel method for comparing
environment-sensitive bisimilarities as categories. This technique allows us to study the internal
structures of the bisimilarities. In particular, it allows us to highlight the fact that the non-
minimality of framed bisimilarity distinguishes it conceptually from the other bisimilarities. After
redefining some up-to techniques in this setting, we are at least able to embed framed bisimilarity
into “hedged bisimilarity up to weakening”. We also show that hedged bisimilarity is categori-
cally equivalent to “alley bisimilarity up to M-equivalence”, thus refining the merely set-theoretic
bisimilarity equivalence proved in Section 7.

Further work

The spi-calculus defined in Section 2 has a very simple message syntax compared to the original
spi-calculus by Abadi & Gordon (1999). However, as we see in Appendix A, our results are easy
to adopt to a calculus with pairing, and we have found no reason to expect that compound keys,
public-key cryptography or even the addition of arbitrary function symbols as done by Cortier
(2002) would be more difficult to treat. We chose the more restricted setting of this paper only in
order to focus the attention on the various bisimilarities. Moreover, although we only treat weak
late bisimulations, in order to keep the correspondence with barbed congruence, the results carry
over directly to the early and/or strong versions.

From a rather subjective point of view, when working with concrete examples we find hedged
bisimulation easier to work with than alley bisimulation, because the knowledge of the environment
in each reachable configuration is arguably easier to understand, and the verification of consistency
is more straightforward. Moreover, the simpler structure of hedges allows a less complex proof of
soundness up to weakening than alley bisimilarity. On the other hand, alley bisimilarity benefits
from an attractive logical characterisation of environment consistency.

The mechanisation of equivalence-checking in the spi-calculus represents a major goal for our
current and future work. Usually, the main problem is due to the unavoidably infinite number of
transitions on process input as described in the standard operational semantics. To remedy this,
similar to approaches in the pi calculus, we are currently studying symbolic semantics for the spi
calculus as the basis of symbolic notions of bisimulation. Also to this aim, we use (refinements of)
hedged bisimulation rather than alley bisimulation, because the involved data structures are easier
to deal with. Furthermore, our prototype implementation of an equivalence-checker for hedged
bisimilarity also profits from the minimality requirements of hedged bisimilarity.
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A Pairing

In this appendix we add pairing to the calculus and revisit some definitions and results on hedges.
We extend the syntax of messages and expressions and the evaluation function with pairing as per
Table 6.

M,N == a | ExM) | (M.N)

0 n=a | E(8) | (5.9)

777< = a | EC(U) | D((U) | (770 ‘ 7.‘.1(,'7) | 71_2(77)
(.0) = { M) iIn] =M€ Mand [(] =N €M
[m(m)] = Jf[ gtEZrﬂwi:se(M AeM
et = {1 Al e

Table 6: Extentions for pairing

Definition A.0.2 We say that a hedge h is pair-free if whenever (M, N) € h we have that neither
M nor N is a message pair.

The concept of consistent hedges, defined in Definition 3.3.2, is adapted as follows:

Definition A.0.3 A hedge h is consistent iff h is pair-free and the conditions of Definition 3.3.2
hold.

The synthesis of frame-theory pairs and hedges are expanded with the following rule:

(My, Ny) € S(fr,th) (M, Ny) € S(fr,th)
((My . M), (Ny.Ny)) € S(fr, th)

(SYN-JOIN)

Symmetrically, the analysis of a hedge additionally satisfies the rules

((My.Mz),(N1.N2)) € A(h)

S
(M, N1) € A(h)
S
)

(ANA-sPLIT1)

((Mj . Ms), (N1 .N2))
(M3, No) € A(h

A(h)

(ANA-SPLIT2)

The irreducibles if a hedge is redefined as

Z(h) :== A(h)\ {(Ea(M),Ep(N))|(a,b) € A(h), (Ea(M),Ey(N)) € A(h)}
U{((M1.Ma),(N1.N2))|[((My.Mz),(Ny.N2)) € A(h)})

A.1 Applications to Hedges

We have a corresponding change to Lemma 6.1.7:
Lemma A.1.1 A hedge h is irreducible iff the following conditions hold:

1. If (Eq(M),Eyx(N)) € h then (a,b) & h.
2. If (M,N) € h then at most one of M and N is a pair.

Proof. If this holds then we can apply neither ANA-SPLIT1, ANA-SPLIT2 nor ANA-DEC to any
pair in h, so A(h) = h. By the definition of Z(h) we then have that Z(h) = h.
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If b is irreducible then the disjointness holds by the definition of Z(h), using that A(h) 2 Z(h).
O

Note that an irreducible hedge is not always pair-free. As an example we have that {(a, (b.c))}
is irreducible but not pair-free.

To show Lemma 6.1.4 and Lemma 6.1.11 we need the following lemma, which is a companion
to Lemma 6.1.1:

Lemma A.1.2 If h+ (My.Ms) < E,(N) then ((M;y.Ms),E.(N)) € h.
Ifh = Ea(M) > (Nl N2) then (EQ(Z\f)7 (N1 Ng)) € h.

Proof. Clearly, neither SYN-ENC nor SYN-JOIN can derive the correspondence. O

In order to prove Lemma 6.1.19 we need to use the following result to show that Z(g) is
pair-free.

Lemma A.1.3 If g is irreducible, h is pair-free and g < h then g is pair-free.

Proof. Assume that (M, N) € g and note that h = M < N. Assume that M is a pair. As h is
pair-free (M, N) ¢ h, so we must have used SYN-JOIN to derive that h = M < N. Then N is a
pair. According to Lemma A.1.1 this implies that ¢ is not irreducible, which is a contradiction. A
symmetric argument holds if N is a pair. O

Otherwise, we only need to add cases for pairing, which are generally simpler than the encryp-
tion/decryption cases, to derive the results on hedges in Section 6.

For framed bisimulation,we require a consistent frame-theory pair to have a pair-free theory in
addition to the requirements of Definition 3.1.2. Then the results and proofs relating frames and
hedges in Section 6 hold without modification.

The definitions of framed and hedged bisimulation are unchanged. For fenced bisimulation,
we need to add pair-splitting operations to £&. The problem with defining alley bisimulation in
the presence of pairing is that a message may have several different cores. This can be treated by
considering the locations of the cores (see (Boreale et al. 2002) for details).

We have not proved the relations between the bisimilarities in the presence of pairing, but
strongly believe that they should hold. For the proofs, the only major difference should be in
Lemma 6.4.10, where we need to take the new consistency requirements for alleys into account in
order to show the alternative definition of ¢.

A.2 Framed vs. Hedged — with pairing

As an example, we study an adaptation of the process pair used by Abadi & Gordon (1998) to
conjecture that framed bisimilarity is not complete wrt barbed equivalence. We define

P =(vk,m,n)a(Ex(m.n)).(@(m).0+a(n).0)
Q =(vk,n)a(Ex(n)).a(n).0

As before, we wish to show that {(a,a)} F P =, Q and that ({a},0) t/ P =~ Q.
Proposition A.2.1 A hedged bisimulation R such that {(a,a)} - P R Q is defined by

R ={({(a,a)}, P,Q)}

U{(h(k,m,n), (@(m).0+a(n).0),a(m).0)|k,m,n € N\ {a}}
U{(h(k,m,n) U{(m,n)},0,0)|k,m,n € N\ {a}}
U{(h(k,m,n) U {(m,m)},0,0)|k,m,n € N\ {a}}

where h(k,m,n) = {(a,a),(Ex(m.n),Er(n))} and k,m,n are pairwise different wherever they
occur.
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Proof. Note that R is “trivially” consistent as we never receive a nor the outermost keys of
encrypted messages.
(vk,m,n)a Ex(m.n) _ _ R .
e As P (@(m).0+a(n).0) whenever k,m,n and a are pairwise different,
we mneed to check that for all k,m,n there exist @',N,d such that

Q L 0 a ¢ {d} and T({(a, a), (Bx(m.n), N)}) F (@(m).0+a(n).0) R Q.
We may choose d = (k,n), N = Ex(n) and Q' = a(n).0. As h(k,m,n) is consistent
Z(h(k,m,n)) = h(k,m,n) by Lemma 6.1.16.

e The output transitions of @ can be handled in the same way.

e As (a(m).0+a(n).0) —=- 0 we must choose a matching transition of @(n).0. The only
transition is valid. B

e As (@(m).0+4a(n).0) —"- 0 we must choose a matching transition of @(n).0. The only
transition is valid.

e Asa(n).0 -~ 0 we must choose a matching transition of (@(m).0+a(n).0). Both tran-

sitions are valid.
O

Proposition A.2.2 Let P,Q as in Proposition A.2.1. Then there is no frame-theory pair (fr, th)
such that a € fr and (fr,th) - P ~; Q.

Proof. Assume that there exists a framed bisimulation S such that ({a},0) - P S Q.
L. (vk,mmn)a Ex(m.n) - _
1. As a is in the frame and P (@(m).0+a(n).0) whenever k,m,n and a
are pairwise different, we need to check that for all such k,m,n there exist Q’, N,d, fr,th
such that Q % Q' ad {cf}7 a € fr and
(fr,th) F  (@(m).0+a(n).0) S Q. Any transition of @ is of the form

Q _wkin)a By (), a(n’). 0.

2. Since (a{m).0+a(n).0) ™, 0 we need to check that a(n'). 0 can do a matching transition.

As the only possibility is a{n’). 0 2", 0 there exists a consistent frame-theory pair (fry, thy)
such that (fry,thy) - m < n’, which can only be the case if m =n' € fr;.

3. Since (@(m).0+a(n).0) ——— 0 we need to check that @(n’). 0 can do a matching transition.

As the only possibility is a(n’). 0 ™, 0 there exists a consistent frame-theory pair fry, thy
such that (fra, thy) F n < n’, which can only be the case if n = n’ € frs.
4. We thus have that m = n, which is a contradiction.
(I

B Comparison in a Categorical Framework

Usually, bisimilarities are represented and studied as sets of process pairs; comparisons between
bisimilarities are therefore based on set-theoretic comparisons. In the previous sections, we have
achieved a set-theoretic understanding of the relations between the various environment-sensitive
bisimilarities, properly taking into account the relations (represented by mappings) between the
environment components. It turns out that we can improve on this merely set-theoretic under-
standing and further refine the comparison of the bisimilarities by not only studying the elements
of bisimilarities, but also the (pairs of matching) transitions that connect them. The application
of this technique to bisimilarities for other process calculi (e.g., the pi calculus) is a subject of
possible future work.

As we have seen, definitions of bisimulations typically contain statements such as “If e - P R @
and P —— P’ then there exists Q' such that Q = Q' and e - P’ R Q'”. This provides us with
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some internal structure on the set R, namely transition pairs connecting the objects (e, P, Q)
and (e, P’,@’). For bookkeeping purposes, we label such arrows with the process actions. This
procedure, more formally defined below, turns each bisimulation itself into a labelled transition
system, which allows us to study the internal structure of the bisimilarities. As a standard uniform
framework for this kind of comparison, we use the language of category theory. We straightfor-
wardly redefine the bisimilarities as categories, then we lift the environment mappings to functors
between those categories and study the properties of these functors.
Let A denote the set of actions defined by the following grammar:

ey = 7 | aM | aM

Note that new names are not explicitly mentioned on process output. However, by inspection of

the derivation of P 2™, P’ we have that {¢} Cn(M). (Note that ¢ = n(M) \ fn(P) may be
false, due to the rules SUM, LET and GUARD.) Since the simulations only consider outputs where
¢ is fresh (see Section 3 for the precise meaning in each particular case), we have that ¢ is simply
the fresh names in n(M).

B.1 Redefinitions

The categorical definitions below all have a similar structure:

e The objects are process pairs under some kind of environment. Processes are considered up
to a-equivalence.

e The arrows are labelled, and correspond to matching transitions of the process pair. Due
to the closure requirement on the composition of arrows in a category, the labels must be
strings over the set of actions.

e Composition of arrows is concatenation of the labels, which clearly is associative. If A “.B

and B — C then we write A ——— C for the arrow B —— C 0o A -~ B.

e Two arrows are considered equal if they have the same label, domain and codomain.

e The identity arrows simply correspond to not doing any transition, and are labelled with
the empty string (different from 7, since identity arrows must be idempotent and 77 # 7 as
strings).

Note that the arrows are only labelled with the actions of the first process in the pair. Together
with the codomain, this uniquely determines the actions of the second process, since a given
consistent environment can not consider a given message equivalent to two different messages. We
may now proceed to the redefinitions.

Framed Bisimulation

The category § has =¢ as set of objects. We say that there is a primitive §-arrow from ((fr, th), P, Q)
to ((fr’,th), P', Q") iff one of the following conditions holds:

1. P 5 P, Q = Q and (', th') = (fr,th). This arrow is labelled with .

2. P M, p g 2N, th = th and i = frUB where a € fr, B C A is finite,
BN (fn(P,Q)Ufrun(th)) =0 and (fr UB,th) - M < N. This arrow is labelled with a M.

(vé)a M , (vd)a N , / / ’ I
3. P ———— P', Q =———= @', (fr,th) < (fr',th’) and (fr’,th’) - M « N where a €
fr,{¢} N (fn(P) U frUn(m(th))) = @ and {d} N (n(Q) U frUn(ma(th))) = @. This arrow is

labelled with @ M.

The arrows in § are the identity arrows and the transitive closure of the primitive
F-arrows.
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Fenced Bisimulation

The category §x has ~x as set of objects. We say that there is a primitive §u-arrow from
((fr,th), P,Q) to ((fr',th’), P’, Q') iff one of the following conditions holds:

1. P55 P, Q =Q and (fr’,th") = (fr,th). This arrow is labelled with 7.
2. P M, proQ =22 @, th' = th and ' = frUB, where a € fr, B C A is finite,

BN (n(P,Q)UfrUn(th)) =0 and (frUB,th) - M < N. This arrow is labelled with a M.

3.p M g DIN o and (8 th) = £(fr,th, M,N) where a € fr,

{¢} N ((P) U frun(my(th))) = 0 and {d} N ((Q) U frUn(my(th))) = @. This arrow is
labelled with @ M.

The arrows in §x are the identity arrows and the transitive closure of the primitive §4-arrows.

Alley Bisimulation

The category 2 has &, as set of objects. We say that there is a primitive 2-arrow from ((o, p), P, Q)
o ((c',p), P',Q") iff one of the following conditions holds:

1. P 5P ,Q =@, 0 =0 and p = p. This arrow is labelled with 7.

9. p M, P Q 28, Q, o = J{B/C} and p' = p{B/C} where B N fn(P,Q,p,0) = 0,
CNdom(a) =0, (c,p) F a « b and there exists ¢ such that B = fn(¢) \ dom(c), [{c] = M
and [¢p] = N. This arrow is labelled with a M.

3. P _waaM P. Q % Q, o = O'{M/I} and p/ = p{N/m} where
fn(P,o) N {¢} = 0, m(Q,p) N {d} = 0 and (5,p) F a < b. This arrow is labelled with

aM

The arrows in 2 are the identity arrows and the transitive closure of the primitive
2A-arrows.

Trellis Bisimulation

The category & is the sub-category of 2 obtained by restricting the set of objects to =s;.

Hedged Bisimulation

The category $) has av, as set of objects. We say that there is a primitive $-arrow from (h, P, Q)
to (R, P, Q") iff one of the following conditions holds:

1. P 5 P, Q = @ and I/ = h. This arrow is labelled with 7.

2. P M. pr g 22 and W = hUTdp where h-a < b, hUldg - M < N, BC N is

finite and B N (fn(P, Q) Un(h)) = O. This arrow is labelled with a M.
3. p 00N prog PN o and I = Z(hU{(M,N)}) where b+ a < b, {¢} N (fa(P) U
n(mri(h))) =0 and {d} N (fu(Q) Un(ma(h))) = O. This arrow is labelled with @ M.

The arrows of § are the identity arrows and the transitive closure of the primitive
$H-arrows.

B.2 Reinterpretation

We now attempt to lift our environment mappings to functors between the bisimilarities, and
study the properties of these functors.
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Framed and Fenced

We begin by comparing § and §x. Regarding the objects, ~x C ~¢ by Proposition 4.1.4 and Theo-
rem 7.3.1. At process output we have that
((fr,th), P,Q) 5 ((f',th), P', Q') in s only if (fr',th') = &(fr,th, M, N). In §, we also

have an arrow —— from ((fr, th), P, @) to (&(fr,th, M, N), P’, Q") according to Lemma 6.3.1 and
Theorem 7.3.1(1). As framed and fenced bisimulations behave identically on process input and
internal calculation, there is a trivial embedding functor §x — §. However, in § we are allowed to
further extend the frame-theory pair on process output, giving rise to arrows not present in §.

Example B.2.1 Let P =a(a).0. Clearly ({a},0) F P =4 P and ({a},0) - P ~¢ P. Except for
the identity, the only arrow from (({a},0), P, P) in §4 is

(({a},0),P,P) — (({a},0),0,0). However, in § there are arrows

({a},0), P,P) — ((fr,th),0,0) whenever (fr,th) is consistent and a € fr.

Fenced and Hedged

We define U# : Fn — $ as U#((fr,th), P,Q) = (¢(fr,th), P,Q) and U#(((fr,th), P,Q)

((fr',th'), P', Q")) = (¢(fr,th), P,Q) —— (4(f',th’), P’,Q’). As shown in the proof of Theo-
rem 7.2.1, any primitive Fx-arrow corresponds to a primitive $)-arrow with the same label, so by
composing these we get that U# is a functor. U# is full, since both bisimilarities perform minimal
extensions, and faithful, since arrows are equal iff they have the same labels, which are preserved

by U#. However, there is a hedged process pair in range(¥#) with an $-arrow that leads outside
range(U#).

Example B.2.2 Let P = @(a).(vl)a(l).0+a{a).a(k).0 where k # a. We have that ({a},0) F

~x P, intuitively since the simulating process can always mimic the simulated. In $ we have
aa

that ({(a,a)}, P,P) —— ({(a,a)}, (vl)a(l).0,a(k).0) but ({a},0, (vl)a(l).0,a(k).0) is not in
~y4 by Proposition 4.3.3 and Theorem 7.5.1.

We also have that the obvious extension of ¥# to § is not a functor, because of the multitude of
possible extensions of the frame-theory pair on process output (see Example B.2.1).

Hedged and Alley

We extend the definition of d to A — 9 by letting

®(((0,0), P.Q) = ((¢/,0), P, Q") = (p(0,0), P,Q) ~= (p(0",p), P',Q’). As shown in the
proof of Theorem 7.2.1, any primitive §4-arrow corresponds to a primitive $)-arrow with the same
label, so by composing these we get that ¥ is a functor. W is faithful, since arrows are equal iff
they have the same labels, which are preserved by ¥. However, ¥ is not full, since several different
non-isomorphic alley process pairs are mapped to a given hedged process pair.

We can also define ©7 : § — 2 by letting ©/(h, P,Q) := (6/(h), P,Q) and
o' ((h, P,Q) LN (R, P',Q") = (67(h),P,Q) — B, (67 (R"), P',Q"). Unfortunately ©/ is not
a functor, since on process output the environments in 2 simply add message pairs instead of
reducing them and discarding duplicates.

Example B.2.3 Let P = a(E.(a)).0. Clearly {(a,a)} F P =, P. Assume that
fla,a) = x where f is the function defining 07. As in the proof of Theorem 7.5.5 we have

that ({a/L},{a/L}) F P =, P. In$ we have that ({(a,a)}, P, P) BRI ({(a,a)},0,0). A

corresponding arrow in A is

(({a/z} {a/z} 7 Eal@) (({a/ E“(a)/y},{“/z, E“(“)/y}) ,0,0). However, we have that
©/({(a,a)},0, 0 { St 1) 0,0) # (({ e, By} {%, B9, 1), 0,0).

One way to fix this problem is the apphcation of up-to techniques.
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B.3 Up-to Techniques

The application of up-to techniques corresponds to adding up-to actions to A. The following up-to
techniques were defined for &, by Boreale et al. (2002).

e Up to structural congruence, which corresponds to adding s to the set of actions and adding
all arrows ((o, p), P,Q) — ((0,p), P',Q’) where P = P’ and Q = Q'.

e Up to Weakening, which corresponds to adding w to the set of actions and adding all arrows
((0,0), P,Q) ({301}, P.Q).

e Up to contraction, Wthh corresponds to adding c to the set of actions and adding all arrows
(1" 00"k} P.Q) = (0.0), P.Q) where (0. p) - M < N.

e Up to restriction, which corresponds to adding r to the set of actions and adding all arrows
(o, p), (vm) P, (vin) Q) - ((6,p),P,Q) where {m} N f(oc) = 0 and
{n}Nfn(p) = 0. When using this up-to technique, it is preferable not to record the creation
of fresh names on process output.

e Up to parallel composition, which corresponds to adding p to the set of actions and adding

all arrows ((0,p), P| Fo,Q| Fp) - ((o,p), P, Q) where fn(F) C dom(c).

The two equivalence relations on environments defined in Section 5 can also be used to define
up-to techniques.

e For a given bisimilarity ~ we get the technique of up to (=, ~«)-equivalence, which corre-
sponds to adding an “up to (R, ~x)- equivalence” action e to the set of actions and adding
all arrows (ex, P, Q) — (., P, Q) where e, =* ex

e Up to M-equivalence, which means adding an “up to M- equivalence” action m to the set
of actions and adding all arrows (ex, P,Q) — (€., P, Q) where el 2 e/,

After adding arrows, we must ensure that all compositions are defined. A priori, since we distin-
guish arrows having different labels we are sensitive to exactly where and which up-to techniques
were used in the composition of an arrow, which is rarely desirable. However, we can make arrows
that only differ in their use of up-to techniques equal by taking the quotient with the following
equivalence:

Definition B.3.1 The arrows A —— B and A —— B are up-to equivalent, written R =. AN
iff Y\U = g\U, i.e., ¥ and i are equal after removal of names of “up-to actions”.

In the resulting category, all arrows only labelled with reversible up-to actions are isomorphisms.
Using up-to techniques as defined above, we can give a more precise relation between framed
and hedged bisimilarity expressed as categories.

Framed and Hedged

Apart from the environments the main difference between framed and hedged bisimulations is that
we in framed bisimulation may extend the process pair more than strictly necessary on process
output. Since we already have a mapping on the objects of the categories, to get an embedding it
should intuitively suffice to permit arbitrary extensions also on the hedged side. This corresponds
to taking hedged bisimilarity up to weakening.

We let $H* be $ up to Weakening and =,, i.e., the category obtained from $) by first adding all
arrows of the type (h, P,Q) — (h/, P,Q) where h < I/ and the codomain actually is an object in
the category, then closing the set of arrows under composition and finally taking the quotient with
=, as defined in Definition B.3.1. The effect of this is that we may add information to the hedge
at any time — not only on process output! However, as we are only looking for an embedding of
F in H", the extra arrows resulting from our preference to use a standard up-to technique will not
cause any problems.

We then define % : § — 9™ as U™ ((fr,th), P,Q) = (¢ (fr,th), P,Q) on objects. On primitive
S-arrows, U acts in the following way.
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1. We define 9% (((fr,th), P, Q)
as the arrow (¢ (fr,th), P, Q)

2. We define W (((fr,th), P,Q) —— ((fr’,th"), P", Q"))
as the arrow (i (fr, ) Q) —— (Y(&',th"), P, Q")).

3. If ((fr,th), P,Q) —— ((fr’,th’), P’,Q’) then by definition there is N such that (fr’,th’) I
M < N. In $, there is an arrow

(¢ (fr,th), P, Q) M, (Z(p(fr, th)U{(M, N)}), P',Q"), so we have to bridge the gap between
the codomains of these arrows.

We have (fr,th) < (fr’,th") by the definition of framed bisimulation. By Lemma 7.4.1
we then get that Z(¢(fr,th) U {(M,N)}) < ¥((fr’,th")), so there is a weakening arrow

w

(Z((fr,th) U {(M,N)}),P",Q") — (¥((f',th")), P',Q’) bridging the gap. We then de-

fine U (((fr,th), P, Q) ﬂ>)((fr',th’),P’,Q’) =5 o ﬂ, where the domains and
codomains of the arrows on the right are as seen above.

(fr, th), P Q )

(
= (4(fr, th), P/, Q").
aM

Q
S

Inductively, the action of ¥* on composite §-arrows is just the composition of the application of
U™ on the primitive decomposition. ¥" is a faithful functor, since it is injective on both objects
and labels.

B.4 ©/ Again!

In the cases of framed, fenced and hedged bisimulation we have that two environments are M-
equal iff they are equal, so all m-arrows will disappear under =,. However, for substitutions we
will see that “up to M-equivalence” buys us something.

We let 2™ be 2 up to M-equivalence and =,,, i.e., the category obtained from 2{ by first adding
all arrows of the type ((0,p), P,Q) —— ((¢/,p'), P, Q) where (o, p) = (0/, p'), then closing the set
of arrows under composition and finally taking the quotient with =,, as defined in Definition B.3.1.
The effect of this is to make M—equivalent environments isomorphic.

We define @ : A™ — § as ®((o, p), P, Q) := (¢(0, p), P,Q) and

®(((0,0), P,Q) — ((¢/.0). P, Q) := (¢(0.p), P.Q) == (p(0",p), P, Q). where i’ = ji\m.
The removal of the m—actions is valid since p(o,p) = (o', p’) if and only if (o,p) = (0/,p)
according to Lemma 6.6.4. As in the proof of Theorem 7.5.1 we have that ® is a functor.

We also define ©7 : § — A™ by letting ©/(h, P, Q) := (67 (h), P,Q). The action of ©/ on the
primitive $-arrows is as follows:

1. If (b, P,Q) — (W, P’,Q’) then we define /() := 1,

2.1 (hPQ) “—M—> (W, P',Q) we let B = m(K \ h).  We have that

0f(h,P,Q) —— hf{ o}, hf{ /c}), P', Q') by the proof of Theorem 7.5.1.

By Lemma 6.4.17 there is an arrow hf{ /c},hg{B/c}),P’,Q’) N (07 (n"), P',Q"). We
then define @f( My = %

3. If (h, P,Q) —— (h/, P’,Q’) then we let b and N be the messages corresponding to a respec-
tive M according to h’. As in the proof of Theorem 7.5.2 we have that ef(h, P,Q) LN

(AL mE {0, PLQY). By Lemma 6.4.15 we have that ( ERIANIE ARSI

so there is an arrow ((h{{ /w},hg{ /1), P,Q) —— (6/(r),P',Q"). We then define
a m aM
('-)f<—>) = — 0 —,

By the above definition, it is clear that ©7 is a functor.

Theorem B.4.1 A™ and § are equivalent. More precisely, ®o©f = Idg and ©7 o® is isomorphic
to Idmm .
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Proof. By Lemma 6.4.12 we have that h = @(h{,hg) whenever h is consistent, so (® o
0 (h,P,Q) = (h,P,Q). Since ® throws away all m-arrows introduced by ©f we have that
®o0f =1Idg.

To show that ©f o ® is isomorphic to Idgm we need to find A™-isomorphisms to complete the “nat-

urality square” below. We use the m-arrows ((o, p), P,Q) —— ((9{(@(0, p)),eg(cp(a, p)),P,Q).
There are such arrows according to Lemma 6.4.12 and they are isomorphisms since we only identify
=,-equivalent arrows and M-equivalence is symmetric. To exhibit the functor isomorphism we

need to show that the following diagram commutes whenever ((c, p), P, Q) AN ((e",p), P,Q").

((0’7p)7P’Q) —— @foq)((g7p)7P,Q)

ﬁl J@f o®(j1)

((e".0), P, Q) —"— ©f0d((d',). P Q)

Consider the arrows ((c, p), P, Q) SELINYCT RS o((co’,p'), P',Q") and
m 67 od(fi
o/ 0d(fi)

(o, p), P,Q) el o ®((d’,p'),P',Q"). As ©f and ® only change labels by inserting
~ ef @ ~

and removing m-actions we have that al =, O o) . As the arrows in ™ are equivalence

classes with respect to =, the diagram is commutative. O

In other words, $) is equivalent to “2 up to M-equivalence and =,,”, where the isomorphism on
the alley side s the normalisation of environments given by
(0,0) — (6] (¢(0,p)), 03 (#(0, p))).

We can characterise the relationship between §4 (fenced) and & (trellis) in the very same way,
namely that §x is equivalent to “S up to M-equivalence and =,” (&™), where the isomorphism
on the alley side is the same normalisation as above.

B.5 Summary

The relations between the different categories are graphically presented in Figure 3. With these
results, we have related the bisimulations not only based on the distinguishing power of the
environments, but also based on their internal structure.

Figure 3: Categorical Relations
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