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Abstract

The link structure of the Web graph is used in algorithms such as
Kleinberg’s HITS and Google’s PageRank to assign authoritative weights
to Web pages and thus rank them. In HITS, a solid theoretical model
is lacking and the algorithm often leads to non-unique or non-intuitive
rankings where zero weights may inappropriately be assigned to parts of
a network. In PageRank, a model of random walks is proposed such that
the theory about the stationary state of a Markov process can be ap-
plied to assure convergence to a unique ranking. Both algorithms require
a centralized computation of the ranking if used to rank the complete
Web graph. In this paper, we propose a new approach based on a Lay-
ered Markov Model to distinguish transitions among Web sites and Web
documents. Based on this model, we propose two different approaches
for computation of ranking of Web documents, a centralized one and a
decentralized one. Both produce a well-defined ranking for a given Web
graph. We then formally prove that the two approaches are equivalent.
This provides a theoretical foundation for decomposing link-based rank
computation and makes the computation for a Web-scale graph feasible
in a decentralized fashion, such as required for Web search engines having
a peer-to-peer architecture. Furthermore, personalized rankings can be
produced by adapting the computation at both the local layer and the
global layer. Our empirical results show that the ranking generated by
our model is qualitatively comparable to or even better than the ranking
produced by PageRank.

Keywords: Web information retrieval, Web mining, link structure analysis,
search engine, ranking algorithm, decentralized framework
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1 Introduction

Applying the peer-to-peer architectural paradigm to Web search engines has
recently become a subject of intensive research [6, 9, 12, 11]. Whereas for the
decomposition of content-based retrieval techniques, such as classical text-based
vector space retrieval or latent semantic indexing, various proposals have been
made exploiting obvious possibilities of decomposition of the rank computation,
for ranking methods based on the link structure of the Web it is much less clear
of how to decompose their computation.

We first briefly review the two most prominent link-based ranking algorithms
- HITS [7] and PageRank [10], and then describe our main contribution towards
enabling link-based ranking in peer-to-peer Web search engines.

1.1 Link-based Web Document Ranking

HITS has been introduced as a query-dependent approach, which first obtains
a (small) subgraph of the Web relevant to a query result, which is obtained by
using conventional retrieval techniques, and then applies the algorithm to this
subgraph. On the other hand, PageRank is query-independent and operates on
the whole Web graph directly. Disregarding this difference, both methods rely
on the same principles of linear algebra to generate a ranking vector, by using
a principal Eigenvector of a matrix generated from the (sub-)Web graph to be
studied.

It has been shown [5] that HITS is often instable such that the Eigenvectors
returned by the algorithm depend on variations of the initial seed vector and that
the resulting Eigenvectors inappropriately assign zero weights to parts of the
graph. In short, HITS lacks strong theoretical basis assuring certain desirable
properties of the resulting rankings.

In PageRank the process of surfing the Web is used as intuitive model for
assessing importance of Web pages and is modelled as a random walker on
the Web graph. As the Web is not fully connected in practice, the process is
complemented by random jumps such that transitions among non-connected
pages are possible. The resulting transition matrix defines a stochastic process
with a unique stationary distribution for the states, i.e. the Web pages, which
is used to generate their ranking.

The computation of PageRank (and similarly of HITS if it were applied to the
complete Web graph) is performed on a matrix representation of the complete
Web graph and inherently difficult to decompose as it would be required for a
distributed computation in a peer-to-peer architecture.

1.2 Our Contribution

In this paper, we present a new model for Web link analysis with the goal of
enabling decentralized rank computation. Different from the classic PageRank
model where all states in the stochastic process are treated equally, the Layered
Markov Model proposed by us exploits the inherent hierarchical structure and
the self-similar character of the Web graph.

In our Layered Markov Model the Web is no longer considered as a flat graph
of Web documents, but characterized by a two-layer hierarchical structure: the
graph of Web sites at the higher layer, and the graphs of Web documents at



the lower layer. A transition from one Web document to another is mapped to
both transitions between Web sites at the higher layer and transitions between
Web pages on the same Web site at the lower layer. We will show in this paper
that this model has the following important properties:

1. We prove that the ranking method satisfies basic properties required for
consistently producing rankings, similar as it has been done for PageRank.
In particular, we show that the ranking is well-defined and produces a
probability distribution over the Web documents.

2. We provide a Partition Theorem for Rank Computation showing that,
using the model we can provide a distributed algorithm for computing the
ranking that is equivalent to the canonical global algorithm.

3. Empirical experiments demonstrate that the ranking result produced by
our approach is qualitatively comparable to or even better than that of
PageRank. Link spamming is also defeated to a satisfiable degree.

4. While the model provides an alternative to existing link-based ranking
methods allowing for distributed computation it also introduces the pos-
sibility to generate in an elegant way personalized rankings by including
into the computational personal preferences at both the Web site layer
and the Web page layer. This is particular interesting when used for the
purpose of fighting link spamming.

2 Layered Markov Model

In this section, we first provide the problem definition for ranking Web doc-
uments. Then we summarize the classical PageRank algorithm. Finally we
present our new Layered Markov Model for ranking Web documents.

2.1 The Ranking Problem

We first define the concept of ordered sets as they will be used in later definitions.

Definition 1. A partially ordered set (poset) is a set X together with a relation
< such that for all a,b,c € X:

e a < a (reflexivity)
e a<b b<c= a<c (transitivity)
e a<b b<a= a=0>b (antisymmetry).
A totally ordered set (toset) is a poset for which also for all a,b € X:
o cither a <borb<a.

Definition 2. A ranking is a totally ordered set W bound to a set of Web objects
O such that there exists a mapping rw : O — W. Then O is called a ranked
Web object set. The particular element w € W corresponding to a specific object
o € O is the ranking value of o, namely, rw(o) = w.



A ranking is often Lj-normalized such that the sum of all ranking values
equals 1 and the result can be interpreted as a probability distribution.

Definition 3. A document ranking is a ranking for Web documents. A site
ranking is a ranking for Web sites.

The problem of ranking Web documents is to find an algorithm to compute
a document ranking for all documents in a given Web graph of pages. Ideally
such an algorithm should be supported by an underlying model providing an in-
terpretation of the result and the possibility to derive properties of the resulting
rankings.

Given the graph of Web pages Gp(Vp, Ep) with Np pages in total, we
use the following notations: d € Vp is a Web page, hq is the number of links
originating from page d, ag = hi is the probability of a random surfer’s following
one particular link from page d, h;; is the number of links from page 7 to page
j, pa(d) is the set of parent pages of d, i.e. those pages pointing to d, ch(d) is
the set of child pages of d, i.e. those pages pointed to by d.

In the classical PageRank model, a surfer is supposed to perform random
walks on the flat graph generated by the Web pages, by either following hy-
perlinks on Web pages or jumping to a random page if no such link exists. A
damping factor is defined to be the probability that a surfer does follow a hy-
perlink contained in the page where the surfer is currently located in. Suppose
the damping factor is f, then the probability that the surfer performs a random
jump is 1 — f.

The classical PageRank Markov model is based on a square transition prob-
ability matrix M = {m,;,,j € [1, Np|}:

m;; = 9 hi 7£ Ovdj ¢ Ch(di) (1)
e h; =0

However, this matrix does not ensure the existence of the stationary vector of the
Markov chain which characterizes the surfer behavior, i.e., the PageRank vector.
As widely accepted, the unaltered Web creates a reducible Markov chain. Thus,
the PageRank algorithm enforces a so-called mazimal irreducibility adjustment
to make a new irreducible transition matrix:

1_f /

M = fM + N ee (2)

where e is the column vector of all 1s and €’ is e’s transposed. M is the
primitive, thus the power method will finally produce the stationary PageRank
vector. In other informal words, the application of PageRank algorithm over
a given square matrix is equivalent to first applying the maximal irreducibility
adjustment to the matrix, then applying the power method to the new matrix
in order to obtain its principal Eigenvector.

We also use M(G) and M(G) to denote the function of generating such
matrices for a given graph G. Remember that in the function body of M(G),
personalization of rankings can be obtained by replacing e with a personalized
distribution vector in equation (2).



2.2 Why Layered Markov Model

While PageRank assumes that the Web is a flat graph of documents and the
surfers move among them without exploiting the hierarchical structure, we con-
sider the Layered Markov Model as a suitable replacement for the flat Markov
chain to analyze the Web link structure for the following reasons:

e The logical structure of the Web graph is inherently hierarchical. No
matter, whether the Web pages are grouped by Internet domain names,
by geographical distribution, or by Web sites, the resulting organization
is hierarchical. Such a hierarchical structure does definitely influence the
patterns of user behavior.

e Web is shown to be self-similar [4] in the sense that interestingly, part of it
demonstrates properties similar to those of the whole Web. Thus instead
of obtaining a snapshot of the whole Web graph, introducing substantial
latency, and performing costly computations on it, bottom-up approaches,
which deal only with part of the Web graph and then integrate the partial
results in a decentralized way to obtain the final result, seem to be a
very promising and scalable alternative for approaching such a large-scale
problem.

Phase llI

Phase Il

Figure 1: Phases and sub-states in Layered Markov Model.

Figure 1 illustrates a Layered Markov Model structure. The model consists
of 12 sub-states (small circles) and 3 super-states (big circles), which are referred
to as phases in [2]. There exists a transition process at the upper layer among
phases and there are three independent transition processes happening among
the sub-states belonging to the three super-states.!

1Please note the figures of layered models here are only for the purpose of illustration,
and the transition probabilities in the matrices used in our examples later are not necessarily



When applying the Web surfer paradigm, a phase could be considered as a
surfer’s staying within a specific Web site or a particular group of Web pages.
The transition among phases corresponds to a surfer’s moving from one Web site
or group to another. The transition among sub-states corresponds to a surfer’s
movement within the site or group. Thus a comprehensive transition model
should be a function of both the transitions among phases and the transitions
among sub-states. In other words, the global system behavior emerges from the
behaviors of decentralized and cooperative local sub-systems.

We consider a two-layer model in the following to keep explanations simple,
but the analysis can be extended to multi-layer models using similar reasoning.
We introduce now the notations to describe the two-layer model.

e Given the number of phases Np, we use {1,2,--- , Np} to label the indi-
vidual phases and denote the phase active at time ¢ as a variable Z(t).
The set of phases is denoted by P = {Py,Py,--- ,Pn.}.

e For each phase P; the number of its sub-states is ny. We use {1,2,--- ,ns}
to label the individual sub-states and denote the state at time ¢ as a
variable z!(t). The set of sub-states of phase P; is denoted by O =
{of,0%,--- 0l }. The overall set of sets of sub-state is denoted by O =
{Ola 023 T 7ON]P}‘

e The transition probability at the phase layer is given by Y = {y;;} where
yrg = P(Z(t+1) = J|Z(t) =I) and 1 < I,J < Np. The initial state
distribution vector is denoted by vy.

e For each phase I, the transition probability at the sub-state layer is given
by U’ = {u/;} where uf; = P(Z(t+1) = I,2' (t+1) = j|Z(t) = 1, 2'(t) =
i) and 1 < 4,7 < ny. In addition, U is defined to be the set of all sub-
state transition matrices: U = {U!, U2, ... UM}, There exists a one-to-
one mapping between P and U, namely each phase P; has its sub-state
transition matrix U!, 1 < I < Np. The set of initial state distribution

vectors is denoted by vy = {vi,, vZ, - ,vg“’}.

When context is clear, we also use the index of a phase or a sub-state to
designate the phase or sub-state. For example, phase 2 for Py and its sub-state
3 for 03 in O%. An overall system state is denoted by a (phase,sub-state) pair
like (2,3) which means the system is at the sub-state 3 of phase 2. In addition,
Np = Zﬂ . nr is used to denote the total number of overall system states. An
overall system state is also called a global system state in contrast to a local
sub-state (i.e. a sub-state local to a phase).

Definition 4. A (two-layer) Layered Markov Model is a 6-tuple LMM =
(P,Y,vy,0,U, vy) where each dimension has the meaning explained above.

2.3 LMM for Ranking Global System States

We want to use the Layered Markov Model to compute a ranking for all global
system states, i.e., a stationary (if possible) distribution vector for all global
system states. Such a ranking also should be uniquely defined.

related to the edges of the graph shown in this figure.



We assume that state transition between two global system states is always
abstracted as first an inter-phase transition, and then an intra-phase transition.

As an example, suppose we have a phase transition matrix Y, and three
sub-state transition matrices U' of the four-sub-state phase I, U? of the three-
sub-state phase II, and U3 of the five-sub-state phase III as follows:

1 3 6 -g S g
Y=| .2 4 4 ult=| " .
PR 1 2 6 .1
4 3 1 2
6 02 2 1 .08
2 1 7 05 2 5 05 .2
Uvl=| 1 8 1= 4 1 2 1 2
05 .05 .9 7 1 .05 1 .05

S5 o021 1 1

We want to rank the 12 global system states according to the general au-
thority implied by the transition link structure.

To do so, we need to obtain a global transition probability matrix for the 12
global system states. For Layered Markov Models with homogeneously struc-
tured sub-states, i.e. all subgraphs corresponding to phases have the same
structure, the global transition matrix can be obtained conveniently as a matrix
tensor product [15]. Unfortunately, it’s impossible to do so for non-homogeneous
sub-states as they occur for any practical Web graph. Instead we will derive
such a matrix relying our notion of layer-decomposability.

2.3.1 Layer-Decomposability

Informally, the property of layer-decomposability ensures the legitimacy of de-
composing the transition between two global system states to the two steps of
first inter-phase transition then intra-phase transition.

In order to define the decomposability between layers, we first introduce the
concept of gatekeeper sub-state.

Definition 5. A gatekeeper sub-state of, of a phase Py is a virtual sub-state
appended to the phase, such that it connects to every other sub-state and every
other sub-state is connected to it.

After the introduction of gatekeeper sub-states for phases, the decompos-
ability of a Layered Markov Model is defined as below.

Definition 6. Layers in a Layered Markov Model are decomposable if the tran-
sition probability between two given non-gatekeeper sub-states in their two cor-
responding phases satisfies:

P(Z(t+1) = J,2(t +1) = j|Z(t) = T, 2(t) = i) (3)
= P(Z(t+1)=J|Z(t) = DP(=' (t+1) = jl=' (1) = of)

The definition basically assures in the model that whenever a phase transi-
tion takes place, it has to go through the gatekeeper sub-state of the destination
phase. The gatekeeper sub-state functions as the boundary between inter-phase
transitions and intra-phase transitions.



Denoting the transition probability in phase P; from the gatekeeper sub-
state oZ to sub-state 03-] by ug;j, the elements of the resulting global transition
matrix W are computed as follows:

W(ri) (1) = YIIug, (4)
We show that

Lemma 1. The resulting transition matric W satisfies the Markovian property.

Proof. For each J € [1, Np], we have
D ug; =1 (5)
J

since this is the sum of the transition probabilities from the gatekeeper sub-state
oé to all the sub-states o'jf, 7 =1,2,--- ,ny within phase P;. Thus given an
overall system state (I,1),

Zzw(lvi)(']vj) = ZZy[JUéj = Zy[JZuéJ =1
T J g J j

2.3.2 Transition Probabilities of Gatekeeper Sub-states

To compute (4), for each phase J we have to obtain the u, ; values of all j €
[1a nJ]'

We already have the Markovian (not necessarily irreducible) transition ma-
trix U7, After adding the new virtual gatekeeper sub-state, we need to make
the new (ns 4+ 1) X (ns 4 1) matrix U’ Markovian as well. A possible method
of applying such a change is:

U’ | (1-a)e

vt 0

where 0 < o < 1 is an adjustable parameter, e is the column vector of all 1s
and Vé is the initial state distribution vector for all the non-gatekeeper sub-

o7 =

states within P, as we have described before. The new matrix U7 is not only
Markovian, but also irreducible and primitive.

This method is actually known as the approach of minimal irreducibility in
the context of PageRank computation. In detail, applying the power method
on U7 will eventually produce its principal Eigenvector. After that, the last
element of the vector, which corresponds to the appended gatekeeper sub-state
in our case, is removed and the remaining n; elements are re-normalized to
make the sum up to 1. The resulting vector wé is considered as the stationary
distribution over all the non-gatekeeper sub-states within the given phase J.
We take the n; elements of the stationary distribution vector w,‘} as the values
of all uf;, j € [1,n,].

Interestingly enough, it is shown in [8] that this method is equivalent in
theory and in computational efficiency to Google’s method of maximal irre-
ducibility. Thus, given the adjustable factor «, we actually take the PageRank
values of the local sub-states of P; as their uéj values, j € [1,ny].

To compute a ranking for the system states, we need to ensure the primitivity
of the new global transition matrix.



Lemma 2. IfY is primitive and the PageRank values of the local sub-states of
P; are taken as their uéj values, j € [1,ny], the global transition matriz W is

also primitive.
Proof. This is a natural consequence of all the uéj values’ being positive. [

Thus W has only one Eigenvalue on its spectral circle. The corresponding
Eigenvector could be used to rank the states in the overall system. However, we
do not make the assumption in our analysis that both Y and U are primitive, we
are only sure that both of them are Markovian. Even if they are not primitive, we
can make the resulting W primitive by adopting the same approach as taken in
PageRank, the so-called method of maximal irreducibility, by connecting every
pair of nodes via random jumps. Once the primitivity is achieved, we can always
compute the ranking of the system states.

We now compute the W for our example given by the four Markovian ma-
trices Y, U, U? and U3. First, we compute the PageRank vectors for three
phases (denoted by 7Z,J = 1,2,3 here):

0.4557

ggg?g 0.1191 0.1038

G = 0.9589 72 = | 0.2691 | 7 = | 0.2014
oo 0.6117 0.1106

0.1285

Then we use the equation (4) to obtain the new W:

[0.0305 0.0231 0.0258 0.0205 0.0357 0.0807
0.0305 0.0231 0.0258 0.0205 0.0357 0.0807
0.0305 0.0231 0.0258 0.0205 0.0357 0.0807
0.0305 0.0231 0.0258 0.0205 0.0357 0.0807
0.0611 0.0462 0.0516 0.0410 0.0477 0.1077
0.0611 0.0462 0.0516 0.0410 0.0477 0.1077
0.0611 0.0462 0.0516 0.0410 0.0477 0.1077
0.0916 0.0694 0.0775 0.0616 0.0596 0.1346
0.0916 0.0694 0.0775 0.0616 0.0596 0.1346
0.0916 0.0694 0.0775 0.0616 0.0596 0.1346
0.0916 0.0694 0.0775 0.0616 0.0596 0.1346

| 0.0916 0.0694 0.0775 0.0616 0.0596 0.1346

0.1835 0.2734 0.0623 0.1209 0.0664 0.0771 |
0.1835 0.2734 0.0623 0.1209 0.0664 0.0771

0.1835 0.2734 0.0623 0.1209 0.0664 0.0771

0.1835 0.2734 0.0623 0.1209 0.0664 0.0771

0.2447 0.1823 0.0415 0.0806 0.0442 0.0514

0.2447 0.1823 0.0415 0.0806 0.0442 0.0514 (6)
0.2447 0.1823 0.0415 0.0806 0.0442 0.0514

0.3059 0.0911 0.0208 0.0403 0.0221 0.0257
0.3059 0.0911 0.0208 0.0403 0.0221 0.0257
0.3059 0.0911 0.0208 0.0403 0.0221 0.0257
0.3059 0.0911 0.0208 0.0403 0.0221 0.0257
0.3059 0.0911 0.0208 0.0403 0.0221 0.0257




1:(1,1) 0.0682\ 5 0.0658\ 5
2:(1,2) 0.0547 | 7 0.0498 | 7
3:(1,3) 0.0596 | 6 0.0556 | 6
4:(1,4) 0.0499 | 10 0.0442 | 10
5:(2,1) 0.0545 | 8 0.0495 | 8
6:(2,2) o3 . |o1118]3
7:(2,3) "W [o02281 |1 ™W T | 02541 | 1
8:(3,1) 0.1562 | 2 0.1683 | 2
9:(3,2) 0.0452 | 12 0.0383 | 12
10: (3,3) 0.0760 | 4 0.0744 | 4
11:(3,4) 0.0474 | 11 0.0408 | 11
12: (3,5) 0.0530 ) 9 0.0474 ] 9

Figure 2: Ranking results of Approach 1 & 2

The elements of this global system transition matrix are the probabilities of
transitions among global system states. The elements of both the rows and
columns are in the order of (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2),
(3,3), (3,4), (3,5). 1---12 are assigned as their corresponding global system
state index. For example, the element w(12)(7) = w(35)(2,3) is the transition
probability from the sub-state 5 of phase 3 (global system state 12) to the sub-
state 3 of phase 2 (global system state 7). Layer decomposability assures that
W(3,5)(2,3) = Ysous = 0.5 x 0.6117 = 0.3059.

As equation (4) does not depend on i anymore given a global system state
(I,1), we can find that in the matrix W rows pertaining to a particular value I
are constant.

At this point, we are able to compute a ranking for the global system states.
There are two possible approaches.

Approach 1: We apply the standard PageRank algorithm to W to rank
all states, i.e. we apply the method of maximal irreducibility to W before we
launch the power method to compute the principal Eigenvector. We obtain mw
as follows:

The first column in Figure 2 above is the list of global system states with
there index number on the left-hand side. The middle vector mw gives the rank
values (PageRank values) we computed based on the transition matrix W, and
the column neighboring to the vector on the right-hand side gives the order
numbers of the states ranked by their rank values.

Approach 2: On the other hand, as Y is already primitive, hence W is
primitive as well. We can compute directly its stationary state distribution
without applying the Google’s maximal irreducibility method. The resulting
ranking is shown by the right vector mw in Figure 2. We can see, other than
minor differences in the absolute values, the two results rank all system states
in an identical order.

The results imply that, in the Layered Markov Model defined by Y, U!, U?
and U3, the top three (highly ranked) overall system states are number 7, 8 and
6, namely (2,3), (3,1) and (2,2).

As in both Approach 1 and Approach 2, we have to compute in advance
the global transition matrix W in order to derive the ranking of the global
system states, we consider these two as centralized approaches for computing

10



the global system state ranking. The differences between them are summarized
in the following table where Pri. stands for Primitivity and MI stands for the
Maximal Irreducibility trick used in PageRank:

Approach | Pri. of Y | Pri. of W | If MI for W
1 Yes or No | Yes or No Yes
2 Yes Yes No

Table 1: Differences between Approach 1 and 2

2.3.3 Partition Theorem for Rank Computation

A natural question is now that given the PageRank ranking for all four matri-
ces, Y, U',U? and U3, is it possible to obtain the stationary distribution for
the global system states without deriving a new matrix W and applying the
PageRank algorithm to it?

We introduce now such an algorithm step-by-step:

1. At the phase level, if Y is already primitive, we can compute its stationary
distribution 7y without applying the maximal irreducibility method to
Y before the power method is applied. The element for phase I in the
distribution vector is denoted by 7y (I).

Certainly, we can also compute the slightly different 7y by applying the
maximal irreducibility method to Y even if Y is already primitive. We
will see later on why we don’t make this choice.

2. At the sub-state level within phases, for each phase I, we compute its
stationary distribution Tl'é by applying the PageRank algorithm to U’.
Remember this resulting vector is related to our introduced gatekeeper
sub-state of each phase P;. We denote the element for sub-state 4 in the
distribution vector by 75 ().

3. For each global system state (I,7), we assign it a value as follows:
#(1,1) = 7y (1l (i) (7)
The assignments to all global system states form a state distribution 7.

We call this the Layered Method of rank computation. The result of this com-
putation has the following (expected) property.

Theorem 1. The resulting vector of the Layered Method of rank computation
is a probability distribution.

Proof.

DD AR =D wy(Drbi) =Y wv(D)) w6 =1
I 1 I [ ]
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We give an example illustrating the computation: we want to compute the
ranking value assigned to the global system state 7 : (2, 3).
Approach 3: The PageRank vector my for Y is:

my = (0.2315,0.4015, 0.3670)"

We can replace 7y (I) in (7) with my () and the result is still a probability
distribution. The corresponding multiplication becomes:

7(2,3) = my (2)72(3) = 0.4015 x 0.6117 = 0.2456

Unsurprisingly, this value is different from mw (2, 3) that we’ve computed before.
Approach 4 (the Layered Method): The vector 7y for Y is:

Ty = (0.2154,0.4154, 0.3692)"

Thus:
7(2,3) = ﬁ'y(2)ﬂ'é~(3) = 0.4154 x 0.6117 = 0.2541

Notice that this value is equal to that of 7w (2,3) we have obtained previously.

We call Approach 3 and Approach 4 the decentralized approaches for comput-
ing the global system state ranking, as we do NOT have to compute in advance
the global transition matrix W. Instead we compute the ranking for the phases
(or Web sites for the case of Web document ranking), the individual rankings
for the sub-states in each phase (or the individual Web document rankings for
each Web site), which can be done in a parallel or decentralized fashion.

The differences between Approach 3 and 4 are summarized in the table
below:

Approach | Pri. of Y | If MI for Y
3 Yes or No Yes
4 Yes No

Table 2: Differences between Approach 3 and 4

Now we want to show the equality of the values obtained from Approach 2
and Approach 4 in the example is not accidental.

Corollary 1. Approach 2 and Approach 4 (the Layered Method) are equivalent.
This corollary results from the following theorem.

Theorem 2. Give LMM = (P,Y,vy,0,U,vy) as a Layered Markov Model
where Y is primitive. The following vectors are first computed: the stationary
state distribution vector Ty of Y, the PageRank vectors Wé, I €[1,Np]. A new
matric W and a new vector ™ are derived in the following fashion:

1. Both the size of W and the length of & are Np = Z;VL ny, i.e., the total
number of the global system states in the model LMM. Every element

of W and every element of ™ correspond to a global system state (I,1)
ordered by I € [1,Np] and i € [1,n].

2. Every element of W is defined by w(r ) (s.j) = yrom& ().

12



3. Every element of 7 is defined by 7(I,1) = 7y (I)w&(i).

Then W is also primitive and its stationary state distribution vector is exactly
.

Proof. For a primitive matrix, we know its stationary state distribution vector
is the principal Eigenvector of its transposed matrix. Lemma 2 assures that W
is primitive. Lemma 1 says W is Markovian, thus the principal Eigenvalue of
W is 1. Then it remains to show

W'7 =7

which is equivalent to that, given (I,14),

=
& 7600 Xy (1) ;7)) = 7y (I)mg (i)
&

< Yoyarty(J) =Ty

The last equality is guaranteed by the fact that 7y is the stationary state
distribution vector of Y. O

We call Theorem 2 the Partition Theorem for Rank Computation as the rank
computation for the global system states in a Layered Markov Model can be
decomposed into several steps that can be performed in a decentralized or/and
parallel fashion, if decomposability is assumed and the phase transition matrix
is primitive. The computation proceeds as follows:

e At the phase layer, computation of the stationary distribution for the
phase transition matrix.

e At the sub-state layer, computation of the PageRank for individual sub-
state stationary distribution for the sub-state transition matrix.

e The aggregation of those vectors where only O(Np) multiplications are
necessary. In contrast, previous methods require to do a large number of
multiplications of two Np X Ap matrices until the resulting vector con-
verges.

3 Application to Web Information Retrieval

We now discuss how the theoretical results obtained can be applied in the con-
text of Web Information Retrieval. We know that search engines take into con-
sideration both query-based ranking (for example, distances between queries and
documents based on the Vector Space Model) and link-structure-based ranking
(typically PageRank in Google and HITS-derived algorithm in Teoma) when
ordering search results. We focus on the second aspect.
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3.1 Different Abstractions for the Web Graph

Previous research work focused on the page granularity of the Web, i.e., a graph
where the vertices are Web pages and the edges are links among pages. We
propose to model the Web graph at the granularity of Web site. We call the
graph at the document level the DocGraph, and the graph at the Web site
level the SiteGraph. We also use the notion of SiteLink to designate hyperlinks
among Web sites and DocLink for those among Web documents.

Thus, the graph of Web documents Gp(Vp, Ep) with Np pages is a in a
DocGraph. We assume its corresponding SiteGraph is Gg(Vg, Es) with Ng
Web sites in total, a vy € Vg is a Web site, an e, € FEg is a SiteLink. We use
the notations Gp(Vp, Ep), v4, eq for a DocGraph. We also use the shorthand
d and s to represent a Web document and a Web site respectively. Taking
one page d, we denote its corresponding site as s = site(d) with ns = size(s)
local Web documents in total. Vy(s) C Vp is the set of all local Web pages
of the particular Web site s. E4(s) C Ep is defined to be the set of those
eq whose both originating and destination documents are members of Vj(s).
G = (Vu(s), Eq(s)) is defined to be the subgraph restricted with the Web site
s.

We call the ranking of Web sites the SiteRank for the SiteGraph and the
ranking of Web documents the DocRank for the DocGraph. PageRank is an
example of DocRank, but DocRank can be computed in a way other than PageR-
ank, for example, as in our approach in a decentralized fashion. We also use
the notions SiteRank(Gg) and DocRank(Gp) to refer to the SiteRank result
of Gg and DocRank result of Gp respectively. When we are using the ma-
trix representations Msj of Gg and Mp of G D, we also use SiteRank(Ms) and
DocRank(Mp) to denote the rankings.

The SiteGraph was studied in earlier work [3] under the name of hostgraph for
purposes other than rank computation. This provided several good arguments
on why the abstraction at the site level is useful. However, it is worth noticing
that our notion of SiteGraph allows for the derivation of a dynamic or virtual
graph of Web sites when we use dynamic or virtual relationships among Web
pages instead of the static Web links. For example, when we use statistical
information on navigation obtained from Web client traces, which are normally
very different from the static Web link structure, as the set of edges F, we obtain
a Web client trace-based SiteGraph. Similarly, a DocGraph using client traces
can be defined. Early foundation work on such methods was presented in [13].
Thus hostgraph is simply one special type of SiteGraphs which uses the static
hyper links among Web pages to define the edges.

3.2 Layered Method for DocRank

Having the analytical results above, we compute the DocRank for a given Web
graph in the following steps:

1. Derive the global DocGraph Gp(Vp, Ep) from the given Web graph. Typ-
ically, DocLinks are processed.

2. Derive the global SiteGraph Gg(Vs, Eg) from the DocGraph. Nodes in
the SiteGraph are the Web sites. Edges are grouped together according
to Web sites. The numbers of SiteLinks are counted.
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3. For each Web site s, derive the subgraph G, its matrix representation
M3 = M(G3) and compute its 7p(s) =DocRank(M3) using the classical
PageRank algorithm. This step can be completely decentralized in a peer-
to-peer search system.

4. For the global SiteGraph Gs(Vs, Eg), we first derive a primitive transition
matrix and then compute its principal Eigenvector. The primitivity of the
transition probability matrix is required by Theorem 2. In practice, we
compute Mg = M (Gs) which is primitive and its principal Eigenvector
s = (ms(s1), -+ ,ms(sng)) as the SiteRank.

5. For i =1, -, Ng, we list the Np DocRank vectors wp(s;) and create an
aggregate vector from them:

mp = (7p(s1),-+ ,7p(sng))

By applying Theorem 2, we perform a weighted product to obtain the
final global ranking for all documents in the DocGraph Gp(Vp, Ep):

DocRank(Gp) = (ms(s1)mp(s1), -+, ms(sne)mp(sns))

Personalization of rankings can be easily implemented in our layered method
for DocRank. Personalization at the lower layer, i.e., the layer of local Web doc-
uments within specific Web sites, can be realized in Step 3 by providing different
personalized vectors in the function body of M (G%). Similarly, personalization
at the higher layer, i.e., the layer of Web sites, can be realized in Step 4. Of
course, personalization at both layers can be combined to use together.

3.3 Empirical Results

We made some initial experiments on a recently crawled snapshot of our cam-
pus Web. We started from the home page of the university, www.epfi.ch, and
let the crawler follow the hyperlinks and retrieve Web pages. Different from
many other previous published experiments, we did not exclude dynamic Web
pages generated by server-side scripts. The reason is that nowadays most Web
sites use them as a powerful vehicle to provide dynamic and fresh information.
Without including them, the captured Web graph would be a rather skewed
one. However, crawling dynamic pages often causes infinite loop for all kinds of
possibilities. To avoid this, researchers usually let the crawler fly and then stop
it after it has been running for a period of time.

Our partial Campus Web graph was captured in late 2003. In this graph
there are 218 Web sites and 433707 Web pages altogether. We follow the steps
described in Section 3.2 to compute the SiteRank of the SiteGraph of this partial
Campus Web, the DocRanks of every Web site, and finally the global DocRank
for all Web pages in this partial Campus Web. The result is presented in Fig-
ure 4. To make comparison, we also apply the classical PageRank algorithm
to the set of all Web pages to obtain the PageRank for them. The result is
presented in Figure 3. The left columns are the lists of the document identifiers
with their corresponding URLs in the right columns. Documents are listed in
an descending order of the computed rank values.

In both figures we only present the top 15 entries of both rankings. The
main reason is that Internet searchers tend to only care about the top ranked
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16 http://www.epfl.ch/

1737  http://research.epfl.ch/

73612 http://research.epfl.ch/research/Webdriver?LO=...
73613 http://research.epfl.ch/research/Webdriver?Mlval=...
73614 http://research.epfl.ch/research/Webdriver?LO=...
18282 http://research.epfl.ch/research/Webdriver?MIval=...
677  http://www.epfl.ch/place.html

570 http://www.epfl.ch/styles/dynastyle.php

459683 http://dmawww.epfl.ch/roso.mosaic/ismp97/...

73635 http://research.epfl.ch/research/Webdriver?LO=...
73636 http://research.epfl.ch/research/Webdriver?Mlval=...
73637 http://research.epfl.ch/research/Webdriver?LO=...
122990 http://lamp.epfl.ch/ linuxsoft/java/jdk1.4/docs/...
90330 http://lampwww.epfl.ch/ " linuxsoft/java/jdk1.4/docs/...
614 http://sti.epfl.ch/

Figure 3: Ranking result given by PageRank

search results. Limit of space is another reason. Since some URLs are too long,
we put the suspension points at the end of them and cut the actual remaining
substrings which may well take another 100 characters.

We find very interesting that, in Figure 3, the top entries of the PageRank
result are dominated by some pages which share an identical URL prefix. Fur-
ther investigation shows that all of them have a huge in-degree number. For
example, the dynamic page 73612 has 17004 incoming links and most of its
originating pages have the same URL prefix

http://research.epfl.ch/research/Webdriver?

which means they are generated by the same server-side script and heavily linked
among each other. Similarly, the static page 122990 has 6425 incoming links
and most of its originating pages have as well the same URL prefix

http://lamp.epfl.ch/"linuxsoft/java/jdkl.4/docs/

which means they are all javadocs of jdk1.4 and also heavily linked among each
other.

A side note is that page 122990 and 90330 are actually an identical one,
since lamp.epfl.ch and lampwww.epfl.ch are two different host names of one
Web server. Hence they have almost identical rank values.

It seems that the agglomerate structure of these document collections boosts
drastically their PageRank values and this fact has been widely used by PageR-
ank spammers such that even a new business has been created to make the most
of PageRank.

On the other hand, the ranking result computed by our Layered Method
based on LMM gives a very neat list of entries which really cover many authori-
tative aspects of the university, such as central place (677), student bar (73324),
student organization (153), 150 anniversary page (572), faculty of engineering
(2884), search (73446), news (678), internal journal (71973 and 71975), press
information (681), vice presidency of education (71961), etc..

In the Layered Method, the role played by the entangled cross links has
been made much less important due to the effect of introducing the SiteRank of
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16 http://www.epfl.ch/

570 http://www.epfl.ch/styles/dynastyle.php

677  http://www.epfl.ch/place.html

73324 http://satellite.epfl.ch/

2196  http://lesmwww.epfl.ch/

153 http://cssa.epfl.ch/

572 http://www.epfl.ch/150/

2884  http://sti.epfl.ch/news/AG/AG-Faculte-STI08.html
73446 http://mysearch.epfl.ch/help/?la=fr

678  http://www.epfl.ch/niceberg/content/1/

581517 http://smte.epfl.ch/francais/impressum.php

71973 http://spi.epfl.ch/Jahia/site/spi/cache/offonce/pid/...
71975 http://spi.epfl.ch/page33282.html

681  http://www.epfl.ch/impressum.html

71961 http://vpf.epfl.ch/

Figure 4: Ranking result given by our Layered Method based on LMM

the owner Web site as a crucial part of the final global ranking for a particular
Web page. It shows that the global page ranking algorithm is not necessarily the
best possible ranking method. We actually have obtained substantial qualitative
improvements by using our Layered Method for ranking. It demonstrates the
capability of the LMM model to defeat link spamming to a very satisfiable degree
by making use of information implied in the inherent hierarchical structure of
the Web.

4 Related Work

When considering a peer-to-peer architecture the strategy for computing Sit-
eRank and DocRank need to be considered. In a flat peer-to-peer architecture
SiteRank could be a shared resource among all peers, i.e. globally available,
which is realistic as its value changes less rapidly. DocRank computations are
performed by individual peers, which would ideally map to Web servers. This
would in particular open the possibility to obtain access to the hidden Web.
Alternatively, super-peer architectures can be considered, where rank aggrega-
tion is only performed at super-peers and individual peers provide their local
DocRanks.

Hierarchical Hidden Markov Models are used in [2] and similar work to de-
termine optimal parameters for a Hidden Markov Model given observed outputs
from the hidden states. The main purpose of this work is to reduce the complex-
ity of learning a hidden model for large-scale and highly complex application
domains, such as analysis of traffic data from ISDN traffic, Ethernet LAN’s,
Common Channel Signaling Network (CCNS) and Variable Bit Rate (VBR)
video, etc.. For such problems, applying the standard HMM learning algorithm
does not generate an acceptable results as studies have shown.

The study in this paper is fundamentally different from this work both in the
model and the problem itself: In our model, we do not have observed outputs
while a hidden model has. The purpose is also different. We do not aim at
learning system parameters, but to mine the link structure and obtain a ranking
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for all global system states.

Most Web rank computation algorithms are developed based on PageRank
or HITS, both of which consider a flat Web graph. Due to the huge-scale of the
Web, such algorithms have inherent bottlenecks in scalability, cost of computa-
tion, latency, etc. since they can only be done in a centralized way. While many
research groups are working on how to optimize the existing PageRank, HITS
and their derived algorithms, little progress has been made in how to compute
Web rankings in a decentralized fashion.

We investigate this problem and devise two directions to realize decentralized
computation of Web rankings:

1. Algebraic approach. We allow different semantic rankings being computed
for the same subgraph in a parallel or decentralized fashion. The final
ranking result is obtained by algebraic combination of weighted semantic
rankings for subgraphs. Algebraic operations such as contraction and
folding are defined to aggregate ranking vectors obtained with different
granularity. More details on this approach are found in [14] and [1].

2. Modelling approach. The work presented in this paper goes in this di-
rection by proposing a new Layered Markov Model to model the surfing
activities in the Web. We establish a strict analytical model and give the
corresponding algorithm based on the theoretical result. The algorithm
takes advantage of the hierarchical structure of the Web and successfully
decomposes the rank computation at the Web scale into parallel or dis-
tributed tasks. In addition, the algorithm also leaves room for personal-
ization of Web rankings.

5 Conclusion and Future Work

In this paper, we introduce a novel link-structure analysis method based on a
Layered Markov Model. Our model differs substantially from the classic rank
computation models that consider a flat Web graph. Our layered model makes
use of the inherent hierarchical logical structure of the Web and the self-similar
character of the Internet.

We provide a strict analysis of our model for the Web ranking problem and
give the Partition Theorem for Rank Computation. Such a formal result backs
up theoretically the rank computation of the Internet-scale Web graph in a com-
pletely distributed way. This removes the radical obstacle and limitation that
the existing rank computation algorithms have to suffer in terms of requiring
global computation. In addition, our model also makes it easy to personalize
rankings at both the higher Web site layer and the lower Web page layer. Em-
pirical experiments give good results and show that link spamming which has
been a headache for some global ranking algorithm is also nicely defeated to a
very satisfiable degree.

In the future, we plan to continue extensive experiments to empirically com-
pare the ranking results produced by representative algorithms and our layered
algorithm. The comparison between this modelling approach and our algebraic
approach will be made as well. In addition to the comparison of ranking re-
sults, performance and resource usage of the algorithms, which are also critical
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to search engines, will be studied. Work of combining query-based ranking and
link-based ranking will also be carried out.

Disclaimer We acknowledge that PageRank is just one of many criteria,

measures and tools that Google uses to rank search results for users. We only
focus on the technical issues of link-based ranking algorithms. This paper, in
no way, speaks for or against Google.
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