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Abstract 
Finding the optimal solution of a Multi-Attribute Decision Problem (MADP) is a key problem for 
electronic commerce systems. In this paper, we formally define the multi-attribute decision problem, and 
we report our survey of four different methods (soft-CSP framework, multi-attribute decision theory, CP-
network, and Heuristic strategies) which potentially could be used to solve the MADP, and their advantages 
and disadvantages will be discussed respectively. 
Keywords: multi-attribute decision problem (MADP), constraint satisfaction problem (CSP), soft-CSP, 
multi-attribute utility theory (MAUT), CP-network, heuristic decision strategy 

1. Introduction 
Helping the buyer to find the optimal solution from the electronic product catalogs efficiently is a crucial 
task for the design of electronic commerce systems. Typically an electronic catalog is defined as an 
information system that provides access to a collection of product descriptions that an organization wants to 
offer [39]. The items of the catalog are identified by a set of attributes, and the whole set of items define the 
product space. Unlike traditional commerce, where the activities are carried out directly between human 
individuals or organizations, in e-commerce environments, the buyer (or the decision maker) interacts with 
the pre-designed computer systems so to get the information of products or services he wants. Usually the 
product or service information that the e-commerce system could provide is far more beyond the individual 
decision maker’s requirement. Studies from economics have shown that the individual only has bounded 
rationality when making decisions due to his limited knowledge and computational capacity [37]. 
Therefore, the information provided by the e-commercial system should be highly “selective” to meet the 
preference of the individual decision maker.  
 
In this paper we focus on the following problem: How to help the decision maker to determine the optimal 
solution(s) from a large set of available outcomes from an electronic catalog according to the decision 
maker’s preferences? Typically an electronic catalog involves several attributes, and due to the existence of 
multi-attribute, the decision maker has to make tradeoffs between different attributes during the selection 
process when his preferences are not fully satisfied. We call this kind of problem a Multi-Attribute 
Decision Problem (MADP), which is formally defined as follows: 

• a set of attributes 1{ ,..., }nx x=X ; 

• a set of domain values : where each 1{ ,..., }nD D=D (1 )iD i n≤ ≤ is a set of possible values for 

attribute ix . without ambiguity here we also use D  to denote the space of all possible outcomes 

which is the Carthesian product of 1 2 nD D D= × ×⋅⋅⋅×
m

D ; 
• a set of constraints : where each 1{ ,..., }mC C=C (1 )jC j≤ ≤ is a constraint function on a 

subset of attributes  to restrict the values they can take; X
• a set of available outcomes 1{ ,..., }O lo o= : where each (1 )jo j l≤ ≤  is an element of the 

possible outcome space , and O  is a subset of . Usually the size of O is relatively small 
compared to the size of D , but it is still too big for the decision maker to choose one by one. The 
solution(s) that the decision maker finally chooses must lie in this set. 
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• a set of the decision maker’s preference statements 1 2{ , , }P tP P P= ⋅⋅⋅ : this part of information 
needs to be elicited from the decision maker before or during the interaction. Different decision 
makers may have different preference statements, and some preferences can be violated for the 
tradeoff purposes during the procedure of searching for the optimal solution.  

 
To illustrate the MADP, here we describe a concrete example in the apartment renting domain. Suppose 
we are designing an e-commercial system providing the apartment renting service, and to simplify the 
discussion, we assume that the apartments we provided only have 5 distinct attributes: {Type, Kitchen, 
Bathroom, Area, and Price}, and each attribute may take a certain set of values as listed below: 

X =

{ ,  ,  typeD house apartment studio= }
}
}

HF

 

{ ,  ,  KitchenD private share none=  

{ ,  ,  BathroomD private share none=  
2[20,200] AreaD m=  

[300, 4000] PriceD C=  
A set of general constraints can be obtained from the nature of the apartment renting domain, for example: 
        If Type=apartment, then kitchen =private or share  , :Type KitchenC
        If Type=house, then Area >100 m2 , :Type AreaC
       , , :Area Kitchen BathroomC  If Area > 120 m2, then Kitchen = private and Bathroom = private 

In this example, the set of available outcomes O is the list of the apartments provided by the system. It is 
natural to notice that O is only a subset of the total possible outcome space : for instance, the apartment 
with the biggest area size and lowest price is a possible outcome in , but most likely it cannot be offered 
by the e-commerce system. 

D
D

 
As for the decision maker’s preference statements, some of them can be generated by the commonsense 
held by most individuals, for example: “If everything being equal except price, the cheaper, the better”, “if 
everything else be equal, I prefer the apartment with bigger area”, etc. Some other preferences can be 
elicited and stated easily, for example: “I prefer the apartment with bathroom and the size of 100m2 ”. 
There remains some compound preferences which are very useful but quite difficult to be elicited, such as 
“If the size is smaller than 50 m2, I prefer having kitchen instead of bathroom when the price is the same”. 
The decision maker’s preference statements can be violated for the tradeoff purpose. Preference elicitation 
is a very crucial and difficult task for the decision support systems. More discussion on this topic can be 
found in [9, 30]. In this paper we assume that the decision maker’s preferences have already been elicited. 
 
Two types of problems are raised when we try to solve a MADP: one is to find the “optimal” solution 
among the outcome set which best matches the decision maker’s preferences. We call this problem the 
“optimal” problem. The other one is to find a set of solutions with ranking order, which can be called the 
“ranking” problem.  
 
In this paper, we survey various approaches which can be used to solve the multi-attribute decision 
problems. Generally speaking, these methods can be divided into four categories: The constraint 
satisfaction problem (CSP) framework, the multi-attribute utility theory, the reasoning method based on 
CP-network, and the method based on heuristic decision strategies. This paper is organized as follows: 
Section 2 introduces the classical-CSP framework and its extension forms by using soft constraints: soft-
CSPs. In section 3, we study the method of solving multi-attribute decision problem based on multi-
attribute utility theory. The reasoning method CP-network which based on conditional ceteris paribus 
preference statements is explored in section 4. Section 5 investigates the heuristic decision strategies which 
are adopted by human beings when solving multi-attribute decision problems. Finally a summary of 
discussion will be given. 
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2. Framework of Constraint Satisfaction Problems (CSPs) 
Constraint satisfaction problems (CSPs)[23, 40] have been widely used in AI research area for many years 
to solve different real-life problems ranging from map coloring, vision, robotics, VLSI design, etc. It 
provides a natural way of representing problems for the user needs only to state the constraints of the 
problem to be modeled. Once the constraints are specified, some effective searching algorithms can be 
adopted to find the optimal solution. In this section we first introduce the general concepts of classical-CSP 
and the related searching algorithms, and then study its extension, soft-CSP, and discuss how to use the 
soft-CSP to solve the multi-attribute decision problem. 

2.1 Definition 
    Typically a constraint satisfaction problem (CSP) is defined by a triple , ,< >X D C :  

• a set of variables 1{ ,..., }nx x=X 1; 

• a set of domain values : where each 1{ ,..., }nD D=D (1 )iD i n≤ ≤ is a set of possible values for 

the variable ix ; 

• a set of constraints where each 1{ ,..., }mC C=C (1 )jC j m≤ ≤ is a constraint function on a 

subset of variables  to restrict the values they can take. X
If a CSP only has constraints on either unary or binary variables, it is called binary CSP. It is possible to 
convert the CSP with n-ary constraints to another equivalent binary CSP [33]. So without losing generality, 
we usually concentrate on binary CSP for simplification.  
A solution of a CSP is a set of value assignment 1 1{ ,..., }n nx v x v= = =v (in short as ) 

satisfying 1) ; 2) all constraints in C  are satisfied. If a CSP has a solution, we say that 
it is satisfied.  

1{ ,..., }v nv v=
(1 )i iv D i n∈ ≤ ≤

As we can see from the above definition of CSP, the constraints are crisp since they are either allowed or 
violated. Usually this kind of constraints are called hard constraints (or crisp constraints), and the CSP with 
hard constraints only is called classical CSP in order to distinguish from its extension introduced in section 
2.3. 

2.2 Solving Classical CSPs 
When a classical CSP has been defined, a number of different approaches have been developed for solving 
this problem [19]. In this subsection we survey some algorithms which can be used to solve classical CSPs 
as defined above. 
One simple approach of solving CSPs is the generate-and-test paradigm. In this paradigm, each possible 
combination of the variables is systematically generated and then tested to see if it satisfies all the 
constraints. The first combination that satisfies all the constraints is the solution. The number of 
combinations considered by this method is the size of the Cartesian product of all the variable domains. It is 
easy to see that the complexity of the generate-and-test algorithm is exponential. When the CSP is complex, 
this algorithm is impracticable due to the overwhelming computational complexity.  

 
A more efficient method for solving CSPs is the backtracking algorithm. In this method, variables are 
instantiated sequentially. As soon as all the variables relevant to a constraint are instantiated, the validity of 
the constraint is checked. If a partial instantiation violates any of the constraints, backtracking is performed 
to the most recently instantiated variable that still has alternatives available. The backtracking method 
essentially performs a depth-first search of the space of potential CSP solutions. 
Backtracking is strictly better than the generate-and-test method since whenever a partial instantiation 
violates a constraint, backtracking is able to eliminate a subspace from the Cartesian product of all variable 
domains. However, the run-time complexity of backtracking algorithm for most nontrivial problems is still 
exponential. One of the reasons for this poor performance is that the backtracking paradigm suffers from 
thrashing(search in different parts of the space keeps failing for the same reason) [13]. Thrashing can be 
                                                           
1 When we use CSP to represent the multi-attribute decision problem (MADP), the attribute of MADP is 
conceptually equivalent to the variable of CSP, so here we abuse the same symbol X to denote both of them.  
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avoided by intelligent backtracking; that is, by a scheme in which backtracking is done directly to the 
variable that caused the failure. Another drawback of the standard backtracking algorithm is that it has to 
perform redundant work. This drawback can be eliminated by the method of dependency-directed 
backtracking [38]. Other search algorithms for classical CSPs include: Forward Checking, Partial 
Lookahead, Full Lookahead, and Really Full Lookahead. They are introduced and their performances are 
compared in [26]. 

2.3 Soft CSPs 
The solution of a classical CSP needs to satisfy all the hard constraints. If we compare the definition of 
classical CSP and MADP, we can see that the main difference between them is that the MADP has a set of 
preferences some of which can be violated when finding the optimal solution. If we convert the preferences 
in MADP into hard constraints directly and solve it in the framework of classical CSP, most likely we 
couldn’t get a feasible solution because of over-constraint. Luckily people have extended the classical CSPs 
to soft CSPs, in which not all the given constraints need to be satisfied when finding the optimal solution. 
In this subsection, we recall several different kinds of soft CSPs and study their relationships.  
 
Fuzzy CSPs. Fuzzy CSPs (FCSPs) [10, 35]extend the crisp constraints of classical CSPs by the fuzzy 
constraints. A Fuzzy constraint is a mapping from the direct product of the finite domain of the variables 
referred by the constraint to the [0,1] interval. For a fuzzy constraint , suppose a fuzzy constraint c  
associated with t variables 

c
1̂,..., tˆx x , the value denotes the degree of satisfaction (or 

preference level) of the constraint c  by the value set ,  If we say that 

fully satisfies , while if

1̂ ˆ( ,..., )tc v v

1̂ ˆ( ,..., )tv v 1̂ ˆ( ,..., ) 1tc v v =

1̂ ˆ( ,..., )tv v c 1̂ ˆ( ,..., ) 0tc v v = , we say that fully violates . A CSP with 
fuzzy constraints is called fuzzy CSP. The solution of a fuzzy CSP is then defined as the set of n-tuples of 
values which have the maximal value. And the value associated to each n-tuple is obtained by minimizing 
the values of all its sub tuples.  

1̂ ˆ( ,..., )tv v c

Fuzzy CSPs is a very significant extension of classical CSPs. In fact, it can be used to model partial 
constraint satisfaction[12]. We have already known that finding a solution to a classical CSP is a NP-
complete task, hence, finding the best solution of FCSP is at least NP-hard. The FCSP can be solved in a 
similar way as classical-CSP:  we can define a threshold of satisfaction and turn all fuzzy constraints into 
hard constraints, then find the optimal solution for the newly transformed CSP. The threshold can be 
adjusted iteratively to ensure that transformed CSP is solvable.  The efficiency of this method can be 
further improved by maintaining a set of possible thresholds dynamically during search and pick the one 
that just allows a solution. 
 
Probabilistic CSPs. Probabilistic CSPs (PCSPs)[11]  have been introduced to model those situations 
where each constraint c  has a certain independent probability ( )p c to be part of the given real problem. 
This allows one to reason about problems which are only partially known. Let  be a n-tuple value set on 
the domain D, and a t-tuple  be the subset of v  and the value of the t variables 

v
1̂ ˆ( ,..., )tv v 1̂,..., tˆx x  that 

constraint  associated with, if  is allowed by , the probability of  being part of 

the solution of the real problem is 1; if violates , the probability of  being part of  

the solution of the real problem is 1

c 1̂ ˆ( ,..., )tv v c 1̂ ˆ( ,..., )tv v

1̂ ˆ( ,..., )tv v c 1̂ ˆ( ,..., )tv v
( )p c− . Considering all the constraints that the n-tuple  violates, we 

can see that the probability of n-tuple v being a solution to the real problem is

v

all  that  violates

(1 ( ))
c v

p c−∏ . 

The aim of solving PCSPs is to get the n-tuple with the maximal probability. 
The main difference between PCSPs and FCSPs lies in the fact that PCSPs contain crisp constraints with 
probability levels, while FCSPs contain non-crisp constraints. Another difference between them is the 
definition of the associated value to the constraints. In PCSPs, each constraint has a fixed probability value, 
independent with the value set it associated with. While in FCSPs, each constraint may have different 
degree of satisfaction on different value set. From this point of view, the FCSPs have more parameters than 
PCSPs. Moreover, as we already have seen, the criteria for choosing the optimal solutions are different. In 
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fact, it is possible to model PCSPs by using a transformation which is similar to that proposed in [8] to 
model prioritized constraints via fuzzy constraints in the FCSP framework. 
 
Weighted CSPs. Weighted CSPs (WCSPs) [20, 21] allow one to model optimization problems where the 
goal is to minimize the total cost (time, space, number of resources, etc) of the proposed solution. In 
WCSPs, there is a cost function for each constraint, and the total cost of a n-tuple value is defined by 
summing up the costs of each constraint with the corresponding subtuple values. Thus the aim is to find the 
n-tuples with minimal total cost as the optimal solution.  
Usually WCSPs can be solved by Branch and Bound algorithm [22, 31]. Branch and Bound is a well-
known algorithm for solving NP-hard combinatorial optimization problems. The algorithm is started by 
considering the root problem (the original problem with the complete feasible region), the lower-bounding 
and upper-bounding procedures are applied to the root problem. If the upper bounds match, then an optimal 
solution has been found and the procedure terminates. Otherwise, the root problem is divided into two or 
more subproblems and the algorithm is applied to each subproblem recursively. At each step, if the lower 
bound for a node exceeds the best known feasible solution, no globally optimal solution can exist in the 
subspace of the feasible region represented by the node. Therefore, the node can be removed from 
consideration. The search proceeds until all nodes have been solved or pruned, or a certain pre-defined stop 
threshold is met. 
The main difference between the WCSPs and FCSPs is that WCSPs contain the cost functions ranging 
with[0 , while FCSPs contain Fuzzy functions ranging with [0, 1]. And the meanings of the two soft-
constraints are also different.  

, )+∞

2.4 The Semiring-based CSP Framework 
Bistareli etc [3] introduced a semiring-based CSP framework which can describe both classical and soft 
CSPs. In this framework, A semiring is a tuple ( , , ,0,1)A + ×  such that: is a set and ; A 0,1 A∈ + is a 
closed, commutative, and associative operation on A and 0 is its unit element; × is a closed, associative, 
multiplicative operation on A  and 1 is its unit element and 0 is its absorbing element. Moreover, ×  
distributes over+ . A c-semiring is a semiring such that + is idempotent, × is commutative, and 1 is the 
absorbing element of +. 
Both the classical CSPs and the different type of soft CSPs can be seen as instances of the semiring CSP 
framework. More precisely, each of such CSPs corresponds to the choice of a specific constraint system 
(and thus a semiring). The classical CSPs are Semiring-CSPs over the semiring 

, which means that there are just two preferences 
(false or true), that the preference of a solution is the logic and of the preferences of their subtuples in the 
constraints, and that true is better than false. Fuzzy CSPs are the Semring-CSPs over the semiring 

, which means that the preferences are over [0,1], and that we want to 
maximize the minimum preference over all the constraints. Similarly, the semiring corresponding to a 
PCSP is , and the WCSPs can be represented by the semiring 

. 

({ , }, ( ), ( ), , )CSPS false true or and false true= ∨ ∧

([0,1], ,0,1)FCSPS max,mi= n

([0,1], ,0,1)PCSPS max,= ×

( ,min , ,0)WCSPS R ,+= + +∞

2.5 Discussion 
From the definition, a MADP can be looked as a CSP with a set of preferences which can be violated. The 
soft CSPs are quite suitable for modeling the MADPs since the preference statements in a MADP can be 
transformed to some soft-constraints of a soft CSP. For a given MADP, we first need to determine which 
kind of soft CSP is the ideal form for modeling the problem, this selection largely depends on the feature of 
the preferences set: for example, if we can easily get the probability of each preference statement, then we 
may choose probabilistic CSP as the framework; if the cost of violating each preference statement is easier 
to obtain, then we may use weighted CSP instead. Once the specific soft CSP framework is determined, we 
need to transform the preference statements into soft-constraints as required. The transform of preference 
statements to soft-constraints would be straightforward. Finally the optimal solution can be generated by 
some search algorithms.  
 

Page 5 of 14 



Jiyong Zhang, Pearl Pu 

In this paper we have assumed that the decision maker’s preferences can be fully elicited before the 
procedure of finding optimal solution. However, research shows that actually the preferences are 
constructed incrementally during the interaction procedure[30]. So most likely we select the type of soft 
CSP first, and then elicit the preference gradually to meet the requirement of the special kind of soft CSP, 
till the optimal solution is found. The integration of eliciting preference and solving soft CSPs during the 
interaction procedure would be an interesting research topic.  
 

3. Multi-Attribute Utility Theory 

3.1 Introduction of Utility Theory 
The origination of Utility Theory can be dated back to 1738 when Bernoulli proposed his explanation to the 
St. Petersburg paradox by the term of utility of monetary value [2]. Two centuries later it was von 
Neumann and Morgenstern (1944) who revived this method to solve problems they encountered in 
economics [42]. Later in the early 1950s, in the hands of Marschak[24] and of Herstein and Milnor[16], the 
Expected Utility Theory was established on the ground of a set of axioms and the von Neumann 
Morgenstern theorem (VNM Theorem). In this section we review briefly the general concepts in utility 
theory. More details can be found in [25, 36].  
Let  denote a set of outcomes of the multi-attribute decision problem, L  be the set of all 

risky prospects (also called lotteries) on the set of O (i.e.
1{ ,..., }O lo o=

i ip o ∈∑ L , where [0,1]ip ∈ , and 1ip =∑ ), 

let  be a binary relation onL . We define the following 4 axioms first: ∼
(A1)  is complete, i.e. either ∼ x y∼  or y x∼ , for all ∈x,y L ; 

(A2)  is transitive, i.e. either ∼ x y∼  and y z∼ , then for all x z∼ ∈x,y, z L ; 

(A3) Continuity Axiom:  
if such that , then there is an∈x,y, z L x y z , (0,1)α β ∈ such that 
 (1 )α α+ −x z y , and (1 )β β+ −y x z ; 

(A4) Independence Axiom:  
for all and any∈x,y, z L [0,1]α ∈ , x y∼  if and only if (1 ) (1 )α α α α+ − + −x z y z∼ . 

Then the VNM Theorem proved the existence of utility function theoretically provided that the relation 
satisfies the axioms (A1)-(A4): ∼

VNM Theorem: Let L  be a convex subset of a linear space, and let ∼  be a binary relation on L ,  then 

satisfies (A1), (A2), (A3) and (A4) If and only if there is a real-valued function such that: ∼ :u →ℜL

(a) u represents , i.e. ∼ , , ( ) ( )x u u∀ ∈ ⇔ ≥x y y x y∼L  

(b) is affine, i.e. u ,  and (0,1), ( (1 ) ) ( ) (1 ) ( )u u uα α α α α∀ ∈ ∀ ∈ + − = + −x y x y x yL  
The function u is called the utility function, and the affinity feature of the utility function can be 
generalized to the case of more than two outcomes that the following equation is valid: 

( ) (i i i iu p o p u o=∑ ∑ )  
The left side of the equation is the utility of a lottery, while the right side is the sum of the utility of all the 
outcomes that the lottery involves. This equation shows that the utility of a lottery (uncertainty involved) 
can be calculated by the sum of the utility of a set of outcomes (certainty only).  The utility function also 
reflects the decision maker’s attitude towards risk: If the decision maker is risk averse, the utility function 
is in a concave shape, and if the attitude is risk prone, the utility function must be in a convex form.  
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3.2 Multi-Attribute Utility Theory 
Keeney and Raiffa [18] extended the utility theory to the case of multi-attributes. Multi-attribute utility 
theory is concerned with the valuation of the consequences or outcomes of a decision maker’s action. 
Following the definition of MADP, we use 1{ ,..., }nx x=X  to denote the attributes,  to denote the set 
of values of an attribute 

iD
ix  can have (1 )i n≤ ≤ , and D to denote the space of all possible outcomes (i.e. 

the Carthesian product ). In the following discussion, we often use bold lowercase letter 
to denote an outcome (i.e. a value vector in ). 

1 2 nD D D× ×⋅⋅⋅×
x D
 
For a decision problem that each action has a deterministic outcome, the decision maker needs only to 
express preferences among outcomes. The preference relation ∼ on the certainty outcomes can be captured 

by an order-preserving, real-valued value function as defined below: 
Value Function: A function v , which associates a real number  to each point x  in the outcome 
space, is said to be a value function representing the decision maker’s preference structure provided that, 
for all ,  and 

( )v x

', ''x x D∈ ' '' ( ') ( '')v v⇔ =x x x x∼ ' '' ( ') ( '')v v⇔ >x x x x , then the optimal 
problem of the multi-attribute decision problem can be put into the format of the standard optimization 
problem: Find an outcome  in D to maximize . x ( )v x
 
When there is uncertainty involved in the decision problem, the outcomes of the decisions are characterized 
by probabilities. To differentiate between certain and uncertain outcomes, we call uncertain outcomes as 
prospects (or lotteries), and hereafter we use outcomes to refer to outcomes in certainty case only. The 
utility function defined in section 3.1 can be used to capture the preference relation on the lotteries. A 
utility function is a value function, but a value function is not necessarily a utility function. In the case that 
only certainty involves, the utility function and value function are interchangeable. 
 
Another two important concepts in MAUT are Preference Independence (PI) and Utility Independence (UI). 
PI concerns preference for outcomes in certainty case, while UI concerns preferences for lotteries that do 
involve uncertainty: 
Preference Independence: Attribute set , where , is preferentially independent of its 
complement 

Y ⊂Y X
Y if the preference order of consequences involving only changes in the levels in does not 

depend on the levels at which attributes in 
Y

Y are held fixed. 
Utility Independence: Attribute set , where , is utility independent of its complement Y ⊂Y X Y if the 
preference order of lotteries involving only changes in the levels in Y does not depend on the levels at 
which attributes in Y are held fixed. From the definition we can see that UI is a restrict condition stronger 
than PI, and in the certainty case, UI is the same as PI. 
 
While MAUT can be used to handle problems in both case of certainty and uncertainty, the multi-attribute 
decision problem we discussed in this paper only concerns the case of certainty, where the outcomes are 
deterministic and the decision is mainly a tradeoff process. In the following discussion we only focus on 
the certainty case. For more discussion of MAUT on the case of uncertainty, please see Keeney and 
Raiffa’s book [18]. 
 
As we mentioned earlier in this section, the optimal problem in the multi-attribute decision problem can be 
solved easily as a maximization problem on value function  which represents the preference structure 
of the decision maker, provided that the value function  is given. So the critical point of solving 
multi-attribute decision problem is to determine the value function. To do this, we first analyze the 
preferential dependency between attributes according to the decision maker’s preferences structure. If a 
certain relation is held, we can determine the general form of the value function according to the theorems 
in MAUT, and then estimate the parameters in the value function. Let’s take the case of mutual preference 
independence as an example to illustrate the procedure of assessing the value function. 

( )v x
( )v x
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Mutual Preferential Independence (MPI): The attributes 1{ ,..., }nx x=X are mutually preferentially 
independent if every subset  of is preferentially independent of its complementary set. Y X
 
If the mutual preference independence is held, then it can be proved that the form of the value function is 
additive by the following theorem: 
Theorem of additive value function: Given attributes 1{ ,..., }, 3nx x n= ≥X , an additive value function 

 (where and  are scaled from zero to one, and ) exists if 

and only if the attributes are mutually preferentially independent. 

1
1

( ,..., ) ( )
n

n i i i
i

v x x v xλ
=

=∑ v iv
1

1, 0
n

i i
i
λ λ

=

= >∑

 
After the form of the value function is determined, we then need to estimate the unknown parameters in this 
specific form. For each attribute, we need to assess the component value function  and the 

component scale constant  

( )i iv x

iλ  . Before introducing the method of evaluating the component value 

function , we define the two terms of differentially value-equivalent and midvalue:  ( )i iv x
Differentially value-equivalent: for each attribute x , The value pair ( , is said to be differentially 
value-equivalent to the pair ( , where a

)a b
)c d b< and c d< , if whenever we are willing to go from b  to 

for a given increase of some other attributes Y  , we would be just willing to go from d  to for the 
same increase in .   
a c

Y
Midvalue: For any value interval [ a , ] of the attributeb x , its midvalue point c is such that the pairs 
( , ) and ( , b ) are differentially value-equivalent. a c c
For each component value function , we set ( )i iv x ( )best

i iv x 1= , and ( )worst
i iv x 0= , and determine  the 

midvalue of [ , (denoted as ]worst best
i ix x 0.5

ix ). From the definition, we have . Then we 

continue to find the midvalues of 

0.5( ) 0.i iv x = 5
]0.5[ ,worst

i ix x and , and so on. With enough midvalues been 

evaluated, the final form of the component value function can be approximated. 

0.5[ , best
i ix x ]

( )i iv x
To estimate each component scale constant iλ , we first choose one attribute as the baseline (say 1x ), and 

for each ( 2,..., )ix i = n , we then estimate how much decrease of ix can be compensated by a unit 

increase of 1x , keeping other attributes the same value. This preferential indifference of two outcomes can 

be formalized as an equation containing variable of iλ  and 1λ  only. Finally we can get the value of each 

iλ  by solving all the equations we get and the constraint
1

1, 0
n

i i
i
λ λ

=

= >∑ . 

MPI is a very strong condition that it is often not applicable in real-world situations. A weaker condition is 
that only each single attribute is preferentially independent to its complementary attributes. In this 
case it can be proved that the value function would be in a multi-linear form instead: 

ix ∈X

( ) ( )
i

n

i i
x

v x k v x
∅≠ ⊂ ∈

= ∑ ∏Y
Y X Y

 

Where are component value functions, and k (( )i iv x Y Y X∅ ≠ ⊂ ) are scaling coefficients. Ha and 
Haddawy proposed an algorithm based on polyhedral cone to find the optimal solution in this situation 
[14]2.  

                                                           
2 In Ha and Haddawy’s paper, the discussions were based on the utility function and utility independence 
for both certainty case and uncertainty case.  In the case of certainty, utility function is equal to value 
function, and utility independence is equal to preference independence. 
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3.3 Reasoning with Partial Preference Order 
In the above of this paper we hold an underlying assumption that the decision maker’s preferences could be 
fully elicited: given any two outcomes x and y , the decision maker can tell either x y∼  or y x∼ . This 

assumes that all the outcomes can be ordered totally by the preference information. However, this is usually 
not true in the real case: comparing a pair of multi-attribute outcomes (usually tradeoff has to be made) is 
not easy due to the decision maker’s limited computational capacity. And what’s more, most decisions need 
to be made within a limited time range. Only part of user’s preference is elicited with severe time 
constraints. When only part preferences are elicited, we can only get the partial preference order on the 
outcome set. 
 
Ha and Haddawy proposed the method of reasoning with partial preference order based on a similarity 
measure method called probabilistic distance[15]. In this method, first a set of user preference is studied 
and stored in the database. When a new active user comes, the similarity between the active user and each 
user in the database is computed. Since the active user only has partial preference information, the 
similarity is measured by probabilistic distance. Then the most similar user is selected and the sampled 
linear extension of the active user with the most similarity to that user is chosen as the complete 
representation of the active user’s preferences. Ha etc also acclaimed that, by the comparison experiments 
on the Decision-Theoretic Video Advisor (DIVA) system[27], this method based on probabilistic distance 
outperformed the GroupLens collaborative filtering algorithm [32] in terms of both precision and recall. 

3.4 Discussion 
Utility Theory and MAUT have been widely used in solving decision problems in economics especially for 
those involving uncertainty and risk. Given the utility function, the decision maker’s preferences will be 
totally determined, and the optimal solution of the decision problem is very easy to be selected (the 
outcome with the maximal utility). We can also rank the outcomes according to their utilities easily.  
When using MAUT to solve a multi-attribute decision problem which only involves certainty, the main 
task is to assess the value function according to the decision maker’s preferences. As we have mentioned 
earlier about the procedure, we first analyze the preference independency between attributes, then several 
theorems can be used to determine the general form of the value function according to the relationship 
between attributes. Finally we assess the parameters in the value function by the preferences information.  
 
One limitation of MAUT is that if the relation of preferential independency doesn’t hold between attributes 
of a given MADP (preferential independency is a strong condition compare to the conditional preferential 
independency which will be introduced in the next section), we can’t use the MAUT framework because 
the form of value function can’t be determined. Another disadvantage is that requires the decision maker’s 
preferences being fully elicited before making decision, this doesn’t fit the nature of preferential elicitation. 

4. CP-network 
Both the CSP framework and the MAUT framework require the decision maker to provide sufficient 
preferential information to the system before a final decision can be drawn. For instance if we want to solve 
a multi-attribute problem by fuzzy CSPs, the decision maker first needs to specify his constraints (either 
hard or soft), and then the fuzzy value for each constraint with a certain value set of variables. The 
interaction complexity is quite heavy.  
Boutilier etc. proposed a graphical representation of preferences that reflects conditional dependence and 
independence of preference statements under a ceteris paribus (all else being equal) interpretation: CP-
network [5-7] . The CP-network is based on the concept of conditional preferential independence: Let Y, Z, 
and W be nonempty sets that partition X (the set of all attributes), Y and Z are conditionally preferentially 
independent given an assignment w to W if and only if, for all 1 2 1 2, , ,y y z z (here 1 2,y y are two values of 

Y,  are two values of Z). we have 1 2,z z 1 1 2 1( , , ) ( , , )y z w y z w∼  ⇔  1 2 2 2( , , ) ( , , )y z w y z w∼  

(denoted  as ).  If for all (CPI Y,w,Z) ∈w W we have , then Y and Z are CPI given 
W (Denoted as ). 

(CPI Y,w,Z)
( )CPI Y, W,Z
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To construct the CP-network of a multi-attribute decision problem, for each attribute x , the decision maker 
is asked to specify a set of parent attributes  that can affect her preferences over the values of( )Pa x x . 
That is, given a particular value assignment to , the decision maker should be able to determine a 
preference ordering for the values of 

( )Pa x
x , all other things being equal. With this information, we are able to 

create the graph of the CP-network in which each node x has as its immediate predecessors. Then 
the decision maker is asked to explicitly specify her preferences over the values of 

( )Pa x
x for each assignment 

to . This conditional preference ranking over the values of ( )Pa x x is captured by a conditional preference 
table (CPT) which annotates the node x in the CP-Network. Formally, the CP-network is defined as below: 
A CP-network over attributes 1{ ,..., }nx x=X  is a directed graph G  over 1,..., nx x whose nodes are 

annotated with conditional preference tables for each( )iCPT x ix ∈X . Each conditional preference table 

associates to a total order with each instantiation of ( )iCPT x i
u u ix ’s parents . ( )iPa x = u

 
The following simple example illustrates the form of CP-network. Suppose a MADP has only two 
attributes 1x  and 2x , where 1x is a parent of 2x  and 1x  has no parents. Attribute 1x has two values: 

anda a , 2x has two values:  andb b , Assume the following conditional preferences: 

;      :  ;      :  a a a b b a b b  
With the above information, the CP-network would be constructed as figure 1: 

a a

:       
:  

a b b
a b b

1x

2x
2x1x

 
Figure 1: the CP-network 

 
In this example, the conditional preferences information is surprisingly sufficient to totally order the 
outcomes of the multi-attribute decision problem: ab ab ab ab 3.  
Given a CP-network structure which specifies the decision maker’s preferences over outcome space, two 
kinds of useful queries can be answered. One is outcome comparison query – preferential comparison 
between a pair of outcomes. Intuitively from the above example, a chain of “flipping feature values” can be 
used to show that one outcome is better than another. Also, we can see that the parent preferences have 
higher priority than the child preferences, violations are worse the higher up they are in the network. We 
can construct a sequence of increasingly preferred outcomes using only valid conditional independence 
relations represented in the CP-network by flipping values of attributes. If we want to compare a pair of 
outcomes  and , we can start from outcome , changing the value of a “higher priority” attribute 
(higher in the CP-network) to its preferred value, even if this introduces a new preference violation for 
some lower priority attribute (a descendent in the CP-network). This flipping operation is repeated until 
either the outcome  is reached or no more attribute in outcome  can be flipped. If outcome  is 

reached, we say that  is preferred to . More formally, the flipping sequences can be searched through 
the improving search tree or worsening search tree. If an outcome o is not preferred by any other outcomes, 
we say that o is a non-dominated outcome.  

1o 2o 1o

2o 1o 2o

2o 1o

 

                                                           
3 Though in this simple example the outcomes can be totally ordered by the CP-network, more complicated 
examples show that only part of outcomes can be ordered by the CPI statements. For instance, we cannot 
compare two (or more) lower level violations to violation of a single ancestor constraint. 
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Another useful query is outcome optimization query – determining the set of non-dominated feasible 
outcomes. Some search algorithms can be helpful for determining the non-dominated outcome set. One 
possible search method is a straightforward, depth-first, branch-and-bound style algorithm[22, 31]. The 
algorithm proceeds by assigning values to attributes in a depth-first fashion, using a variable ordering that 
is consistent with the ordering constraints imposed by CP-arcs (i.e., no child can be assigned before its 
parents). Suppose initially x  is an attribute without parent nodes in the CP-network with the assigned 
value , the set of constraints passed on to the next search node can be reduced: the CP-arcs that emanate 
from 

a
x can be removed in all subsequent search steps. This can result in disconnected fragments of the CP-

network, and each of which can be optimized independently given x a= . During this procedure there is 
some pruning information that can take place in the search tree. Suppose that the attribute x has two values  

 and b , and a is preferred than b , if assignment a x b= satisfies an equal or smaller set of constraints 
than was satisfied by x a= , then we do not continue to search under x b= : any feasible outcome given 
involving x b= is dominated by some feasible outcome involving x a= .  
When the non-dominated set is determined, if it contains only one outcome, then this outcome is the 
optimal solution for the multi-attribute decision problem. Otherwise the decision maker needs to select the 
most preferred outcome from the non-dominated set. 
 
The CP-network has the advantage of representing the decision maker’s preferences effectively by the 
conditional preference statements which is nature to be captured. The conditional preferential independence 
is a weaker condition than preferential independence, thus it is applicable to much wider situations than the 
methods based on preferential independence introduced in section 4. However, being a qualitative method, 
the CP-network cannot represent quantitative utility information. Boutilier etc further extended the CP-
network to UCP-network by adding quantitative utility information to the conditional preference table of 
each attribute [4].  

5. Heuristic Decision Making Strategies 
Till now the methods we discussed above for solving multi-attribute decision problems are based on the 
machine side because generally they require such heavy computational load that human beings seldom 
could afford.  It would be meaningful if we take a look on human side to see how human beings make 
decisions. In fact, research from psychology area has shown that individuals usually adopt various heuristic 
strategies to solve MADPs whenever they meet[17, 28, 29]. In this section we first outline some of the 
heuristic decision making strategies, and then we discuss the potential of solving MADPs by these heuristic 
strategies.  
 
The Equal Weight (EQW) heuristic. This processing strategy examines all attribute values for each outcome. 
The decision making is simplified by ignoring information about the relative importance (probability) of 
each attribute. An overall value for each outcome is obtained by simply summing the values for each 
attribute of that outcome.  
The Elimination by Aspects (EBA) heuristic. This strategy begins by determining the most important 
attribute. Then, the cutoff value for that attribute is retrieved, and all alternatives with values for that 
attribute below the cutoff are eliminated. The process continues with the second most important attributes, 
then the third, and so on, until only one outcome remains. This strategy is first described by Tverskey [41]. 
The Majority of Confirming Dimensions (MCD) heuristic. Described by Russo and Dosher [34], the MCD 
strategy involves processing pairs of outcomes. The values for each of the two outcomes are compared on 
each attribute, and the outcome with a majority of winning (better) attribute values is selected. The retained 
outcome is then compared with the next outcome among the set of outcomes. The process of pairwise 
comparison repeats until all outcomes have been evaluated and the final winning outcome has been 
identified. 
The Satisficing (SAT) heuristic. Satisficing is one of the oldest heuristics identified in the decision making 
literature[37]. With this strategy, outcomes are considered one at a time, in the order they occur in the set. 
Each attribute of an outcome is compared to a predefined cutoff level, which often known as aspiration 
level.  If any attribute value is below the cutoff value, that alternative is rejected. The first outcome which 
passes the cutoffs for all attributes is chosen, so a choice can be made before all outcomes have been 

Page 11 of 14 



Jiyong Zhang, Pearl Pu 

evaluated. In the case where no outcome passes all the cutoffs, the cutoff can be relaxed and the process 
repeated, or an outcome can be randomly selected. 
The Lexicographic (LEX) heuristic.  For this strategy, the most important attribute is determined, the values 
of all the outcomes on that attribute are examined, and the outcome with the best value on that attributes is 
selected. If two outcomes have tied values, the second most important attribute is examined. And so on, 
until the tie is broken. Sometimes the LEX strategy includes the notion of a just-noticeable difference 
(JND). If several outcomes are within a JND of the best outcome on the most important attribute, they are 
considered to be tied. This version of the LEX strategy is sometimes called lexicographic-semiorder 
(LEXISEMI).The potential advantage of the LEXSEMI rule is that it ensures that an option is marginally 
better on the most important attribute but much worse on other attributes will not necessarily be selected. 
The Frequency of good and bad features (FRQ) heuristic. Alba and Marmorstein[1] suggest that decision 
makers may evaluate or choose outcomes based simply upon counts of the good or bad features the 
outcomes possess. To implement this heuristic, the decision maker needs to develop cutoffs for specifying 
good and bad features, and then counts the number of such features. This heuristic could be viewed as the 
application of a voting rule to multi-attribute choice, where the attributes can be viewed as voters. 
 
Besides above 6 heuristic strategies, the decision maker sometimes uses combination of strategies. 
Typically, combined decision strategies have an initial phase, where poor outcomes are eliminated, and 
then a second phase examining the remaining outcomes in more detail. For example, The elimination-by-
aspects plus weighted additive (EBA+WADD) strategy uses an EBA process until the number of available 
outcomes remaining was three or fewer, and then used a weighted additive strategy (a normative strategy 
which will be introduce shortly after) to select among the remaining outcomes. The elimination-by-aspects 
plus majority of confirming dimensions (EBA+MCD) strategy  first uses the elimination-by-aspects process 
to reduce the problem size, and then uses a majority of confirming dimensions heuristic to select the 
optimal outcome from the reduced set.  
 
Johnson and Payne reported a Monte-Carlo simulation study on effort and accuracy of these heuristic 
strategies[17].  In this simulation experiment, the heuristic strategies are compared with the normative 
Weighted additive (WADD) strategy, which considers the values of each outcome on all of the relevant 
attributes and all of the relative importance (weights or probabilities) of the different attributes to the 
decision maker. Each outcome is given an evaluation value by multiplying the weight and the attribute 
value for each attribute and summing these weighted attribute values over all attributes. The outcome with 
the highest overall evaluation value is chosen as the optimal solution. Actually, the WADD decision 
strategy is a special case of the MAUT method with additive value function. The Random (RAN) strategy 
(choosing an outcome at random with no search of the available information) is used as a minimum 
baseline for measuring both accuracy and effort in this simulation.  
 
The effort of each strategy in decision making is measured by the count of all elementary information 
processes (EIPs)[17]. Each EIP is a basic cognitive operation such as “read a value of an attribute”, 
“compare two values”, “add the values of two attributes”, etc. EIPs provide a common language for 
describing seemingly diverse decision strategies in terms of their underlying components. The relative 
accuracy of each strategy is calculated by that of WADD and RAN strategies: the accuracy of WADD is set 
to 1, and that of RAN is set to 0. 
 
This simulation experiment shows several interesting results. First, heuristic strategies can approximate the 
accuracy of the normative strategy (WADD) with substantial savings in effort. A decision maker using an 
EQW strategy, for example, can achieve 89% of the relative accuracy with only about half the effort, in the 
low-dispersion, dominance-possible task environment. The lexicographic strategy can achieve 90% relative 
accuracy, with only about 40% of the effort in the high-dispersion task environment. Experiment results 
also show that heuristic strategies can be highly accurate in some environments, but no single heuristic does 
well across all contexts. Moreover, when under time constraints, heuristics might be even more accurate 
than a normative strategy such as WADD. The heuristic’s accuracy may degrade under increasing time 
pressure at a lower rate than WADD strategy degrades. In later experiments carried out by Payne etc[28], 
the results show that people shift decision strategies in response to a context change in ways that maintain 
accuracy without explicit outcome feedback, and under time constraints, several heuristic strategies are 
more accurate than a truncated normative procedure. 
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The heuristic strategies discussed in this section are obviously useful for individuals when they are trying to 
find the optimal solution of the MADP.  As mentioned above, the effort of solving MADP with heuristic 
strategies is relative low while the accuracy is not degraded too much. The optimal solution found by 
heuristic strategies has the advantage of matching with the decision maker’s mental model, which implies 
that the decision maker is easier to accept the solution.  
Two problems require further study before implementing some algorithms to solve MADP based on 
heuristic strategies. One is the error of the decision that caused by heuristic strategies. We can see from the 
simulation experiments that none of the heuristic strategies can get 100% accuracy compared to the WADD 
rule. We need to select the right strategy so to get minimal error, and we also need to study what degree of 
error is acceptable for the decision maker. The other problem is the adaptive nature of heuristic strategies: 
people change heuristic strategies implicitly if the context changes. To solve this, we can study this 
phenomenon and try to make the change of heuristic strategies be predictable, or we can find several 
solutions by different strategies simultaneously, and then select the optimal solution among them by a 
certain criteria. 

6. Summary 
In this paper, first we formally defined the multi-attribute decision problem, and then we studied four 
different methods (soft-CSP framework, MAUT, CP-network, and heuristic strategies) which potentially 
could be used to solve the MADP, and their advantages and disadvantages are discussed respectively. It is 
shown that though each of the four methods is theoretically sound and complete, none of them is ideally 
suitable for solving the MADP problem. Here we suggest that the combination of two or more of these 
methods may provide better performance for the real application. 
Currently few application of MADP is implemented based on these methods. It would be promising to 
develop a real application framework with all these methods so that their performances can be compared 
thoroughly at the same standard. Also, preference elicitation is another tough task for decision making in 
multi-attribute situation. During this paper we have assumed that the decision maker’s preferences have 
been elicited before the decision procedure. However, usually the preferences can only be fully elicited 
during the interaction procedure due to the constructive nature of preferences. We need to find a better way 
of integrating the procedure of preference elicitation and decision making together.  
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