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Abstract

This note gives a high level and informal account of the necessary part of the proof that Ω is the
weakest failure detector to implement consensus with a majority of correct processes. The proof originally
appeared in a widely cited but rarely understood paper by Chandra, Hadzilacos and Toueg. We describe
it here as a play in five acts, preceded by a prologue and followed by an epilogue.

The Prologue

Consensus and leader election are two fundamental abstractions in distributed computing. Consensus pro-
vides processes with the ability to agree on a common value. We consider here a variant of leader election,
denoted by Ω, through which the processes eventually agree on a common correct leader. Proving that Ω
is the weakest failure detector to implement consensus with a majority of correct processes goes through
exhibiting two algorithms:

1. an algorithm that implements consensus with a majority of correct processes using Ω (sufficient part);

2. an algorithm T (called a transformation or a reduction algorithm) that, using any algorithm A that
implements consensus with some failure detector D, implements Ω (necessary part).

The necessary part, often called the “CHT proof” (or simply “CHT ”) (for Chandra, Hadzilacos and
Toueg [1]) pioneers a new reduction style in the theory of distributed computing. It is however quite long
and rather involved. That is maybe why it is rarely understood.

We have tried in this note to give a high level description of CHT. Clearly, we often sacrificed rigour
for intuition: sometimes on purpose and sometimes not. We give a description of the main components
of the proof and we consider a simple case of the proof while abstracting away a trickier in the appendix.
Even our very informal description requires however five acts. Moreover, the use of the first of these acts
is getting visible only at the very end of the proof. We thus encourage the reader to continue reading even
when it seems as though the proof does not make progress anymore. Catching a glimpse of the elegance and
cleverness of the CHT proof will be your reward at the end.

Before delving into CHT, we first recall here some of its underlying elements. As we recalled above, CHT
is about constructing algorithm T using consensus algorithm A (itself using failure detector D). We say few
words here about what is, a priori, needed to be noticed about algorithms A and T .

• About algorithm A (which is given):

1. A uses a failure detector D in a message passing system. A failure detector is a distributed
abstraction that provides processes with information about the status (crashed or not) of other
processes in the system. Every process pi has a module of that failure detector and pi can query
that module at any time. The information obtained from this query is used as an input by pi to
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its algorithm automaton, as we discuss below. Algorithm A is a set of deterministic distributed
automata, one per process. At every step of any run of A, exactly one process pi triggers its
algorithm automaton: we say that pi executes a step. A correct process is one that executes an
infinite number of steps. (A process that crashes simply stops triggering its automaton.) The
input of the automaton is (1) pi’s state, (2) a message that pi has received from some other
process, as well as (3) the value obtained by pi from its local failure detector module. The output
of the automaton is (4) a new state as well as (5) a message that pi broadcasts. Communication
is supposed to be reliable in the sense that if pi sends a message, then this message is eventually
received by every correct process.

2. A implements consensus. The problem consists for the processes to propose values and to decide
on the same final value. More precisely, every correct process will decide on a value (termination
property of consensus); no two correct processes will ever decide differently (agreement); and any
value decided is a value proposed (validity).

• About algorithm T (which is to be constructed):

1. T needs to implement Ω. In other words, T is a leader election algorithm which should ensure
that, eventually, all correct processes permanently elect the same correct process. The existence
of both (1) algorithm T and (2) an algorithm that implements consensus using Ω is what derives
the fact that Ω is the weakest failure detector to implement consensus.

2. T is not restricted to using A as a black-box. In other words, we are not trying here to implement
Ω out of a consensus abstraction. At first glance, using consensus as a black-box, we could indeed
easily implement a leader election scheme which ensures that the processes do all elect the same
leader: the processes would each propose its identity and, using consensus, we would get the same
identity as a decision. This is a strictly weaker variant of Ω because there is no guarantee that
the leader is correct. On the other hand, if the goal was simply for every correct process to elect
a correct process, each would simply output itself. The challenge that T needs to face is to have
the processes eventually and permanently agree on the very same correct leader. Algorithm T
achieves this by using A’s automata at every process, as we overview in the following.

We give here an overview of algorithm T . The basic idea underlying T is to have each process locally
simulate the overall distributed system in which the process executes several runs of A. The processes then
use the outputs provided by these runs to extract the leader process.

Every process simulates, locally, runs of algorithm A by launching threads that mimic the behavior of
every other process in the system running algorithm A (Fig. 1). But how can one process pi simulate the
overall system executing several runs of A? Basically, every process pi feeds algorithm A with a set of
proposed values, one for each process of the system, i.e., pi pretends to be every other process and proposes
values to A’s runs. In fact, process pi proposes all possible combinations as we discuss in Act 2. Then all
automata composing A are triggered locally by pi, which locally emulates, for every simulated run of A, the
states of all processes as well as the emulated buffer of exchanged messages.

Crucial elements that are needed for the simulation are (1) the values from failure detectors that would
be output by D as well as (2) the order according to which the processes are taking steps. For these elements,
which we call the stimuli of algorithm A, process pi exchange information with the other processes, as we
will discuss later (Act 1). It is important to notice that the output of D is not restricted in any way. In fact,
this output can be any value that encodes some information about failures.

Every process pi locally uses the series of (consensus) decisions obtained by A in order to extract the
leader process (Acts 3-5). The idea is to analyze which combination of values proposed to consensus leads
to which decision values. In short, the process that is elected leader (i.e., extracted) is the one, the proposed
value of which, makes a difference in the pattern of decision values.

Act 1: The Exchange

The processes periodically query their failure detector modules of D and send the output to all other pro-
cesses. As a result, every process knows more and more of the other processes’ failure detector outputs and
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Figure 1: Processes simulate runs of consensus in their own simulation environment taking stimuli from
“reality”.

temporal relations between them.
All this information is pieced together in a single data structure, a directed acyclic graph (DAG). This

DAG has some special properties which follow from its construction as we will discuss later. What is
important to see for now is that the DAG can be used to derive simulation stimuli to A: it contains
activation schedules and failure detector outputs for the processes to execute steps of A’s instances. In
fact, every path through this DAG is one such possible stimulus which can be used as an input to A in the
simulation environment.

An example is depicted in Figure 2 in which the vertex [p1, d4] (meaning that the failure detector at p1

responded with d4) is added to the DAG after having received [p2, d2] and [p3, d3]. The DAG is transitively
closed. Thus, every suffix of a path through the DAG is again a path through the DAG.

Of course, these schedules will always be finite, so they can be used to simulate only finite runs of A in
the simulation environment (this means that A may not terminate for some processes). But this is not too
bad. As long as the processes continue to exchange information, the DAG becomes larger and larger and
provides more and more simulated terminating runs of A.

When the processes communicate, they send their own version of the DAG to each other. When receiving
such a DAG, a process integrates it into its own DAG (it forms the union). In this way, the intersection of
all correct processes’ DAGs grows without bound too: without knowing exactly how large it is, the processes
construct an ever-increasing “common sub-DAG”.

[p1, d1]

[p2, d2]

[p3, d3]

[p1, d4]

Figure 2: Construction of the DAG.

Act 2: The Simulation

Let’s forget the point about the common sub-DAG and the special DAG properties for a moment and just
recall that the DAG can be used to extract stimuli for running A in a simulation environment. So let’s
assume that some process pi has just constructed a new version G of its personal DAG. There are many
paths through G and each path corresponds to an activation schedule for A. Process pi simply starts a
simulation environment for every path through G. Note that this might be a Herculean task in reality, but
we are interested here in proving the existence of an algorithm, not necessarily an efficient one. Since G is
finite, the number of paths through G is also finite and so we are not demanding the impossible.

3



So let’s consider one such path π through G. We will use π to stimulate A in the simulation environment.
But A is an algorithm which solves consensus, and so we need to provide input values for A. Which ones
should we choose? the answer is simple: don’t choose; rather run even more instances of A! So for the
path π we run not one simulation environment, but rather n + 1 simulation environments at the same time.
(Remember that n is the number of processes in the system: p1, . . . , pn.) The initial values given to each of
these instances follow a certain pattern: in the first instance, all processes propose 0; in the second instance,
process p1 proposes 1 and all others propose 0; in the third instance, processes p1 and p2 propose 1, and
all others propose 0, etc. In the final (n + 1)-th instance, all processes propose 1. The input vectors to the
instances are denoted I0, I1, . . . , In, where Ii makes processes p1 up to pi propose 1 and the rest (processes
pi+1 up to pn) propose 0.

To recall: whenever its DAG changes, every process pi runs a simulation environment for every path
through the DAG and for every input vector I0, . . . , In. Each simulation is run “up to the end”, i.e., until it
runs out of activation stimuli from π found in the current DAG. When all simulations are finished, then pi

reconsiders incoming messages, constructs a new DAG and starts the simulations all over again from scratch.
As mentioned above, this is a lot of work, but it is not impossible.

Act 3: The Tagging

At the end of the simulations (i.e., before constructing a new DAG and re-starting the simulations again),
process pi looks at the results of the runs of A. In some simulation environments, A might not have
terminated since the length of the input stimulus is not sufficiently large (the emulated processes have not
been activated often enough). But in others, A might have terminated. In fact, since correct processes keep
on exchanging messages with each other, there is eventually a path through the DAG in which such processes
will regularly appear. So it is just a matter of waiting long enough, and launching new simulations, until
there is some simulation stimulus which leads A to termination. Since A is a consensus algorithm, it gives
us the decision value for the particular run of the simulation (either 0 or 1).

Process pi now looks at all simulations which started from the same initial input vector. For example, it
considers all simulations which started from I0 and looks at the decision values of those simulations which
have terminated. Of course, the decision value will be 0 for input vector I0 since all processes proposed 0
and the decided value must be a proposed value (this is mandated by the validity property of consensus).
Similar for In, only 1 can be decided. But for other input vectors like I1 and In−1 both 0 and 1 can be the
result.

For every input vector I0, . . . , In, pi determines the set of all decided values and “tags” the input vector
with them. An input vector which is only tagged with 0 is called 0-valent. An input vector tagged only with
1 is called 1-valent. Otherwise, the input vector is called bivalent. (We disregard the case where none of the
simulated runs decides, i.e., where there are no tags at all attached to an input vector; this happens only
finitely many times.)

Now look at the list of input vectors I0, . . . , In: certainly, and as we pointed out, I0 is 0-valent, but what
about the others? Let’s assume that I1 and I2 are 0-valent too, but not all input vectors can be 0-valent
because In is 1-valent. This means that there exists some index i in the sequence of input vectors where Ii−1

is 0-valent and Ii is either 1-valent or bivalent. Index i is called a critical index. Interestingly, the critical
index can be used to make an educated guess about some correct process in the system.

Act 4: The Stabilization

An important fact to observe now is that there is a time after which the critical index does not change
anymore and this index is the same at all processes. Since I0 will always remain 0-valent, the critical index
cannot decrease below 1; it will eventually stabilize to a value which is at least 1. Furthermore, all correct
processes doing the simulation will stabilize to the same critical index. This is because the DAG is the
only input to the simulations, and so the DAG alone inevitably determines the critical index. But as noted
earlier, correct processes exchange and update their views of the DAG periodically, which implies a common
ever-growing sub-DAG of all correct processes. Eventually, the common sub-DAG will be sufficiently large
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to allow A to terminate on the stimuli extracted from it. Hence, all correct processes will “stabilize” on the
tags they attach to the input vectors: for example, if some process tags I3 with 0, then eventually every
other correct process will do the same (this tag is sticky, i.e., it will not vanish). As a result, once an input
vector has become bivalent, it cannot switch back to 1-valent or 0-valent anymore. So the critical index
cannot shift to the right, it can only shift to the left (toward I0). Moreover, the critical index cannot shift
left forever, it must stop at some point. And this point is eventually computed by every correct process. So
while there is no way for the processes to “know” that their critical index has stabilized (unless it is 1 of
course), stabilization will eventually happen.

Act 5: The Extraction

The final step is now to see what a critical index has to do with the identity of a correct process. This is
maybe the point which is most difficult to understand, so what we start by showing that a critical index
has some relation to a correct process. If you can see that in some cases the critical index gives useful hints
about a correct process, it might be easier for you to believe that it may do the same in the other (more
complicated) cases.

The simple case we consider is, besides the assumption that the stabilization to a critical index i has
taken place, that Ii−1 is 0-valent, and that Ii is 1-valent. The claim now is that is that pi is a correct process.

Assume by contradiction that pi is faulty. In this case, pi stops participating in the collective building of
the DAG. So at some point, the DAG is being extended without adding vertexes with respect to pi anymore.
Now the special property of transitive closure of the DAG is important: consider any path π through the
DAG in which pi has stopped to participate. Since at some point pi has stopped contributing to the DAG,
there is a suffix π′ of π in which there is no vertex regarding pi. Because of transitive closure, π′ is also a
path through the DAG.

Because π′ is also a path through the DAG, there must be a simulated run of A performed with π′ as
input stimulus for the input vector Ii. Since we assume that the critical index has stabilized, Ii remains
1-valent, and so running A on any extension of π′ results in deciding value 1. To summarize, A has a run c1

in which processes start from Ii, pi takes no steps at all and the decision value is 1.
Now look at the same stimulus applied to A starting from Ii−1. Since Ii−1 is 0-valent, the outcome of

A must be 0. To summarize, A has a run c2 in which processes start from Ii−1, pi takes no step at all and
the decision value is 0. But from the point of view of all the processes apart from pi, the executions c1 and
c2 are indistinguishable: the only difference is pi’s initial value that changes in both cases, but no process
knows that value as pi takes no step. Algorithm A is deterministic, so it should yield the same decision value
in both cases, which it doesn’t. This is the contradiction. So pi must be a correct process.

The above line of reasoning shows that there is some non-trivial information about correct processes in
the critical index. We have argued only for the case when Ii is 1-valent. The case when Ii is bivalent is a
little trickier and involves reasoning about devices called hooks and forks (this is probably the place in the
proof where readers might surrender). We will do some hand waving here and just ask the reader to believe
that this part of the proof works. For those who still want to understand this final part of the proof, The
appendix A provides a multi-page, high-level overview over this part of the proof.

The Epilogue

So let’s put all CHT pieces together: we are given a distributed system, a failure detector D, and an algorithm
A which uses D to solve consensus. We design an algorithm T where the processes:

• periodically query D;

• exchange the results in the form of DAGs;

• use the DAGs to locally simulate a large number of runs of A with all possible input vectors of proposal
consensus values; (Every process runs these simulations, not necessarily the same set, but eventually
every simulation which is done by one correct process is also performed by all other correct processes);
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• use the consensus decisions obtained from these runs to tag the input vectors;

• and finally use these tags to identify a critical index and elect the corresponding leader process.

To conclude, let’s point out some extensions of CHT.

• CHT considers a distributed system model where the processes communicate by exchanging messages
through reliable channels (e.g., in Act 1). The result has been extended in [8] to a distributed system
model where the processes communicate through registers. The result was also revisited in models
with more sophisticated shared objects than registers, first in [9], and later in [5]. With these objects,
the weakest failure detector to implement consensus is strictly weaker than Ω.

• The variant of consensus considered in CHT is sometimes called strong consensus: no process can
decide 0 (resp. 1) if they all propose 1 (resp. 0) (this is fundamental in Act 3). This contrasts a weaker
variant of consensus where we would require only that algorithm A has a run where 1 is decided and
a run where 0 is decided. Considering such a weak variant impacts the result as pointed out in [1]
and [6].

• Finally, it is important to recall that CHT is only the necessary part of the proof that Ω is the weakest
failure detector for consensus. The sufficient part goes through exhibiting an algorithm that implements
consensus using Ω. Variants of such algorithms have been proposed in the literature [2, 4, 7, 10]. All
these algorithms assume however a majority of correct processes, which is indeed necessary if Ω is the
only failure detector available. Determining the weakest failure detector for consensus without the
correct majority assumption has more recently been studied in [3].
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A Handling a Bivalent Critical Index

In this appendix we fill a gap in the proof of the main part of this document. The basic question we answer
here is the following: how can the identity of a correct process be determined if, for some stabilized critical
index i, the input vector Ii−1 is 0-valent and the vector Ii is bivalent? In contrast to the case studied before
(where Ii was 1-valent), the correct process is not necessarily pi. The proof is slightly more complicated
than before. In fact, the proof for this part needs almost as many pages (and even more figures) to explain
than the entire proof which was presented up to now. In some sense, we are advising the readers to read
this appendix only if absolutely necessary.

A.1 Simulation Tree

Remember that a process runs a simulation (using the given consensus algorithm A) for all input vectors
and for all paths through the current version of its DAG. Eventually, (provided the process does not crash)
the result of this is a huge set of simulated runs of A. Let’s only consider those runs which start with the
(bivalent) input vector Ii (where i is the critical index). We can combine all of them into a simulation tree.
The root of the tree is the starting configuration. Every edge in the tree corresponds to a step taken by
some process and every vertex corresponds to a configuration resulting from the steps leading to it. Runs of
consensus which “share a prefix” (i.e., start in the same way) have the same prefix in the tree. Basically, the
tree represents all choices of next steps during the simulation, much like a game tree in chess for example.

A step consists of three items and is represented as [p,m, d]. The value p denotes which process executed
the step, m identifies which message that process consumed (if any) and d represents the output of the failure
detector during this step. For example, the simulation tree using the input of the DAG in Fig. 2 could look
as follows:

[p3,m3, d3]

[p1,m4, d4]

[p1,m4, d4]

[p1,m1, d1]

[p2,m2, d2]

[p1,m4, d4]

Note that there are many more choices that have not been represented in this tree: for example, the DAG
will consist of increasingly many possible samples to choose from. Also there is a choice of the message m
which a process should consume in the simulation. (In fact, a simulated process can consume an “empty”
message in a step: this models arbitrary message delays.) So one “step” in the DAG offers multiple choices
(and hence path continuations) in the simulation tree.

The individual states of the tree also carry a valency: if in that state the consensus algorithm has
terminated with a decision of 0 or 1, then that state is 0-valent or 1-valent, respectively. For states, in which
the consensus algorithm has not yet terminated, we have the following rule: if a state s has a followup state
(a descendant in the tree) which is 1-valent, then s is also 1-valent. Similarly for 0-valent descendant states.
However, if s has both a 1-valent and a 0-valent descendant state, then s is bivalent. Recall that the starting
state of the simulation tree (the root) must be bivalent.

A.2 Determining a Correct Process: Hooks and Forks

As mentioned before, the correct process is in general not pi anymore (where i is the critical index) but some
other process. The idea is to use here certain patterns in the simulation tree to identify a correct process.
These patterns are called forks and hooks. In the following, we first look at how hooks and forks allow the
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processes to determine a correct process. Then we argue that every simulation tree for Ii contains at least
one hook or one fork which does not vanish. Let’s consider forks first (this is the easier case).

A.2.1 Forks

The following picture identifies a fork. A fork consists of a bivalent state s from which two different steps
by the same process pj are possible which, on the one hand, lead into a 0-valent state s0 and, on the other
hand, to a 1-valent state s1:

s0

(0-valent)
s1

(1-valent)

[pj ,m, d]

s (bivalent)

[pj ,m
′, d′]

The point to note now is that if we can find a fork in the simulation tree, then pj must be a correct process.
To see this, assume that pj is faulty. Like in the main part of this text, we can now exploit a property of
the DAG (its transitive closure). Starting from state s0, there is a continuation π0 in the simulation tree in
which pj never takes a step. Since s0 is 0-valent, the processes decide 0 in π0. Similarly, starting from state
s1 there is a continuation π1 in which pj also does not take any step, and in which the other processes take
exactly the same steps as in π0. Since s1 is 1-valent, the processes decide 1.

There is a contradiction leaking here: the only difference between π0 and π1 is the state of pj . But pj is
crashed and so processes should come to the same decision in π0 and π1, not different ones. So pj must be
correct.

A.2.2 Hooks

Let’s look at hooks now. A hook in the simulation tree has the following structure:

s1

(1-valent)

s0

(0-valent)

[pj ,m, d]

s (bivalent)

s′

[pj ,m, d]

[pk, . . .]

It consists of a bivalent state s, a state s′ which is reached by executing a step of some process pk, and two
states s0 and s1 reached by executing the same step of process pj . Additionally, state s0 must be 0-valent
and s1 must be 1-valent (or vice versa; the order does not matter here).

If we can find a hook in the simulation tree, then we’re done: in this case, pk is a correct process. The
reason for this can be derived by similar arguments as in the case of a fork: if pk were faulty, then we could
construct extensions of s0 and s1 in which pk takes no step, but where all other processes take the same steps.
Hence, they should reach the same decision. But the valencies of s0 and s1 are different — a contradiction!
So pk must be correct.
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A.3 Existence of Hooks and Forks

If we have found a hook or a fork in the simulation tree, then we are lucky: we can extract the common
correct leader. If there are many hooks and forks in the simulation tree, then we need to prevent different
processes from looking at different hooks and outputting different values. This is done by defining the notion
of a “first” hook or fork. Basically this is possible since the vertexes of the simulation are countable: the
processes can then select the hook or fork with the “smallest” root state s and extract from it the leader.

But what if all newly computed hooks or forks disappear from the simulation tree and never re-appear?
In fact, this can’t happen. Eventually, and as we argue below, there will be a hook or fork in the simulation
tree which does not go away. Take an infinite bivalent simulation tree. We consider a hypothetical algorithm
which goes through the simulation tree. The algorithm terminates only when a hook or a fork has been
found. The algorithm proceeds as follows:

s := 〈root of simulation tree〉
while true do

j := 〈choose the next correct process in a round robin fashion〉
m := 〈choose the oldest message for process pj〉
if 〈s has descendant s′ (possibly s = s′) such that, for some d,

s′ extended with [pj ,m, d] is a bivalent vertex of the tree 〉
then s := s′ extended with [pj ,m, d]
else exit

end

Basically the algorithm locates a fair path through the simulation tree, i.e., a path in which all correct
processes get scheduled infinitely often and every message sent to a correct process is eventually consumed.
Additionally, this fair path goes through bivalent states only.

There are two questions to ask now: (1) Does this algorithm always terminate? (2) If it terminates,
where is the hook or the fork?

A.3.1 Terminating the Infinite Simulation Tree

Suppose, by contradiction, that the algorithm does not terminate. That is, we can locate an infinite path in
the simulation tree that goes through bivalent states only. Moreover, the path corresponds to a fair run of
the consensus algorithm A: every correct process takes an infinite number of steps in the run and eventually
receives every message sent to it. Note that a state in which some process decides a value v ∈ {0, 1} cannot
be bivalent, otherwise the agreement property of consensus would be violated. In this case, we end up with
a fair run of algorithm A in which no process ever decides: a contradiction with the termination property of
consensus.

A.3.2 Identifying a Fork or a Hook

So we have seen that at some point the algorithm terminates. What condition holds at that point? To find
out, we simply have to negate the condition of the if statement. The negation reads as follows: state s has
no descendant in the tree in which pj takes a step consuming message m and where the resulting state is
bivalent. In other words, any step of pj consuming message m brings any descendant of s (including s itself)
to either a 1-valent or a 0-valent state. Let’s look at some extension of s in which pj takes a step at some
descendant s′. We can depict this as follows:
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s′

univalent state

s (bivalent)
consume m here

pj does not

[pj ,m, ∗]

Since the descendant can be state s itself, the following is also a legal tree:

univalent state

s (bivalent)

[pj ,m, ∗]

Without loss of generality, we assume that some step [pj ,m, d′] brings s to a 0-valent state. That is, our
simulation tree contains the following subtree:

s (bivalent)

s0

(0-valent)

[pj ,m, d′]

Since s is a bivalent state, it must have some descendant s′ which is 1-valent. This can be depicted as follows:

s (bivalent)

s0

(0-valent)
s′ (1-valent)

[pj ,m, d′]

Let’s assume that pj takes no step between s and s′ in which it consumes message m. This means that m is
still unconsumed in state s′ and some step of the form [pj ,m, d] is applicable there. Since s′ is 1-valent, the
step [pj ,m, d] applied to s′ results in a 1-valent state. So we have the following situation:
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s (bivalent)

s0

(0-valent)
s′ (1-valent)

s1

(1-valent)

[pj ,m, d′]

[pj ,m, d]

We can also come up with a situation like this even if pj takes a step between s and s′ in which it
consumes m. So assume that pj takes a step consuming m in some intermediate state, say, s′′, on the path
from s to s′. The resulting state cannot be 0-valent. Why? Because we know that s′ is 1-valent, and so
the resulting state must be at least bivalent! But it cannot be bivalent because the termination condition of
the algorithm which identified s disallowed bivalent followup states of actions of pj . So overall the situation
then looks like this:

s (bivalent)

s0

(0-valent)
s′′

s1

(1-valent)

s′ (1-valent)

[pj ,m, d′]

[pj ,m, d]

In both cases, our simulation tree contains the following subtree where s′′′ is either s′ or s′′:
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s (bivalent)

(0-valent)

s1

(1-valent)

[pj ,m, d]

s′′′

[pj ,m, d′]

s0

We claim that within this structure there must be a fork or a hook somewhere. The argument is quite simple:
the path between s and s′′′ consists of a finite sequence of steps e1, e2, . . . , em. Since pj does consume m
between s and s′′′, the very same step [pj ,m, d] can be applied in the first state following s on the way to
s′′′, i.e., after executing step e1. Similarly, it can be applied after executing step e1 and e2. In fact, it can
be executed in every state on the way from s to s′′′. We denote the corresponding intermediate states by
σ0 = s, σ1, . . . , σm−1, σm = s′′′.

s1

(1-valent)

[pj ,m, d]

[pj ,m, d]

σm = s′′′

σ0 = s (bivalent)

e1

em

σ1

σm−1

The important point here is to see that, for any k = 0, . . . ,m, the step [pj ,m, d] applied to σk results in a
0-valent or a 1-valent state. This is because the algorithm which identified s terminated and the termination
condition stated that there is no descendant of s which is bivalent after applying that ominous step of pj .

Let k ∈ {0, . . . ,m} be the lowest index such that [pj ,m, d] brings σk to a 1-valent state. We know that
such an index exists, since s1 is 1-valent and all such resulting state are either 0-valent or 1-valent.

Now we have the following two cases to consider: (1) k = 0, and (2) k > 0.
Let’s assume that k = 0, i.e., [pj ,m, d] applied to s brings it to a 1-valent state. But we know that there

is a step [pj ,m, d′] that brings s to a 0-valent state. That is a fork is located! As a result, we identified pj

as a correct process.
If k > 0, we have the following situation:
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[pj ,m, d]

[pj ,m, d]

σk−1

ek

σk
(0-valent)

(1-valent)

That’s a hook! If ek was executed by process pk, then we have identified pk as a correct process following
the argument about hooks above.

Thus, a bivalent infinite simulation tree has at least one finite subtree that allows us to compute a single
correct process.
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