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Abstract. The pioneering paper H. Schichl and A. Neumaier [1]
has founded the fundamentals of interval analysis on DAGs for global
optimization, including a fundamental of constraint propagation. In this
paper, we extend the constraint propagation technique for solving nu-
merical constraint satisfaction problems. In particular, we propose an
advanced constraint propagation technique, which makes the constraint
propagation practical and efficient, and a method to coordinate con-
straint propagation and exhaustive search, which uses a single DAG for
each problem. The experiments carried out on various problems show
that the new approach outperforms previously available propagation
techniques by an order of magnitude or more in speed, while being
roughly the same quality w.r.t. enclosure properties.

1 Introduction

Many real-world problems require solving numerical constraint satisfaction prob-
lems (NCSPs). An NCSP is a triplet (V, C,D) which consists of a finite set V
of variables taking their values in domains D over the reals and subject to a
finite set C of numerical constraints. A tuple of values assigned to the variables
such that all the constraints are satisfied is called a solution. The set of all the
solutions is called the solution set. In practice, numerical constraints are often
equalities or inequalities expressed in factorable form, that is, they can be repre-
sented by elementary functions such as +, −, ×, ÷, log, exp, sin, cos,. . . In other
words, such an NCSP can be expressed as follows

F (x) ∈ b, x ∈ x (1)
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where F : Rn → Rm is a factorable function, x is a vector of n real variables, x
and b are interval vectors of size n and m respectively.

Many solution techniques have been proposed in Constraint Programming
and Mathematical Programming to solve NCSPs. To achieve full rigor when
dealing with floating-point numbers, most solution techniques have been based
on interval arithmetic or its variants. In the last ten years, there have been
elaborate uses of interval arithmetic to devise the notions of inclusion test and
contractor as described in the book Jaulin et al. [2]. An inclusion test is to
check the inclusion of variable domains in the solution set. A contractor, pos-
sible variants are narrowing operators [3, 4] and contracting operators [5–7], is
a method to narrow the variable domains such that no solution is lost. Vari-
ous basic inclusion tests and contractors have been described in [2]. Recently,
there has been a new approach, called interval constraint propagation, which
associates constraint propagation/local consistency techniques in artificial intel-
ligence with interval analytic methods to devise advanced contractors, e.g., the
so-called forward-backward contractor [4, 2]. A representation of the solutions can
be often computed by interleaving inclusion tests or contractors with exhaustive
search; the solution techniques often use bisection search to solve the problems
exhaustively. However, advanced search techniques (see Silaghi et al. [6] and
Vu et al. [7]) have also been proposed to improve the search performance for
problems with a continuum of solutions (e.g., inequalities), while maintaining
the same performance for problems with isolated solutions (e.g., equalities).

Most recently, a fundamental framework for interval analysis on DAGs has
been proposed by Schichl & Neumaier [1], which includes an extension of
forward-backward propagation for working on DAGs. In order to exploit the
framework and make it useful for more applications, in this paper we extend the
DAG-based constraint propagation technique for solving NCSPs. In Section 3,
we describe the DAG representation of problems and new extensions of the for-
ward evaluation and the backward propagation. In Section 4, we propose an
advanced constraint propagation technique, which makes the above framework
for constraint propagation efficient and practical, and a method to coordinate
constraint propagation and exhaustive search using a single DAG for each prob-
lem. Finally, as one can see in Section 5, the experiments carried out on various
problems show that the new approach outperforms previously available propaga-
tion techniques by an order of magnitude or more in speed, while being roughly
the same quality w.r.t. enclosure properties.

2 Background

2.1 Interval Arithmetic

Interval arithmetic is an extension of real arithmetic defined on the set of real in-
tervals, rather than the set of real numbers. According to Kearfott [8], a form
of interval arithmetic perhaps first appeared in 1924 in Burkill [9]. Modern
development of interval arithmetic began with R. E. Moore’s dissertation [10].
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Fundamentally, if x and y are two real intervals, then the four elementary oper-
ations for idealized interval arithmetic obey the rule: x ¦ y = {x ¦ y | x ∈ x, y ∈
y}, ∀¦ ∈ {+,−,×,÷}. Thus, the ranges of the four elementary interval arith-
metic operations are exactly the ranges of the their real-valued counterparts.
Although this rule characterizes these operations mathematically, interval arith-
metic’s usefulness is due to the operational definitions based on interval bounds
[11]. For example, let x = [x, x] and y = [y, y], we define

x + y = [x + y, x + y]
x− y = [x− y, x− y]
x× y = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}]
x÷ y = x× 1/y if 0 /∈ y, where 1/y = [1/y, 1/y]

Moreover, if such operations are composed, bounds on the ranges of factorable
real functions can be obtained.

The finite nature of computers precludes an exact representation of the reals.
In practice, the real set, R, is approximated by a finite set F∞ = F∪{−∞, +∞},
where F is the set of floating-point numbers. The set of real intervals is then
approximated by the set I of intervals with bounds in F∞. The power of inter-
val arithmetic lies in its implementation on computers. In particular, outwardly
rounded interval arithmetic allows rigorous enclosures for the ranges of oper-
ations and functions. This makes a qualitative difference in scientific compu-
tations, since the results are now intervals in which the exact result must lie.
Readers are referred to [12, 13, 11, 2] for more details on basic interval methods.

2.2 Interval Constraint Propagation

The tree representation of constraint systems has been proposed in Ben-
hamou et al. [4], therein each factorable constraint r(t1, . . . , tk) is represented by
an attribute tree whose root node represents the k-ary relation symbol r, and the
terms ti are composed of nodes representing either a variable, a constant, or an
elementary operation. Moreover, each node but the root is associated with two
intervals, one for forward evaluation and the other for backward propagation.

The constraint propagation algorithm HC4 in [4], also referred to as the
forward-backward contractor (see [2]), is based on the following two main pro-
cesses. The first one is the forward evaluation which is recursively performed by
a post-order traversal of the tree representation from leaves to roots in order
to evaluate the ranges of sub-expressions represented by the tree nodes using
natural interval extension. The second one is the backward propagation on the
tree representation which is recursively performed by a pre-order traversal of the
tree representation of each constraint from root to leaves in order to prune the
corresponding interval associated with each node of the tree using the projection
narrowing operator associated with the father of the node. Readers are referred
to [4] for more details.
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3 Numerical Constraint Propagation on DAGs

We will consider a constraint system of the form (1); the constraints can be
equations or inequalities depending on whether the corresponding components
of b, called constraint ranges, are thin intervals (i.e. of form [bi, bi]).

Example 1. Consider the following parametric constraint system




√
x + 2

√
xy + 2

√
y ≤ 7,

x2√y − 2xy + 3
√

y ∈ [p, q],
x ∈ [1, 16], y ∈ [1, 16].

(2)

The first constraint is an inequality with constraint range [−∞, 7]. The second
constraint can be either an equation or an inequality depending on the parame-
ters (p, q). For instance, the second constraint is an equation if (p, q) = (0, 0) and
an inequality if (p, q) = (0, 2). Throughout this paper, we will use (p, q) = (0, 2).

3.1 DAG Representation

We assume that readers are already familiar with fundamental concepts in graph
theory like directed acyclic graph/multigraph. In the representation of the NCSPs
we will use directed acyclic multigraph with ordered edges (for the definition
readers are referred to [1] and references therein); for short, this is a directed
acyclic multigraph, in which the incoming and outgoing edges at every node are
totally ordered.

Theorem 1. For every directed acyclic multigraph (V, E, f) there exists a total
order ¹ on the vertices V such that ∀v ∈ V : if u is an ancestor of v, then v ¹ u.

We use a directed acyclic multigraph, whose edges are totally ordered, to-
gether with an ordering on the vertices, as obtained in Theorem 1, to represent
the constraint system (1), for short we call it a Directed Acyclic Graph (DAG).
In that DAG representation, every node represents an elementary operation such
as +, ×, ÷, log, exp, . . . and every edge represents the computational flow as-
sociated with a coefficient. In practice, we have to use multigraphs instead of
simple graphs for the representation because some special operations can take
the same input more than once, for example, when the expression xx is repre-
sented by the elementary power operation xy. The ordering of edges is needed
for non-commutative operations like the division, but not for commutative op-
erations. For convenience, a virtual ground node is added to the DAG to be the
parent of all the nodes representing the constraints. In fact, the ground node
can be interpreted as the logical ‘AND’ operation. Each node N in the DAG
is associated with an interval, denoted I(N), in which the exact range of the
corresponding sub-expression must lie.

Example 2. The DAG representation of (2) is depicted in Figure 1. The sequence
of nodes {N1,N2, . . . ,N10} is an ordering of the nodes that satisfies Theorem 1.
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Fig. 1. The DAG representation (a) before and (b) after performing node ordering and
recursive forward evaluation

3.2 Forward Evaluation and Backward Propagation on DAGs

In practice, we often see functions of form f : D → Rm, where D ⊂ Rn. Quite
often, in range analysis we need f to accept input from the domain Rn, so we
have to find a proper way to extend functions in a consistent way.

Definition 1 (Extended Function). Let f : D → Rm be a function, where
D ⊆ Rn, and S a subset of 2R, the power set of R. A function g : Rn → Rm∪Sm

is called an S-extended function of f if

g(x) =
{

f(x) if x ∈ D,
y ∈ Sm otherwise (3)

It is to easy see that there is only one S-extended function if S has only one
element, for instance, when S is either {∅} or {R}.

Example 3. The domain of the standard division x/y is D÷ = {(x, y) ∈ R2 | y 6=
0}. The unique {∅}-extended function of the standard division is defined by

x÷∅ y =
{

x/y if y 6= 0,
∅ otherwise (4)

The unique {R}-extended function of the standard division is defined by

x÷R y =
{

x/y if y 6= 0,
R otherwise (5)
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The following is a {∅,R}-extended function of the standard division:

x÷? y =





x/y if y 6= 0,
∅ if x 6= 0, y = 0,
R otherwise

(6)

In the next definition, we extend the concept of inclusion function of [2].

Definition 2 (Inclusion Function). Let S be a subset of 2R, and f : Rn →
Rm ∪ Sm an S-extended function of a function ϕ : D → Rm, where D ⊆ Rn. A
function [f ] : In → Im is called an inclusion function of f and of ϕ if ∀x ∈ In :
f(x) ⊆ [f ](x), where f(x) = {f(x) | x ∈ x ∩D} ∪x∈x\D f(x).3

Example 4. Let x = [x, x],y = [y, y] . We give as example three natural inclusion
functions for the divisions defined by (4), (5) and (6) respectively.

x[÷∅]y =





∅ if y = [0, 0],
[0, 0] else if x = [0, 0],
x÷ y else if 0 /∈ y,
[x/y, +∞] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≤ 0 ∧ y = 0,
[x/y,+∞] else if x ≤ 0 ∧ y = 0,
[−∞, +∞] otherwise

(7)

x[÷R]y =
{

x÷ y if 0 /∈ y,
[−∞,+∞] otherwise (8)

x[÷?]y =
{

x[÷∅]y if 0 /∈ x ∨ 0 /∈ y,
[−∞,+∞] otherwise (9)

It is easy to see that ∀x,y ∈ I : x[÷∅]y ⊆ x[÷?]y ⊆ x[÷R]y. Unfortunately, some
interval implementations use the division [÷R], while it is safe to use the division
[÷∅] in some computations such as forward evaluation, as described hereafter.

The natural inclusion function of f (see [2]), denoted by f , is an example
of an inclusion function, where in the factorable form of f each real variable is
replaced by an interval variable and each operation is replaced by its interval
counterpart.

In the DAG representation of (1), let N be a node which is not the ground
node and has k children {Ci}k

i=1. The elementary operation represented by N
is a function f : Df → R, where Df ⊆ Rk. Hence, the relationship between N
and its children can be written as N = f(C1, . . . ,Ck).4 Let [f ] be an inclusion
function of the {∅}-extended function of f . The forward evaluation at node N
using the inclusion function [f ] is defined as follows

FE(N, [f ]) ≡ {I(N) := I(N) ∩ [f ](I(C1), . . . , I(Ck))} (10)
3 The set union of vectors is performed in component-wise fashion.
4 Where we abuse the notation of a node for the real variable represented by it.
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The aim of forward evaluation is to evaluate the ranges of nodes based on their
children’s ranges.

The aim of the backward propagation is to prune the intervals associated with
children based on the constraint range of their parent. In other words, for each
child Ci the backward propagation evaluates the i-th projection of the relation
N = f(C1, . . . ,Ck) on the variable represented by Ci. It is then called the i-
th backward propagation at N and denoted by BP(N,Ci). For convenience, we
define the following sequence as the backward propagation at node N

BP(N) = {BP(N,Ci)}k
i=1 (11)

Although the projection of relations is expensive in general, an evaluation
of the projection of elementary operations can be obtained at low cost. Indeed,
suppose that from the relation N = f(C1, . . . ,Ck) we can infer an equivalent
relation Ci = gi(N, {Cj}k

j=1;j 6=i) for some i ∈ {1, . . . , k}, where gi is a func-
tion from Rk to R. Let [gi] be an inclusion function of gi. The i-th backward
propagation can then be obtained as follows

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ [gi](I(N), {I(Cj)}k
j=1;j 6=i)} (12)

In case that we cannot infer such a function gi, more complicated rules to
obtain the i-th projection of the relation N = f(C1, . . . ,Ck) have to be con-
structed if the cost is low, alternatively the relation can be ignored. Fortunately,
we can evaluate those projections for most elementary operations at low cost.

Example 5. Let f be the elementary operation represented by N. We will use
the notation ® to mean that either the division [÷?] or the division [÷R] can be
used at the place the notation ® appears. The rules for the forward evaluation
and the backward propagation are given as follows:

– if f is a univariate function such as sqr, sqrt, exp, log,. . . we can define

FE(N, [f ]) ≡ {I(N) := I(N) ∩ [f ](I(C1))}
BP(N,C1) ≡ {I(C1) := I(C1) ∩ [f−1](I(N))} (f−1(.) is the pre-image)

– if f is defined by f(x1, . . . , xk) = α +
∑k

i=1 αixi, we define

FE(N, f) ≡ {I(N) := I(N) ∩ (α +
k∑

i=1

αiI(Ci))}

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ 1
αi

(I(N)− α−
k∑

j=1;j 6=i

αjI(Cj))} (i = 1, ..., k)

– if f is defined by f(x1, . . . , xk) = α
∏k

i=1 xi, we define

FE(N, f) ≡ {I(N) := I(N) ∩ α

k∏

i=1

I(Ci)}

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ (I(N)® (α
k∏

j=1;j 6=i

I(Cj)))} (i = 1, . . . , k)
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– if f is defined by f(x, y) = x/y, i.e. k = 2, we define

FE(N, f) ≡ {I(N) := I(N) ∩ f(I(C1), I(C2))}, where f ∈ {[÷∅], [÷?], [÷R]}
BP(N,C1) ≡ {I(C1) := I(C1) ∩ (I(N)× I(C2))}
BP(N,C2) ≡ {I(C2) := I(C2) ∩ (I(C1)® I(N))}

4 Coordinating Constraint Propagation and Search

We focus on solving techniques following the branch-and-prune framework, where
the solving process is performed by repeatedly interleaving pruning techniques,
which use local techniques such as constraint propagation to reduce the variable
domains, with branching techniques, which split a problem into subproblems.
Each subproblem constructed in the solving process usually consists of a subset
of constraints, hereafter called active constraints, which need to be satisfied, and
sub-domains of the initial variable domains. Therefore, solving techniques that
use the DAG representation need to create such a representation for each sub-
problem. The simplest way is to build a new DAG to represent each subproblem.
However, the total cost of creating such DAGs for the whole solving process is
probably high. As an alternative, we propose in Section 4.1 to modify a piece
of information attached to the initial DAG in order to make the initial DAG
interpreted as the DAG representation of a subproblem without the necessity of
creating new DAGs.

4.1 Partial Forward-Backward Propagation on DAGs

Partial DAG Representation. In order to represent the set of active con-
straints without having to create new DAGs, we use a vector, Voc, whose size is
equal to the number of nodes of the DAG representing the initial problem. For
each node N of the DAG, we use the entry Voc[N] to count the number of occur-
rences of N in the factorable form of the active constraints. In Figure 2, we give
a recursive procedure, called NodeOccurrences, to compute such a vector. It is
easy to see that Voc[N] = 0 if and only if N is not in the representation of the
active constraints. Therefore, by combining the initial DAG with the vector Voc,
we have a so-called partial DAG representation for each subproblem. In the lat-
ter computations, we can use the partial DAG representation in a way similar to
using the (full) DAG representation, except that we ignore all nodes correspond-
ing to zeros of the vector Voc. An example of the partial DAG representation for
the problem (2) is depicted in Figure 3.

Forward-Backward Propagation on DAGs. Inspired by the original for-
ward evaluation and backward propagation in [4], we devise a new algorithm for
numerical constraint propagation, that is based on partial DAG representation
instead of the tree representation. We call the new algorithm “Forward-Backward
Propagation on DAG” and denote it by FBPD (pronounced For-Bap-Dag). In Fig-
ure 4, we present the main steps of FBPD. In the next paragraphs, we describe
in detail the procedures that are not made explicit in Figure 4.
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procedure NodeOccurrences(in : N; out : Voc)
for each child C of node N do

Voc[C] := Voc[C] + 1;
NodeOccurrences(C, Voc);

end-for
end

Fig. 2. If traversing all active constraints, the NodeOccurrences procedure counts the
number of occurrences of each node in the factorable form of the active constraints
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Fig. 3. The partial DAG representation of the problem (2) when (a) the first constraint,
or (b) the second constraint is the unique active constraint. The grey nodes are not
counted, hence are ignored in computations. The dotted edges are redundant. The node
levels are not updated

Recursive Forward Evaluation. Similar to the HC4 algorithm, we perform a re-
cursive forward evaluation at the initialization phase (lines 01-08) to evaluate the
ranges of the nodes in the partial DAG representation. In Figure 5, we give the
details of a procedure, named ForwardEvaluation, for such a recursive eval-
uation. The results of the recursive forward evaluation of (2) are depicted in
Figure 1b and Figure 3 for the case that both constraints are active and the case
that only one constraint is active, respectively.

Get the Next Node for Further Processing. Like with the HC4 algorithm [4], in
the main body of the FBPD algorithm there are two principal processes: forward
evaluation and backward propagation. However, unlike the HC4 algorithm, the
FBPD algorithm performs these processes for a single node instead of all the
nodes at once. Therefore, in the FBPD algorithm, the choice of the next node for
further processing can be made adaptively based on the results of the previous
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/* D(G) : a DAG with the ground G; C : active constraints; D: variable domains */
algorithm FBPD(in : D(G), C; in/out : D)
01: Reset the node ranges of D(G) to the ranges in either D, C, or [−∞, +∞];
02: Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0);
03: Vlvl := (0, . . . , 0); /* this can be made optional together with line 06 */
04: for each node C representing an active constraint in C do
05: NodeOccurrences(C, Voc);
06: NodeLevel(C, Vlvl); /* this can be made optional */
07: ForwardEvaluation(C, Vch,Lb);
08: end-for
09: while Lb 6= ∅ ∨ Lf 6= ∅ do
10: N := getNextNode(Lb,Lf );
11: if I(N) was taken from Lb then
12: for each child C of N do
13: BP(N,C); /* see the description of (12) */
14: if I(C) = ∅ then return infeasible;
15: if I(C) changed enough for forward evaluation then
16: for each P ∈ parents(C) \ {N,G} do
17: if Voc[P] > 0 then put P into Lf ;
18: end-if
19: if I(C) changed enough for backward propagation then
20: Put C into Lb;
21: end-for
22: else /* N was taken from Lf */
23: FE(N, [f ]); /* f is the operator at N, see the description of (10) */
24: if I(N) = ∅ then return infeasible;
25: if I(N) changed enough for forward evaluation then
26: for each P ∈ parents(N) \ {G} do
27: if Voc[P] > 0 then put P into Lf ;
28: end-if
29: if I(N) changed enough for backward propagation then
30: Put N into Lb;
31: end-if
32: end-while
33: Update D with the ranges of the nodes representing the variables;
end

Fig. 4. The Partial Forward-Backward Propagation on DAG (FBPD) algorithm

procedure ForwardEvaluation(in : N; in/out : Vch,Lb)
if N is a leaf or Vch[N] = 1 then return;
for each child C of node N do ForwardEvaluation(C, Vch,Lb);
if N = G then return;
FE(N, [f ]); Vch[N] := 1; /* f is the operator at N, similar to line 23 in Figure 4*/
if I(N) = ∅ then return infeasible;
if I(N) changed enough for backward propagation then put C into Lb;

end

Fig. 5. This is a procedure to do a recursive forward evaluation
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procedure NodeLevel(in : N; out : Vlvl)
for each child C of node N do

Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);

end-for
end

Fig. 6. This is a procedure assigning a node level to each node in a DAG.
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Fig. 7. The node levels are updated at each call to the FBPD algorithm

processes. The algorithm uses two waiting lists to store the nodes waiting for fur-
ther processing. The first list, Lf , is a list of nodes that is scheduled for forward
evaluation, that is, for evaluating its range based on its children’s ranges. The
second list, Lb, is a list of nodes that is waiting for backward propagation, that
is, for pruning its children’s ranges based on its range. In general, when Lf con-
tains many nodes, the nodes should be sorted such that the forward evaluation
of a node is performed after the forward evaluation of its children. Analogously,
the nodes in Lb should be sorted such that the backward propagation at a node
is performed before the backward propagation at its children. The NodeLevel
procedure in Figure 6 assigns to each node a node level such that the node level
of an arbitrary node is smaller than the node levels of its descendants. We then
sort the nodes of Lb and Lf in ascending order and descending order of node
levels, respectively, to meet the above requirements. The getNextNode function
at line 10 in Figure 4 chooses one of the two nodes at the beginning of Lb and
Lf . The strategy that we use in our implementation is “backward propagation
first”, that is, taking the node at the beginning of Lb whenever it is available.

The call to the NodeLevel procedure at line 06 in Figure 4 can be made
optional as follows. The first option allows to invoke NodeLevel only at the first
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call to FBPD. The node levels of the initial DAG still meet the requirements on
the ordering of the waiting lists. The numbers in brackets next to the node names
in Figure 3 are the node levels computed for the initial DAG. Figure 7 illustrates
the second option that allows to invoke NodeLevel at line 06 in Figure 4 every
time FBPD is invoked.

When Are the Changes of Node Ranges Enough? For simplicity, in Figure 4
(lines 15, 19, 25, 29) we only briefly present the procedures to check whether the
node ranges have been changed enough for further processing. Hereafter, we will
detail them. Let denote by M the node C at line 13 or the node N at line 23.
In Figure 4, the forward evaluation at line 23 and the backward propagation at
line 13 are of form

I(M) := I(M) ∩ y (13)

where y is the interval computed by the forward evaluation or backward propa-
gation before intersecting with I(M).

Let Wold and Wnew be the widths of I(M) and I(M) ∩ y, respectively. In
practice, the change of I(M) after performing (13) is considered enough for
doing the forward evaluation at its parents if the conditions Wnew < rfWold

and Wnew + df ≤ Wold hold, where rf is a real number in (0, 1) and df is
a small positive real number. The numbers rf and df can be predefined or
dynamically computed. Similarly, the change of I(M) after performing (13) is
considered enough for doing the backward propagation at M if the conditions
Wnew < rbWold and Wnew + db ≤ Wold hold, where rb is a real number in (0, 1)
and db is a small positive real number. Moreover, if y is computed by the forward
evaluation (at line 23), the additional condition y * I(M) must also hold.

4.2 Combining Propagation and Search Using a DAG

The most common framework for solving NCSPs is the branch-and-prune frame-
work. The most common exhaustive search is the bisection. Bisection search is
suitable for problems with isolated solutions. However, it is often inefficient for
problems with a continuum of solutions. Therefore, for the problems with a con-
tinuum of solutions we need more advanced search techniques like UCA5, UCA6
and UCA6+ (see [6, 7]). They all can be seen as instances of the generic branch-
and-prune search described in Figure 8. In general, the search scheme produces
two lists. The first list, L∀, consists of feasible sub-domains. The second list, Lε,
consists of tuples of tiny sub-domains, that are smaller than the required res-
olution ε, and the sets of constraints, that are still active in the corresponding
sub-domains.

5 Experiments

We have carried out experiments on FBPD and two other recent interval propaga-
tion techniques. The first one is an implementation of Box Consistency [14, 15]
in a commercial product named ILOG Solver (v6.0, 11/2003), hereafter denoted
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algorithm BnPSearch(in : V, C,D;out : L∀,Lε)
Construct a DAG, D(G), for the initial problem (V, C,D);
FPBD(D(G), C,D); /* Prune the domains in D */
if infeasible is detected then return infeasible;
if domains in D are small enough then Lε := Lε ∪ {(C,D)}; return;
L := {(C,D)};
while L 6= ∅ do

Get a couple (C0,D0) from L;
Split the problem (V, C0,D0) into subproblems {(V, Ci,Di)}k

i=1; where Ci ⊆ C0

for i := 1 to k do
FPBD(D(G), Ci,Di); /* Prune the domains in Di */
if infeasible is detected then continue for;
if Ci = ∅ then L∀ := L∀ ∪ {Di}; continue for;
if domains in Di are small enough then

Lε := Lε ∪ {(Ci,Di)}
else

L := L ∪ {(Ci,Di)};
end-if

end-for
end-while

end

Fig. 8. A generic branch-and-prune search using FPBD for pruning.

by BOX. The second one is called HC4 (Revised Hull Consistency) from [4]. The
experiments are carried out on 33 problems which are unbiasedly selected and
divided into five test cases:

– The test case T1 consists of 8 problems with isolated solutions that are
solvable by all three propagators.

– The test case T2 consists of 4 problems with isolated solutions that are
solvable by only two propagators.

– The test case T3 consists of 8 problems with isolated solutions that cause at
least two of the three techniques to stop due to timeout or due to running
more than 106 iterations.

– The test case T4 consists of 7 small problems with a continuum of solutions
that are solvable at the predefined resolution 10−2.

– The test case T5 consists of 6 hard problems with a continuum of solutions
that are solvable at the predefined resolution 10−1.

The timeout value is set to 10 hours for all the test cases, except that the
timeout value used for T3 is set to 2 hours due to lack of time for this version.5

The timeout values will be used as the running time for the techniques which
are timeout in the next result analysis (i.e. we are in favor of slow techniques).
For the first three test cases, the resolution is 10−4 and the search to be used
is bisection. For the last two test cases, the search to be used is a simple search
5 We will give the test results for timeout 10 hours in an extended version elsewhere.
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technique, called UCA6, for inequalities (see [6, 7]). The comparison of the interval
propagation techniques is based on the measures of

1. The running time: The relative ratio of the running time of each propagator
to that of FBPD is called the relative time ratio.

2. The number of boxes: The relative ratio of that number of boxes in the
output of each propagator to that of FBPD is called the relative cluster ratio.

3. The number of iterations: the number of iterations in search needed to solve
the problems. The relative ratio of the number of iterations used by each
propagator to that of FBPD is called the relative iteration ratio.

4. The volume of boxes (only for T1, T2, T3): We consider the reduction per
dimension d

√
V/D; where d is the dimension of the problem, V is the total

volume of the output boxes, D is the volume of the initial domains. The
relative ratio of the reduction gained by each propagator to that of FBPD is
called the relative reduction ratio.

5. The volume of inner boxes (only for T4, T5): The ratio of the volume of inner
boxes to the volume of all output boxes is called the inner volume ratio.

The overviews of results in our experiments are given in Tables 1 and 2. In
Table 3, we give the overrun ratio of each propagator for the test case T1. The
overrun ratio is defined by ε/ d

√
V/N ; where ε is the required resolution, d is

the dimension of the problem, V is the total volume of the output boxes, N is
the number of output boxes. Clearly, FBPD outperforms both BOX and HC4 by
an order of magnitude or more in speed, while being roughly the same quality
w.r.t. enclosure properties in case where the solution set to be enclosed by boxes
of macroscopic size (i.e. for continuum of solutions). For isolated solutions, very
narrow boxes are produced by any technique in comparison to the required
resolution. However, the new technique is 1.1-2 times less tight than the other
techniques in the measure on reduction per dimension (which hardly matters in
applications). In comparison with HC4, a constraint propagation technique that
is similar to FBPD but works on the tree representation instead of DAGs, FBPD
is clearly more suitable for applications.

6 Conclusion

We propose a constraint propagation technique, FBPD, which makes the funda-
mental framework for constraint propagation on DAGs [1] efficient and practical,
and a method to coordinate constraint propagation and exhaustive search using
a single DAG for each problem. The experiments carried out on various prob-
lems show that the new approach outperforms previously available propagation
techniques by an order of magnitude or more in speed, while being roughly the
same quality w.r.t. enclosure properties.

In other views, FBPD can be seen as a special instance of the generic com-
bination scheme, CIRD, proposed by Vu et al. [16]. Therefore, combining and
unifying the strength of FBPD and CIRD1, an instance of the CIRD scheme, to
solve problems with either isolated or non-isolated solutions is straightforward.
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Table 1. (a) The average of the relative time ratios is taken over all the problems in the
test cases T1, T2, T3; the averages of the other relative ratios are taken over the problems
in the test case T1, i.e. over the problems which are solvable by all the techniques. (b)
The averages of the relative ratios are taken over all the problems in the test cases
T4, T5. In general, the lower the relative ratio, the better the performance/quality; and
the higher the inner volume ratio, the better the quality.

(a) Isolated Solutions (b) Continuum of Solutions

Propagator
Relative

time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration

ratio

FBPD 1.000 1.000 1.000 1.000 1.000 0.922 1.000 1.000

BOX 17.800 0.625 0.342 0.731 20.919 0.944 0.873 0.854

HC4 181.469 0.906 1.266 0.988 403.915 0.941 0.896 0.879

Table 2. This table contains the averages of the relative time ratios taken over the
problems in each test case.

(a) Isolated Solutions (b) Continuum of Solutions
Propagator Test case T1 Test case T2 Test case T3 Test case T4 Test case T5

FBPD 1.00 1.00 1.00 1.00 1.00

BOX 24.21 28.98 5.79 11.55 31.85

HC4 94.42 691.24 13.63 191.86 651.31

Table 3. This table contains the overrun ratios for the test case T1. An overrun ratio
greater than 1 would suffice for applications.

Problem → BIF-3 REI-3 WIN-3 ECO-5 ECO-6 NEU-6 ECO-7 ECO-8 Average

FBPD 1.626 1.360 2.075 1.711 1.676 3.198 1.513 1.455 1.880

BOX 2.957 1.974 3.080 1.579 1.660 6.748 1.521 1.485 2.625

HC4 2.229 1.914 1.492 1.647 1.679 4.949 1.488 1.449 2.106
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