
The Wall Street Journal experiment
(and useful programs)

Antoine Rozenknop
1Technical report ID: IC/2004/32

March 26, 2004

1http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200432.pdf

Abstract

This document gives information on parsing experiments applied to the standard Wall
Street Journal corpus (“Standard” means that this corpus has been widely used for exhibit-
ing parsing tests of various models). The tested syntactic models are : standard Stochas-
tic Context-Free Grammars, standard Tree Substitution Grammars, Gibbsian Context-Free
Grammars and Gibbsian Tree Substitution Grammars. The parsing experiments are de-
scribed with deep details so as to enable reader to easily redo the experiments from scratch
(i.e. preparing the database, training and evaluating the models). The programs developped
for these experiments are also described.

The first chapter describes “from scratch”1 the experiments and gives the results ob-
tained up to this day.

The second chapter is for people that would want to redo the experiments, or similar
ones : it can be read in parallel with the first one and describes the programs and the
command lines used for these experiments.

The appendix is a list of available programs, that can be useful for viewing treebanks,
computing grammar models, evaluating results. It describes the majority of the programs I
used during my PhD.

This document does not contain any explanation about models, theories or algorithms.
The experiments it describes could be better understood after the reading of my PhD doc-
ument : they are the same as the ones presented in that document; only the corpus has
changed.

1starting from the Wall Street Journal corpus CDROM

Contents

1 Making of the treebank 3
1.1 Some observations . 3
1.2 Translating the treebank . 5

1.2.1 One file . 5
1.2.2 Removing the traces . 5
1.2.3 Removing the quotation marks . 5
1.2.4 Removing the semantic symbols 5
1.2.5 Removing the cycles . 6
1.2.6 Renaming the preterminal symbols 6
1.2.7 (Optionnal) Removing the terminal symbols 6
1.2.8 Writing the resulting treebank . 6
1.2.9 Splitting the treebank . 6
1.2.10 Extracting the sentences . 7

1.3 Making of the models . 7
1.3.1 SCFG . 7
1.3.2 GCFG . 8
1.3.3 Head-Driven Stochastic Tree-Substitution Grammar 8
1.3.4 Head-Driven Gibbsian Tree-Substitution Grammar 9
1.3.5 Min-Max Stochastic Tree-Substitution Grammar 9
1.3.6 Min-Max Gibbsian Tree-Substitution Grammar 9
1.3.7 Results of the experiments . 9

2 Command lines 11
2.1 Translating the treebank . 11

2.1.1 One file . 11
2.1.2 Adaptation of the treebank . 11
2.1.3 Removing the terminal symbols 12
2.1.4 Splitting the treebank . 12
2.1.5 Extracting the sentences . 13

2.2 Making of the models . 13
2.2.1 SCFG . 13
2.2.2 selecting trees with a maximum of 22 leaves 13
2.2.3 GCFG . 14
2.2.4 Head-Driven Stochastic Tree-Substitution Grammar 15

1

2.2.5 Head-Driven Gibbsian Tree-Substitution Grammar 16
2.2.6 Min-Max Stochastic Tree-Substitution Grammar 17
2.2.7 Min-Max Gibbsian Tree-Substitution Grammar 18

2.3 Parsing . 19
2.3.1 Parsing and evaluation with SCFGs 19
2.3.2 Parsing and evaluation with STSGs 21

A Programs 23
A.1 Dealing with treebanks . 24

A.1.1 Modifying treebanks . 24
A.1.2 Selecting trees from a treebank . 24
A.1.3 Checking a treebank . 25
A.1.4 Evaluating parse results . 25
A.1.5 Visualizing treebanks . 25

A.2 Creating context-free grammars . 25
A.3 Listing a Tree Substitution Grammar . 26
A.4 Training gibbsian parameters of context-free and tree-substitution grammars 27
A.5 parallel (networked) parsing with CFGs and TSG 29
A.6 Implementation notes . 30

A.6.1 Five parallel programs . 30
A.6.2 Monitoring PVM programs . 31
A.6.3 Compiling the C++ programs . 31
A.6.4 SlpToolkit and the Wall Street Journal corpus 32

2

Chapter 1

Making of the treebank

In order to deal with the Wall Street Journal treebank, we have to put it in a suitable form.

1.1 Some observations
The corpus on the CD is a set of files, each file containing one or several parses. A parse
looks like this :

((S
(NP-SBJ

(NP (NNP Pierre) (NNP Vinken))
(, ,)
(ADJP
(NP (CD 61) (NNS years))
(JJ old))

(, ,))
(VP (MD will)

(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)

(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))

(. .)))

As can be seen on this example :

• parses are dispatched over several lines;

• parentheses “(” and “)” serve as delimiters

• the labels of groups can be either one symbol (e.g. NP) or several symbols (e.g. PP-
CLR, which is the concatenation of PP and CLR). In the case where several symbols
are concatenated, the first one is the syntactic category of the group, the second one
is its semantic function.

3

• some labels contain a number as “S-TPC-1” in the following parse :

((S
(S-TPC-1

(NP-SBJ
(NP

(NP (DT A) (NN form))
(PP (IN of)
(NP (NN asbestos))))

(RRC
(ADVP-TMP (RB once))
(VP (VBN used)
(NP (-NONE- *))
(S-CLR

(NP-SBJ (-NONE- *))
(VP (TO to)
(VP (VB make)

(NP (NNP Kent) (NN cigarette) (NNS filters))))))))
(VP (VBZ has)
(VP (VBN caused)

(NP
(NP (DT a) (JJ high) (NN percentage))
(PP (IN of)

(NP (NN cancer) (NNS deaths)))
(PP-LOC (IN among)

(NP
(NP (DT a) (NN group))
(PP (IN of)

(NP
(NP (NNS workers))
(RRC

(VP (VBN exposed)
(NP (-NONE- *))
(PP-CLR (TO to)
(NP (PRP it)))

(ADVP-TMP
(NP

(QP (RBR more) (IN than) (CD 30))
(NNS years))

(IN ago))))))))))))
(, ,)
(NP-SBJ (NNS researchers))
(VP (VBD reported)

(SBAR (-NONE- 0)
(S (-NONE- *T*-1))))

4

(. .)))

This numeric symbol denotes the reference of the group. This reference can be used
in traces : a trace is denoted by “-NONE-” symbol, followed by “*T*-1”, or *T*-2”...
where the numeric symbol is used to indicate the referenced group. The “-NONE-”
symbol can also be followed by “*”, which means that there is no referenced group :
it then only denotes the place of a “ghost” group with no surfacic word.

1.2 Translating the treebank
(see command detail in section 2.1)

Several steps are necessary in order to obtain a treebank that can be used with our tools :

1.2.1 One file
(see command detail in section 2.1.1)
The parses have been collected in one single file.

1.2.2 Removing the traces
(see command detail in section 2.1.2)
The traces have been removed :

• the numbers in the syntactic labels have been removed;

• the “-NONE-” symbols have been removed, as well as every symbol under it, and
every symbol that dominated uniquely the branch containing the “-NONE-” symbol.

1.2.3 Removing the quotation marks
(see command detail in section 2.1.2)
In order to obtain the treebank the closest to the one used by other researchers (Bod), the
quotation marks – “ and ” – have been removed from the terminal symbols, as well as the
symbols that uniquely dominate them.

1.2.4 Removing the semantic symbols
(see command detail in section 2.1.2)
The standard PARSEVAL scores do not take into account the semantic tags appearing in
some labels. Thus, these semantic tags have be removed from the treebank, so that the each
label contains only one syntactic symbol.

5

1.2.5 Removing the cycles
(see command detail in section 2.1.2)
In some parses, there are symbols that dominate only one single other symbol, with a
context-free rule like “X −→ Y ”. This can lead to cycles in the grammar : if “Y −→ X”
is also present in the treeebank, there would be an infinity of parses containing the X

symbol (X −→ Y −→ X , X −→ Y −→ X −→ Y −→ X ...). This is called a cycle.
Our parser can cope with this phenomenon, but our gibbsian training system cannot. So,
all these “non-branched” symbols but the preterminal ones have been removed from the
treebank.

Some other methods have been tried to get rid of the cycles in the grammar. It is
possible to remove only a subset of the non-branching nodes of the treebank and obtain a
grammar with no cycle. Algorithms have been developped for that. But there is only minor
difference in the resulting treebank, and the “remove all threads” method is much faster
than all others !

1.2.6 Renaming the preterminal symbols
(see command detail in section 2.1.2)

Preterminal symbols are symbols that dominate a terminal (or “surfacic”) symbol of
the parses, i.e. a leaf of a parse tree, or a “word” of the language.

The parser we use need those symbols to be named “:1”, “:2”, “:3”... Thus, each
preterminal symbol have been replaced in the treebank by a numeric symbol preceeded by
“:”. A correspondance table is created to keep track of this transformation.

1.2.7 (Optionnal) Removing the terminal symbols
(see command detail in section 2.1.3)
In some experiments, we want to parse a serie of morphosyntactic tags and not a serie
of words. For these experiments, we have to remove the words from the treebank. This
is done by replacing the words (i.e. the leaves) in the parse trees by the (preterminal)
symbols that immediately dominate them. Then, those preterminal symbols become also
terminal symbols of the grammar. Terminal rules of the grammar all become “: 1 −→: 1”,
“: 2 −→: 2”...

1.2.8 Writing the resulting treebank
The resulting treebank is written into a single file, one parse per line; the delimiter of
syntactic groups are brackets – “[” and “]”.

1.2.9 Splitting the treebank
(see command detail in section 2.1.4)
The standard partition of the treebank is the following :

6

• sections 2 to 21 of the Wall Street Journal corpus are used to train the models;

• section 22 is (optionnally used) to cross-validate the model;

• section 23 is used to test the model.

For us, this means we have to split our treebank into two files. The first file is the
training corpus. It contains 39832 trees, starting from the tree #3915 of our unique file.
The second file is the test corpus. It contains 2416 trees, starting from tree #45447 of our
unique file.

1.2.10 Extracting the sentences
(see command detail in section 2.1.5)
The sentences (i.e. the leaves of parse trees) are extracted from the treebank test file in
order to be parsed in the testing phase of the experiments.

1.3 Making of the models
(see command detail in section 2.2)

With the training corpus, we can build different syntactic models :

1.3.1 SCFG
(see command detail in section 2.2.1)
We build two SCFGs for the experiments. The first one, denoted as “scfgComplete”, is
computed by extracting all context-free rules from the complete corpus (i.e. test+training).
The second one, denoted as “scfg”, is computed by extracting all context-free rules from
the training corpus. In the parsing tests, we will use the lexicon of “scfgComplete” and
the syntactic rules of “scfg”. This is to ensure every sentence of the test file can be parsed
by our model, as we have not implemented any “guessing” algorithm for finding out the
part-of-speech tag for the words.

Statistics of the resulting SCFGs :
Model Nb. Nb. Nb. Nb.

terminals POS syntactic rules
tags symbols

Lexicalised SCFGcomplete 52990 43 26 14393
Lexicalised SCFG 51654 43 26 13957

Delexicalised SCFGComplete 43 43 26 15780
Delexicalised SCFG 43 43 26 13957

Notice that the number of rules of “Delexicalised SCFGComplete” is greater than the
number of rules of “Lexicalised SCFGcomplete”. This is due to the fact that the first one

7

has been created from the “training + test” treebank (42248 trees), whereas the second one
has been created from the complete treebank (training + test + sections 1 and 23 of the
WSJ corpus : 49208 trees). This does not change much for the following, because we will
never use the syntactic rules of SCFGComplete, but only its lexicon.

1.3.2 GCFG
(see command detail in section 2.2.3)

A Gibbsian Context-Free Grammar can be built for each SCFG, provided that we have
access to a suitable training treebank. However, the computation of such a grammar is
quite heavy with the “Improved Iterative Scaling” algorithm. The solution found to make
this training feasible with the Wall Street Journal corpus was :

• parallelization of the training algorithm : approximately one hundred Sun stations
were used;

• restriction of the training corpus to the trees with a maximum of 22 leaves. (see
command detail in section 2.2.2)

The resulting grammar has the same rules than the SCFG. However, some of the parameters
associated with the rules that do not appear in the “max22-leaves” corpus are set to −∞

by the training algorithm.
The GCFGs have been computed with the lexicons of SCFGcomplete and the CF rules

of SCFGs.
Statistics of the resulting SCFGs :

Model Nb. terminals Nb. POS tags NB.syn. symbols NB rules
Lexicalised GCFG 52990 43 26 13957

Delexicalised SCFG 43 43 26 13957

1.3.3 Head-Driven Stochastic Tree-Substitution Grammar
(see command detail in section 2.2.4)
A Head-Driven STSG has been built for each model, based on Collins’ rules to find the
head of each syntactic CF rule. Again, the lexicon of the STSGs come from “SCFGcom-
plete”, and the elementary trees of the grammars are computed from the training corpus
alone.

Statistics of the resulting STSGs :
Model Nb. terminals Nb. POS Nb.syntactic Nb. elem.

tags symbols trees
Lexicalised STSG 52990 43 26 200536

Delexicalised STSG 43 43 26 52014

8

1.3.4 Head-Driven Gibbsian Tree-Substitution Grammar
(see command detail in section 2.2.5)
As before, a gibbsian version of the STSGs hav been computed. The complexity problems
and their solutions are the same than for the computation of GCFGs : we used the same
“max-22-leaves” treebanks than for GCFGs.

1.3.5 Min-Max Stochastic Tree-Substitution Grammar
(see command detail in section 2.2.6)
A Min-Max STSG has been built for each model. Again, the lexicon of the STSGs come
from “SCFGcomplete”, and the elementary trees of the grammars are computed from the
training corpus alone.

Statistics of the resulting STSGs :
Model Nb. terminals Nb. POS tags NB.syn. symbols NB elem. trees

Lexicalised STSG 52990 43 26 522152
Delexicalised STSG 43 43 26 299483

1.3.6 Min-Max Gibbsian Tree-Substitution Grammar
(see command detail in section 2.2.7)
As before, a gibbsian version of the STSGs have been computed. We used the same “max-
22-leaves” treebanks than for GCFGs.

1.3.7 Results of the experiments
(see command detail in section 2.3)

The collected results are shown in the following table.

9

model exact false false crossed label label
bracketing bracketing precision recall

SynLexNothread (Lexicalized treebank without thread)
scfg 173 2243 2096 1717 0.8344 0.8183

head-driven STSG 39 2377 1936 1521 0.7629 0.7574
head-driven GTSG 54 2362 1918 1549 0.7536 0.7556

min-max STSG 52 2364 2112 1724 0.7615 0.7488
min-max GTSG untractable computation (needs parallel computation,

but too heavy for most machines)
SynNothread (Delexicalized treebank without thread)

scfg 268 2148 2067 1712 0.8667 0.8493
gcfg 351 2065 2005 1650 0.8803 0.8671

head-driven STSG 310 2106 2000 1592 0.8745 0.8644
head-driven GTSG 383 2033 1966 1578 0.8800 0.8746

min-max STSG 340 2076 1997 1687 0.8581 0.8534
min-max GTSG should be tractable, but has not been tested

10

Chapter 2

Command lines

This chapter explains in more details the programs and command lines used for buiding
and testing the previously exposed models.

2.1 Translating the treebank
(see section 1.2)

2.1.1 One file
(see section 1.2.1)

This is the Command line for merging all trees of the Wall Street Journal Corpus into a
single file :

find . -name ’wsj*’ -exec tgrep -h -e ’.*’ {} \; > ! wsj00-24

2.1.2 Adaptation of the treebank
The transformations applied to the treebank can be achieved with a single run of the python
program traite_wsj.py.

This program takes two arguments : the source file and the destination file. The source
file is in WSJ format (as described in section 1.1), and the output is in SLPToolkit format.

The additionnal transformations to be applied are set by optional parameters.

Removing the traces

(see section 1.2.2)

traite_wsj.py removes syntactic traces from the treebank when it reads the -notrace
optional parameter on the command line.

11

Removing the quotation marks

(see section 1.2.3)
traite_wsj.py removes quotation marks from the treebank when it reads the -noquotes
optional parameter on the command line.

Removing the semantic symbols

(see section 1.2.4)

traite_wsj.py removes semantic symbols from the treebank labels when it reads the
-nosem optional parameter on the command line.

Removing the cycles

(see section 1.2.5)

traite_wsj.py removes the non-terminal threads from the treebank when it reads the
-nothread optional parameter on the command line. This will lead to a grammar without
cycle.

If the optional parameter -smartthreads is passed instead, the program will try to
keep as many threads as possible, while insuring that the resulting grammar will be without
cycle. The algorithm takes more time than the -nothread one.

Renaming the preterminal symbols

(see section 1.2.6)

traite_wsj.py renames the preterminal symbols according to SLPToolkit rules when
it reads the -traitePreterminaux=<filename> optional parameter on the com-
mand line. The <filename> argument is the name of the file which the correspondance
between original and modified symbols will be written to.

2.1.3 Removing the terminal symbols
(see section 1.2.7)

The program delexicalise_corpus.py replaces each terminal symbol in the treebank
with the symbol that dominates it. This program takes two parameters : the source file and
the destination file. Both files are in SLPToolkit format.

2.1.4 Splitting the treebank
(see section 1.2.9)

12

The resulting file (named “Arbres”) is simply split into two files
by the following commands :

tail +3915 Arbres | head -39832 > learnArbres
tail +45447 Arbres | head -2416 > testArbres

2.1.5 Extracting the sentences
(see section 1.2.10)

“treebank2sentences.py extracts the sentences from a treebank. This program takes
one argument : the treebank filename. It outputs the results on the standard output :

treebank2sentences.py Arbres > Phrases

2.2 Making of the models
(see section 1.3)

2.2.1 SCFG
(see section 1.3.1)

Program name : cree-scfg.py

This program takes two arguments : the name of the treebank file and the base name
of the grammar to be written. For the experiments that indicates that there is no top level
symbol of the grammar to be extracted. If this option is not passed, the program will check
that there is a symbol that is never used in right-hand parts of context-free rules, and will
set this symbol as the top-level symbol of the grammar.

cree-scfg.py -N learnArbres scfg
cree-scfg.py -N Arbres scfgComplete

2.2.2 selecting trees with a maximum of 22 leaves
(see section 1.3.2)
. The command selectArbresNbMots.py does the job. It takes three arguments : the
source treebank, the minimum number of leaves, the maximum number of leaves. It writes
onto the standard output all trees of the source treebank that have a suitable number of
leaves.

selectArbresNbMots.py learnArbres 0 22 > learnArbres22motsMax

13

2.2.3 GCFG
(see section 1.3.2)

Programs : treebank2inout (optionnal), cree_GCFG.
There are two ways of computing a GCFG. The former computes intermediate struc-

tures, called “inout” files, from the treebank, which can result in a very big files (50 GB) for
the corpus. The latter computes the grammar in a single step, but can take a large amount
of time. For the Wall Street Journal experiments, a parallelized version of the latter method
has been designed and run on 100 machines.

with “inout” files

There are two types of “inout” files : the former, simply called “inout”, represent the parse
forests of the sentences of the treebank. The latter, called “arbres_inout”, represent the part
of the parse forests that are compatible with the actual trees of the treebank. With SCFG,
the latter is only a compiled version of the treebank. But with STSGs, it represents all the
decompositions of the trees in the treebank.

treebank2inout is the program that computes “inout” files from a treebank. It takes 4
parameters : the lexicon filename, the grammar filename, the “inout” base name of the files
to be written (it splits the output on several 2GB files if needed), and the “arbres_inout”
base name of the files to be written (same remark).

One should be be very careful to pass the same lexicon and grammar to treebank2inout
and cree_GCFG.

treebank2inout scfgComplete.slplex scfg.slpgram \
inout arbres_inout \
< learnArbres22motsMax

The GCFG can then be computed from those “inout” files with cree_GCFG, which
takes 5 arguments : the lexicon filename, the grammar filename, the “inout” filename, the
“arbres_inout” filename, and the base name of the grammar to be written.

The following options have been used in our experiments :

• -gis 64 : tells the program to use the Generalized Iterative Scaling algorithm.
The “64” argument indicates that there is a maximum of 64 rules in each parse. If
the maximum number of rules per parse is not known, we can use “-gis 0” in order
to enforce its computation.

• -stat : prints statistics on the standard error output.

• -init_zero : initially sets every potential to 0. Without this option, the program
reads the probabilities of the SCFG and sets the potentials to the opposite of the
logarithm of these probabilities.

• -securite : writes the resulting model at the end of each pass.

14

• -max_passes 100 : tells the number of passes to be done.

cree_GCFG -gis 64 -max_passes 200 -stat -securite \
scfgComplete.slplex scfg.slpgram \
inout arbres_inout gcfg

without “inout” files

The “cree_GCFG” program can be used without intermediate “inout” files. For that, the
third argument has to be “-no_foret”, and the fourth argument has to be the name of
the treebank file to be used for the training.

cree_GCFG -gis 64 -init_zero -max_passes 100 -stat \
-securite scfgComplete.slplex scfg.slpgram \
-no_foret learnArbres22motsMax gcfg

2.2.4 Head-Driven Stochastic Tree-Substitution Grammar
(see section 1.3.3)

Programs : “extractdopgram_wsj” and “putdopprobamaxtrees”

extractdopgram_wsj A Head-Driven Stochastic Tree-Substitution Grammar can be ex-
tracted from a treebank with the command “extractdopgram_wsj”. This is a version
of the standard “extractdopgram” of the SLPDOP toolkit. The difference lies in the
fact that preterminal symbol are not hardcoded in the program. Instead of that, the corre-
spondance between SLPToolkit codes and WSJ preterminal symbols have to be read from
a file, as the one produced by the “traite_wsj.py” program.

The command takes 3 arguments : the input treebank filename, the output lexicon
basename and the output grammar basename. If the lexicon already exists, the program
will add new entries to the existing lexicon.

The option to produce a head-driven STSG is : -method head <filename>. The
<filename> argument of this option is the name of the file that contains the correspondance
between SLPToolkit codes and WSJ preterminal symbols. Here is a small part of such a
file :

:13 VBG
:15 VBD
:16 VBN
:26 POS
:22 VBP
:21 WDT
:5 JJ

15

putdopprobamaxtrees The STSG extracted with “extractdopgram_wsj” is a proper
STSG. It cannot be used as is for a Most Probable Parse polynomial search. In order to
do that, we have to replace the elementary probabilities of elementary trees by their parse-
probability. Then, the MPP search will be executed by a MPD (Most Probable Deriva-
tion) search with the modified grammar. The command for modifying the grammar is
“putdopprobamaxtrees”. It has 2 arguments : the base name of lexicon and the base
name of the grammar.

Example of “extractdopgram_wsj” and “putdopprobamaxtrees” commands :

cree-scfg.py -N Arbres dop
extractdopgram_wsj -method head symboles.preterm \

learnArbres dop dop
putdopprobamaxtrees dop dop

(This example creates a head-driven STSG with the lexicon of the complete treebank,
but with the grammar of the training treebank alone. If we do not want the complete
lexicon, the first line (cree-scfg.py) has to be removed.)

2.2.5 Head-Driven Gibbsian Tree-Substitution Grammar
(see section 1.3.4)

Programs : doptree2inout (optionnal), cree_GDOP.
As for GCFGs, there are two ways of computing a GTSG. The former computes inter-

mediate structures, called “inout” files, from the treebank, which can result in a very big
files (200 GB) for the corpus. The latter computes the grammar in a single step, but can
take a large amount of time. For the Wall Street Journal experiments, a parallelized version
of the latter method has been designed and run on 100 machines.

with “inout” files

There are two types of “inout” files : the former, simply called “inout”, represent the parse
forests of the sentences of the treebank. The latter, called “arbres_inout”, represent the
part of the parse forests that are compatible with the actual trees of the treebank (i.e. it
represents all the decompositions of the trees in the treebank).

doptree2inout is the program that computes “inout” files from a treebank. It takes 6
parameters : the lexicon filename, the CFG grammar filename, the “TSG<->CFG lexicon”
filename, the filename of the lexicon of TSG rules, the “inout” base name of the files to
be written (it splits the output on several 2GB files if needed), and the “arbres_inout” base
name of the files to be written (same remark). It reads from its standard input the trees to
be encoded.

doptree2inout dop.slplex \
dop-gramCFG.slpgram \
dop-lexCFG_DOP.slplex \

16

dop-lexDOP.slplex \
inout arbres_inout \

< learnArbres22motsMax

The GTSG can then be computed from those “inout” files with the cree_GDOP com-
mand, which takes 5 arguments : the lexicon base name, the grammar base name, the
“inout” filename, the “arbres_inout” filename, and the base name of the grammar to be
written.

The following options have been used in our experiments :

• -gis 64 : tells the program to use the Generalized Iterative Scaling algorithm.
The “64” argument indicates that there is a maximum of 64 rules in each parse. If
the maximum number of rules per parse is not known, we can use “-gis 0” in order
to enforce its computation.

• -stat : prints statistics on the standard error output.

• -init_zero : initially sets every potential to 0. Without this option, the program
reads the probabilities of the SCFG and sets the potentials to the opposite of the
logarithm of these probabilities.

• -securite : writes the resulting model at the end of each pass.

• -max_passes 100 : tells the number of passes to be done.

cree_GDOP -gis 64 -max_passes 100 -stat -securite \
dop dop \
inout arbres_inout \
gdop

without “inout” files

The “cree_GDOP” program can be used without intermediate “inout” files. For that, the
third argument has to be “-no_foret”, and the fourth argument has to be the name of
the treebank file to be used for the training.

cree_GDOP -securite -stat -gis 64 -securite \
dop dop \
-no_foret learnArbres22motsMax \
gdop

2.2.6 Min-Max Stochastic Tree-Substitution Grammar
(see section 1.3.5)

Programs : “extractdopgram” and “putdopprobamaxtrees”

17

extractdopgram A Min-Max Stochastic Tree-Substitution Grammar can be extracted
from a treebank with the command “extractdopgram” (“extractdopgram_wsj”
can also be used for this purpose, with the same arguments).

The command takes 3 arguments : the input treebank filename, the output lexicon
basename and the output grammar basename. If the lexicon already exists, the program
will add new entries to the existing lexicon.

The option to produce a min-max STSG is : -method minmax.

putdopprobamaxtrees The STSG extracted with “extractdopgram” is a proper STSG.
It cannot be used as is for a Most Probable Parse polynomial search. In order to do that, we
have to replace the elementary probabilities of elementary trees by their parse-probability.
Then, the MPP search will be executed by a MPD (Most Probable Derivation) search with
the modified grammar. “putdopprobamaxtrees” is the command for modifying the
grammar. It takes 2 arguments : the base name of lexicon and the base name of the gram-
mar.

Example of “extractdopgram” and “putdopprobamaxtrees” commands :

extractdopgram -method minmax ../learnArbres dop dop
putdopprobamaxtrees dop dop

2.2.7 Min-Max Gibbsian Tree-Substitution Grammar
(see section 1.3.6)

Programs : doptree2inout (optionnal),
cree_GDOP or cree_GDOP_controle_profondeur.

The Min-Max Gibbsian Tree-Substitution Grammar can be computed exactly in the
same two ways as their head-driven counterparts, provided that the grammars passed to
doptree2inout and cree_GDOP are min-max STSGs : both methods (with or without
“inout” files) will work.

cree_GDOP_controle_profondeur This command can replace cree_GDOP in order to
smooth the resulting model : this version of the program uses the “Increased Depth Learn-
ing” algorithm.

The following options have been used in our experiments :

• -gis 64 : tells the program to use the Generalized Iterative Scaling algorithm.
The “64” argument indicates that there is a maximum of 64 rules in each parse. If
the maximum number of rules per parse is not known, we can use “-gis 0” in order
to enforce its computation.

• -stat : prints statistics on the standard error output.

18

• -init_zero : initially sets every potential to 0. Without this option, the program
reads the probabilities of the SCFG and sets the potentials to the opposite of the
logarithm of these probabilities.

• -securite : writes the resulting model at the end of each pass.

• -max_passes 3 : tells the number of passes to be done for each depth (the real
number of iterations will be this number multiplied by the maximal depth of the trees
in the training treebank).

Example :

cree_GDOP_controle_profondeur \
-stat -gis 64 -securite -max_passes 3 \
dop dop \
-no_foret learnArbres22motsMax gdop

2.3 Parsing
(see section 1.3.7)

A few commands are useful for parsing and evaluating parsing results.

2.3.1 Parsing and evaluation with SCFGs
Standard method

The “anagram” program (part of SlpToolkit) is used to parse sentences with SCFGs. The
experiments were conducted with the following arguments :

anagram -best p -input direct \
scfg.slplex scfg.slpgram \
< ../testPhrases \
> testAnalyses

The comparison of the parses with the reference trees is achieved by “compare-analyses2.py”.
This program takes two arguments : the name of the reference treebank file and the name
of the file produced by anagram with the options shown in the example. The output of
“compare-analyses2.py” looks like this :

Nombre de phrases analysees : 2416
Nombre d’analyses identiques : 268 (11.0927152318%)
Nombre d’analyses differentes : 2148 (88.9072847682%)
Nombre de parenthesages differents : 2067 (85.5546357616%)
Details (nb1 - nb2, nb_cas)
-5, 3

19

-3, 20
-2, 75
-1, 264
0, 460
1, 588
2, 335
3, 189
4, 83
5, 32
6, 10
7, 5
9, 1
10, 1
14, 1

Esperance de la difference : 0.946298984035

Nombre d’analyses avec parenthesage croise : 1712 (70.8609271523%)

Precision : 0.866724574586

Recall : 0.849338529382

From top to bottom, this shows :

• number of analysed sentences

• number of exact parses

• number of bad parses

• number of parses that have a different bracketting

• Details about bracketting differences (distribution of the difference between the num-
ber of brackets for each sentence in both files)

• likelyhood of the difference between the number of brackets in a parse of file 1 and
file 2

• Number of cross bracketting parses (i.e. parses of file 2 that are not compatible with
parses of file 1 in terms of bracketting)

• Label precision rate

• Label recall rate

20

Parallelized method

The “anagram_pvm” program is used to parse sentences with SCFGs in a parallelized
way. It has been used for distributing the parse task amongst 100 machines. The experi-
ments were conducted with the following arguments :

anagram_pvm scfg scfg \
< ../testPhrases \
>! testAnalyses

Notice that the -best p option is not required : this parallelized version of anagram
always uses it.

The comparison of the parses with the reference trees is achieved by “compare-analyses.py”.
This program takes two arguments : the name of the reference treebank file and the name
of the file produced by anagram_pvm. The output of “compare-analyses.py” is the same
as the output of “compare-analyses2.py”. The difference lies in the input : the output of
anagram_pvm is : one parse per line, followed by its parenthesised score.

Warning :
Due to a bug, the first character (“_”) of the output of anagram_pvm has to be manually

removed before its use with “compare-analyses.py”.

2.3.2 Parsing and evaluation with STSGs
Standard method

The “analyseDOP” program (part of slpdop) is used to parse sentences with STSGs. The
experiments were conducted with the following arguments :

analyseDOP -MPD -input direct \
dop dop \
< ../testPhrases \
>! testAnalyses

“compare-analyses.py” is then used as before to compare the parses with the reference
trees

Parallelized method

The “analyseDOP_pvm” program is used to parse sentences with STSGs in a parallelized
way. It has been used for distributing the parse task amongst 100 machines. The experi-
ments were conducted with the following arguments :

analyseDOP_pvm dop dop \
< ../testPhrases
>! testAnalyses

21

Notice that the -MPD option is not required : this parallelized version of analyseDOP
always uses it.

“compare-analyses.py” is then used as before to compare the parses with the reference
trees

Warning :
Due to a bug, the first character (“_”) of the output of anagram_pvm has to be manually

removed before its use with “compare-analyses.py”.

22

Appendix A

Programs

The programs listed below allow different operations on grammars and treebanks :

• modification/adaptation/evaluation of treebanks

• visualization/selection of syntactic trees

• creation of context-free grammars

• training of gibbsian parameters for context-free and tree substitution grammars

• listing of compiled tree substitution grammars

• parallel (networked) parsing with CFGs and TSG

These programs are grouped in three directories :

• “arbres” contains C++ programs :

– the header file “arbres.h”, useful in visualization programs and also used in
gibbsian training programs (i.e. all C++ programs)

– the visualization/selection of syntactic trees

• “grammaire” contains Python programs for the textual modification of treebanks, the
creation of context-free grammars, and the evaluation of parsing results

• “gdop” contains C++ programs for :

– training gibbsian parameters for context-free and tree substitution grammars

– listing compiled tree substitution grammars

– parallelizing the computation of gibbsian parameters and the parsing with context-
free and tree substitution grammars

23

A.1 Dealing with treebanks
Notes :

• All programs use procedures from file “grammaire.py”.

• Except for “traite_wsj.py”, all programs deal with treebanks in SlpToolkit format.

A.1.1 Modifying treebanks
Directory “grammaire”

• delexicalise_corpus.py : replaces each terminal symbol in the treebank with the
symbol that dominates it. This program takes two parameters : the source file and
the destination file. Both files are in SLPToolkit format.

• enlever_threads.py : removes the threads from a treebank (i.e. removes rules X->Y
by substituting Y to X). Does not remove terminal threads (attaching leaves), nor top
thread (i.e. : the root of trees remains unchanged).

• traite_wsj.py : prepares the Wall Street Journal treebank for SlpToolkit. Delexi-
calization and thread removal can be done within this program by passing options.
Other options available (see the self-contained help with option -h).

• treebank2sentences.py : extracts the leaves from a treebank in order to create a text
file containing the associated sentences.

A.1.2 Selecting trees from a treebank
Directory “grammaire”

• selectArbresNbMots.py : selects the trees whose number of leaves matches a given
interval. It takes three arguments : the source treebank, the minimum number of
leaves, the maximum number of leaves. It writes onto the standard output all trees of
the source treebank that have a suitable number of leaves.

• separe_learn_test.py : randomly splits one treebank into two treebanks. The ratio
between the two resulting files can be chosen.

• separe_learn_test_par_frequence.py : splits one treebank into two treebanks. All
rules appearing in the first resulting treebank will appear with a frequency greater or
equal to fmin (see the self-contained help with option -h).

• script/separation_par_nb_analyses.sh is a little shell script that can be used for
making the work with selectarbre easier. It will use the output of anagram and
write several sentence files : the sentences of each file will have the same number of
possible parses. The use of this script is explained in its first few lines.

24

Directory “arbres”

• selectarbre : a graphical tool for selecting trees from SlpToolkit parses. A list of
sentences first have to be parsed with “anagram”, with option “-i p” : the output is a
file containing a list of possible parses for each sentence. selectarbres takes this file
and lets the user choose which parse is correct for each sentence. Option “-h” gives
the command line syntax.

A.1.3 Checking a treebank
Directory “grammaire”

• verifie_treebank.py : checks if a treebank is syntactically correct, i.e. in a good
SlpToolkit format, readable by the other programs.

A.1.4 Evaluating parse results
Directory “grammaire”

• compare-analyses.py compares two treebanks and gives statistics about their differ-
ences.

• compare-analyses2.py also compares two treebanks, but the second one is in the
format given by of anagram -best p.

A.1.5 Visualizing treebanks
Directory “arbres”

• voir_arbres : a graphical tool for the visualization of treebanks. It can take one or
several treebank files as arguments. When several treebanks are given, it displays
them in a parallel way, and highlights the differences by using different colors where
the trees differ.

A.2 Creating context-free grammars
Directory “grammaire”

• cree-scfg.py : a tool that creates a stochastic context-free grammar. Takes the name
of the treebank file the grammar should be extracted from, and the basename of the
SCFG to be created. It writes a grammar in a textual form, then calls the SlpToolkit
compilgram and creelex programs.

25

The following programs were heuristics to create “thermodynamic” (or gibbsian) CGFs
from a standard SCFG. These methods have been replaced by the Iterative Scaling Algo-
rithm, implemented in cree_GCFG and cree_GDOP programs.

• cree-energie.py

• cree-grammaire_energie_par_queue_nulle.py

• cree-grammaire_proba_par_queue_1.py

• cree-grammaire_proba_par_queue_2.py

• cree-grammaire_proba_par_queue_3.py

• cree-grammaire_proba_par_queue_4.py

• cree-grammaire_proba_par_queue_et_energie_tete_nulle.py

• cree_grammaire_energie_moyenne_par_tete_egale_energie_tete.py

• cree_grammaire_energie_nulle_sur_corpus.py

• cree_grammaire_proba_globale.py

• energise_grammaire.py

• energise_lexique.py

A.3 Listing a Tree Substitution Grammar
Directory “gdop/inout”

• listgramdop : outputs a textual representation of the elementary trees of a compiled
STSG. The representation is in SlpToolkit format. The branching nodes of an ele-
mentary tree are marked with the "*" symbol.
Example :

listgramdop dop.slplex dop-gramCFG.slpgram \
dop-lexCFG_DOP.slplex dop-lexDOP.slplex

An extract of the result (format : rule index - probability - rule) :

86037 - 4.47126e-06 - [VP [:13 demanding]]
86038 - 4.14049e-06 - [VP [:7 hope]]
86039 - 4.88742e-06 - [VP [VP [:22 seem] [S *]]
[:14 *] [VP *]]
86040 - 1.61719e-06 - [NP [:1 *] [:33 Europeans]]

26

A.4 Training gibbsian parameters of context-free and tree-
substitution grammars

Directory “gdop/inout”

• treebank2inoutis a program that computes “inout” files from a treebank. These
“inout” files can then be used by the non-parallel version of cree_GCFG in order
to create a gibbsian CFG. This program takes 4 parameters : the lexicon filename,
the grammar filename, the “inout” base name of the files to be written (it splits the
output on several 2GB files if needed), and the “arbres_inout” base name of the files
to be written (same remark). It reads from its standard input the trees to be encoded.
Option -h gives the details of available options.

• doptree2inout is the program that computes “inout” files from a treebank. These “in-
out” files can then be used by the non-parallel versions of cree_GDOP and its mod-
ified version cree_GDOP_controle_profondeur in order to create a gibbsian TSG.
This program takes 6 parameters : the lexicon filename, the CFG grammar filename,
the “TSG<->CFG lexicon” filename, the filename of the lexicon of TSG rules, the
“inout” base name of the files to be written (it splits the output on several 2GB files if
needed), and the “arbres_inout” base name of the files to be written (same remark).
It reads from its standard input the trees to be encoded. Option -h gives the details of
available options.

• list_inout_table is a program that writes a textual representation of CFG “inout”
tables on its standard output. The form of the representation is similar to the one
given by “anagram” without option. The listed “inout” table has to be created from
a CFG, by treebank2inout. Command line arguments are given by the -h option.

• list_dop_inout_table is a program that writes a textual representation of TSG “in-
out” tables on its standard output. The form of the representation is similar to the
one given by “anagram” without option, except that the representation of each ele-
mentary rule is in the form given by listgramdop. The listed “inout” table has to be
created from a TSG, by doptree2inout. Command line arguments are given by the -h
option.

• compte_exemples_inout : counts the number of “inout” structures in a file. If the
file has been correctly created, this number should be the same as the number of trees
in the treebank used for its creation.

• cree_GCFG : tool that runs IIS (Improved Iterative Scaling algorithm) or GIS (Gen-
eralized Iterative Scaling algorithm) on a SCFG. The result is a Gibbsian CFG.

There are two ways of using this tool : if “inout” and “arbres_inout” files have been
produced for a given treebank, they can be passed as arguments to cree_GCFG. In
the other case, the program can take directly the treebank filename as argument and

27

dynamically produces “inout” structures when needed : with the multipass algo-
rithms implemented by the program, this method will take much more time than the
former, as “inout” structures will be recomputed at each pass.

For the former method, cree_GCFG takes 5 arguments : the lexicon filename, the
grammar filename, the “inout” filename, the “arbres_inout” filename, and the base
name of the grammar to be written.

For the latter method, cree_GCFG also takes 5 arguments : the lexicon filename,
the grammar filename, the “-no_foret” keyword, the treebank filename, and the base
name of the grammar to be written.

If cree_GCFG was compiled with the parallel behaviour enabled, the -no_foret method
is mandatory, as the big “inout” structures would kill the network.

The following options are implemented :

– -conserve_lexique : leaves the lexicon unchanged (never updates its pa-
rameters);

– -conserve_grammaire : leaves the grammar unchanged (never updates
its parameters);

– -gis <n> : tells the program to use the Generalized Iterative Scaling algo-
rithm. The <n> argument indicates that there is a maximum of <n> rules in
each parse. If the maximum number of rules per parse is not known, we can
use “-gis 0” in order to enforce its computation. The GIS algorithm runs faster
than the IIS algorithm because it does not make use of polynomes. However, it
needs more passes to achieve the same quality of model : if “inout” structures
have to be computed at each pass, this can cause the GIS method to run slower
than IIS (with “inout” precomputed files, GIS uses 3 times the number of passes
of IIS for the same result; but each pass is 9 times quicker.).

– -stat : prints statistics on the standard error output.

– -init_zero : initially sets every potential to 0. Without this option, the pro-
gram reads the probabilities of the SCFG and sets the potentials to the opposite
of the logarithm of these probabilities.

– -init_deux : initially sets every potential to log(2).

– -juste_init : only performs the initialization. To be used with -init_zero
or -init_deux.

– -securite : writes the resulting model at the end of each pass.

– -max_passes <n> : tells the number of passes to be done.

– -attend_fermeture : if the programs is compiled with the graphical UI
enabled, this option makes the monitoring window stay opened after the com-
putation is over. Else, the monitoring window is closed as soon as the program
terminates.

28

• cree_GDOP : same as cree_GCFG but for Tree Substitution Grammars. The argu-
ments and options also are the same, except that :

– the lexicon and grammar filenames have to be replaced by their basename, i.e.
their name without any extension (.slplex / .slpgram).

– the “inout” and “arbres_inout” files have to be produced by doptree2inout in-
stead of treebank2inout.

An additionnal option is also available :

– -prior <σ> : this option will force the potentials (i.e. the gibbsian param-
eters of the model) to follow a gaussian prior distribution, centered on 0, with
standard deviation σ. This was the first smoothing method implemented for
GTSG models, but cree_GDOP_controle_profondeur gave much better re-
sults. However, this method could be further investigated by trying different
values of σ.

Notice that for suitable (head-driven or min-max) TSGs putdopprobamaxtree is in-
tended to be used after cree_GDOP in order to find most probable parses in polyno-
mial time. The most probable derivations of the resulting grammar will then be the
most probable parses of the initial grammar.

• cree_GDOP_controle_profondeur : same as cree_GDOP, but implements the In-
creasing Depth Learning algorithm. Two more options are available :

– -pmax p : fixed value to be assigned to the parameters associated to “always
disambiguating” elementary trees, i.e. elementary trees that always lead to cor-
rect parses (for instance, the complete trees of the learning treebanks, in a min-
max TSG). The default value of this potential is 10.

– -pamb p : fixed value to be assigned to the parameters associated to “never
disambiguating” elementary trees, i.e. elementary trees that appear as often in
correct and incorrect parses. 0 is the default value.

Notice that cree_GDOP_controle_profondeur has proved to be useful for Min-Max
TSGs. For Head-Driven TSGs, the best results have been obtained with cree_GDOP.

A.5 parallel (networked) parsing with CFGs and TSG
Directory “gdop/inout”

The following programs are parallel versions of existing ones.

• anagram_pvm : performs parsing with CFGs. The arguments are the lexicon and
the grammar filenames. The sentences to be parsed are read from the standard input,
and the parses are written on the standard output.

Available options :

29

– -P : Only looks for parses starting with the top level symbol.

The other options of anagram have not been implemented. The behaviour is the
same as anagram -best p -input direct, except for the format of the output : it only
outputs one parse per line, followed by its probability.

• analyseDOP_pvm : performs parsing with TSGs. The arguments are the lexicon
and the grammar filenames. The sentences to be parsed are read from the standard
input, and the parses are written on the standard output.

Available options :

– -P : Only looks for parses starting with the top level symbol.

– -normlex : normalizes the lexicon probabilities (for a standard STSG, not to
be used with GTSGs)

– -normgram : normalizes the grammar probabilities (for a standard STSG, not
to be used with GTSGs)

The other options of analyseDOP have not been implemented. The behaviour is the
same as analyseDOP -MPD -input direct, except for the format of the output : it only
outputs one parse per line, followed by its probability.

A.6 Implementation notes
This section only concernes the C++ programs of directory gdop/inout.

A.6.1 Five parallel programs
“anagram_pvm” and “analyseDOP_pvm” are parallelized versions of “anagram” and
“analyseDOP”.

Concerning “cree_GCFG”, “cree_GDOP” and “cree_GDOP_controle_profondeur”, the
way they work depends on the options used at compilation time. In order to run in a parallel
way, they have to be compiled with the option “pvm=oui” of the “make” command.

The parallel versions work with PVM 3.4. PVM stands for Parallel Virtual Machine.
This program has to be installed on each machine that will participate in the computation
task.

Moreover, two other programs have to be placed in the “bin” directory of the PVM
architecture on each machine : these programs (“clientInout” and “surveillant”) contain
the client part required for the five programs to run in a parallel fashion.

When everything is properly installed, the PVM has to be started before running one of
the five programs.

Example :

pvm hostsIn1In3
^D

30

anagram_pvm scfg scfg \
< ../testPhrases \
>! testAnalyses

The first line of the example starts a PVM spread on all machines listed in the file
“hostsIn1In3”.

The second line (ctrl-D) is used for exiting the PVM console without shutting down
the PVM.

The last commamd will launch anagram_pvm. This program will connect to the PVM
and will launch the clients (clientInout and surveillant) on each host of the PVM, before
starting the actual parsing task.

Warning : The programs currently filter the hosts : they launch computations only on
hosts that begin with a name lexicographically smaller than “lia”. This artificial filtering
has been done in order to launch the main program from a LIA’s machine, but to restrict
the heavy computation to In1 and In3 machines.

This filtering is done in the “init_clients()” method of “inout_gibbs.cc” file.

A.6.2 Monitoring PVM programs
• moniteur_pvm is a tool for monitoring PVM programs. It tries to connect to the

PVM and sends requests for information. The information it receives is then dis-
played on a graphical window. This tool is useful for looking at the progress of PVM
programs. All five mentionned programs will reply to moniteur_pvm and will send
the requested information.

A.6.3 Compiling the C++ programs
The Makefile can take three options :

option possible values
debug

level optimize
O3

qt oui
non (default)

pvm oui
non (default)

The level option is self-explanatory for gcc users.
If the "qt=oui" option is passed to the make command, some programs will implement

a graphical monitoring window :

• cree_GCFG,

• cree_GDOP,

• and cree_GDOP_controle_profondeur.

31

This option must be avoided for the compilation of clientInout and surveillant : as these
programs are intended to run on distant machines, they will likely be unable to open a local
graphical window.

The "pvm=oui" option is required for compiling the five PVM programs, and also for
compiling clientInout, surveillant and moniteur_pvm. When this option is used, the paths
to PVM 3.4 and PVM++ libraries must be correct in the Makefile.

The versions of the libraries used for compiling the programs are :

• qt-x11-free-3.1.2

• PVM 3.4 (I have a modified version of these libraries)

• PVM++ 0.6.0

A.6.4 SlpToolkit and the Wall Street Journal corpus
Most C++ programs dynamically depend on the SlpToolkit library. For the first series of
experiments (i.e. with a lexicalized version of the WSJ treebank), the sizes of used Slp-
Toolkit lexicons are very big. This means that the SlpToolkit library have to be compiled
with the macro LONG_DEPL_SIZE defined. This can be done in the arbregen.h file,
before the DEPL_SIZE declarations.

32

