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Abstract

Studies of the Web graph at the granularity of documents have re-
vealed many interesting link distributions. Similarly, studies of the Web
graph at the granularity of Web sites, the so-called hostgraph, revealed
relationships among hosts based on linkage and co-citation. However, to
the best of our knowledge, the graph of Web sites has not been exploited
for the purpose of ranking in search engines. In this paper, we first iden-
tify the necessity of a SiteGraph abstraction. We derive the SiteRank, a
ranking of general importance among the Web sites in such a graph. We
then show that SiteRank follows a power-law distribution. As experimen-
tal data set we were using the Web of our campus with over two million
documents. We uncover interesting relationships between PageRank and
SiteRank. Based on these results and observations, we conclude that the
decomposition of global Web document ranking computation by making
use of SiteRank is a very promising approach for computing global doc-
ument rankings in a decentralized P2P search system. In particular, by
sharing SiteRanks peers would not only be able to efficiently compute
global document rankings in a decentralized manner, but also obtain a
new means to fight link spamming. Our experiments give very promising
results to back up the proposed ideas.

Keywords: Web information retrieval, link structure analysis, search en-
gine, ranking algorithm, decentralized framework

1 Introduction

Graph structure is a very important abstraction of the Web. The Web is hi-
erarchically composed of entities such as domains, Web sites, and documents
distributed over Web sites and linked together by hyperlinks. Note that a Web
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center supported by the Swiss National Science Foundation under grant number 5005-67322.

†Written on November 14, 2003.

1



site corresponds not necessarily to an independent physical machine since many
logical Web sites can co-reside on one physical machine. If we consider entities
in the Web as the vertices and connections via links, which imply a relationship
between entities, as the directed edges, the Web can be abstracted as a directed
graph G(V, E), where V is the set of the entities and E is the set of connections
among the entities.

1.1 Different Abstractions for the Web Graph

At different abstraction levels, several such graphs can be derived to model
the Web and be represented formally, e.g., as matrices. For example, when
Web documents are used as the elementary entities and the links from one
page to another as the directed edges, the resulting graph is the one that is
widely used in algorithms like PageRank [20] and its descendants. This family
of algorithms considers hyperlinks as embedded recommendation information on
page importance from the viewpoint of page authors. This information is used
to form a matrix representation of the Web and compute the Web document
ranking for Internet search engines.

We obtain another Web graph when we abstract at a coarser granularity
where we choose the individual hosts respectively Web sites as the elementary
entities of the Web. The links between two hosts are the aggregation of the
links between the two sets of Web pages on the hosts. In the following, we call
the graph at the document level the DocGraph, and the graph at the Web site
level the SiteGraph.

The SiteGraph was studied in earlier work [4] under the name of hostgraph1,
which provided several good arguments on why the abstraction at the site level
is useful: documents are often represented by multiple pages and consequently
it is not very reasonable to study the authorship of Web documents at the level
of single pages; a Web site is usually jointly controlled and managed and may be
reorganized periodically without significantly changing the semantics or linkage
in relation to the rest of the Web; although very often there does not exist a
direct link from local pages to a site’s entry page, Web surfers can always jump
there by truncating the path of the URL to navigate to the root page; statistical
properties of Web pages may be skewed because of the simplicity of generating
a large number of pages dynamically.

It is worth noticing that our notion of SiteGraph allows for the derivation
of a dynamic or virtual graph of Web sites when we use dynamic or virtual
relationships among Web pages instead of the static Web links. For example,
when we use statistical information on navigation obtained from Web client
traces, which are normally very different from the static Web link structure, as
the set of edges E, we obtain a Web client trace-based SiteGraph. Similarly,
a DocGraph using client traces can be defined. Thus hostgraph is simply one
special type of SiteGraphs which uses the static hyper links among Web pages
to define the edges. The ideas and algorithms are very easy to be applied to
dynamic or virtual SiteGraphs which are part of our future work.

1We think host sounds more way of hardware probably because of the business of Web
hosting. Thus we prefer to use site here to refer to the logical entity (a registered FQDN or an
IP) in the Web where a Web server is running and Web requests from Web users are served.
We will also see, hostgraph is just one special type of SiteGraphs we define here.
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1.2 Contribution of the Work

Even though the Web site graph has been studied for applications such as iden-
tification of related hosts based on linkage and co-citation, it has not been
considered in the context of ranking for search engines to the best of our knowl-
edge. Our work explores the research possibilities in this direction, proposes
insights on the potential of this approach and reports on initial results of it’s
implementation. More concretely, we study on how to make use of the Site-
Graph to support the derivation of rankings of Web sites and documents in the
sense of general importance.

We first define SiteGraph and shortly describe random walks in such a Site-
Graph. Then we focus on how to generate SiteRank 2 for a static SiteGraph
and on how to use it in the decomposition of ranking computations. We demon-
strate how this approach works by making experiments based on the data set
of a crawled campus Web.

Our main contributions can be summarized as follows:

1. Identifying different types of SiteGraphs and their significance in the re-
search work on Web information retrieval and Web mining;

2. Bringing up the idea of SiteRank to describe the general importance of
Web sites in the Web. After verifying that the PageRank of our sam-
ple data set follows the well-known power-law, we find that the resulting
SiteRank matches this distribution as well.

3. Evaluating the semantic relationship between the importance of a Web
site and the importance of the Web documents residing on the site. It
turns out that Web documents of an important Web site tend to be more
important than those of the less important sites.

4. Based on the previous observations, providing a decentralized approach
for computing the global document ranking in decentralized architecture
for Web and P2P search [23] and report on a prototype implementation
of it. As a consequence, the task of global ranking computation can be
performed in a decentralized fashion and its cost is widely distributed.

5. Using a shared SiteRank is a very effective anti-rank-spamming approach
for search engines that are built on our decentralized architecture. We as-
sume all participating member search servers agree on a universal SiteRank
in the document rank computation which allows to exclude spamming sites
more easily.

In the next section we will provide arguments that the study of SiteGraphs
could result in many benefits for Web information retrieval. Afterwards we in-
troduce our model and the algorithm to compute SiteRank in Section 2. We
did several sets of experiments to evaluate the significance of this idea. In Sec-
tion 3, we first verify that the PageRank distribution of the documents stored
in our crawled data set follows a power-law. Then we try to uncover the re-
lationship between documents’ PageRank and SiteRank of the corresponding
Web sites. Given the observations that we made from these experiments, we

2Depending on the context, we use the same term SiteRank for both the algorithm and
the rank value of a Web site.
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believe that making jointly use of SiteRank and PageRank is an interesting di-
rection to determine the global ranking of Web documents in a decentralized
fashion. To that end we summarize results from a companion paper [1] where
we laid out the formal foundations for the distributed computation of rankings
and we elaborated an example in that framework, with focus on the influence
of SiteRank on the computation of document rankings. Finally, after a short
review on related work, we draw some conclusion from our work and look into
future research possibilities in Section 6.

2 A New Web Graph Leads to A New Rank

A natural outcome of studying the Web graph at the granularity of Web sites
is the question: are Web sites somehow comparable in the sense of general
importance? We will further study the implications of this question in the
following sections.

2.1 Random Walks in SiteGraph

We use the notion of SiteLink to designate hyperlinks among Web sites and
PageLink for those among Web documents. Studies show that among the tens
of billions PageLinks in the Internet, roughly 76% link to pages on the same
Web host [4]. The estimated average distance between hosts has been found to
be less than 6 (at most about 5.27).

Our algorithm is based on the random walk model in the SiteGraph which is
similar to that of PageRank for DocGraph. Intuitively, a random walk models
a simple process of randomly navigating in the Web (sometimes also called a
”Drunkard’s walk”). In a SiteGraph, an Internet user would roam around the
Web sites by following Web links. A surfer with no particular interests would
choose a different site with a probability roughly specified by the ratio of links
to that site and the total number of outgoing links of the current site.

However, we emphasize the differences between our model for SiteGraph and
the random walk model used in PageRank and many other related work on the
DocGraph:

1. While PageRank considers users’ navigating from one Web page to an-
other, we are considering the access patterns of users at the granularity
of Web sites. In the PageRank model, a user is assumed to be able to
navigate to any other document, which is not linked with the current doc-
ument, with constant probability. This is in reality impossible. A user
could not even know the other 3 to 5 billion Web pages, thus assigning
uniformly distributed weight to unknown pages is not a good approxima-
tion of the real situation on the Web. On the other hand, the number of
Web sites is much smaller. A uniform distribution of weight to the much
smaller number of Web sites appears to be more reasonable.

2. There are many implicit but empirically fully valid and frequent practices
of navigating among Web pages which can not be properly reflected by
the static DocGraph. One example is navigation from some internal page
to the homepage of the Web site by removing the local navigation path
of the document from the URL. This is possible even if there is no direct
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link from the internal page to the homepage. As a result, if a Web site has
on average 100 3 documents, a modified DocGraph with 100 such implicit
links added would be a better model of the the average Web site. Such de
facto practices make PageRank’s random walk model a skewed model of
the structure of the real Web.

The situation is different in the random walk for Web sites. A user can-
not simply take shortcut transformations since modifying URLs does not
induce a possibility to navigate to another Web site. Thus the Web site
is a more adequate conceptual and organizational unit for the Web, and
the random walk model is quite suitable for the resulting SiteGraph.

3. Web pages are easy and inexpensive to create, thus spamming practices
have become a frequent problem and nuisance in order to deceive Inter-
net search engines. A Web site can easily, dynamically generate a large
and unbounded number of Web pages4. As a direct result the computed
ranking results by algorithms like PageRank or HITS [15] are easily pol-
luted and users have to find ways to fight rank spamming. In contrast, it
is more difficult to create huge numbers of Web sites to apply such rank
spamming techniques to boost the rank of a specific Web site.

2.2 The Algorithm

The representation of the SiteGraph by a matrix MS is very similar to that for
a DocGraph. The only difference is that every element in the SiteGraph matrix
represents the number of SiteLinks instead of PageLinks. Self-referential links
are also possible and counted and are represented as diagonal elements of the
matrix.

Such a matrix may not have a non-trivial Eigenvector, which is the basic
property of the matrix used by the PageRank algorithm. This may occur, for
example, if there are isolated sets of pages that no other pages point to or there
are dangling pages which point to no other page. One of the reasons that there
exist such pages is that other pages pointing to or pointed by such pages have
not been crawled. Different means have been devised to correct this problem.
In the original PageRank paper [20], dangling pages are first of all removed. In
other approaches this problem is addressed by assuming that users would often
backtrack their navigation path, such that virtual links from the dangling pages
to the pages pointing to them could be added to the link structure [21].

However, both methods do not address the problem of isolated sets of pages,
which might occur when starting to crawl from a not fully connected set of seed
sites. Moreover, we intentionally want to keep dangling pages without removing
them in a preprocessing step. The reason is that although we have crawled a
considerable number (more than 2 million) of our campus Web pages, there
exist some sites that have only a single page having been crawled. If we remove
such single pages, also the site will be removed from the derived SiteGraph. To
obtain a SiteGraph that is as large as possible we keep those pages on purpose.

3This is roughly the average number of pages that a Web site in 2001 has. Per the work
of Bharat et al. [4], the June 2001 Web data set has 1,292 millions of pages and 12.8 millions
of nodes.

4Andrei Broder gave an interesting example in his keynote speech at the SIGIR’03 confer-
ence.
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As in the Page Rank algorithm we apply the technique of introducing a
decay factor to the original SiteGraph:

MS = p×MS +
1− p

mS
× I

where mS is the number of Web sites in the crawled graph, the decay factor p
is set to 0.85 and I is the matrix whose size is the same as that of MS and all
elements have the value of 1.

It is easy to show that the resulting matrix MS is both aperiodic and a ir-
reducible stochastic transition matrix. As the random teleportation introduces
non-zero weight self loops it is clear that the matrix is aperiodic. It is irre-
ducible iff MS is strongly connected. This is also guaranteed by the operation
of applying a decay factor to the original matrix. Thus according to the Ergodic
Theorem for Markov chains, the Markov chain defined by MS has a unique sta-
tionary probability distribution. We can then compute the Web site ranking of
this SiteGraph based on the matrix MS .

Given the matrix representation MS of the SiteGraph of the EPFL campus
Web, and a start rank vector r(0) of the Web sites in this SiteGraph, we apply
the standard Power Method for computing the principal eigenvector to obtain
the ranking for the Web sites:

function PowerMethod(MS , r(0)) {
A = MS

T ;
repeat

r(l+1) = Ar(l);
δ = ‖r(l+1) − r(l)‖1;

until δ < ε;
return r(l+1);

}

3 The Significance of SiteRank

3.1 Data Set

In this section we give a concrete example of the results that we obtain when
computing the SiteRank values for all the Web sites of a Web graph. The
evaluation presented here is made on a campus-wide Web graph, the EPFL
domain which contains more than 600 independent Web sites identified by their
hostnames or IP addresses. We used a Web crawler to retrieve more than two
million Web documents by starting from the campus portal site and following
the Web links to access all the other Web sites in this domain. Using this data
set we extracted the information from the member Web sites and the SiteLinks
among each other, we then applied the Power Method described above to the
SiteGraph to obtain the SiteRank of them. When we generated the matrix
representation of this graph, those links pointing from one local page to another
local page on the same site are counted by the matrix element MS(i, i).

For comparison we also applied the standard PageRank algorithm to the
link structure of the EPFL DocGraph to obtain the global ranking of all the
Web documents in this campus Web graph. Our data set shows typical power-
law properties: the fraction of pages having PageRank r is proportional to
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Figure 1: Log-log plot of the PageRank of the EPFL domain (.epfl.ch). A very
typical power-law with exponent of about 1.69.

1/r1.69. This result is strikingly similar to that reported in a study on the Web
structure [21]. Though the exponent here is a bit lower than the value found
there which is around 2.1. Two reasons might account for this difference: the
difference in the nature of the different Web data sets we use; the incomplete
crawling of our campus Web.

3.2 Power-Law Comes Back in SiteRank

In Figure 2, we display on the x axis the computed SiteRank values for the sites
of the campus Web, and on the y axis we display the percentage of sites that has
the particular SiteRank value. Both axes are displayed at a logarithmic scale.

One of the interesting results of our work is that we found the SiteRank
distribution also follows the power-law quite well: the fraction of Web sites hav-
ing SiteRank r is proportional to 1/r0.95. Thus SiteRank becomes yet another
property of the Web graph that abides by the powerful power-law.

However, the exponent of the SiteRank distribution is lower than that of the
PageRank distribution. It would be interesting to analyze models for generating
and growing the Web to obtain this empirically determined distributions and
to capture the distinctive nature of the DocGraph and the SiteGraph. However
this is out of the focus of this paper and remains part of our future work.

3.3 Closer Look in Terms of Semantic Quality

Next we show the top ranked Web sites according to the computed SiteRank
values in Table 1. We omit the protocol prefix ”http://” and the domain suffix
”.epfl.ch” of all resulting URLs.
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Figure 2: Log-log plot of the SiteRank of the EPFL domain (.epfl.ch). Also a
typical power-law with exponent of about 0.95.

Order SiteRank Description
1 www campus portal
2 spi press and information
3 ic school of comp. & comm. sciences
4 sti school of engineering sci. & tech.
5 enac school of environment,

nature, architecture & construction
6 sb school of basic sciences
7 cdh school of humanities
8 sv school of life
9 research as the name indicates
10 plan campus map
11 mediatheque media library
12 daawww administrative site
13 gaspar2 unified interface for

identification and authentication
14 sicwww computing center
15 vpf vice president for education

Table 1: EPFL SiteRank
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Some sites, for example daawww.epfl.ch, which is a site containing ad-
ministrative information on the school, have not a standard index page and
can thus not be directly accessed at the top site level. However, there are a
large number of Web documents contained in its subdirectories, for example
http://daawww.epfl.ch/daa, and thus its resulting SiteRank is not low at all.

One of our central ideas when using SiteRank is the possibility to use different
rankings obtained from different contexts, sources and ranking methods. Each
of the rankings represents a different interpretation of the concept of importance
on the Web. To our knowledge exploiting this possibility for producing different,
potentially personalized rankings has not been studied in the literature.

In order to explore the potential of such an approach we produced an al-
ternative ranking of the schools’ Web sites in Table 2 by using Google. We
searched on Google using the keyword ”EPFL”. As ”automated queries” are
not allowed to be submitted to most of the commercial search engines5 [9] [11],
we manually submitted the keyword ”EPFL” to Google, and gathered the top
search results6. We then sieved the entries by only keeping the top 15 URLs site
homepages found on the EPFL site. Unsurprisingly, we actually find that almost
all the returned top entries are site homepages except for one, the Advanced
Instant NT Password Cracker made by the lab of security and cryptography [17]
at http://lasecpc13.epfl.ch/ntcrack/, probably because of the popularity of this
tool. We compare the resulting list with our SiteRank based on the local campus
Web graph.

A comparison of these two tables reveals several interesting facts:

1. In the Google result, two homepages (ltswww, and liawww) are only listed
by their URLs and no text summary is attached, which implies that their
page content has actually not been indexed by the search system7. Among
them, only liawww set up a robots.txt file which merely disallows the
crawling of cgi-bin files and a person’s homepage. Such inaccuracy of
information is a phenomenon that we have frequently observed for huge
centralized search engines.

2. Moreover, three highly ranked homepages dmawww, dawww, dmtwww
in the Google result were actually no longer used as the homepages of
their units from late 2002 as the result of an academic reorganization in
the school. Users inside the school should no longer use them to gather
recent or official information. They are likely to be still ranked highly
by Google because they are still referred to by many other Web pages
of Web sites outside or even inside of the campus. This is another com-
mon phenomenon, that is hard for centralized search engines to address:
information is often diffused or propagated at a very slow pace.

3. In the result based on the local Web graph, the entries appear to be
more reasonable as most of them are notably the homepages of different

5In Google’s terms, ”sending automated queries” includes, among other things: using any
software which sends queries to Google to determine how a Web site or Web page ”ranks”
on Google for various queries; ”meta-searching” Google; and performing ”offline” searches on
Google. Also the company asks people ”Please do not write to Google to request permission
to ’meta-search’ Google for a research project, as such requests will not be granted.” [9]

6Search done on November 4, 2003, Tue..
7You get to know this because you do not find a ”In Cache” link below or the cache is

empty.
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Order Google Description
1 www campus portal
2 ligwww virtual reality lab
3 dmawww department of mathematics
4 icwww school of comp. & comm. sciences
5 visiblehuman visible human server
6 ltswww signal processing institute
7 library school central library
8 gnuwin building gnu softwares for win
9 lslwww logic system lab
10 dawww section of architecture
11 liawww artificial intelligence lab
12 dmtwww department of microtechnique
13 lglwww software engineering lab
14 asl autonomous systems lab
15 plan campus map

Table 2: Search ”EPFL” on Google

organizational units. For internal users, this would be a perfect image of
the site importance and corresponding page importance. But for external
users, it is usually not. So obviously, a centralized search engine based on a
single ranking scheme cannot serve the needs of two groups of users at the
same time. And neither group’s preference is trivial or can be neglected.

We have to keep in mind that the comparison above does not imply that one
of the two rankings is better than the other for the following reasons:

1. The two rankings are based on different data sets. The Google ranking
should be based on a recent crawl (presumably in October of 2003) of
the EPFL campus Web. One of the limitations of crawling the Internet
is that restricted Web sites are only accessible through the Intranet. On
the other hand our SiteRank does not include the effects of external pages
pointing to EPFL pages and it is not fully complete yet. How much this
affects the ranking is an issue that requires further investigation.

2. A comparison of search results from Yahoo, AllTheWeb [10], and WiseNut [18]
using the same query keyword ”EPFL” would reveal that the results from
different search engines are quite different, both with respect to results
returned and ranking. This is expected as different search engines employ
different ranking strategies.

These observations support our hypothesis that using SiteRanks might be an
interesting approach, not only to realize a decentralized search framework, but
also for the sake providing more meaningful rankings for specific usage contexts,
by combining different site rankings and different local rankings.

3.4 PageRank in Relation to SiteRank

Our third set of experiments was conducted for elucidating the relationship
between a document’s PageRank and the SiteRank of the Web site the document
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Figure 3: PageRank vs. SiteRank

resides on. We want to know if the intuitive assumption that importance of
Web documents and Web sites is correlated, holds and in which form. In the
following, when we say a document is important in a general sense, we refer to
its PageRank; when we say a Web site is important in a general sense, we refer
to SiteRank.

In Figure 3, we display all (PageRank, SiteRank) order pairs. For example,
if a document’s PageRank order number is 1 which means it is ranked as the
top 1 page, and the SiteRank order number of its owner site is also 1 which
means its owner site is ranked as the top 1 site, the point (1, 1) is drawn in the
diagram.

One can derive from this figure the following observations:

1. Highly ranked pages are distributed both at highly ranked Web sites and
lowly ranked Web sites. This is not surprising however since even a highly
ranked Web site like any well-known news agency Web portal could contain
many less important pages which would not have very high PageRank
values.

2. For several Web sites there are some prominent stripes in this diagram.
They are in fact the documents having the same PageRank values. Since
each page occupies one position in the rank list, they together form a
stripe. They tend to appear in Web sites with higher SiteRanks as these
sites tend to have a larger number of documents.

As Internet users tend to only notice the existence of highly ranked results
from search engines, we specifically look at the distribution of top ranked docu-
ments on the Web sites. We show the diagram of the 1000 documents with the
highest PageRank’s8 together with their corresponding Web sites in Figure 4.

8Please note that actual search engines return results ranked not only by PageRank, but
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Figure 4: PageRank vs. SiteRank for the Top 1000 documents

There, we see that almost all of the 1000 top ranked documents are located
at the approximately top 90 sites. Furthermore, most of the top 100 documents
are located at the top 30 Web sites. It appears as if there exists acutally a
correlation between a page’s rank value and the SiteRank of its owner. The
stripe in this figure is the result of the same effect described for last figure.

It would be helpful to apply some standard method of computing the cor-
relation between two vectors, such as Pearson’s correlation coefficient, to study
the correlation between the documents’ PageRank values and the corresponding
SiteRank values of their owner sites. However, such a method cannot be sim-
ply applied here as it assumes that both variables are approximately normally
distributed and their joint distribution is bivariate normal. This assumption
does not hold in our problem setting since we have shown that both the Page-
Rank and SiteRank follow a power-law distribution. Furthermore, Spearman’s
correlation is not suitable here either since the sizes of the 2 ranking vectors
are different. Even though, we can make non-quantitative observations on the
relationship in between which is exhibited in Figure 5.

In Figure 5, the y dimension represents the SiteRank order number of a
Web site, and the x dimension the lowest PageRank order number among all
the Web documents on this particular Web site. The trend is very clear: the
lower the SiteRank order number of a Web site (thus it’s a highly ranked site),
the lower the lowest PageRank order number of the documents (thus a highly
ranked document) on the same site.

Based on the experimental results and observations above, we believe our
assumptions below are very reasonable:

1. Many pages of an important Web site are also important.

usually a composite rank value also related to keyword matching, etc..
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Figure 5: SiteRank vs. PageRank: minimal PageRank order numbers among
the belonging documents of a Web site.

2. If a Web site has many important pages, it’s highly probable that it is an
important Web site.

Please note that these two statements are not tautological. If these state-
ments hold true in a general sense or even if it is only true for most instead
of all of the cases, we could safely distribute the weight of a Web site to its
documents, proportional to their local weights, and use these distributed page
weights to approximate the global ranking of documents. In the next section,
we will present our preliminary results of such an attempt which shows that
this approach is actually very promising for decentralized rank computation in
a distributed search system.

4 SiteRank for Decentralized
Rank Computation

We want to distribute the task of computing Web document ranking to a set
of distributed peers each of which crawls and stores a smaller fraction of the
Web graph. Instead of setting up a centralized storage, indexing, link analysis
system to compute the global PageRank of all documents based on the global
Web graph and document link structure, we intend to have a decentralized
system whose participating servers compute the global ranking of their locally
crawled and stored subset of Web based on the local document link structure
and the global SiteRank. For the sake of clarity, we call each of the participating
servers in such a decentralized search system a member server.
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4.1 SiteRank in a Big Picture

To fulfill our aim, we propose a decentralized architecture for search systems [23].
We decompose our computation of the global ranking for Web documents into
three steps: the computation of SiteRank, the computation of local ranking of
Web documents, and the application of the ranking algebra [1] to combine both
rankings to produce the final global ranking.

We introduced a formal, algebraic framework for rank composition in [1], and
demonstrated by a case study the utility of this approach to produce different
forms of rankings. A key operator in this algebra is the folding operator which
allows to combine site and local rankings into global rankings. We give a brief
overview of this novel operator here, and refer the readers to [1] for the complete
specification of the ranking algebra.

In order to operate with rankings at different abstraction levels, we introduce
partitions of all Web documents. For example, PS is a partition of all documents
at the site level, whereas P0 is a partition at the individual document level. A
ranking can the be defined over a subset of the elements of a partition. In order
to compare rankings at different abstraction levels we introduce a covering re-
lation to relate partitions at different levels of granularity, e.g. PS À P0, which
expresses that each element of P0 is a subset of some element of PS . A covering
vector RPS

P0
provides a partial relation among the elements of the coarser parti-

tion PS , and (partial) rankings at the finer partition P0. Thus a covering vector
represents the relationship used to combine site and document rankings. The
prototypical case is where the document ranking associated with one element
s ∈ PS ranks exactly all the documents contained in s so RPS

P0
(s)(d) is then

the ranking for the document set d, which contains a single document, using
the ranking associated with sites. However other more general cases are not
excluded. Given a covering vector and a site ranking RPS

the folding operation
is then defined by:

R∗P0
(d) =

∑

d∈P0, s∈PS

RPS
(s) ∗RPS

P0
(s)(d)

such that d ⊂ s, RPS

P0
(s)(d) and RP0(s) are defined.

The ranking R∗ needs to be normalized to obtain the result of folding
FPSÀP0(RPS

P0
, RP0). More details on the complete algebra and its use are found

in [1]. In this paper we focus on how to make use of SiteRanks in such a setting.
A member server can be a dedicated machine that crawls part of the Web.

It can coexist in a Web server and compute the global document ranking for
its own served Web documents. However, we need to assume that the SiteRank
computation result of all Web sites in a Web graph, whose global document
ranking is to be computed, is known to all member servers. This is reasonable
as the number of Web sites even of whole Internet is estimated to be only at
the magnitude of a dozen of million [4]. Thus the computation of the SiteR-
ank of such a Web-scale SiteGraph is fully tractable in a low-end PC machine.
Additionally, we assume that such a global SiteRank vector does not fluctuate
very drastically such that it makes sense to perform such a global scale SiteRank
computation infrequently and to share the result among all the member servers.

We provide a small comparison between the computation cost for the Site-
Rank and the PageRank. If we take the EPFL campus Web as an example,
a typical SiteGraph matrix MS requires about (591/2259102)2 = 6.8 × 10−6%
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memory or disk space as compared with the DocGraph. Moreover, we can use a
2-byte integer to represent every site, whereas we have to use at least a 4-byte
integer or even a 8-byte integer for documents, this leads to another 50% or 25%
saving of memory size or disk space. On the other hand, the rank computation
of a matrix of size 591 can be easily performed in seconds, e.g. using a tool like
Mathematica.

4.2 Case Study

We study the behavior of one specific member server in our decentralized search
architecture. It crawls sicwww.epfl.ch, the home of the computing center (280
documents) and sunwww.epfl.ch, the support site for SUN machines (21685
documents) of our campus Web. We will compute the document ranking for
these two sites to be studied. In order to bring in effects of external links, we
also include the campus portal www.epfl.ch (2838 documents) as a reference.
In all the computations we use the PageRank algorithm with different sets
of documents to be computed. We compute the following different document
rankings for the documents belonging to these two Web sites:

1. Ranking of all documents of the campus, which is used as a baseline. We
compute the PageRank of all documents in the campus Web and project
the result to the set of documents belonging to one of our selected sites
to obtain the campus ranking. All the following ranking results will be
compared with this baseline.

2. Subset ranking which is obtained by computing PageRank on the docu-
ments belonging to one of the above three Web sites including the reference
site and then projecting the result to the documents of the two selected
sites.

3. Tinyset ranking which is the result obtained by only selecting the doc-
uments belonging to the two selected sites and applying the PageRank
algorithm to them.

4. Random ranking where each document is assigned a random rank value
to keep the sum of all rank values 1.

5. Composite ranking: Each one of the two selected Web sites first computes
its own local PageRank based only on its own local document set. This
local ranking is then combined with the rank weights endorsed by external
links originating from the other two sites. External Web links are weighted
by the SiteRanks of their source Web site.

The distances between the last four ranking vectors and the baseline vector
are shown in Figure 6. The distance measure we use is a weighted Spearman’s
Footrule:

F (R0, R1) =
n∑

i=1

w0(i)w1(i)|R0(i)−R1(i)|

In the formula, Rj , j = 0, 1 are the two ranking vectors to be compared.
Rj(i) is the rank order of document i. Since users mostly care about top listed
documents we assign 90% of the weight to the T top-listed documents for T < n,
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i.e. wj(i) = 0.9
T for 1 ≤ i ≤ T and wj(i) = 0.1

n−T for t + 1 ≤ i ≤ n. When T = n,
wj(i) = 1

n for 1 ≤ i ≤ n.
One can observe that as soon as a larger number of top-ranked documents is

taken into account, the composite ranking approximates the rankings computed
on the selected subsets. This is an interesting result, since the composite rank-
ing is performed in a distributed manner, making use of SiteRank, computing
separate rankings for each of the three subdomains involved, whereas the subset
and tinyset rankings can be considered as corresponding to a PageRank ranking
based on the union of the selected subdomains, taking into account cross-site
links. This shows that by composition one can obtain at least as good results in
a distributed manner as with global ranking using the same information. Also
interestingly, the result of the composite ranking appears to be worse if only
the very few first result documents are considered. However, by inspecting the
results in more detail, one observes that these results are actually qualitatively
better. In the composite ranking more meaningful URLs, such as homepages of
organizational units are included, while the global rankings return in particular
pages, such as JDK documentation as the top ones, simply because they heavily
cross-link to each other.

5 Related Work

Many previous studies on the structure and the distribution properties of the
Web as a graph have been performed [16, 5]. Different snapshots of the Web
have been investigated to find that the in-degree distribution can be described
by the function ci/k2.1 where k is the in-degree number and ci is a normalization
constant so that the fractions sum to 1. In parallel, the out-degree distribution
can be approximated by the function co/k2.7 where k is the out-degree num-
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ber. Such distributions are known as the power-law of the Web [7]. Recent
research [21] found that not only the page in-degree, page out-degree, but also
the PageRank values follow this power law as well. We go one step further in
our work to uncover that actually the SiteRank of Web sites in a Web graph
also follows the power-law.

Obviously the work we presented here is tightly related to the rank compu-
tation for Web documents. Ever since the birth of PageRank, the method and
algorithm for computing the ranking or degree of importance for Web pages has
become an attractive and important research topic. Many recent results exist.
Abiteboul et al. devised a way of performing on-line page importance compu-
tation [2]. The application of the PageRank algorithm to Peer-to-Peer systems
was also proposed [22] by Sanharalingam et al.. However, in their approach they
just replace the cost-intensive iterated matrix multiplication, by a slower on-line
propagation and integration of the rank values of individual peers’ collection of
documents. This approach would suffer from sensitivity with respect to the
choice of initial rank values, slow convergence because of network connection
delays, and the huge number (tens or even over a hundred million) of messages
that have to be generated to forward the rank information. We looked at an ap-
proach of how to perform PageRank computation incrementally for ephemeral
documents those who come into being in between two consecutive crawls of the
Web [24].

In addition to the question of how to compute the ranking in different dis-
tributed architectures, many methods for speeding up the original PageRank
algorithm have been proposed [8, 13, 12]. For example, BlockRank [14] makes
use of the block structure of Web data, but it is still a centralized algorithm
to compute the PageRank, which is radically different from our decentralized
approach. In contrast, the work we present in this paper is based the SiteRank
rank for Web sites and as such takes advantage of preexisting structures in the
Web graph.

Hyperlinks among Web sites were also studied [4] to reveal relationships
among them and the properties of the host link structure, e.g., Zipfian distribu-
tions of weighted host in-degree and out-degree at this coarser host granularity,
the average degree of separation, linkage of hosts in different top-level (including
country) domains, etc.. Yet to the best of our knowledge, the study of the Web
SiteGraph has not been previously used in the computation of Web document
rankings for search engines. Our work shows that the SiteRank distribution also
follows the power-law and then explores the possibility of how to apply it in a
decentralized framework [23] to compute the global Web document ranking.

6 Conclusion and Future Work

In this paper, we first identify different abstractions for the Web graph depend-
ing on the granularity. We introduce DocGraph and SiteGraph at the level of
Web documents and the level of Web sites respectively. After that we present
the algorithm to compute the SiteRank for a SiteGraph which is a variant of
the PageRank algorithm. We then study the graph properties of our crawled
campus Web. We find that the PageRank distribution follows the power-law
which is similar to recent results reported by other researchers. More interest-
ingly we find that also the SiteRank roughly follows the power-law as well, with
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a different exponent though. We then reveal some useful correlation between
the PageRank and SiteRank. Based on these results and observations, we ar-
gue that decomposing the task of global Web document ranking computation
to distributed participating member servers of a decentralized search system is
a promising approach since we can make use of the SiteRank information to
overcome the limit of a missing global view. At the same time, by doing the
computation in such a complete decentralized fashion, the cost is largely reduced
while we keep good quality of the ranking results.

Previous work [6] on the self-similar behavior of the Web (properties of the
global Web are reflected in sub-domains and smaller subgraph snapshots) pro-
vides some basis for our experiments. Thus we think that the case study related
to a campus-scale Web is to a certain degree representative to demonstrate the
relationship between PageRank and SiteRanks of the Web sites that the doc-
uments belong to. However, an obvious future work is to test the idea with a
huge scale data set, for example, the SiteGraph of the Swiss Web, or even the
whole Web. With a sufficiently large snapshot of a Web subgraph, we will also
no longer have the problem of having a limited number of Web sites, so we can
remove the dangling pages as what the original PageRank algorithm did in a
preprocessing step to see if the results will be of much difference.

Our work shows that the SiteRank of a Web subgraph also exhibits the
property of the power-law though with a lower power parameter of about 0.95.
As this is the first report on a SiteRank power-law parameter, we look forward
to refine the result in future experiments with new data sets. Another related
issue is the Web growth model. Previous research on such models focused on
how a new Web page is added to the existing Web graph, however this is not
the real situation in the Web. On the contrary, Web administrators have to
take account of the set up of subdomains and corresponding Web sites before
pages are created and added. Thus, we may study Web growing models at this
higher granularity of Web sites. In addition, formal methods will be required
to study the correlation between the PageRank and SiteRank vectors.

Further research related to existing major search engines would also be of
interest. The subsets of documents covered by different Web search engines
vary widely. It was reported that only 1.4% of the total coverage Web indexed
by all four major search engines (HotBot, AltaVista, Excite, and Infoseek) in
late 1997 [3]. Later research in 2002 [19] shows that in 141 hits of four small
searches run on ten different engines, only 30 were found by two. Thus even
using the same algorithm PageRank, the resulting ranking of the documents in
respective search engines would be different. However, it would be a reasonable
assumption that the sets of Web sites crawled by the search engines would ex-
hibit a substantially higher overlap, since the number of sites is two magnitudes
lower than that of documents. Thus SiteRanks computed on several existing
commercial search engines may not be much different from each other. It would
be interesting to compare such ranking characteristics among search engines.

References

[1] Karl Aberer and Jie Wu. A framework for decentralized ranking in web
information retrieval. In Web Technologies and Applications: Proceedings
of 5th Asia-Pacific Web Conference, APWeb 2003, volume LNCS 2642,

18



pages 213–226, Xi’an, China, September 2003. Springer-Verlag. September
27-29, 2003.

[2] Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adaptive on-line
page importance computation. In Proceedings of the twelfth international
conference on World Wide Web, pages 280–290, Budapest, Hungary, 2003.
ACM Press.

[3] K. Bharat and A. Broder. A technique for measuring the relative size and
overlap of public web search engines. In Proc. of the 7th World-Wide Web
Conference (WWW7), 1998.

[4] Krishna Bharat, Bay-Wei Chang, Monika Henzinger, and Matthias Ruhl.
Who links to whom: Mining linkage between web sites. In Proceedings of
the IEEE International Conference on Data Mining (ICDM ’01), San Jose,
USA, November 2001.

[5] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Srid-
har Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener.
Graph structure in the web. In Proceedings of the 9th international World
Wide Web conference on Computer networks : the international journal of
computer and telecommunications netowrking, pages 309–320, Amsterdam,
The Netherlands, 2000. North-Holland Publishing Co.

[6] Stephen Dill, S. Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan,
D. Sivakumar, and Andrew Tomkins. Self-similarity in the web. In The
VLDB Journal, pages 69–78, 2001.

[7] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In SIGCOMM, pages 251–262,
1999.

[8] Taher Haveliwala. Efficient computation of pageRank. Technical Report
1999-31, Stanford University, September 1999.

[9] Google Inc. Terms of service. http://www.google.com/terms of service.html,
visited on 13th of Oct. 2003.

[10] Overture Services Inc. All the web search engine.
http://www.alltheweb.com/.

[11] Overture Services Inc. Terms of use.
http://www.alltheweb.com/info/about/terms of use, visited on 13th
of Oct. 2003.

[12] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Extrapolation meth-
ods for accelerating pagerank computations. In Proceedings of the Twelfth
International World Wide Web Conference, 2003.

[13] Sepandar Kamvar, Taher Haveliwala, and Gene Golub. Adaptive methods
for the computation of pagerank. Technical report, 2003.

[14] Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and Gene
Golub. Exploiting the block structure of the web for computing pager-
ank. Technical report, 2003.

19



[15] Jon Kleinberg. Authoritative sources in a hyperlinked environment. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 1998.

[16] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Ra-
jagopalan, and Andrew S. Tomkins. The Web as a graph: Measurements,
models and methods. Lecture Notes in Computer Science, 1627:1–17, 1999.

[17] EPFL LASEC. The security and cryptography laboratory (lasec).
http://lasecwww.epfl.ch/.

[18] LookSmart Ltd. Wisenut search engine. http://www.wisenut.com/.

[19] Greg R. Notess. Search engines statistics: Database overlap.
http://www.searchengineshowdown.com/stats/overlap.shtml, visited on
10th of Nov. 2003.

[20] Larry Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pager-
ank citation ranking: Bringing order to the web. Technical report, Stanford
University, January 1998.

[21] Gopal Pandurangan, Prabhakara Raghavan, and Eli Upfal. Using PageR-
ank to Characterize Web Structure. In 8th Annual International Computing
and Combinatorics Conference (COCOON), 2002.

[22] Karthikeyan Sankaralingam, Simha Sethumadhavan, and James C.
Browne. Distributed pagerank for p2p systems. In Proceedings of the 12th
IEEE International Symposium on High Performance Distributed Comput-
ing (HPDC’03), pages 58–290, Seattle, Washington, USA, June 2003. IEEE
Computer Society. June 22-24, 2003.

[23] Jie Wu. Towards a decentralized search architecture for the web and p2p
systems. In Proceedings of the Workshop on Adaptive Hypermedia and
Adaptive Web-Based Systems (AH2003), The fourteenth conference on Hy-
pertext and Hypermedia, HyperText 2003, Nottingham, U.K., August 2003.

[24] Jie Wu and Karl Aberer. Incrementally ranking ephemeral web documents
in search engines. In Mathematical/Formal Methods in IR, Workshop in
SIGIR’03, Toronto, Canada, August 2003.

20


