
The Concepts of IEC 61346 Applied to a Software
Architecture for Automation

Technical Report IC/2004/20

Rodrigo Garcı́a Garcı́a
Software Engineering Laboratory

Swiss Federal Institute of
Technology Lausanne (EPFL)

Ecublens
CH-1015 Lausanne, Switzerland
E-mail: rodrigo.garcia@epfl.ch

Esther Gelle
Information Technologies Dept.

ABB Switzerland Ltd
Corporate Research

Segelhof 1
CH-5405 Baden-Dättwil

E-mail: esther.gelle@ch.abb.com

Alfred Strohmeier
Software Engineering Laboratory

Swiss Federal Institute of
Technology Lausanne (EPFL)

Ecublens
CH-1015 Lausanne, Switzerland

E-mail: alfred.strohmeier@epfl.ch

Abstract

The IEC 61346 standard establishes general principles for structuring the information of technical systems. The present
document discusses the ideas shown in the standard, emphasizing the fact that some parts of it are ambiguous and can lead to
different interpretations of the basic concepts. Consequently, we derive a concrete interpretation of the standard that tries to remove
the ambiguities. We will apply this interpretation to the development of an industrial software platform for building automation
applications.



1

The Concepts of IEC 61346 Applied to a Software
Architecture for Automation

Technical Report IC/2004/20

I. THE STANDARD IEC 61346

A. Introduction

The IEC 61346 standard [1][2][3][4] describes how to
structure the information relative to a technical system. It is
based on the idea that a system can be seen from different
points of view and that the objects in a system can be
organized hierarchically according to these points of view. The
standard defines three key concepts among others. These are
object, aspect and structure. It employs these concepts and
a special notation to build up a reference designation system
that identifies each object in a system.

A standardized description of a technical system such as a
plant is useful in the context of large one-of-a-kind system
projects where several integrators are involved. It supports a
common understanding of the system itself and provides a
basis on which integrators can discuss their proposed solutions.
A common understanding of the technical concepts in turn
eases integration of parts coming from different industries and
it lays the grounds for standardized data exchange. Implicitly
this requires the standard to be highly flexible in order to
accommodate the description of a technical system under
various aspects and viewpoints. From many industries the
need for a flexible support during engineering, operation and
maintenance has been pronounced. In the following, we often
refer to the example of a plant as a highly complex technical
system. In the engineering phase, the standard should help
to manage the complexity of a technical system such as a
plant in a top-down fashion. At the same time the result
of the engineering process should be the documentation of
the technical system. Engineers typically define and organize
a technical system into subsystems and components before
knowing their implementation. That is, functional modules
are identified in the process, which later may be reused. The
order fulfillment of a plant includes more than just product-
oriented information, namely information on function but also
on location of the various parts. Engineers have a need to
switch between different types of information or structures that
describe the different views or aspects of the system during
engineering, installation and commissioning. In the process-
ing of plant orders typically function, location and product-
oriented information has to be managed simultaneously. In this
context it is nevertheless important to maintain consistency
between the various views. In the operation and maintenance
phase of a plant, the distinction between occurrences, types
and individuals is important [5]. It must be possible to
retrieve and log operational information and attribute it to
the correct occurrence and eventually also assign it to the

correct owner of the information. A reference designation
mechanism helps service engineers to identify the type and
version of a specific occurrence and thus to provide the correct
repair action with a fitting repair part. As a consequence,
the standard has to provide open-ended structuring principles.
An open-ended approach supports reuse of defined objects
while maintaining their internal structure and designations. For
example, a defined and documented water pumping system
from an industrial plant could be reused in a power plant if the
requirements on both subsystems are similar. One just would
have to concatenate the defined system with the structure of
the power plant. Note that such a reuse is not possible in the
common power station designation system KKS (German for
Kraftwerks-Kennzeichen-System [6]) for power plants, which
defines absolute levels and has a fixed designation structure.
Using KKS it is not possible to reuse the water pumping
system from an industrial plant (where KKS is not applied)
in a power plant, even if they would happen to be technically
identical. The documentation would have to be re-done and the
designations would have to be changed. Like IEC 61346, KKS
defines a reference designation system for uniquely identifying
equipment in a power plant. KKS defines three aspects for each
object in a plant: the process related, the point of installation,
and the location designation. As stated, KKS defines absolute
codes, i.e. the function codes describing process related aspects
are fixed, A standing for Grid and Distribution Systems, B for
Power Transmission, etc.

B. Basic definitions of IEC 61346

An object, as defined by the standard, is an entity treated
in the process of design, engineering, realization, operation,
maintenance and demolition. We can summarize this definition
by saying that an object is an entity of interest in the life-cycle
of a technical system.

An aspect is defined as a specific way of selecting informa-
tion on or describing a system or an object of a system (where
a system is a set of interrelated objects). We can then see an
aspect as a particular view of a system or object.

Structures are a way to organize the objects of a system by
constituency relationships. Each structure is built around a par-
ticular aspect or view of the objects that compose the system.
The standard considers three types of aspects in particular,
yielding three corresponding structures: the function-oriented
structure, the product-oriented structure and the location-
oriented structure. The standard allows for concrete imple-
mentations to consider different aspects suitable for a specific
technical field and to define the corresponding additional



2

Structure

Product−oriented
Structure

Function−oriented
Structure

Location−oriented
Structure

Fig. 1. The three structures defined in IEC 61346.

Turn light on

Turn light off

Shed light

Generate power

Carry power

Emit signalling light

Push button

Bulb

Battery

Wire

Light system

Structure
Function−oriented

Structure
Product−oriented

−W1

−G1

−L1

−B1=Q1

=Q2

=L1

=G1

=W1

−G1 −L1

−W1

−B1

−

+

Fig. 2. Two views of a simple lighting system using structuring.

structures, but it only describes the three already mentioned
(see Fig. 1).

Structures are graphically represented as trees, where the
nodes of the tree that are up in the hierarchy are constituted
by their children nodes. In Fig. 2, we see an example of a
simple lighting system on which structuring has been applied.
In this simple case, we have a one to one mapping between
the two aspects of most objects: Shed light goes with Bulb,
Generate power goes with Battery and Carry power goes with
Wire. However, even in this simple example, there is a case
of a two to one mapping. In effect, the product Push button
performs two system functions, namely Turn light on and Turn
light off. In general, there is a many to many mapping among
the aspects in the strucures.

Contrary to views in other notations, the graphical repre-
sentation of each one of the three structures is the same. In
UML [7], for instance, different symbols and artifacts are used
in the construction of the static view, the physical view or
the use case view. In a standard about system architectures,
the IEEE 1417 [8], the architectural description of a system
is also composed of different views. A view in IEEE 1417
shows a system from the perspective of a set of concerns
(areas of interest). A viewpoint specifies the set of conventions
and artifacts used to develop an individual view. The standard
IEEE 1417 provides us with the basis to build our own views
of a system. In IEC 61346, all the views use tree-like structures
showing constituency relations.

The reference designation of an object is built by concate-
nating the identifiers of its parent elements in the structures.
Transitions among the structures allow the reference designa-

tion to cross structure boundaries. Each identifier is composed
of a prefix, a letter code and a number code. Prefixes are
established for the functional (=, equal sign), the product
(-, minus sign) and the location (+, plus sign) structures.
For an extended discussion about reference designations, see
section 5 of IEC 61346-1. Starter =W2M1Q1 is an example
of a reference designation in Fig. 3.

II. IMPORTANT CONCEPTS AND THEIR LIMITATIONS

A. The Definition of Object

In an additional note, the standard explains that the entity
mentioned in the definition of object may refer to a physical or
non-physical “thing” or to a set of information associated with
it. In our opinion, this definition is too vague. The standard
aims at a wide variety of technical systems so it seeks for
generality in its definitions. However, this particular definition
suffers from a recursion problem. According to it, an entity can
be a set of information related to itself. Conceptually, this is
clearly a circular definition. The set of information associated
to an entity is not the same thing as the entity itself. The
representation of an object or the information related to an
object should not be confounded with the real-world object it
represents.

In an additional note to the definition of system (see note 2
in section 3.2 of IEC 61346-1), it is said that a system that is
part of another can be considered as an object. From this note,
it seems that subsystems and objects are interchangeable, so
maybe there is no need of two separate concepts. In any case,
we consider that the definition of system is useful to clearly
state that one is talking about a group (or set) of objects.

B. Content of the Structures

The standard tries to clarify from the beginning what are the
elements that the structures should hold. The examples shown
in the different parts of the standard exhibit however disparate
criteria for choosing the nature of the nodes that compose the
tree-like structures.

The question is whether it is the aspects (views) of the
objects which should be represented in the structures or
whether the objects themselves should be the components of
a structure. In the former case, each structure would hold the
aspects that correspond to it (i.e. a function-oriented structure
would hold function names). This option is supported by
section 4.5 of IEC 61346-1, where it is said that an aspect
of an object can be described in terms of the same aspect of
other objects. In the latter case, objects should be organized in
the structure according to a particular aspect (i.e. an object in
a location-oriented structure would contain the objects that
are placed inside it). This latter interpretation works well
with product-oriented and location-oriented structures, but not
with function-oriented structures. It is conceptually difficult
to think that an object can be constituent of another object
functionally. It is even more difficult if the function names are
not shown explicitly. Some examples in the standard follow
the first option whilst others use the second. There are even
some examples which mix the two options altogether.



3

=W2

Starter

Conveyor belt function

Conveyor belt

Conveyor belt monitor

Motor drive

Local control

Safety switch

Emergency stop

Motor

=B1

=W1

=M1

=Q1

=S1

=M1

=S2

=S3

Fig. 3. Extract from Figure D.3 of IEC 61346-1.

The most prominent example of confusion due to these two
ways of interpreting the contents of the structures is made
explicit in figure D.3 of IEC 61346-1. In this figure (see
extract in Fig. 3), we see the functional decomposition of a
material-handling plant. This function-oriented structure holds,
at the same time, the two types of structure elements we
have seen: in the figure we can see a Conveyor belt function
(functional aspect) and a Conveyor belt (physical object).
Moreover, the figure is not only mixing the two kinds of
elements, but it is also following a convention for naming
the elements in the function-oriented structure that is against
the recommendations of the standard itself. Indeed, there is an
example for naming objects according to the function aspect
in section 5.4.1 of IEC 61346-3, where it is recommended
to use “object for transporting from place A to B” instead
of “conveyor belt”. The advantage of this convention is
that, in this way, the function aspect is not attached to a
concrete product implementation, but it is exactly the opposite
of what we find in the figure of IEC 61346-1. However,
even if IEC 61346-3 recommends this advantageous naming
convention, it promotes at the same time the use of objects to
populate the structures. It talks about objects based on tasks
as the elements that compose the function-oriented structure.
This adds more confusion to what really are the elements of
the structures, whether they are either aspects or objects.

The two different interpretations have a different impact on
each of the three types of structure that the standard proposes.
This is due to the diverse nature of the structures. Although
the standard shows them as if they had a certain symmetry,
they cannot be always treated in the same way. Therefore, we
present a summary of the implications of choosing aspects or
objects as the constituent elements of the structures (see also
Table I).

1) Function-oriented structure.
� Aspects: The functional aspect of an object is

indeed a function (task or activity). The structures
are thus populated with functions. The name of the
function is explicitly shown.

� Objects: The object is placed in the functional
structure because the activity it performs is impor-
tant for the plant. The name of the object is shown
and the function it performs is implicit. A variant of
this option appears in IEC 61346-3, where it talks
about objects based on tasks, raising tasks to the

Structure IEC 61346-1 IEC 61346-3
Function-oriented Functional aspect Object based on

of an object task or activities
Product-oriented Product aspect Object based on

of an object equipment or devices
Location-oriented Location aspect Object based on

of an object locations
Note: The examples shown in IEC 61346-1 do not conform to its interpretation.

TABLE I

INTERPRETATION OF THE ELEMENTS IN THE STRUCTURES.

category of objects. In that case, it is the name of
the task which is shown.

2) Product-oriented structure.
� In the product-oriented structure there is no signif-

icant difference if the elements of the structure are
aspects or objects. They represent a product in any
case.

3) Location-oriented structure.
� Aspects: The location is the the name of the place

or the coordinates where the object of interest is
located.

� Objects: The object is important because it deter-
mines a well defined space in the technical system,
so it is placed in the location structure.

The possible misunderstandings are, in fact, recognized
by the standard itself. A revealing note in section A.1 of
IEC 61346-3 (Annex A) states that both the object and the
aspect of an object are often described with the same terms
of function, product and location. This can sometimes lead to
confusion.

C. Transitions

An important part of the standard is the ability to relate
elements of the different structures. One can navigate from
one structure to another and thus designate an object by
means of different aspects. In principle, transitions seem the
ideal mechanism that would allow the engineer to obtain the
products that are involved in the realization of a specific task
or where they are located (see section 4.2 of IEC 61346-3).

However, the standard use transitions only as a method to
build reference designations and not to show the relations
between structures. The relations are supposed to exist and
to be known (otherwise the transition would be impossible)
but they are not directly shown. A transition in IEC 61346
goes from one aspect of an object to another aspect of the
same object and then selects a child from the selected aspect
(see Fig. 4). Our interpretation of transitions differs. We do not
select a child of the destination aspect, but rather the aspect
itself is considered the target of the transition. In this way,
we use transitions to get the relations among structures. See
section III-A for details.

The first part of the standard (IEC 61346-1) dedicates an
extensive discussion to the way transitions should be done. Let
us recall that, in this first part, the structures are supposed to
hold the aspects of the objects. The discussion treats, among



4

+B1 +B2

−A2−A1

Product−oriented structure

Location−oriented structure

−A2+B1 −A2+B2

Fig. 4. Transitions as defined in the standard.

other issues, the case of transitions to a structure where an
object has different aspects. For instance, an object can be
represented by one aspect in the product-oriented structure
and by two in the location-oriented structure. If a transition is
made from the product to the location-oriented structure, the
standard specifies how to unambiguously identify the concrete
representation in the location-oriented structure (see Fig. 9).

Part three of the standard (IEC 61346-3) only discusses
transitions briefly in section 6. There, the principle of con-
stituency used to build structures applies somehow to the
way transitions are done. For instance, a transition from the
function aspect to the product aspect is only possible if the
product completely implements the function. This kind of
restriction is not stated in IEC 61346-1. In fact, this constraint
eliminates the possibility of having ambiguous transitions like
the ones addressed by IEC 61346-1 (see again Fig. 9). It
reduces the applicability of transitions to those objects that
have a many-to-one mapping from one aspect to another. In
figure 12 of IEC 61346-3, where a transition is shown, it even
seems that the product aspect that completely implements a
function does not have to be a representation of the same
object that is represented by the function aspect (it can be a
higher-level object). This is in contradiction with IEC 61346-
1, where transitions are supposed to occur between aspects
of the same object. Moreover, the standard does not take into
account that, if a product implements a function completely,
all its superproducts will implement that function as well (see
our proposed constituency rules in section III-B). As a conse-
quence, a transition from the function-oriented to the product-
oriented structure could reach any of those superproducts, as
long as the function and the product aspects do not have to
represent the same object 1. We suppose that this is solved
by not propagating the implementation of functions to the
superproducts, but this point is not clarified in the standard.

Contrary to our interpretation, the interrelations between
structures that require a many-to-many mapping are not taken
into account as transitions in IEC 61346. These relations are
supposed to be stored in a database in computer implementa-
tions of the standard (see again section A.3).

1We see here a consequence of the imprecise definition of object in the
standard

Product−oriented
structures

Function−oriented
structure

.

.

.

Pasteurize milk

Fill tank

Heat water

Inject steam

Plate heat exchager

Jacketed vat

Fig. 5. Dependencies between structures.

D. Limitations of Structures

Structures, as defined in IEC 61346 only show constituency
relations (see the definition of structure in section 3.6 of [1]).
Transitions help to add more information by facilitating inter-
structure navigation. Still, there are other simple relations
among the elements of a function-oriented structure that
cannot be expressed with structures. We are referring here
to relations of precedence among functions. The fact that a
function must be executed before another cannot be shown in
a tree-like structure, which can only show the subfunctions.
This kind of information has to be provided with additional
documentation.

The structures do not take into account possible changes
in the location of objects (i.e. objects that move from one
place to another during system operation). The standard does
not say anything about objects that can change its position
in the system. The problem of how to model the products
manufactured by the plant is related to this problem of
product displacement. Moreover, the products which are being
elaborated in the plant are not finished products and they go
through several phases during fabrication.

The interdependency of structures is another limitation that
is not treated in the standard. The standard seems to assume
that each one of the structures can be developed independently
and that is not always true: structures are not completely
orthogonal. The contents of one structure will usually impose
some constraints in the contents of the others. It is often the
case that if one specifies functions in great detail, the lowest
level functions will be determined by the products used to
implement them. Let us see this with an example. Imagine
that we have a plant for milk processing and we want to kill
bacteria present in the milk with the help of pasteurization. We
have in our plant a pasteurizing vat, which consists of a tank
surrounded by circulating steam or hot water. The function
Pasteurize milk can then be decomposed into subfunctions
Fill tank, Heat water, Inject steam, etc. Imagine now, that we
decide to change the pasteurizing vat by a plate heat exchanger.
This device allows to pasteurize milk in a continuous way
and it is quicker than the vat. In this case, the main function
(Pasteurize milk) will remain the same, but its subfunctions
(which depended on the use of a jacketed vat) will have to
change.

The letter code system for reference designation shown in
IEC 61346-2 has also one limitation. It classifies objects in
terms of their main functionality and assigns them a letter



5

code according to this functionality. It also suggests possible
products that are suitable for performing the function. Thus,
this approach is valid for the elements in the function-oriented
structure and even for those in the product-oriented structure,
but it is not adequate for the elements in the location-oriented
structure. It would be good to have a better letter code
assignment for the elements that specify locations.

III. INTERPRETATION OF CONCEPTS IN THE DOMAIN OF

AUTOMATION

As we have seen, the generality of the concept definitions in
the standard and their multiple interpretations makes difficult
for an implementation to claim conformance (see [9]). Before
going any further, we decided to clarify the concepts we were
going to use for our own implementation.

Although we try to lose as little generality as possible, we
are limiting ourselves to a field of application of the standard.
The platform we are building is intended to model automation
plants, so we will impose some restrictions to the standard
appropriate for this domain. For instance, in the construction
industry environment, rooms could be considered as products.
For us, rooms will just be space delimiters, so they can only
be the location aspect of an object.

The standard supposes a certain symmetry among the struc-
tures it defines: they are all different views of the system. The
function aspect, the product aspect or the location aspect of an
object are not the object. They are just views of it. Although
we agree up to some extent with this affirmation, we do not
think that all three views can be equally related to a real-
world object. It is obvious that the product view has a much
closer relationship to the real object than the functional or the
locational views. This is true up to the point that the two words
are usually interchangeable in natural language: an object (or
product) implements a function and is placed somewhere.

We think that the terms used in IEC 61346-3 when it speaks
of objects based on tasks in order to refer to functional aspects,
objects based on equipment in order to refer to products and
objects based on spaces in order to refer to locations are an
abuse of terminology (everything is an object). We also reject
the idea of the object as a set of information, although when
we model it, we deal with information related to the object.
We conceive the object as something real that has an identity
by itself and we do not want to confuse an object with a
representation of it (as we said in section II-A) or with a
conceptual idea that only lives in the mind of the engineer. This
happens in section 5 of IEC 61346-4, for instance, where the
life cycle of an object is described. The document discusses the
creation of an object motor2 in the function-oriented structure
during the design process. In our opinion, the object is not
created, it is only the functional specification (a representation)
of the object. It seems that, in this case, the standard is not
making a clear distinction between objects in the model and
real-world objects.

For all the reasons explained above, we propose to modify
the definitions in the standard. Remember, however, that

2The name motor is used in IEC 61346-4 for designing an element in the
function-oriented structure. As we have seen in section II-B, this is not a good
choice for the name of an element in that kind of structure.

we are limiting ourselves to a concrete field of application:
automation plants.

� Object: Real-world entity relevant to the operation of an
industrial plant.

� Function: Activity performed by the objects in the plant.
� Product: Information about the of an object in the plant.
� Location: Representation of a well delimited portion of

space in a plant.

As opposed to the standard, which considers objects treated
in the process of design, engineering, realization, operation,
maintenance and demolition, we are only concerned with the
objects which are important for the operation of the plant. It is
up to the designer to decide which objects are relevant enough
to put them in the plant model. It is important to note as well
that we admit both physical and non-physical objects (such as
software programs) in our definition of object. In any case,
they refer to entities that exist in the real-world and not to
entities of a model.

We think that, in natural language, a product is basically the
same thing as an object. A possible difference is that a product
is normally associated to something that can be purchased
and typically identified by a serial number. For us, an object
can be a single product or logical assembly of products. In
the latter case, the object will not necessarily have an unique
serial number and it can be built by plant engineers rather than
purchased, but it is still a “logical product”. Because of this
reason, we are thinking about the possibility of changing the
name of the product-oriented structure and call it component-
oriented structure or assembly-oriented structure. These names
express better the real contents of the structure: not all the
elements in the product-oriented structure have to be products
but logical assemblies of products and parts of products. In
this paper, we keep the term product in this general sense
used by the standard. When we say that a product implements
a function, we are extracting a relation from our plant model
representing the fact that a real-world object is performing a
certain activity. In this way, we avoid the confusion: we use the
term product for the entities in the product-oriented structure
(model) and object for the real-world entities.

It is also important to note that many automation plants
generate manufactured objects as a result. When we talk about
objects, we do not refer to this kind of objects. They will not
be represented in the product-oriented structure since they do
not participate in the plant operation but are the result of it.
The figures related to the objects manufactured by a plant can
be, however, important for management. Therefore, a software
platform based on the standard should provide support for
handling these figures, but not within the product structure
because that is not its purpose.

A. Our Interpretation of Transitions

Transitions play a very important role in our interpretation
of the standard. They are not only useful for building reference
designations which include several structures, but also for
showing other inter-structure relations (e.g. show the products
that implement a function or the locations where products are
placed). Some parts of the IEC 61346 standard consider this



6

+B1 +B2

−A2−A1

Product−oriented structure

Location−oriented structure

+R2

−A2+R2+B2−A2+R2+B1

Fig. 6. The example of Fig. 4 with our interpretation of transitions.

latter functionality of the reference designation system apart
from transitions (see II-C). However, we think that transitions
are indeed the right mechanism to reflect these relations.

In IEC 61346-1, transitions are said to occur between two
aspects of the same object. As we have seen in section II-
C, the transition is finished when it designates a child node
of the target aspect (see Fig. 4 or figures 27, 28 and 29 of
IEC 61346-1). Transitions as in IEC 61346-1 cannot be used,
for instance, to retrieve the product that implements a function,
since they are considered by the standard as different aspects
of the same object3. Instead, the transition from the function-
oriented structure to the product-oriented structure will give,
as a result, a reference designation for one of the subproducts
of the product that implements the function. We think that this
is limiting the full power of transitions, so our proposal is that
transitions will be made between elements at the same level.
That is, a transition from the function-structure to the product-
structure will return a product that implements the function and
not one of its subproducts. See Fig. 6 for an equivalent to Fig. 4
but with our own interpretation of transitions. Since we make
transitions between aspects at the same level, the aspect +R2
of the example appears in the reference designations whenever
we want to reference +B1 or +B2 starting from -A2.

As a result of our interpretation of transitions, one can go
back and forth in a relation. In the example of Fig. 6, for
instance, the transition can be made either from -A2 to +R2 or
from +R2 to -A2. Nevertheless, reference designations should
not contain loops. If we take the same example, that would
mean that one should avoid the use of reference designations
like -A2+R2-A2+R2+B1 because they are redundant.

In our opinion, and regarding their feasibility, transitions
should always be possible from elements in the function-
oriented structure to the product-oriented structure. The op-
posite would mean that there are some unimplemented func-
tions in the plant. Only in the case that the plant model is
unfinished may some of these transitions not be available.
We differ from the IEC 61346-3 in this point, which has a
much more restricted view about what transitions are possible
(see again II-C). The same happens with transitions from
the product-oriented to the location-oriented structures. All
products must have been placed somewhere in the plant so

3It is not clear here whether the object should be given the same reference
designation in both structures.

Function−oriented
structure structure

Product−oriented
structure

Location−oriented

always always

not always not always

always

not always

Fig. 7. Possible transitions between structures.

these transitions should always be possible as well.
A consequence of the asymmetry in our interpretation of

the standard structures is that there is no direct transition
between the function-oriented and the location-oriented struc-
tures. Transitions between these two structures are nevertheless
allowed and transparent to the user. They are made indirectly
by means of the product-oriented structure. Thus, when the
user wants to know where are some functions located (a tran-
sition from the function to the location-oriented structure) we
interpret that what he really wants to know is where are located
the products that implement those functions. That is, we divide
the transition function–location into function–product–location
(see Fig. 7). The inverse happens with transitions from the
location-oriented to the function-oriented structure.

However, there are some transitions that are not always
possible. Let us imagine the case of a product delivered
with a set of subproducts. Maybe not all the subproducts are
useful to the plant operation but, since they come indivisibly
with the product, they will appear in the product-oriented
structure. If some subproducts do not implement any function,
a transition from the product-oriented structure to the function-
oriented structure will not be always possible. For instance,
let us consider a simple circuit board with four NAND gates.
The plant could use three of the gates for implementing a
logical function and the fourth gate could be left unused. In
that case, a transition from the fourth gate (in the product-
oriented structure) to the function-oriented structure would be
impossible. The same happens with the spaces defined in the
location-oriented structure of the plant. Some of them can be
empty of objects.

The IEC 61346 standard says that the single-level reference
designation of an element must be unique within the same
level in a structure. That allows the repetition of the same
single-level reference designation for other elements only in
other levels of the structure. The idea is that the full multi-level
reference designation of the element will always be different.
However, if the reference designation includes transitions, we
can have the same full multi-level reference designation for
different objects. Let us suppose, for instance, that the products
-T1-W1 and -T2-W1 implement the function =C2 in the
model shown in Fig. 8. If we build a reference designation
for these two products starting from the function-oriented
structure, both would have the same: =C2-W1. In order to
solve this problem, we suggest to go up into the hierarchy
of the destination structure until we reach an element with a
different single-level reference designation. All the hierarchi-



7

Function−oriented
structure

Product−oriented
structure

=F1

=C1

=C2

=G3

−T1

−Q1

−W1

−Q1

−W1

−T2

=C2(−T1)−W1

=C2(−T2)−W1

Fig. 8. Example of ambiguous multi-level reference designation.

+B1 +B2 +B1 +B2

−A2−A1

Product−oriented structure

(2)

Location−oriented structure

−A2(2)+B2−A2(1)+B1

(1)

Fig. 9. Resolving ambiguous references in the standard.

cally superior elements needed for uniquely designating the
transition target element will be enclosed in parenthesis. In
our example, that would mean to write =C2(-T1)-W1 for
one of the products and =C2(-T2)-W1 for the other. This
guarantees the uniqueness of the reference designation since,
by the construction rules of the structures, there will always
be a parent element whose single-level reference designation
will be different.

As discussed in section II-C, this problem is also treated
in IEC 61346-1, suggesting the identification of the exact
occurrence with a number in parenthesis (see Fig. 9 or
figure 26 of IEC 61346-1). We based our solution on that idea.
However, we have used the reference designation system itself
to solve the problem instead of using a single number whose
origin is not clear.

B. Properties of Structures

Following the discussion about transitions, we can state
some properties of the structures based on the constituency (“is
part of”) relationship of their elements. The basic properties
are the following:

1) If a product is located somewhere, all its superproducts
are located (at least partially) in that same place.

2) If a product implements a function, all its superproducts
are (indirectly) implementing that function.

3) If a function is implemented by a product, the implemen-
tation of its superfunctions also depend on that product.

4) If a location holds a product, all its superlocations hold
that product as well.

The properties of functions related to products and vice
versa can be derived from the basic properties. This is because
functions and products are related by means of products, as
seen in section III-A about transitions.

Function−oriented
structure

Product−oriented
structure

Enter Data

Process Data

Visualize Results

Computer

Keyboard

Screen

Tower

Fig. 10. Example of the properties of structures.

1) If a function is located somewhere, all its superfunctions
will be located (at least partially) in that same place.

2) If a function is realized in one location, all the super-
locations will realize that function as well.

As a guideline for building the plant model, we recommend
to relate the lowest elements in the structures hierarchy. If
possible, relate only the leaf nodes of different structures. The
reason for this is that all the elements which are hierarchically
superior to them will also be related to each other, as described
by the properties shown above. The explicit relations will be
thus the most concrete ones and the other relations will be
derived by the system from the properties of the structures.

Let us explore one simple example. Imagine a Computer
product composed by a Screen, a Tower and a Keyboard
subproducts. Suppose that we also have defined the functions
Enter Data, Process Data and Visualize Results, which are
implemented by the computer (see Fig. 10, we do not show
reference designations for clarity). Instead of assigning all
three functions directly to the computer, it is better to be
as much specific as possible and, for example, assign the
function Enter Data to the Keyboard, Process Data to the
Tower and Visualize Results to the Screen product. In this
way, transitions can be made from the specific subproducts
to their corresponding functions (something impossible if we
assigned the functions only to the computer). But we keep the
advantages of direct assignment as well. In this case, we also
can make the transition from the Computer product to its three
functions because, as shown in the properties of structures, a
superproduct indirectly implements all the functions that its
subproducts implement.

IV. CONCLUSION AND FUTURE WORK

We have seen that the IEC 61346 standard is an ambitious
document that sets the basis for modelling technical systems
from a wide variety of domains. Due to this generality and to
some ambiguities in its definitions and concepts, the standard
is not applied as extensively as it should be. We have seen
that a common standard would be useful for large projects
where multiple vendors can participate and supply different
products. By restricting ourselves to the field of automation
and by removing most of the ambiguities, we have tried to
improve the standard and make it suitable for the modelling
of industrial plants.

We have started the development of a prototype software
platform for developing industrial applications based on our
interpretation of the standard. This platform will integrate



8

different standards and concepts related to plant automation
and offer a consistent view to plant engineers and operators
alike.

V. ACKNOWLEDGEMENTS

Finally, we would like to thank Per-Åke Svensson from
ABB and member of the TC3 (the IEC technical committee in
charge of the publication and maintenance of IEC 61346). We
greatly appreciate his help for answering our questions about
the standard and for his extensive comments and suggestions
during the writing of this paper.

REFERENCES

[1] Industrial systems, installations and equipment, and industrial products
- Structuring principle and reference designations. Part 1: Basic Rules,
IEC Std. (6)1346-1, 1996.

[2] Industrial systems, installations and equipment, and industrial products
- Structuring principle and reference designations. Part 2: Classification
of objects and codes for classes, IEC Std. 61 346-2, 2000.

[3] Industrial systems, installations and equipment, and industrial products
- Structuring principle and reference designations. Part 3: Application
guidelines, IEC Std. 61 346-3, 2001.

[4] Industrial systems, installations and equipment, and industrial products
- Structuring principle and reference designations. Part 4: Discussion of
concepts, IEC Std. 61 346-4, 1998.

[5] P. Froehlich, Z. Hu, and M. Schoelzke, “Using UML for information
modeling in industrial systems with multiple hierarchies,” in UML2002,
2002, pp. 63–72.

[6] KKS-Kraftwerk-Kennzeichen-System, Verlag technisch wissenschaftlicher
Schriften, VGB-Kraftwerkstechnik GmbH, 1988.

[7] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual, Booch, Jacobson, and Rumbaugh, Eds. Addison-
Wesley, 1999.

[8] IEEE Recommended Practice for Architectural Description of Software-
Intesive Systems, IEEE Std. 1471, 2000.

[9] R. Garcı́a, E. Gelle, and A. Strohmeier, “A software architecture for
industrial automation,” in Proc. Seventh IEEE International Enterprise
Distributed Object Computing Conference (EDOC2003), Brisbane, Aus-
tralia, Sept. 2003, pp. 315–320.


