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Abstract — In this paper we determine bounds
of the capacity region of a two-user multiple-
access channel with Rayleigh fading when nei-
ther the transmitters nor the receiver has channel
state information (CSI). We assume that the fad-
ing coefficients as well as the additive noise are
zero-mean complex Gaussian. Equivalently their
amplitudes are Rayleigh-distributed and their
phases are uniform. We are interested in cases
in which there is an average power constraint
at the channel input for both senders. Results
that we get show that the lower (inner) and the
upper (outer) bound of the capacity region are
quite close for low and high signal-to-noise ratio
(SNR). As a measure of the tightness we use the
volume of the capacity region. Surprisingly, the
boundary of the capacity region is achieved by
time sharing among users, which is not the case
for fading channels with perfect CSI at the re-
ceiver. As an additional result we derive a closed
form expression for the mutual information if the
input is on-off binary.

Index Terms− Multiple-access channel, capac-
ity region, Rayleigh fading, channel state infor-
mation, volume of the capacity region.

I. Introduction

Wireless communication systems are currently becom-
ing more and more important. We are witnessing a con-
tinuous improvement of existing systems and devices, of-
fering new services almost every day. Customers are per-
manently increasing their demands with respect to new
services, quality, reliability, stand-by times of the equip-
ment, at the same time being critically aware of increas-
ing electromagnetic pollution due to wireless communica-
tions. A challenging task for operators of mobile commu-
nication systems and researchers is the need to constantly
improve spectral efficiency, maintain a desirable quality
of service, minimize the consumption of transmit power
in order to lower electromagnetic radiation and prolong
the battery life. In the same time the number of base
stations has to be minimized, whilst accommodating as
many users as possible.

In fulfilling these requirements, the greatest obstacle is
the nature of the mobile communication channel, which
is time-varying, due to rapid changes in the environment
and mobility of users. Signal strength may drop by sev-
eral orders of magnitude due to an increase in distance
between transmitter and receiver and superposition phe-
nomena in scattering environments. This phenomenon is
commonly known as fading and such channels as fading

channels. Many modern wireless systems send a train-
ing sequence inserted in the data stream in order to pro-
vide the receiver with information about the channel. On
the other hand, some systems provide a feedback channel
from the receiver to the transmitter and this information
can help the transmitter to choose an appropriate sig-
nal to access the channel. Knowledge of the channel is
known as channel state information (CSI). Many papers
have been written on channels with perfect channel state
information at the receiver, at the transmitter, at both
and at neither of them. Some work has also been done
on imperfect CSI at the receiver and/or the transmitter.

In practical wireless communication systems, when-
ever there is a large number of independent scatterers
and no line-of-sight path between the transmitter and the
receiver, the radio link may be modelled as a Rayleigh
fading channel. In a multi-user environment the uplink
channel is typically modelled as multiple access channel
(MAC). The performance of the channel strongly de-
pends on the fact whether the state of the channel is
available at the receiver and(or) the transmitter(s).

In this paper we are interested in the capacity region

of the two-user Rayleigh fading channel without channel
state information at the receiver or the transmitter. The
capacity region of a multiple access channel is the closure
of achievable rates for all users [5]. This channel is of
interest since in some cases the channel can vary very
quickly and it will be not possible to send any information
about the channel. First we review some information
theoretic results for single and multi user channels.

Consider the single user fading channel Y = AX + Z,
with power constraint on the input, that is, E[|X|2] ≤ P
and Z being zero-mean complex Gaussian additive noise
with variance σ2

Z that we denote as Z ∼ NC(0, σ2
Z). Gold-

smith and Varaiya [7], determined the channel capacity
of the fading channel, with channel state perfectly known
at the receiver1

CR(P ) = EA

[

ln(1 +
|A|2P

σ2
Z

)

]

(1)

and with channel state known at both transmitter and
receiver

CTR(P ) =

∫ ∞

γ0

ln(
γ

γ0
)p(γ)dγ. (2)

Here p(γ) is the probability density function of the
received SNR, γ = |A|2P/σ2

Z , and γ0 has to satisfy
∫ ∞

γ0

(1/γ0 − 1/γ) p(γ)dγ = 1. Note that if A is complex

Gaussian NC(0, σ2
A), then |A| is Rayleigh and γ is expo-

nentially distributed. Then, denoting σ2
AP/σ2

Z by ρ, in

1All rates are in nats. 1 nat equals 1/ ln(2) ≈ 1.4427 bits.



the first case, we can write a closed form solution for the
capacity [6]

CR(ρ) = e1/ρ · E1(1/ρ), (3)

where E1(x) =
∫ ∞

x
e−t

t
dt. In the latest case the closed

form solution for the capacity is given by

CTR(ρ) = E1(γ0/ρ) (4)

where γ0 is the solution of e−γ0/ρ/γ0 − E1(γ0/ρ)/ρ = 1.
For the Gaussian multiple access channel Y =

∑M
i=1 Xi+Z, where Z ∼ NC(0, σ2

Z), and each user has in-
put power constraint E[|Xi|2] ≤ Pi, the capacity region is
defined by the set of positive rates (R1, R2, ..., RM ) that
satisfy

∑

i∈S

Ri ≤ ln

(

1 +

∑

i∈S Pi

σ2
Z

)

, (5)

for all S ⊆ {1, 2, . . . , M}. For this channel time shar-
ing among users can achieve a point on the bound-
ary of the capacity region. In this point each user
is given an amount of time proportional to its input
power constraint Pi/

∑M
i=1 Pi. The maximum sum-rate

is ln
(

1 +
∑M

i=1 Pi/σ2
Z

)

.

For the multi-access fading channel Y =
∑M

i=1 AiXi +
Z, with additive Gaussian noise Z ∼ NC(0, σ2

Z), if the
channel state is perfectly known at the receiver, the ca-
pacity region is already convex and it is the set of rates
(R1, R2, ..., RM ) that satisfy

∑

i∈S

Ri ≤ E

[

ln

(

1 +

∑

i∈S |Ai|2Pi

σ2
Z

)]

, (6)

for all S ⊆ {1, 2, . . . , M}. The expected value is taken
with respect to {Ai}i∈S . Here, the maximum sum-rate
achieved by time sharing is considerably smaller than the
maximum sum-rate in the capacity region, which is not
the case with the channel without CSI.

The multi-access fading channel Y =
∑M

i=1

√
HiXi +

Z, with additive white Gaussian noise Z ∼ NC(0, σ2
Z) and

an average power constraint to every user E[|Xi|2] ≤ Pi,
with perfect channel state information at all transmitters
and the receiver, is studied in [12]. The solution may be
seen as generalization of the water-filling construction for
single-user to multi-user channels.

The case without channel state information for the
single user channel has been studied in [11, 9, 3, 8] and for
the multi-user channel in [10, 2]. In [3], authors show that
without channel state information, the optimal input is
discrete with a mass point at zero. In [11] it is shown
that without channel state information, the capacity at
high SNR depends double-logarithmically on the SNR. A
more general result on the double logarithmic behavior
at high SNR is given in [8].

In Section II we analyze the single user case with no
channel state information, where we review some results
obtained in [3]. We establish a closed form solution for
the mutual information when the input is binary on-off,
in Section III. In Section IV we find lower and upper
bounds of the capacity region of a two-user Rayleigh fad-
ing channel. We compare the bounds in Section V. Fi-
nally we generalize the results for M−users in Section VI
and we give conclusions in Section VII.

II. Rayleigh Fading Channels without CSI

In this section we explain the method of computing the
capacity Csu(ρ) of the single user channel Y ′ = AX ′+Z,
where A, Z ∼ NC(0, 1) and E[|X|2] ≤ ρ. Having
ρ = σ2

AP/σ2
Z , the capacity of this channel is the same

as the capacity of the channel with A ∼ NC(0, σ2
A),

Z ∼ NC(0, σ2
Z) and E[|X|2] ≤ P . According to [3],

the capacity achieving input distribution is discrete X ′ ∈
{0, x1, . . . , xN} with Pr{X ′ = xi} = pi, ∀i = 0, 1, . . . , N ,
and the constraint is

∑N
i=1 pi|xi|2 ≤ ρ, with

∑N
i=0 pi = 1

and p0 > 0. A proof of this can be found in [3]. The
number N of input levels with non-zero probability, de-
pends on the SNR and it increases with the SNR. For
low SNR, the mutual information for binary inputs is
not far from the capacity, [3]. For extremely high SNR,
higher than the fading number, defined in [8], the ca-
pacity behaves as log(log(SNR)). Conditioned on the in-
put, the sufficient statistic of the output is |Y ′|2 and it
has a central chi-square distribution with two degrees
of freedom. It is clear that the influence of X ′ on the
channel is only through its magnitude. Therefore, we in-
troduce X = |X ′| > 0. Letting Y = |Y ′|2, we obtain
an equivalent channel with real non-negative input X,
non-negative output Y , transition probability

pY |X(y|x) = (1 + x2)−1 exp{−y/(1 + x2)} (7)

and an average power constraint E[X2] ≤ ρ. Since x
appears only via its square it is convenient to make an
invertible change of variables S = 1/(1 + X2), so that

pY |s(y|s) = se−sy, s ∈ (0, 1], y ≥ 0, (8)

with the constraint E[1/S−1] ≤ ρ. Furthermore, since Y
is sufficient statistics for |Y ′|, and S is sufficient statistics
for X ′, then I(X ′; Y ′) = I(S; Y ). Since the optimal input
probability is discrete, the result obtained for S is the
same as that for X ′ and the optimal levels are s∗i = 1/(1+
(x∗

i )
2). Note that since the phase doesn’t matter, we

may choose X ′ = X. The mutual information I(S; Y ) =
ES [D(pY |S ||pY )]2 is

I(S; Y ) =
∑

i

p(si)

∫ ∞

0

sie
−siy ln

sie
−siy

∑

j p(sj)sje−sjy dy

(a)
=

∑

i

p(si)

∫ 0

1

ln

(

1

si

∑

j

p(sj)sjt
sj/si−1

)

dt

=
∑

i

p(si) ln ES [S · tS/si−1] −
∑

i

p(si) ln si

where si = (1 + xi)
−1, i = 1, 2, . . . , N . We get (a)

by the change t = e−siy. The capacity is Csu(ρ) =

maxp

∑

i p(si)
(

ln ES [S · tS/si−1] − ln si

)

with E[1/S −
1] = ρ. This is an optimization problem with re-
spect to all pi that have to satisfy

∑

i≥0 pi = 1 and
∑

i>0 pi(1/si − 1) = ρ, since s0 = 1. An additional
problem is to find how many points are with non-zero
probabilities. This number depends on the SNR and
denoting it by N(ρ) and the maximizing input distri-
bution by p∗ = [p∗

0, p
∗
1, ..., p

∗
N(ρ)], knowing that there is

2D(p||q) =
∫

p(x) ln(p(x)/q(x))dx is the Kullback-Leibler
distance



a mass point at zero (s0 = 1), the optimal levels are
denoted by s∗ = [1, s∗1, ..., s

∗
N(ρ)]. Thus, the capacity

is Csu(ρ) =
∑N(ρ)

i=0 p∗
i

∫ 0

1
ln

(

1
s∗

i

∑

j p∗
j s∗j ts∗j /s∗i −1

)

dt and

can be calculated numerically. Note that N(ρ) ≥ 1, it
increases in ρ and it is 1, for small ρ, [3].

III. Channels with Binary On-Off Input

In this section we give a closed form expression for the
mutual information between the input and the output, if
the input is on-off binary, namely (0, b). The binary on-
off input is interesting since for low SNR, it is optimal.
At the end of the section we give a numerical result for
the capacity.

Proposition 1 (Closed form expression for the mutual
information for a particular on-off input probability p
and SNR ρ): For the channel Y = AX + Z, when the
input is binary on-off with Pr{X = 0} = 1−p and power
constraint E[|X|2] ≤ ρ, the mutual information between
the input X and the output Y , is

Ip,ρ(X; Y ) = h(p) + pJ
(

p + ρ

p2(1 − p)−1
,
ρ

p

)

+ (1 − p)J
(

p2(1 − p)−1

p + ρ
,

ρ

p + ρ

)

where h(·) is the binary entropy function, J (c, d) =
− ln(1 + c) + cd

1+d
· 2F1(1, 1 + d−1; 2 + d−1;−c), and

2F1(u, v; w; z) = Γ(w)
Γ(u)Γ(v)

∑∞
k=0

Γ(u+k)Γ(v+k)
Γ(w+k)

· zk

k!
is the

Gaussian hypergeometric function defined in [4]. Γ(q) =
∫ ∞

0
xq−1e−xdx is the Euler gamma function.

The proof is given in the Appendix.
To compute the capacity of the binary input Rayleigh

fading channel without channel state information, de-
noted by Cb, one has to find the maximum of Ip,ρ(X; Y )
over p for different ρ. Unfortunately dIp,ρ(X; Y )/dp = 0
is a transcendental equation and cannot be solved explic-
itly. The capacity and the optimizing p∗ as functions of ρ
are shown in Fig. 1. Note that as the power of the input
signal increases the information rate of this channel goes
to its limit of ln 2 nats and p∗ goes to 0.5. This happens
since if ρ goes to ∞, we get the channel Y = AX.

Next we look at the mutual information I0.5,ρ(X; Y )
achieved using a binary input with equiprobable levels
(p = 0.5). This uniform binary on-off input is of practical
interest since the corresponding rate can be achieved us-
ing linear binary codes, for example LDPC. I0.5,ρ(X; Y )
is compared to the capacity Cb, in Fig. 2. The capacities
of the binary input additive white Gaussian noise channel
(BIAWGNC), Rayleigh fading channel with CSI at the
receiver and additive white Gaussian channel (AWGN)
with general input, are shown in the same figure. Natu-
rally, higher rates are achieved with the same SNR for the
non-fading case. For example, for ρ = 20 dB, I0.5,ρ(X; Y )
approaches 92% of the capacity of the binary input Gaus-
sian channel.

In the same figure we see that as SNR increases the
mutual information for p = 0.5 approaches the capacity.
This is not surprising since p = 0.5 is optimal for SNR →
∞. It can be also seen that for p < 0.5, Ip,ρ(X; Y ) >
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Fig. 1: Capacity Cb and the optimal probability p∗ as function
of ρ

I0.5,ρ(X; Y ) for all ρ smaller than some value. Beyond
that value of ρ, I0.5,ρ(X; Y ) is dominant. On the other
hand, for all p > 0.5 the mutual information I0.5,ρ(X; Y )
is smaller than I0.5,ρ(X; Y ), for any ρ. It is normal, since
the maximizing input probability p∗ is always smaller
than 0.5.

Example 1 For ρ = 7 dB, I0.5,ρ(X; Y ) ≈ 0.9Cb, for
ρ = 10 dB, I0.5,ρ(X; Y ) ≈ 0.95Cb, for ρ = 16 dB,
I0.5,ρ(X; Y ) ≈ 0.99Cb and for ρ = 20 dB, I0.5,ρ(X; Y ) ≈
0.997Cb.

IV. Two-User Rayleigh Fading Channel

In this section, we give a lower and an upper bound of
the capacity region of a two-user Rayleigh fading channel
in the case where the channel is not known either at the
transmitters or at the receiver, but all of them know the
statistics of the channel exactly. The ratio of the vol-
umes of the lower and the upper bound of the capacity
region will serve us as a measure for the proximity of
these bounds. More about the volume can be found [1].
Numerical results show that our proposed lower bound is
always within 92.6% of the upper bound. The channel is

Ỹ = Ã1X̃1 + Ã2X̃2 + Z̃, (9)
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Fig. 2: Comparison of the mutual information for different p’s
to the capacities Cb, CBIAWGN , CCSI and CAWGN .

where Ã1, Ã2 and Z̃ are independent and identically
distributed (i.i.d.), zero-mean, complex Gaussian ran-
dom variables of variances σ2

A1
, σ2

A2
and σ2

Z respec-

tively. There are input constraints, E[|X̃1|]2 ≤ P1 and
E[|X̃2|]2 ≤ P2. No channel information is provided to the
transmitters and the receiver. To find “good” bounds of
the capacity region of this channel, we use the results
for the single user memoryless Rayleigh fading channel,
studied in [3]. Channel (9) has the same capacity as the
following channel

Ỹ

σZ
=

Ã1

σA1

σA1

σZ
X̃1 +

Ã2

σA2

σA2

σZ
X̃2 +

Z̃

σZ
. (10)

Letting Y = Ỹ /σZ , X1 = σA1
X̃1/σZ and X2 =

σA2
X̃2/σZ , we get

Y = A1X1 + A2X2 + Z, (11)

with A1 = Ã1/σA1
, A2 = Ã2/σA2

and Z = Z̃/σZ all
being NC(0, 1). Power constraints on the new inputs
become E[|X1|]2 ≤ σ2

A1
P1/σ2

Z = ρ1 and E[|X2|]2 ≤
σ2

A2
P2/σ2

Z = ρ2. It is clear that doing these transforms,
all mutual information in the new channel remain the
same. Thus, the capacity region of the channel (9) is
the same as the capacity region of the channel (11). For
a particular input distribution, the region of achievable
rates for the channel (11) is R(pX1

, pX2
) = {(R1, R2) ∈

R
2
+ : R1 ≤ I(Y ; X1|X2); R2 ≤ I(Y ; X2|X1); R1 + R2 ≤

I(Y ; X1, X2)}. The capacity region is a closure of
the convex hull of the union over all possible prod-
uct input distributions pX1

(x)pX2
(x) of all such regions

R(pX1
, pX2

). To compute the maximum mutual infor-
mation in the capacity region for user 1 and user 2 sepa-
rately, we need to analyze the single user fading channel,
similarly as it is done in [3]. Given X2 = x2, the equiva-
lent channel is Y = A1X1 + (A2x2 + Z). This channel is
the same as the single user fading channel Y = A1X1+Z,
with larger variance of the additive noise, that is, 1+|x2|2.
Thus, it behaves as the channel Y = A1X1 +Z, with dif-
ferent SNR constraint, that is, ρ′ = ρ/(1 + |x|2). It is
shown in [3] that the capacity achieving input distribu-
tion for this channel has to be discrete with a mass point

at the origin. Moreover, it is shown in the same paper
that for low SNR, the maximizing input distribution is
binary. Thus, the rate of user 1 is bounded by

R1 ≤
∑

x2

pX2
(x2)I(X1; Y |X2 = x2)

≤
∑

x∈X2

pX2
(x)Csu

(

ρ1

1 + |x|2
)

≤
∑

x∈X2

pX2
(x)Csu (ρ1) = Csu (ρ1) , (12)

where the last inequality is achieved with equality if
pX2

(0) = 1, i.e. if user 2 is silent. By Csu(ρ) we de-
note the capacity of the single user fading channel with
no channel state information, for a particular SNR= ρ.
Thence, the point Csu (ρ1) is achievable and it is the high-
est rate that can be achieved by user 1, using the channel
while user 2 is silent. That is one point on the boundary
of the capacity region, namely the extreme point on the
R1−axis. From symmetry, the same is true for user 2,
i.e. the extreme point on the R2−axis is Csu (ρ2).

After finding both extreme points, let us find the max-
imum sum rate. It is shown in [10] that if the prop-
agation coefficients take on new independent values for
every symbol (i.i.d.), then the total throughput capac-
ity for any number of users larger than 1, is equal to
the capacity if there is only one user. Hence, time divi-
sion multiple access (TDMA) is an optimal scheme for
multiple users. In that case the sum rate is given by
Θ = aCsu (ρ1/a)+(1−a)Csu (ρ2/(1 − a)) ≤ Csu(ρ1+ρ2),
with a ∈ [0, 1]. Note that the maximum throughput can-
not be larger than Csu(ρ1 + ρ2), the capacity which is
achieved if both users fully cooperate, and is equivalent
to the single user capacity for SNR= ρ1 + ρ2. The latest
is achieved with equality for a = ρ1/(ρ1 + ρ2). This is an
upper bound of the capacity region, namely the pentagon
{(R1, R2) ∈ R

2
+ : R1 ≤ Csu(ρ1), R2 ≤ Csu(ρ2), R1+R2 ≤

Csu(ρ1 + ρ2) (Fig. 3). A straightforward lower bound
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Fig. 3: Lower and upper bounds of the capacity region, for
given ρ1 and ρ2.

is the region obtained by connecting the points that are
achievable (dash-dot line in Fig. 3). Better lower bound
is the time-sharing region (dashed line in Fig. 3). It is



obtained by allowing user 1 to use the channel aT sec-
onds and user 2, (1−a)T seconds. Because of the average
power constraint the power used during the active period
is normalized. Hence, the proposed lower bound of the
capacity region parameterized by a ∈ [0, 1] is given by

R1(a) = a · Csu (ρ1/a)

R2(a) = (1 − a) · Csu (ρ2/(1 − a)) . (13)

The capacity region touches the upper bound in the
following three points (Csu(ρ1), 0), (0, Csu(ρ2)) and

( ρ1Csu(ρ1+ρ2)
ρ1+ρ2

, ρ2Csu(ρ1+ρ2)
ρ1+ρ2

). Note that a trivial upper
bound that is much looser is the capacity region of the
same channel, with perfect channel state information at
the receiver.
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Fig. 4: Lower and upper bounds of the capacity region for low
and high SNRs.

V. Comparison

In Fig. 4, we see the proposed lower and upper bounds
of the capacity region for different SNRs. It can be seen
that for low and high SNR they are closer then for the
some medium SNR. How to measure the “tightness” of
the bounds? We propose comparing the volumes of the
corresponding regions. For the two user case the volume
is V2 =

∫

R1

R2dR1. It is easy to compute the volume of
the upper bound in terms of the single-user capacities.
For ρ1 = ρ2 = ρ,

VUB(ρ) =
1

2
· [Csu(2ρ)]2 − [Csu(2ρ) − Csu(ρ)]2. (14)

The volume of the lower bound is VLB(ρ) =
∫ Csu(ρ)

0
R2dR1 =

∫ 1

0
R2(a)Ṙ1(a)da, where R1(a) and

R2(a) are given by (13), and Ṙ1(a) is the first derivative
of R1 with respect to a. It is determined numerically.
The ratio VLB/VUB as a function of ρ is shown in Fig.
5. It can be seen that for low SNR the lower and the up-
per bound are very close and as the SNR increases they
diverge up to some SNR (∼ 3 dB), where the lower and
the upper bound are at maximum “distance”. In this
case VLB ≃ 0.925VUB . As SNR increases above 3 dB,
the bounds approach again, i.e. the ratio of VLB and
VUB increases and tends to 1. The results can be easily
extended for an M−user case.
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VI. M−User Case

We can easily generalize the bounds for the M−user
case. The upper bound of the capacity region is given by
the following 2M − 1 hyperplanes

∑

i∈S

R=Csu

(

∑

i∈S

ρi

)

for all non-empty subsets S of {1, 2, . . . , M} ≡ [M ]. Note
that the maximal sum-rate is given by

M
∑

i=1

Ri = Csu

(

M
∑

i=1

ρi

)

.

The inner bound of the capacity region (time sharing
region) is given by the following M equations

Ri = ai · Csu (ρi/ai) , i = 1, 2, . . . , M,

where ai ∈ [0, 1] and
∑M

i=1 ai = 1. It is not difficult to see
that there are 2M − 1 points in which these two bounds
touch. For any non-empty set S ⊆ [M ], the coordinates
of all these points are given by

R
{S}
i =

ρi
∑

j∈S ρj
· Csu

(

∑

j∈S

ρj

)

,

for all i ∈ S and S ⊆ {1, 2, ..., M}. Note that the maximal
sum-rate is also achievable by time division. In that case
ai = ρi/(

∑M
j=1 ρj), for i = 1, ..., M , and the rate tuple

on the boundary of the capacity region has coordinates

R
{[M ]}
i =

ρi
∑M

j=1 ρj

· Csu

(

M
∑

j=1

ρj

)

.

VII. Conclusions

The single user Rayleigh fading channel with no side
information has attracted some attention since it is useful
for modelling different wireless channels. In this paper we
get some insight for the multiple access Rayleigh fading
channel with no CSI. We give bounds of the capacity



region of the two-user Rayleigh multiple access channel.
We see that the sum rate is maximized by time-sharing
among users and in that case we achieve the boundary
of the capacity region by giving to each user an amount
of time that is proportional to its input average power
constraint multiplied by the variance of the fading. This
is not the case with multiple access channels with perfect
CSI at the receiver. We also see that the inner bound
is always within 92.6 % (in terms of the volume of the
capacity region) of the outer bound. As an open problem
for future research we leave the improvement of the inner
and the outer bound.

Appendix

Proof of Proposition 1

In the case when the input is binary, since there is a
power constraint and from the fact that one input level
has to be zero, the other level is b =

√

ρ/p, assuming
that the probability of zero is 1 − p. According to the
analysis in Section II, s0 = 1 with probability 1 − p and
s1 = (1 + ρ/p)−1 with probability p. Therefore, since
pY |S(y|s) = se−sy and pY (y) = (1 − p)e−y + ps1e

−s1y,
the mutual information I(S; Y ) is

(1 − p) D(pY |1‖pY ) + pD(pY |s1
‖pY )

= (1 − p)

∫ ∞

0

e−y ln
e−y

pY (y)
dy

+ p

∫ ∞

0

s1e
−s1y ln

s1e
−s1y

pY (y)
dy

= (1 − p) ·
∫ 0

1

ln[(1 − p) + ps1t
1−s1 ]dt

+ p ·
∫ 0

1

ln[(1 − p)t1/s1−1/s1 + p]dt

= h(p) + (1 − p)J (
ps1

1 − p
,

ρ

p + ρ
)

+ p · J (
1 − p

ps1
,
ρ

p
) (15)

To show J (c, d) we start with

Φ(t, c, d) =

∫

ln(1 + ctd)dt

= −
∫ ∞

∑

k=1

(−ctd)k

k
dt

(a)
= −

∞
∑

k=1

(−c)k

k

∫

tdkdt

= −
∞

∑

k=1

(−c)ktdk+1

k(dk + 1)

= −
∞

∑

k=1

(−c)ktdk+1

(

1

k
− 1

k + 1/d

)

= −t
∞

∑

k=1

(−ctd)k

k
+ t

∞
∑

k=1

(−ctd)k

k + 1/d

(b)
= t ln(1 + ctd)

+
t(−ctd)

1 + 1/d
· 2F1(1, 1 +

1

d
; 2 +

1

d
;−ctd)

= t ln(1 + ctd)

− cdt1+d

1 + d
· 2F1(1, 1 +

1

d
; 2 +

1

d
;−ctd),

where (a) follows from the convergence of the sum and
(b) from the definition of the hypergeometric function,
defined in [4], that is 2F1(1, 1 + x; 2 + x; z) is equal to

Γ(x + 2)

Γ(1)Γ(x + 1)
·

∞
∑

k=0

Γ(k + 1)Γ(1 + x + k)

Γ(2 + x + k)

zk

k!

=
(x + 1)

z
·

∞
∑

k=0

zk+1

x + k + 1

=
(x + 1)

z
·

∞
∑

k=0

zk+1

x + k + 1

=
(x + 1)

z
·

∞
∑

k=1

zk

x + k
.

We also use the fact that Γ(k + 1) = k!, ∀k ∈ N and
Γ(x + 2) = (x + 1)Γ(x + 1), ∀x ∈ R. Finally it is easy to
see that

J (c, d) =

∫ 0

1

ln(1 + ctd)dt

= Φ(0, c, d) − Φ(1, c, d) = −Φ(1, c, d)

= − ln(1 + c)

+
cd

1 + d
· 2F1(1, 1 + d−1; 2 + d−1;−c).
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