
Reducing Fair Exchange to Atomic Commit

Gildas Avoine1, Felix Gärtner4, Rachid Guerraoui2,
Klaus Kursawe3, Serge Vaudenay1, and Marko Vukolic2

1 Security and Cryptography Laboratory, EPFL, Switzerland
2 Distributed Programming Laboratory, EPFL, Switzerland

3 Kursawe Consulting, Zurich, Switzerland
4 Dependable Distributed Systems Laboratory, RWTH Aachen University, Germany

Abstract. The fair exchange problem is key to trading electronic items
in systems of mutually untrusted parties. We consider modern variants of
such systems where each party is equipped with a tamper proof security
module. The security modules trust each other but can only communicate
by exchanging messages through their host parties. These are untrusted
and could intercept and drop those messages. We show that the fair
exchange problem at the level of untrusted parties can be reduced to an
atomic commit problem at the level of trusted security modules. This
reduction offers a new perspective with which fair exchange protocols
can be designed. In particular, we present a new atomic commit protocol,
called Monte Carlo NBAC, which helps build a new and practical fair
exchange solution. The exchange does always terminate and no party
commits the exchange with the wrong items. Furthermore, there is an
upper bound on the the probability that the exchange ends up being
unfair, and this bound is out of the control of the untrusted parties.

Contact Author

Felix Gärtner
RWTH Aachen University
Department of Computer Science
Ahornstr. 55
52056 Aachen, Germany
Tel. +41-241-80-21430
Fax +41-241-80-22220
gaertner@cs.rwth-aachen.de

1 Introduction

1.1 Motivation

An increasing fraction of interactions between processing entities in computer
networks is performed between parties which do not necessarily trust each other.
Mutual distrust however limits the ability to perform useful protocol interac-
tions, e.g., reliably and fairly exchanging valuable electronic items between each



other [16]. Recently, manufacturers have begun to equip hardware with security
modules such as a smart card or a special microprocessor. These are assumed
to be tamper proof and run a certified piece of software (see Fig. 1). Examples
include the “Embedded Security Subsystem” within the recent IBM Thinkpad
or the IBM 4758 secure co-processor board [7]. A large body of computer and
device manufacturers has founded the Trusted Computing Group (TCG) [20] to
promote this idea. Because their hardware is tamper proof, their software is cer-
tified and they can communicate though secure channels. The major issue at the
level of these security modules is the possibility for their untrusted hosts to cut
the communication channels and drop their messages. The hosts cannot however
alter those messages or pretend to be such security modules. As an interesting
consequence, computations between security modules operate in a setting where
the only possible faults have benign effects, namely message omissions.

wired or wireless channel between hosts
secure channel (over physical channel)

security
module

Internet host

security
module

Internet host

Fig. 1. Hosts and security modules.

Since distributed computing in the presence of benign faults is a well inves-
tigated domain, we ask, how solutions to problems between security modules
can help solve seminal problems in the security domain (i.e., between untrusted
hosts). The problem we consider here is fair exchange and we consider it in a syn-
chronous system. Roughly speaking, the problem consists for several untrusted
hosts to exchange electronic items. These items should match some specification
and either all hosts should terminate the protocol with the expected items or
none of them should.

1.2 Contributions

We first present a simple reduction theorem: we show that fair exchange at the
level of untrusted hosts can be solved if non-blocking atomic commit (NBAC)
can be solved at the level of security modules. In a sense, we reduce a challeng-
ing problem in the area of security [16], to a well known problem in the area of
distributed computing [10, 11, 18]. At first glance, the reduction might not look
of practical interest because NBAC is a hard problem even at the level of trusted

2



components. In fact, NBAC is impossible if communication channels are unre-
liable [10]. As described above, the security modules, even if tamper proof, can
only communicate through their associated untrusted hosts (see Fig. 1) which
can drop the messages and render the communication unreliable. However, we
define a new and weaker variant of NBAC that is solvable in this setting and
useful in the reduction.

More precisely, we define a probabilistic variant of NBAC, called Monte Carlo
NBAC. This variant is used in the reduction to build a probabilistic form of fair
exchange. Monte Carlo NBAC has a unique combination of properties: it is
novel in that it weakens the agreement aspect of NBAC (i.e., the fact that all
parties must agree on an outcome). More precisely, instead of requiring that no
disagreement is possible, we simply require that the probability of disagreement
be bound by a constant (that must be out of the control of the adversary).
Neither termination (i.e., the fact the eventually the algorithm terminates for
all parties) nor validity (i.e., the fact that the algorithm should abort if some of
the items are missing or do not match the required specification) is weakened.
The combination we propose also indicates that seeing NBAC as a security
building block can still give a new view on this old and seemingly well-understood
problem.

We then describe a new atomic commit algorithm that solves Monte Carlo
NBAC. This algorithm, together with our reduction result, yields a new fair
exchange protocol based on tamper proof security modules. Roughly speaking,
the basic idea of the protocol is the following. The security module that initiates
the exchange selects, in a random manner, an integer k that it disseminates in a
circular manner to all other security modules. The circularity of the dissemina-
tion is also based on a random choice of coordinators. The integer k defines the
number of rounds through which the security modules need to go successfully
(i.e., with no message omission) before committing the protocol. Of course, un-
trusted hosts can cut the communication at any time and lead to an abort of the
exchange, but the probability that they do so in the last round (k), rendering
the exchange unfair, is out of their control. In short, our protocol ensures that:
(a) all parties are always guaranteed to terminate the exchange; (b) no party
ever commits the exchange if the items to be delivered are not those expected;
and (c) the probability for the exchange to be unfair has a constant upper bound
that cannot be controlled by the adversary, i.e., by dishonest parties.

1.3 Related work

It was shown in [8] that fair exchange between two processes is impossible to
solve deterministically without a trusted third party. With a trusted third party,
all participants can send their items and descriptions to that party, which checks
them and possibly forwards them to the participants [5]. Later, optimistic pro-
tocols were developed in which participation of the trusted third party is only
necessary if something goes wrong [1]. The context of this paper is one where the
trusted third party is a virtual entity, somehow distributed overall several secu-

3



rity modules. The need to go through untrusted hosts to access these modules
makes the use of this virtual trusted third party non-trivial.

In fact, there has been recent work on fair exchange using, instead of a
trusted third party entity, different forms of distributed trusted hardware, e.g.,
smart cards [22] or trusted processing environments in the context of mobile
agents [17]. The architecture presented in [6] also provides means to implement
synchronous channels between distributed trusted computing compartments. In
[2] a solution to two-party fair exchange is described in a system with tamper
proof components using an underlying synchronization protocol. None of those
approaches explicitly consider reducing fair exchange at the level of untrusted
hosts to a clearly defined distributed computing problem (e.g., NBAC) at the
level of security modules subject to benign faults.

The notion of atomicity was identified to be central to electronic commerce
in [21], and the link between fair exchange and atomic commit was observed
in [13,14], where an intermediate problem was described (in an intuitive manner)
in the context of a distributed model with trusted third parties. We believe
however our paper to be the first one to precisely reduce the fair exchange
problem into some agreement problem of traditional distributed computing (i.e.,
NBAC), and make use of solutions to the latter to solve the former.

In [9] it was shown that in a synchronous system with cryptography a major-
ity of honest processes can simulate a centralized trusted third party (and hence
solve fair exchange). In [3], algorithms that tolerate benign failures are auto-
matically translated into algorithms that tolerate arbitrary failures (i.e., where
parties can be dishonest). The safety of the translation assumes two-thirds of the
parties to be honest. Our context is different because we assume every party to
include a secure module within it and consider message omissions even between
honest participants. As a result, we do not need the honest (two-third) majority
assumption.

It is also important to notice that, despite two decades of research on NBAC
[10,11,18], including attempts to weaken its validity property to make the prob-
lem solvable in practical settings, we know of no work on weakening the agree-
ment part of NBAC and making it probabilistic. Viewing NBAC as a security
abstraction provides an ideal context to revisit the problem from this perspec-
tive. The new NBAC algorithm we come up with in this paper, namely our
Monte Carlo NBAC algorithm, includes some known techniques from determin-
istic distributed computing (e.g., round-based information exchange), combined
with some randomization techniques (e.g., the choice of a random leader or a
random number of rounds).

1.4 Roadmap

We present our system and adversary model and relate it to the trusted hardware
scenario sketched above in Sect. 2. Sect. 3 recalls fair exchange and NBAC,
gives the basic reduction of fair exchange to NBAC, then introduces Monte
Carlo NBAC. In Sect. 4 we describe a new fair exchange protocol based on a

4



Monte Carlo NBAC algorithm. We conclude the paper in Sect. 5 with some open
questions.

2 Model

2.1 Processes and channels

The system consists of a set of processes interconnected by a communication
network with bidirectional channels. Two processes connected by a channel are
said to be adjacent. We assume that the processes are synchronous and the
channels are synchronous and secure: between any two adjacent processes P and
Q, the following properties are guaranteed:

– (Authenticity) If a message is delivered at Q, then it was previously sent by
P .

– (Confidentiality) Message contents remain secret from unauthorized entities.
– (Integrity) Message contents are not tampered with during transmission,

i.e., any change during transmission will be detected and the message will
be discarded.

– (Synchrony) If a message is sent by P to Q and Q is ready to receive the
message, then the message will be delivered at Q within some known bound
∆ on the waiting time.

2.2 Untrusted hosts and security modules

The set of processes is divided into two disjoint classes: untrusted hosts (or
simply hosts) and security modules. We assume that there exists a fully connected
communication topology between the hosts, i.e., any two hosts are adjacent.
Furthermore, we assume that every host process PA is adjacent to exactly one
security module process GA (i.e., there is a bijective mapping between security
modules and hosts). In this case we say that PA is associated with GA (i.e., GA is
PA’s associated security module). No two security modules are adjacent. In other
words, for any two security modules GA and GB to communicate, they need to do
so through their hosts PA and PB . This indirection provides the abstraction of an
overlay network at the level of security modules. We call the part of the system
consisting only of security modules and the virtual communication links between
them the security subsystem (see Fig. 2). We call the part of the system consisting
only of hosts and the communication links between them the untrusted system.
The notion of association can be extended to systems, meaning that for a given
untrusted system, the associated security subsystem is the system consisting of
all security modules associated to any host in that untrusted system.

2.3 Trust and adversary model

The model sketched above can be related to the setup in practice (given in
Fig. 1) as follows: untrusted hosts model Internet hosts and their users, whereas

5



GC

sec. mod.

sec. mod.
GA

sec. mod.
GB

security
subsystem

host
PCuntrusted

system

host
PB

host
PA

Fig. 2. Hosts and security modules.

security modules abstract tamper proof components of user systems (like smart
cards). Intuitively, security modules can be trusted by other security modules
or hosts, and hosts cannot be trusted by anybody. Hosts may be malicious, i.e.,
they may actively try to fool a protocol by not sending any message, sending
wrong messages, or even sending the right messages at the wrong time. We
assume however that hosts are computationally bounded, i.e., brute force attacks
on secure channels are not possible.Security modules are supposed to be cheap
devices without their own source of power. They rely on power supply from their
hosts. In principle, a host may inhibit all communication between its associated
security module and the outside world yielding a channel in which messages can
be lost. This is a worst-case albeit realistic assumption.1

A host misbehaves if it does not correctly follow the prescribed protocol.
Otherwise it is said to be honest. Misbehavior is unrestricted (but computation-
ally bounded as we pointed out). Security modules always follow their protocol.
If security modules are studied in systems in which their associated hosts can
inhibit all communication, this results in a system model of security modules
with unreliable channels (i.e., where messages may not be delivered). In such
systems the term failure covers such communication failures.

1 In the best case, security modules may possess their own way of independent commu-
nication (like in the security kernel approach of the timely trusted computing base [6])
yielding a fully reliable synchronous channel, or provide incentives for the host to
support timely communication.

6



3 Reducing Fair Exchange to Atomic Commit

In the following, we recall the fair exchange and non-blocking atomic commit
(NBAC) problems and we show that a solution to NBAC at the level of the
security subsystem can be extended into a solution to fair exchange at the level
of the untrusted system. In other words, we reduce fair exchange at the level of
hosts into NBAC at the level of security modules.

3.1 Fair exchange

Fair exchange is a fundamental problem in any system with electronic business
transactions and has attracted a lot of attention recently (see [16] for a com-
prehensive survey). In fair exchange, we assume that the participating processes
start with an item they want to trade for another item. They additionally pos-
sess an executable description of the desired item (i.e., a boolean function with
which an arbitrary item can be checked for the desired properties). Furthermore,
they know from which process to expect the desired item and which process is
expecting their own item.

Definition 1 (fair exchange). A protocol solves fair exchange if it satisfies
the following properties:

– (Timeliness) Every honest process eventually terminates.
– (Effectiveness) If no process misbehaves and if all items match their descrip-

tions then upon termination each process has the expected item.
– (Fairness) If the desired item of an honest process does not match its descrip-

tion or any honest process does not obtain any (useful) information about
the expected item, then no process can obtain any (useful) information about
any other process’ item.

The Timeliness property ensures that every honest process can be sure that at
some point in time the protocol will terminate. The Effectiveness property states
what should happen if all goes well. Finally, the Fairness property postulates
restrictions on the information flow for the case where something goes wrong
in the protocol.2 Note that the first precondition of the Fairness property (“if
the desired item of an honest process does not match the description. . . ”) is
very important. Without this condition, a “successful” outcome of the exchange
would be possible even if an item does not match the description, which should
clearly be considered unfair.

2 We use here the concept of information flow to define fairness in a way that cleanly
separates the distinct classes of safety, liveness, and security properties in the spec-
ification of the problem [15].

7



3.2 Non-Blocking Atomic Commit

NBAC is well-known from the distributed computing literature [4, 11, 12, 18].
In NBAC, the set of participating processes start each with a proposed value
(usually either yes or no), and tries to reach a common decision (usually com-
mit or abort). NBAC is the basic problem to be solved when implementing a
distributed database transaction. In the following, we give a definition of the
problem in a distributed context where the source of failures is message omis-
sion, e.g., processes do not really crash per se, but their messages might no reach
their destination.

Definition 2 (NBAC). A protocol between n processes solves NBAC if it sat-
isfies the following properties:

– (Termination) Every process eventually reaches a decision.
– (Agreement) No two processes decide differently.
– (C-Validity) If all processes propose yes and there is no failure then the

decision value must be commit.
– (A-Validity) If at least one process proposes no then the decision value must

be abort.

3.3 Reduction

We now show that a solution to NBAC at the level of the security subsystem can
be extended into a solution to fair exchange at the level of the untrusted system.
The derived solutions make no use of an explicit trusted third party within the
trusted system. In a sense, the security subsystem acts as a distributed trusted
third party.

Theorem 1. If NBAC is solvable in the security subsystem, then fair exchange
is solvable in the associated untrusted system.

Proof. Given an algorithm to solve NBAC, we construct a protocol to solve
fair exchange. The local API of NBAC is a function NBAC(vote) which takes a
yes/no vote and upon termination returns either abort or commit.

So assume that we have a solution to NBAC in the security subsystem con-
sisting of security modules G1, . . . , Gn. Now consider the protocol depicted in
Fig. 3. This is a wrapper around the solution which can be implemented within
the security modules and offers the interface of fair exchange to the hosts. In
the protocol, a host hands its item and the executable description of the desired
item to the associated security module. The security module exchanges the item
with its partners, then checks the item. Finally all security modules agree on the
outcome using the underlying NBAC algorithm. The proposal value for NBAC
is yes iff the check was successful and no abort was requested by the host in the
meantime. If NBAC terminates with commit, then the security module releases
the item to the host.3 We now discuss each of the properties of fair exchange.
3 Another problem often encountered in the distributed computing literature is con-

sensus. (Binary) consensus is similar to NBAC in that it also consists of Termination

8



Consider the Timeliness property of fair exchange, and observe that the only
point in which a honest host may block is while it is waiting for the expected
item from its partners (the Termination property of NBAC ensures that it cannot
block in the final part of the protocol). However, the receipt of the message is
guarded by a timeout, so the process never blocks indefinitely (remember that
we assume a synchronous system). Consider Effectiveness and assume that all
participating hosts are honest and all items match their descriptions. Because
channels are synchronous, processes will not time out prematurely and so every
process receives the expected item and successfully validates the description.
Hence, all the votes for NBAC will be yes. From Agreement and C-Validity, the
outcome must therefore be commit at all participating processes. Hence, every
host will receive the expected item. Consider now Fairness and observe that,
in our adversary model, no misbehaving host can derive any useful information
that is exchanged over the secure channels. The only way to receive information
is through the interface of the FairExchange procedure. If one item does not
match the description at some honest host, then that host will engage in NBAC
with a vote of no. A-Validity of NBAC implies that the exchange results in abort
so that no process receives anything from the exchange. Additionally, if some
honest host receives nothing through the exchange, then the Agreement property
of NBAC implies that nobody can receive anything. ut

3.4 Weakening NBAC

Clearly, our reduction indicates that any solution to NBAC (within the secu-
rity subsystem, i.e., at the level of the security modules) can lead to a solution
to fair exchange (within the untrusted system, i.e., at the level of the hosts).
Unfortunately, NBAC cannot be solved deterministically in the secure subsys-
tem because of the possibility of message omissions [10]: remember that hosts
can—in the general adversary model—at any time cut the underlying channels
connecting security modules. However, we introduce here a probabilistic variant

and Agreement properties. The proposal and decision values are also from the set
{0, 1}. However, the Validity property has no built-in affinity towards abort like in
NBAC. It just states that if all processes propose the same value then that value
must be the decision. So if two processes propose different values then both these
values can become decision values. One can ask whether our reduction also works
using consensus (e.g., replacing the call to NBAC with a call to consensus and re-
placing yes/commit with 1 and no/abort with 0). This is not possible, as we now
explain. Consider an execution in which all hosts are honest, and all items except one
match their description. From the protocol, one host will propose 0 and all others
will propose 1. The Validity property of consensus does not determine the value of
the decision (since both 0 and 1 have been proposed). So assume that consensus
terminates with a decision value of 1. This means that the exchange will terminate
successfully and the items will be released to the hosts. This violates Fairness, since
one item does not match its description and so no process should learn anything
about any other item.

9



FairExchange(item i, description d) returns item {
〈send i to exchange partners over secure channel〉
timed wait for 〈expected item ie from exchange partners over secure channel〉
〈check d on ie〉
if 〈check succeeds and no timeout〉
then vote := yes else vote := no endif
result := NBAC(vote)
if result = commit then return ie else return 〈abort〉 endif

}

Fig. 3. Using NBAC to implement fair exchange: code of every host.

of NBAC, the solution of which leads to a practical solution to fair exchange, as
we discuss in the next section.

The variant of NBAC we consider is probabilistic only in the “safety” aspect
of the specification. Following the classification of [19] such a specification falls
into the class of Monte Carlo algorithms.

Definition 3 (Monte Carlo NBAC). An algorithm solves Monte Carlo NBAC
if it satisfies the following properties:

– Termination of NBAC.
– A-Validity of NBAC.
– C-Validity of NBAC.
– Agreement of NBAC with some probability p (0 < p < 1) and p is out of the

control of the adversary.

Recall the adversarial model which we are dealing with: a set of hosts can act
maliciously. We assume that these hosts know the NBAC algorithm running in
the security subsystem, and may cut channels and hence drop messages at any
time. Our requirement that the probability of violating Agreement be out of the
control of the adversary means that, even if the adversary knows the algorithm
executed by the security modules, the hosts cannot, by dropping messages at
specific points of the algorithm execution, render this probability sufficiently
low.

Having p out of control of untrusted hosts is important if we use Monte Carlo
NBAC in the reduction described in Theorem 1: the Agreement property (in the
presence of misbehaving hosts) is only important in the proof of the Fairness
property. Revisiting the proof of Theorem 1, it is easy to see that the probability
of achieving Agreement directly translates to the probability of Fairness. Hence,
if this probability is out of the control of the adversary, the probability that
Fairness will hold is also outside the control of the adversary.

4 The Monte Carlo Atomic Commit Algorithm

We now propose an algorithm which solves the Monte Carlo NBAC problem
between security modules and indirectly helps build a practical fair exchange
protocol at the level of the untrusted hosts.

10



We assume that all processes involved in the algorithm know each other. For
simplicity, we denote the involved processes (the security modules) by G1, . . . , Gn.
The process with the lowest number is the initiator. The pseudocode of the al-
gorithm is given in Fig. 4. Roughly speaking, the processes go through a series
of round: the number of these rounds and the coordinator of every round are
chosen randomly. We describe the algorithm more precisely in the following.

All processes are initialized by default to an abort state (finished = false).
To start the algorithm, the initiator G1 chooses a random number k > 1 as well
as a random number i in {1, 2, 3, . . . , n}, marks a message m with i and sends
m, containing k to Gi. Process Gi is the initiator of the next round: it picks
a new random number j (the next process which will receive the message) in
{1, 2, . . . , n}\{i} and adds a mark j in m. Process Gj picks a new random number
k in {1, 2, . . . , n} \ {i, j}, adds a mark k in m and sends m to Gk. The processes
continue doing so until one of them, say Gl receives m that is marked by full
set {1, 2, 3, . . . , n}. At that point Gl starts a new round by decreasing the round
number found in m and picking the next security module from {1, 2, 3, . . . , n}.
The participants conduct k of such rounds. Upon reception of a message from
the last round, the processes go into a commit state (but the timer is still reset).

Every message receipt is monitored with a timeout. If no message is received
in (2n− 1)∆ time units after the beginning of the algorithm or the most recent
message receipt, the process decides according to its current state (abort or
commit). The timeout is also renewed in the final round to prevent hosts from
colluding. If any process begins the algorithm with a proposal of no, it does not
participate (does not forward any messages), and decides abort in a unilateral
manner.

Theorem 2. The algorithm displayed in Fig. 4 solves Monte Carlo NBAC.

Proof. It is easy to see that the protocol satisfies Termination because of the
timeouts (remember that we assume a synchronous system). It is also straight-
forward to see that C-Validity is ensured: if there is no failure and all propose
yes, they all reach the end of the final round and decide commit. Consider A-
Validity, and assume that some process proposes no. From the algorithm, we
know that this process does not participate in the algorithm, and so not even a
single round will succeed. Hence, all will timeout and abort.

Consider now Agreement. If some message is lost before the final message
round (i.e., a host cuts any channel of its security module), all processes will
time out and abort. The only way for Agreement to be violated is for a message
to be lost in the final round. The adversary cannot know k from observing the
communication channel because the channels are secure. So if k is chosen in a
random manner, there are only two cases to consider. (1) The adversary guesses
k a priori. This probability depends on the probability distribution of process
G1 choosing k, giving a bound on the probability that Agreement is violated and
this is out of the control of the adversary. (2) The second way through which the
adversary might learn k without deciphering the secure channel is by observing
a posteriori the encrypted actions of every process Gi. As soon as Gi commits,

11



NBAC(vote) returns decision {
finished := false
set timer((2n − 1)∆)
if vote = yes then

if 〈Giis initiator〉 then
〈generate random number k > 1〉
RoundSet := ∅
round := k
send next message(round,Roundset)

end
end
wait for 〈message receipt or expiry of timer〉
upon 〈receipt of [round,RoundSet] from previous process〉 do

if RoundSet = 〈set of all participating processes〉 then
RoundSet := ∅
round := round− 1

end
if (round > 0) then

send next message(round,Roundset)
end
if (round = 0) ∨ ((round = 1) ∧ (RoundSet 6= ∅)) then

reset timer
finished := true

end
end
upon 〈expiry of timer〉 do

if finished then
return(success)

else
return(abort)

end
end

}

procedure send next message(round,RoundSet) { // call by reference
nextGA := 〈some participating process not in RoundSet〉
RoundSet := RoundSet ∪ {nextGA}
send [round,RoundSet] to nextGA
reset timer

}

Fig. 4. Pseudocode of the Monte Carlo NBAC algorithm: code of process Gi.

12



the adversary knows the most recent message belonged to the k-th round. It
can then cut the channel to some other process Gj leading it to abort. However,
there is a final timeout of (2n − 1)∆ before comitting, which makes sure the
messages have been transmitted before any commit. ut

Analysis. The number of messages exchanged is k ·n for the case where no failure
occurs. Since processes exchange messages in a linear order it is possible to give
a bound of (k ·n+(2n−1))∆ on the time it takes for the algorithm to terminate
(note that the algorithm terminates only after a final timeout of (2n− 1)∆ after
receiving the final message). The bit complexity of the messages is linear in n
and logarithmic in k.

We now analyze the probability of a violation of Agreement. Let qi be the
probability that G1 chooses k = i, i.e. Pr[k = i]. Assume that the adversary is
willing to drop the i-th message. The only way to violate Agreement is to have
i = k. Hence, the maximum probability that the algorithm ends unfairly over
all possible misbehaviors of the adversary is maxi qi. In [2] various probability
distributions are studied and it is shown that choosing k uniformly from an
interval [1, . . . , N ] minimizes the probability that Agreement is violated. Hence,
by choosing N = 10 the probability that Agreement is satisfied is 0.9. This
analysis indicates a tradeoff between a large value of the probability of ensuring
Agreement and the expected number of rounds of the protocol (which is N/2 for
a uniform distribution from the interval [1, . . . , N ]).

5 Conclusions

In this paper, we showed that solutions to fair exchange at the level of untrusted
hosts can be derived from solutions to the non-blocking atomic commit (NBAC)
at the level of security modules (tamper proofs components within every host).
To make the solutions practical, we weakened the specification of NBAC in
a novel way, resulting in Monte Carlo NBAC. Using Monte Carlo NBAC, we
derived a new and practical solution for fair exchange. In general, we believe the
model considered (hosts with security modules) to be very realistic with modern
technology, and the reduction to NBAC to open an interesting research direction
bridging the gap between security and distributed computing. Many questions
are open.

A natural question to ask is whether we could devise more efficient variants
of our Monte Carlo NBAC algorithm? At first glance, one might think for in-
stance of limiting the size of the messages and the length of the timeouts by
randomly choosing a total number of messages (instead of a total number of
rounds) and have a fixed chain of processes through which the messages would
flow (instead of randomly chosen coordinators). Messages exchanged will in this
case be a logarithmic function of the random number. The trade-off here is that
hosts of processes that are early in the chain have a clear advantage over the
others leading to an algorithm that is inherently unfair. (This helps explains
our motivation for choosing the total number of rounds and the coordinator of

13



every round, both in a random manner). Coming up with optimality results for
the complexity of Monte Carlo algorithms is an interesting question. Another
natural question to ask is whether other weakened NBAC variants can be used
to derive practical solutions to fair exchange.

Acknowledgments

Gildas Avoine and Serge Vaudenay were supported (in part) by the National
Competence Center in Research on Mobile Information and Communication Sys-
tems (NCCR-MICS), a center supported by the Swiss National Science Foun-
dation under grant number 5005-67322. Felix Gärtner was supported by the
Deutsche Forschungsgemeinschaft (DFG) as part of the Emmy Noether pro-
gramme.

References

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In T. Matsumoto, editor, 4th ACM Conference on Computer and Communications
Security, pages 8–17, Zurich, Switzerland, Apr. 1997. ACM Press.

2. G. Avoine and S. Vaudenay. Fair exchange with guardian angels. In The 4th Inter-
national Workshop on Information Security Applications – WISA 2003, Lecture
Notes in Computer Science, Jeju Island, Korea, August 2003. Springer-Verlag.

3. R. A. Bazzi and G. Neiger. Simplifying fault-tolerance: providing the abstraction
of crash failures. 48(3):499–554, 2001.

4. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Reading, MA, 1987.

5. H. Bürk and A. Pfitzmann. Value exchange systems enabling security and unob-
servability. Computers & Security, 9(8):715–721, 1990.

6. M. Correia, P. Veŕıssimo, and N. F. Neves. The design of a COTS real-time
distributed security kernel. In Proc. of the Fourth European Dependable Computing
Conference, Toulouse, France, Oct. 2002.

7. J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith,
and S. Weingart. Building the IBM 4758 secure coprocessor. IEEE Computer,
34(10):57–66, Oct. 2001.

8. S. Even and Y. Yacobi. Relations amoung public key signature systems. Technical
Report 175, Computer Science Department, Technicon, Haifa, Israel, 1980.

9. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a
completeness theorem for protocols with honest majority. In Proceedings of the
19th ACM Symposium on the Theory of Computing (STOC), pages 218–229, 1987.

10. J. Gray. Notes on database operating systems. In Operating Systems — An Ad-
vanced Course, number 66 in Lecture Notes in Computer Science. Springer-Verlag,
1978.

11. R. Guerraoui. Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In J.-M. Hélary and M. Raynal, editors, Proceedings of the
9th International Workshop on Distributed Algorithms (WDAG95), volume 972 of
Lecture Notes in Computer Science, pages 87–100, Le Mont-Saint-Michel, France,
13–15 Sept. 1995. Springer-Verlag.

14



12. R. Guerraoui. Non-blocking atomic commitment in asynchronous systems with
failure detectors. Distributed Computing, 15(1):17–25, 2002.

13. S. P. Ketchpel and H. Garcia-Molina. Making trust explicit in distributed com-
merce transactions. In Proceedings of the 16th IEEE International Conference
on Distributed Computing Systems (ICDCS96), pages 270–281, Hong Kong, May
1996. IEEE Computer Society Press.

14. S. P. Ketchpel and H. G. Molina. A sound and complete algorithm for distributed
commerce transactions. Distributed Computing, 12:13–29, 1999.

15. J. McLean. A general theory of composition for a class of “possibilistic” proper-
ties. IEEE Transactions on Software Engineering, 22(1):53–67, Jan. 1996. Special
Section—Best Papers of the IEEE Symposium on Security and Privacy 1994.

16. H. Pagnia, H. Vogt, and F. C. Gärtner. Fair exchange. The Computer Journal,
46(1), 2003.

17. H. Pagnia, H. Vogt, F. C. Gärtner, and U. G. Wilhelm. Solving fair exchange with
mobile agents. In Proceedings of the Second International Symposium on Agent
Systems and Applications and Fourth International Symposium on Mobile Agents
(ASA/MA2000), volume 1882 of Lecture Notes in Computer Science, pages 57–72,
Zurich, Switzerland, Sept. 2000. Springer-Verlag.

18. D. Skeen. Non-blocking commit protocols. In Proc. ACM SIGMOD Conf., page
133, Ann Arbor, MI, Apr.-May 1981.

19. G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.
20. Trusted Computing Group. Trusted computing group homepage. Internet: https:

//www.trustedcomputinggroup.org/, 2003.
21. J. D. Tygar. Atomicity in electronic commerce. In Proceedings of the 15th Annual

ACM Symposium on Principles of Distributed Computing (PODC ’96), pages 8–26,
Philadelphia, PA, May 1996. ACM Press.

22. H. Vogt, F. C. Gärtner, and H. Pagnia. Supporting fair exchange in mobile envi-
ronments. ACM/Kluwer Journal on Mobile Networks and Applications (MONET),
8(2), Apr. 2003.

15


