
Rapid Dialogue Prototyping Methodology

Trung H. BUI, Martin RAJMAN
Artificial Intelligence Laboratory (LIA)

School of Computer and Communication Sciences (I&C),
Swiss Federal Institute of Technology Lausanne (EPFL),

CH-1015, Lausanne, Switzerland
{trung.bui, martin.rajman}@epfl.ch

January 5, 2004

EPFL Technical Report IC/2004/01

Abstract

The objective of this document is to present a rapid dialogue prototyping
methodology developed at the Artificial Intelligent Laboratory - Ecole Polytechnique
Federale de Lausanne. Concretely, the rapid dialogue prototyping methodology is
decomposed into 5 consecutive main steps: (1) producing the task model; (2) deriving
the initial dialogue model; (3) using a Wizard-of-Oz experiment to instantiate the
initial dialogue model; (4) using an internal field test to refine the dialogue model;
and (5) using an external field test to evaluate the final dialogue model.

Keywords: Dialogue Modeling and Dialogue Management, Wizard-of-Oz

1

Contents

1 Introduction 3

2 Task Model 3

3 Dialogue Model 4

3.1 Definition . 4
3.2 Generic Dialogue Nodes . 5

3.2.1 Prompts . 6
3.2.2 Grammars . 6

3.3 Local Dialogue Flow Management Strategy 7
3.4 Global Dialogue Flow Management Strategy 7

3.4.1 Branching Logic . 8
3.4.2 Dialogue Dead-end Management . 10
3.4.3 Confirmation . 10
3.4.4 Dialogue Termination . 12
3.4.5 Incoherences . 12

3.5 Generating the initial model . 12

4 Wizard-of-Oz experiment 13

5 Internal Field Test 15

6 External Field Test 15

7 Conclusion 16

2

1 Introduction

Human-machine communication has been the goal of researchers for more than 30
years. Many approaches to dialogue systems have been implemented and many sur-
veys on this topic have been produced (e.g. [McTear, 2002, Catizone et al., 2002,
Churcher et al., 1997, Cohen, 1997]). Up to now, due to the complexity of the man-
agement of spoken language interfaces and their strong dependence on the interaction
context, there does not exist yet a really generic approach for dialogue design; each
application requires the development of a specific model. Dialogue prototyping therefore
represents a significant part in the development process of interactive systems, especially
for the ones with a vocal interface: there is a strong need for an efficient Rapid Dialogue
Prototyping Methodology (RDPM). The main idea of the methodology is to quickly
produce a deployable dialogue model and its improvement through a iterative process
based on Wizard-of-Oz experiments (i.e. dialogue simulation) [Fraser and Gilbert, 1991].

In this perspective, the main goal of the document is to describe the RDPM1 developed
at the Artificial Intelligent Laboratory (LIA) - Ecole Polytechnique Federale de Lausanne
(EPFL). Concretely, the RPDM contains five main steps:

1. producing a task model for the targeted application;

2. deriving an initial dialogue model from the obtained task model;

3. carrying out a Wizard-of-Oz experiment to improve the initial dialogue model;

4. carrying out an internal field test to further refine the dialogue model (reformula-
tion of system messages, improved feedback, etc.), and to validate the evaluation
procedure (coherence, understandability); and

5. carrying out an external field test to evaluate the final dialogue model according to
the evaluation procedure defined during the internal field test.

All 5 steps will be presented more detail in the next sections.

2 Task Model

In the RDPM, a task model is described in the form of a set of relational tables (frames),
where the columns are the attributes needed to identify the tasks to be performed and the
lines are the possible task instances (also called the ”solutions” or the ”targets”).

More precisely, a task is modeled as a function, the arguments of which correspond to
the above-mentioned attributes and the call to which results in the fulfillment of the task,
or in other words, the selection of the task instance (”solution”) corresponding to the val-
ues selected for the attributes. For example, in the InfoVox 2 restaurant application, the
task model simply reduces to a single function select restaurant(Type of kitchen,

Localization, Opening time, Opening day, Price range), the attributes of which
identify the 5 selection features available for the restaurant search. Therefore, the task
model of the Infovox project is simply a table with 5 attributes: Type of kitchen,

1some preliminary description of this methodology is presented in [Rajman et al., 2003]
2The InfoVox project was partly funded by the Swiss national CTI grant program.

3

Localization, Opening time, Opening day, and Price, the lines of which are the various
value combinations of the attributes corresponding to existing restaurants.

At the computational level, the calls to the select restaurant() function were im-
plemented in the form of SQL queries to be submitted to the project database containing
the required information about the around 50 available restaurants in the city of Martigny
(the values of the selection features of course, but also additional information such as the
name, the address and the telephone number of the restaurants).

Notice that the current version of the RDPM presupposes that the task model consists
of a single table called the complete solution table. In the case of more complex models
consisting of several interconnected tables (for example a main table containing the task
candidates and several additional tables relating the values present in the main table to
additional attributes), standard database normalization procedures (such as joint opera-
tions) are first applied to transform the original tables in to a single one. Figure 1 gives
a simple illustration of such a transformation.

......

--

Tom CruiseTom Cruise

MainPeopleMainPeople

......

TueTue

MonMon

DayDay

......

NoonNoon

EveningEvening

TimeTime

......

NewsNews

FilmFilm

TypeType

............

--S2S2

Vanilla SkyVanilla SkyS1S1

TitleTitleShowShow

IDID

......

--

Tom CruiseTom Cruise

MainPeopleMainPeople

......

TueTue

MonMon

DayDay

......

NoonNoon

EveningEvening

TimeTime

......

NewsNews

FilmFilm

TypeType

............

--S2S2

Vanilla SkyVanilla SkyS1S1

TitleTitleShowShow

IDID

Action IDAction IDDevice IDDevice ID Action IDAction IDDevice IDDevice ID

rightrightlightlightD4D4

leftleftlightlightD3D3

..................

--FanFanD2D2

--TVTVD1D1

LocationLocationDevice nameDevice nameDevice IDDevice ID

rightrightlightlightD4D4

leftleftlightlightD3D3

..................

--FanFanD2D2

--TVTVD1D1

LocationLocationDevice nameDevice nameDevice IDDevice ID

recordrecordA3A3

..................

--switch_offswitch_offA2A2

--switch_onswitch_onA1A1

Show IDShow IDAction nameAction nameAction IDAction ID

recordrecordA3A3

..................

--switch_offswitch_offA2A2

--switch_onswitch_onA1A1

Show IDShow IDAction nameAction nameAction IDAction ID

----------DimDimLeftLeftLightLight

Vanilla SkyVanilla SkyTom CruiseTom CruiseEveningEveningMonMonFilmFilmRecordRecord--TVTV

……

----------switch_onswitch_on--FanFan

TitleTitleMainPeopleMainPeopleTimeTimeDayDayTypeTypeActionNameActionNameDeviceLocationDeviceLocationDeviceNameDeviceName

----------DimDimLeftLeftLightLight

Vanilla SkyVanilla SkyTom CruiseTom CruiseEveningEveningMonMonFilmFilmRecordRecord--TVTV

……

----------switch_onswitch_on--FanFan

TitleTitleMainPeopleMainPeopleTimeTimeDayDayTypeTypeActionNameActionNameDeviceLocationDeviceLocationDeviceNameDeviceName

Solution TableSolution Table

Figure 1: From the task model to the complete solution table

3 Dialogue Model

3.1 Definition

In our approach, a dialogue model is defined as a set of interconnected Generic Dialogue
Nodes (often hereafter referred to as GDNs, e.g. [Bilange, 1992]), where each of the
dialogue nodes is associated with one of the attributes (also called ”slots” or ”fields”
hereafter) in the solution table. For any given slot, the role of the associated generic
dialogue node is to perform the simple interaction with the user that is required to obtain
a valid value for the associated attribute.

4

In the architecture that we have selected for the implementation of our dialogue mod-
els, the processing of the GDNs (i.e. the actual interaction with the user according to the
specification of the GDNs) is taken in charge by a specific module called the local dialogue
manager. However, this is of course not sufficient to perform any real dialogue, as some
form of global dialogue management also needs to be integrated. For example, in addition
to the definition of the GDNs and the specification of the local dialogue manager, some
branching logic responsible for the management of the global dialogue flow needs to be
specified. In our approach, this branching logic is hard-coded in a specific dialogue man-
agement module called the global dialogue manager. The underlying assumption is that
the encoded local and global management strategies are indeed application independent,
i.e. that, in most cases, they lead to an acceptable, even not always optimal behavior for
the system. Consequently, in our approach, dialogue model design essentially reduces to
the application dependent, declarative specification of the GDNs, the encoded dialogue
management strategies being used without modification for all applications.

In short, a dialogue model consists of 2 main parts: (1) the application dependent
declarative specification of the GDNs; and (2) the application independent local and global
dialogue flow management strategies encoded in the corresponding dialogue managers.
Both of these 2 components are described in more detail in the next sections.

3.2 Generic Dialogue Nodes

To deal with the various attributes appearing in the relational tables defining the task
model, we consider two main types of GDNs:

1. Simple GDNs (also called Static GDNs) associated with Static fields (i.e. fields the
values of which do not change in time, or change only very slowly; for example the
names of the devices that can be operated in a given room);

2. List processing GDNs (also called Dynamic GDNs) associated with Dynamic fields
(i.e. fields the values of which quickly change in time; for example the list of films
that might be recorded).

In addition, a third type of GDNs called ”Internal GDNs” is used to perform the
interactions that are required by various special functions implemented in the dialogue
manager (e.g. start/reset the dialogue).

As already mentioned, the role of each GDN is to perform a simple interaction with
the user to obtain a valid value for the associated attribute. In this respect, the difference
between static and dynamic GDNs is that the former are expecting the user to directly
provide a value for the associated attribute (for example, a static GDN associated with
the ”Device Name” attribute might ask a question such as ”What device would you like to
operate?” and will be expecting an answer containing a value taken from a predefined list
of values such as ”fan”, ”tv” or ”answering machine”), while a dynamic GDN will ask the
user to choose in a list of dynamically computed list of values (for example, a dynamic GDN
associated with the ”Film Title” attribute will generate a list of titles and ask the user
to indicate the position of the selected one in the list). The List processing GDNs are an
important component of the targeted dialogue model as they allow to efficiently take into
account large dynamic vocabularies that could not be reliably processed by Simple GDNs
because of the limited performance of the speech recognition module in such conditions.

5

To realize the interaction it is responsible for, each GDN contains 2 main types of
components: prompts and grammars (Figure 2).

Grammar

Prompt

Actions

Main prompt: Select a device please?

Repetition:
Please give a
value for device?

Help: The possible values
for device are : Fan, Blind,
Light, TV, Electronic
Program Guide or
Answering Machine.

NoInput:I could not
hear you. Please give a
value for device?

NoMatch:I could not
understand what
you said. Please give
a value for device?

OK

Figure 2: An example of the GDN ”Device Name”

3.2.1 Prompts

Prompts are the messages uttered by the GDN during the interaction. Several types of
prompts are defined, among which them the main prompt corresponding to the initial
question asked by the GDN and the help prompt that is uttered in the case of a request
for help expressed by the user. Notice that the formulation of the prompts plays an
important role during the dialogue as it influences the level of mixed initiative (i.e. the
degree of flexibility that the system allows for the interaction). For instance, a main
prompt such as ”What can I do for you?” expresses the fact that the system is ready to
accept a quite a broad range of user requests, while a more precise prompt such as ”Do
you want to operate the TV, yes or no?” implies a low level of mixed initiative as the
user is only expected to answer either yes or no.

3.2.2 Grammars

The role of the grammars is to make the connection between the surface forms appearing
in the natural language user utterances and the ”canonical values” used in the task model,
that is the set of values defined for the attributes associated with the GDNs in the solution
table describing the application. As such, the grammars represent the main Natural
Language Processing elements in the system. The grammars might also be used in the
speech recognition engine to improve the quality of the recognition. In addition, the control
of the level of mixed initiative is implemented through the notion of active grammars: in
its specification, each GDN is associated with a set of grammars that define the types of
answers that are considered as acceptable for the interaction the GDN is responsible for.
For example, the GDN associated with ”Show Time” field will of course be associated

6

with the ”Show Time” grammar (recognizing utterances such as ”at 8 o’clock”, ”in the
afternoon”) but might also be associated with other grammars such as the ”Show Date”
grammar in order to be able to extract, for an utterance such as ”tomorrow evening” not
only the time (”evening”) but also the date (”tomorrow”).

3.3 Local Dialogue Flow Management Strategy

Each GDN is able to locally process five types of possible generic situations: (1) OK :
the user answers the question in an acceptable way; (2) Request for Repetition: the user
asks for the repetition of the last system prompt; (3) Request for Help: the user doesn’t
know how to answer to the question and asks for more explanation; (4) NoInput : the
user provides no utterance; and (5) NoMatch: the user answers but nothing useful can be
extracted from his/her answer.

In the case of the OK situation, the control is handed back to the global dialogue
manager which applies the global dialogue management strategy for the activation of the
next GDN. In the other 4 situations, the control remains at the GDN level. In these
”problematic” cases, there is therefore a need for repairing the dialogue and the system
then operates in the following way: (a) Request for Repetition: the current GDN is reac-
tivated and its main prompt is played if it is the first request, otherwise the reformulation
prompt is played; (b) Request for Help: the GDN is reactivated and the associated help
prompt is played instead of the main prompt; and (c) NoInput/NoMatch: the current
GDN is reactivated and the NoInput/NoMatch prompt is concatenated at the beginning
of the main prompt.

Notice that, in all cases, there is an upper limit to the number of consecutive times
that a given GDN can be activated. If this limit is exceeded, the control is handed back
to the global dialogue manager with the appropriate error message.

3.4 Global Dialogue Flow Management Strategy

The Global Dialogue Flow Management (GDFM) consists of several complementary strate-
gies:

• a branching logic defining the next GDN to be activated;

• a dialogue dead end management strategy to deal with dialogue situations where no
solution corresponds to the request expressed by the user;

• a confirmation strategy to provide the systems with validation possibilities for the
values acquired during the interaction;

• a dialogue termination strategy to define when the interaction with the user should
be terminated (i.e. a solution proposed); and

• a strategy to deal with incoherencies.

As already mentioned, all these strategies are encoded in the global dialogue manager
and are therefore application independent.

7

3.4.1 Branching Logic

The proposed branching logic only relies on the fact that the task model is expressed in
the form of a relational table. It can be described as the following 4 steps process:

1. Acquire: some canonical values are obtained from the user through the interaction
with the current GDN level;

2. Filter: the obtained values are added to the set of already acquired ones and the
application database is filtered in order to contain only the solutions that are com-
patible with the obtained set of values;

3. Propagate: for the attributes for which all the solutions in the database have the
same canonical value, the value is propagated, i.e. considered as ”implicitly” ac-
quired for the attribute;

4. Activate: the next ”open” attribute (i.e. the next attribute still associated with a
heterogenous of values) is identified, and the associated GDN is activated.

Example:
System[1]: What do you want to do?
User[1]: record a show on TV.
System[2]: For TV as device and record as action, which day of week?

1. Acquire: The acquired information from the User[1] utterance are: DeviceName =
”TV”, ActionName=”Record”;

2. Filter: Let us assume that the complete solution table contains only the following 3
rows compatible with the above acquired values:

DeviceName DeviceLocation ActionName Type Day

TV - Record Film Sun

TV - Record Film Sat

TV - Record Film Mon

After filtering, the current solution table will therefore reduce to these 3 solutions
only.

3. Propagate: the value ”-” and ”film” are propagated for the attributes DeviceLocation
and Type respectively;

4. Activate: the next ”open” attribute is ”Day” (still active with 3 different values) and
the associated GDN therefore become the new active one and the question System[2]
is asked.

All 4 above steps are illustrated in the figures 3, 4.

8

System: What do you want to do?

User: record a show on TV

System: Which day of week?

RecordRecord

RecordRecord

RecordRecord

ActionNameActionName

SatSatFilmFilm--TVTV

MonMonFilmFilm--TVTV

SunSunFilmFilm--TVTV

……DayDayTypeTypeDeviceLocDeviceLoc ..DeviceNameDeviceName

RecordRecord

RecordRecord

RecordRecord

ActionNameActionName

SatSatFilmFilm--TVTV

MonMonFilmFilm--TVTV

SunSunFilmFilm--TVTV

……DayDayTypeTypeDeviceLocDeviceLoc ..DeviceNameDeviceName

RecordRecord

Action NameAction Name

OPENOPENOPENOPENOPENOPENTVTV

……DayDayTypeTypeDeviceLocDeviceLoc ..DeviceNameDeviceName

RecordRecord

Action NameAction Name

OPENOPENOPENOPENOPENOPENTVTV

……DayDayTypeTypeDeviceLocDeviceLoc ..DeviceNameDeviceName

Acquired information

Current filled

solutions table

Filtering

acquisition

SRE + NLU

1

22

Figure 3: Branching Logic (Steps 1, 2)

System: What do you want to do?

User: record a show on TV

System: Which day of week?

RecordRecord

RecordRecord

RecordRecord

ActionNameActionName

SatSatFilmFilm--TVTV

MonMonFilmFilm--TVTV

SunSunFilmFilm--TVTV

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

RecordRecord

RecordRecord

RecordRecord

ActionNameActionName

SatSatFilmFilm--TVTV

MonMonFilmFilm--TVTV

SunSunFilmFilm--TVTV

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

Current filled

solutions table

Acquired and propagated information

Propagation3

4

RecordRecord

Action NameAction Name

OPENOPENFilmFilm--TVTV

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

RecordRecord

Action NameAction Name

OPENOPENFilmFilm--TVTV

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

3

Figure 4: Branching Logic (Steps 3, 4)

9

3.4.2 Dialogue Dead-end Management

This strategy is required to deal with the cases where the goal of the dialogue can not be
reached any more (zero solution). To cope with dead end situations, we use the following
relaxation strategy:

1. Determine how many solutions are compatible with all the values that have been
explicitly acquired (i.e. not propagated) but one. If the obtained number is smaller
than or equal to a predefined threshold called the ”dead end management threshold”
then provide all the relaxed solutions to the user and ask him/her to select the desired
one. Otherwise choose one of the attributes corresponding to a non-zero number of
solutions when relaxed;

2. Remove the value associated with the selected attribute, re-propagate from the re-
maining ones, and activate a yes/no GDN to get user’s decision about the relaxation;

3. If the user agrees with the relaxation, activate the next GDN according to the
standard activation rule, otherwise go to step 2;

4. If the user rejects all relaxation possibilities, reset the dialogue.

Example:
System[1]: What do you want to do?
User[1]: dim the fan

As this stage of the dialogue, the system has acquired the value ”dim” for ”Action-
Name” and ”fan” for ”DeviceName” and, as it is assumed that it is not possible to dim
a fan, the system is in a dead end situation. It then first relaxes ”dim” and computes
the number of solutions compatible with the unique constraint ”DeviceName=fan” (say
2 entries) and then relaxes ”fan” and computes the number of solutions compatible with
”ActionName=dim” (say 3 entries). The total number of relaxed solutions is therefore 5
and:

• if the dead end management threshold is greater or equal to 5, the system will
display/utter the solutions and ask the user to select one (see Figure 5):

System[2]: Your selection does not correspond to a possible solution. Please select a
possible solution from the list?

• otherwise, the system will start the relaxation confirmation process:

System[2]: Your selection does not correspond to a possible solution. Do you agree
to reconsider ”fan” as device?

3.4.3 Confirmation

The confirmation strategy is the procedure used during the dialogue to obtain the user’s
confirmation of the values that have been acquired by the system. There are 2 possible
approaches:

10

System: What do you want to do?

User: dim the fan

System: Your selection does not corespond to a possible solution.

Please select a possible solution from the list.

----SwitchOffSwitchOff--FanFan

----SwitchOnSwitchOn--FanFan

DimDim

DimDim

DimDim

ActionNameActionName

----LeftLeftLightLight

----RightRightLightLight

----AllAllLightLight

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

----SwitchOffSwitchOff--FanFan

----SwitchOnSwitchOn--FanFan

DimDim

DimDim

DimDim

ActionNameActionName

----LeftLeftLightLight

----RightRightLightLight

----AllAllLightLight

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

DimDim

ActionNameActionName

OPENOPENOPENOPENOPENOPENFanFan

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

DimDim

ActionNameActionName

OPENOPENOPENOPENOPENOPENFanFan

……DayDayTypeTypeDeviceLocDeviceLoc..DeviceNameDeviceName

Acquired information

Possible Solutions with relaxation

Dead end (0 solution)

Figure 5: Example of Dead end Management

• Explicit confirmation: the confirmation is simply obtained by explicitly asking the
user;

Example:
System[1]: Now you can select your show from the list.
User[1]: I select the first one
System[2]: You have selected solution one. Is it correct?

• Implicit confirmation: the confirmation is induced from the reaction of the user to
some confirmation information automatically associated with the next question.

Example:
System[1]: Select a device please?
User[1]: Fan
System[2]: For Fan as device, what do you want me to do?
User[1]: Switch it on.

In this example, the fact that the user did not react negatively to the indication
”For fan as device,...” is interpreted as an (implicit) positive confirmation. The
underlying hypothesis is that the user would have reacted in a negative way (by
saying something like: ”I didn’t say I want to operate the fan!...”) if the proposed
choice would not have been correct.

Implicit confirmation usually leads to shorter dialogue that are considered as more
natural by the users. Explicit confirmation is useful in special cases such as the invocation
of irreversible actions (such as ”delete the messages on the answering machine”.

11

3.4.4 Dialogue Termination

The idea behind the dialogue termination strategy is that it might be more efficient, once
a limited number of solutions has been reached during a dialogue, to simply display/utter
the solution list and let the user choose the correct one, instead of trying to continue the
dialogue to refine the user request in order to reduce the solution set to a unique one. For
example, when the user wants to record a film on TV at a specific time, and the number of
available films at this time is sufficiently small, the system will display all the possibilities
and ask the user to select a film instead of asking for additional selection criteria (e.g. the
main actors). To implement such a behavior, a limit on the number of current solutions,
called the termination threshold is defined and the termination strategy then very simply
corresponds to stop the dialogue and switch to explicit solution selection as soon as the
current number of solutions is smaller than or equal to the termination threshold. Once
the selection is done, the task is completed and the dialogue is reset.

3.4.5 Incoherences

This strategy is necessary to deal with the cases where the user provides two incompatible
values for one or several attribute(s). For example, if the user first indicates ”fan” for the
Device Name attribute and later on provides the value ”light”, an incoherence occurs for
this attribute. To deal with such a situation, an incoherence prompt, such as, for example:
”I am not sure about the device you have provided: Fan or TV. Could you please re-
peat your choice?” should be generated in order to force the user to make an explicit choice.

The above mentioned incoherence management strategy is only used for incompatible
value pairs where each of the two values has been explicitly provided by the user (”true”
incoherences). If only propagated values are involved, the new value is used to overwrite
the old one. In the remaining cases (propagated against given or vice versa), a dialogue
dead-end management is triggered.

In the case of several simultaneous incoherencies, only one is processed and all other
incoherent values (old and new) are removed. The rule to choose the incoherence pair to
process is the following:

1. If the current GDN defines a context (i.e. is an associated with a specific attribute
on which the current question was focused) and if there is an incoherence associated
with that attribute, then this incoherence should be processed;

2. Otherwise (the case of GDNs corresponding to fully open questions such as: ”What
you want to do?”), the incoherence corresponding to the attribute associated with
the GDN coming first in the order defined in the solution table should be processed.

3.5 Generating the initial model

Each attribute in the complete solution table is associated with a GDN in the dialogue
model, the type (static or dynamic) of which is derived from the type of the attribute.

Notice that, the dialogue model might also contain some GDNs that are not explicitly
associated with an attribute in the complete solution table. For example, the initial (mixed
initiative) start GDN as we mentioned in 3.2.

12

The generated GDNs are minimalistic in the sense that their prompts are automati-
cally generated and that they do not contain any interpretation grammars. The generated
prompts are produced in a very simple way: if the attribute to be queried about is X,
then the associated question is simply: ”What X?”. Following this trivial generation
procedure, we can now produce, as the final part of our illustration, an example of what
could be an interaction between a user and the automatically generated dialogue model
described in this section:

System1: What device?
User[1]: I would like to use the VCR.
System[2]: What action?
User[2]: Switch it on to record ”The Simpson’s”.
System[3]: Which day?
User[3]: Tomorrow.
System[4]: What Start time?
User[4]: From 7 to 7:30pm
System[5]: Switching on the VCR to record ”The Simpson’s” on Friday, January 31st,
from 7 to 7:30pm.

In reality of course, as the generated dialogue model does not contain any interpretation
grammars, it will in fact not be able to produce an interaction such as the one shown above,
because it will simply be unable to interpret any of the user’s answers. In this stage, the
validation of the model therefore still requires human intervention. This is done in the
framework of a Wizard-of-Oz experiment as described in the next section.

4 Wizard-of-Oz experiment

A Wizard-of-Oz experiment [Fraser and Gilbert, 1991] (hereafter called a WoZ exper-
iment) can be defined as a simulation of a human-machine interaction during which
a user is exposed to a system he/she believes to be fully automatic, while a hidden
human operator (the Wizard) is manually operating (at least) some of the system
functionalities that have not yet been fully implemented (sometimes, no implementa-
tion at all has been done at the WoZ stage and the experiment then corresponds to a
complete simulation) [Dahlbäck and Ahrenberg, 1993, Geutner Petra and Dietrich, 2002].

Within such a setup, the main goal of a WoZ experiment is to provide ”realistic”
experimental data about the ”true” behaviour of the members of some targeted user
group when faced with an automated system for a given application. To this end, the
experimental data is gathered (the experiments are often recorded and/or filmed) and
subjectively analysed by the system designers in order to obtain valuable insights to
guide subsequent modelling and implementation decisions [Daly-Jones et al., 1999]. The
underlying hypothesis is that it is easier (quicker, cheaper, ...) to set-up and modify a
manually operated simulation than to specify, develop, and modify a real implementation
of a system. While this hypothesis is undoubtfully very often true, it is however important
to notice that a WoZ experiment is certainly not a cheap operation. It is indeed not an
easy task to make users convincingly believe that they are faced with a machine when
the simulation is in fact operated by a human. All clues that could reveal the presence
or intervention of the wizard must be thoroughly removed. Thus, actions need to be

13

taken to physically hide the wizard during the interaction and an interaction interface,
even simplified, usually needs to be developed to this end. Further, the wizard has to
undergo a specific training so that he/she can consistently behave in a manner that can
convincingly be believed as the one the user is expecting from a machine (no sophisticated
inferences, no emotional reactions, no apparent tiredness, ...). In addition, it can be quite
difficult to guarantee that the behaviour of the simulated system will remain uniform
over time (the wizard can be in better shape one day than the other, he/she might not
consistently remember the provided instructions to operate the simulation over a longer
period of time, ...) [McTear, 2002].

However, it is also clear that a WoZ experiment can significantly improve the design
of an interactive system (e.g. the design of the user interface [Boyce and Gorin, 1996]).
Indeed, the results of the experiments can not only be used for an initial evaluation of the
adequacy of the a priori conception (architecture, functions, interface, ...) the designers
have of the targeted system, but, in addition, the experimental data produced during
the experiment can serve, if thoroughly recorded, as initial and strongly relevant training
data for the system.

As far as concrete implementation is concerned, an interesting and practical solution
is to aim at directly integrating the WoZ capabilities in the dialogue development envi-
ronment, i.e. in the dialogue interpreter and/or the dialogue manager. However, in order
to do so, it is necessary to precisely identify the different entry points into the system that
should be effectively provided to the wizard for potential intervention in system behaviour.

In the most general case, this might be an extremely difficult issue, as, in theory, the
different dialogue models that can be considered might be of arbitrarily large complexity.
In the case of the InfoVox project however, the dialogue model was sufficiently simple
to allow an alternative approach that did not require modifying neither the dialogue
interpreter, nor the dialogue manager. In fact, the dialogue model was completely
re-implemented as a set of interconnected HTML forms, each of these forms representing
one of the GDNs in the model and the branching being directly implemented in the form
of hyperlinks between the HTML forms.

Each of the forms provided the wizard with the necessary functionalities to operate
the simulation (the possibility to play pre-recorded messages containing the various
prompts, the possibility to store and visualise the various attribute values progressively
provided by a user during his/her interaction, the possibility to decide and store what
the wizard thinks the interpretation produced by the GDN grammar should have been
if such a grammar would have been available, ...). As far as the dialogue management
is concerned, it fully relied on the Wizard who had to manually select the next active
GDN or local processing (help. repetition,...) by clicking on the corresponding hyperlink.
One of the main advantages of the selected approach was to make it possible to set-up
the WoZ experiment very rapidly and at a very low implementational cost. However, the
fact that the WoZ experiment was carried out in the form of a pure simulation (i.e. the
WoZ environment was never connected with any of the running versions of the dialogue
manager prototype) made the task of the wizard quite difficult (operating the simulation
in real time appeared to be a task with a quite high cognitive overload). For this reason,
in the Inspire project, we have implemented an extended WoZ interface that rely on a

14

tighter integration of the WoZ functionalities in the dialogue management environment.
In particular, the WoZ interface now integrates the same dialogue management strategy
as the one implemented in the dialogue manager itself. This allows the Wizard not to
care about the dialogue flow management and to fully concentrate on the processing
of the user utterances (i.e. the transcription and/or the extraction of the adequate
canonical values which makes his/her task simpler. In addition, we are currently planning
to modify the grammar processing component of the VoiceXML interpreter so that the
HTML forms required for the WoZ experiment would be automatically and dynamically
produced by the dialogue interpreter itself.

To guarantee an easy production of the extended WoZ interfaces, we have developed
a WoZ Interface Generator which allows us to automatically create the WoZ Interface
required for a given WoZ experiment. The WoZ Generator needs 2 types of inputs: the
complete solution table and a configuration file containing the description of the GDNs.

The result (i.e. the produced WoZ interface) consists of two main components: an
application independent library of HTML templates and Java Scripts common for all
generated WoZ Interfaces and an application dependent component corresponding to an
HTML interface which allows the Wizard to simulate the system in the WoZ experiment.

The main advantage of the WoZ Interface Generator is that it allows a very quick
production of WoZ Interfaces which are simple to use and easy to modify which makes of
it a very valuable tool for iterative dialogue model improvement.

5 Internal Field Test

The aim of the internal field-test is to improve the dialogue model, by for instance reformu-
lating unclear prompts, and to validate the evaluation procedure (coherence, understand-
ability). The test is conducted with the cooperation of ”friendly” users, namely system
designers, colleagues, friends and family, who do not necessarily represent the target users
of the application. The test is conducted in the following way:

1. Description of the system and of the evaluation procedure (3 minutes);

2. The user is put in a specific applicative context with a scenario (3 minutes);

3. The user is connected to the system (5-10 minutes);

4. A satisfaction questionnaire is submitted to the user (10 minutes).

6 External Field Test

The aim of the external field test is to evaluate the final dialogue model according to
the evaluation procedure defined during the internal field-test. The ”external” adjective
defines the fact that users in this case are randomly chosen among a set of relevant target
users for the application.
The input to this test are:

• The answers to the satisfaction questionnaire, providing subjective indicators: av-
erage scores obtained dor the various closed questions;

15

• The log files produced by the system during the interactions with the users (dura-
tion, number of turns), providing objective indicators: average values measured for
several system characteristics.

Three different kinds of analyses were performed on the input data:

1. Retrospective trend analysis: its purpose is to provide a synthetic view on the
opinion of the users about the system, and therefore to identify the predominant
trends;

2. Retrospective correlation analysis: its purpose is to identify dependencies be-
tween objective and subjective indicators;

3. Prospective correlation analysis: its purpose is to identify dependencies between
objective and subjective indicators.

7 Conclusion

The RDPM is an efficient framework for state-based and frame-based approaches of spoken
dialogue systems. The practical result shows that which simple applications (e.g. restau-
rant search in Infovox), we can develop an initial dialogue model in several hours. The
dialogue manager, the most importance part of dialogue prototyping, covered most of di-
alogue management activities (i.e. branching logic, dialogue dead-end management strat-
egy, confirmation strategy, dialogue termination strategy, incoherencies, strategy defining
level of initiative, etc.).

The RDPM has been implemented in the form of an automated WoZ Interface Gener-
ator and dialogue management library, that allows creating WoZ interfaces automatically.
Another important part in the methodology is the evaluation (steps 3,4,5). The design
based on simulations method with WoZ experiments and two types of test (i.e. internal
field test and external field test) [Rajman et al., 2003].

In InfoVox project, the RPDM has been proposed, implemented and validated with
very simple dialogue management and is targeted for simple finite-state based dialogue
model. The results are (1) the restaurant information server prototype (consists of
functional modules: the telephone interface, the speech recognizer, the dialogue manager,
and the database manager), and (2) the dialogue prototyping and evaluation methodology
[Rajman, 2003].

In Inspire project 3, the RDPM has been improved to support frame-based dialogue
models, strategies for dialogue management are added and validated. Although, this is
an ongoing project, we have a created a good dialogue model with all necessary dialogue
functions.

3See http://www.inspire-project.org; the INSPIRE project is funded by the European FP5 IST research
grant program.

16

References

[Bilange, 1992] E. Bilange. Dialogue personne-machine, modélisation et réalisation infor-
matique. Langue, Raisonnement, Calcul, Hermès, Paris, 1992.

[Boyce and Gorin, 1996] J. Boyce, Susan and L. Gorin, Allen. User Interface Issues for
Natural Spoken Dialog Systems. AT&T Laboratories, 1996.

[Catizone et al., 2002] R. Catizone, A. Setzer, and Y. Wilks. State of the art in dialogue
management. 2002.

[Churcher et al., 1997] Gavin E. Churcher, Eric S. Atwell, and Clive Souter. Dialogue
management systems: a survey and overview, 1997.

[Cohen, 1997] P. Cohen. Dialogue modeling in survey the state of the art in human
language technology. 1997.

[Dahlbäck and Ahrenberg, 1993] Jönsson Arne Dahlbäck, Nils and Lars Ahrenberg.
Wizard-of-Oz studies - why and how. Knowledge Based Systems, vol. 6, No 4, 1993.

[Daly-Jones et al., 1999] Owen Daly-Jones, Nigel Bevan, and Cathy Thomas. Wizard-of-
Oz prototyping. http://www.ejeisa.com/nectar/inuse/6.2/3-3.htm, 1999.

[Fraser and Gilbert, 1991] N. Fraser and N. Gilbert. Simulating Speech Systems. Com-
puter Speech and Language, vol. 3-5, 1991.

[Geutner Petra and Dietrich, 2002] Steffens Frank Geutner Petra and Manstetten Diet-
rich. Design of the VICO Spoken Dialogue System : Evaluation of User Expectations
by Wizard-of-Oz experiments. In Proc. Third International Conference on language
Resources and Evaluation (LREC2002), 2002.

[McTear, 2002] M. McTear. Spoken dialogue technology: Enabling the conversational user
interface. ACM Computing Survey, Volume 34, No 1, 2002.

[Rajman et al., 2003] M. Rajman, A. Rajman, F. Seydoux, and A. Trutnev. Assessing the
usability of a dialogue management system designed in the framework of a rapid dialogue
prototyping methodology. First ISCA Tutorial Research Workshop on Auditory Quality
of Systems, Akademie Mont-Cenis, April 2003.

[Rajman, 2003] M. Rajman. Rapport scientifique - infovox project. 2003.

17

