

Using Code Transformation for Consistent and Transparent
Caching of Dynamic Web Content

Sara Bouchenak, Sumit Mittal, Willy Zwaenepoel

EPFL Technical Report ID: 200383,
Swiss Federal Institute of Technology (EPFL), Switzerland, 11th December 2003

 1

Using Code Transformation for Consistent and Transparent
Caching of Dynamic Web Content

Sara Bouchenak*
Sara.Bouchenak@epfl.ch

Sumit Mittal†
mittal@cs.rice.edu

Willy Zwaenepoel*
Willy.Zwaenepoel@epfl.ch

*EPFL, Switzerland
†Rice University, USA

Abstract

We present a consistent and transparent caching system for dynamic web pages produced by a server-
side application using a back-end database. Cached pages always reflect current database values. No
intervention from the programmer is necessary to implement caching. The system is an improvement
on earlier methods that either did not guarantee consistency and/or relied on substantial programmer
intervention.

The novel idea is that a compiler analyzes and transforms the server-side application code to include
cache checks, inserts, and invalidations. In order to provide precise invalidations and attendant good
hit ratios, we check the intersection of the database table columns used by the read and the write
queries, augmented by uniqueness information from the database schema and comparison of the query
selection predicates against values inserted in the database.

We use Java bytecode rewriting to implement the transformation of the server-side application. Using
the Rubis benchmark, we demonstrate that transparent and consistent caching achieves substantial
improvements in response time and throughput.

1 INTRODUCTION
An increasing percentage of web content is dynamically generated. Web servers for dynamic

content are usually implemented using a three-tier architecture, using an HTTP server as a web front-
end and provider of static content, an application server to execute the business logic of the
application, and a database to store the dynamic content. Dynamic content generation places a
significant burden on the servers, often leading to performance bottlenecks. As a result, various
techniques have been studied for server-side acceleration of dynamic-content web sites, including
replication and clustering of the three tiers, and caching of content at various levels. The use of these
techniques is rendered more complicated by the dynamic nature of these services, requiring
mechanisms to maintain consistency between various cached or replicated copies of the data.

Figure 1. Architecture of dynamic web applications

Client Web server Application server Database server

SQL req.
HTTP request

HTTP response

SQL res.

Internet

 2

This paper introduces a new method for server-side caching of dynamically generated web pages.
The method provides both consistency and transparency with good performance. Strong consistency is
achieved, i.e., the cached pages reflect current values in the database. The method is transparent in the
sense that no effort is required from the programmer to achieve consistent caching. The key novel idea
is the use of static analysis and transformation of the server-side application code. In other words, a
compiler analyzes and transforms the code to perform cache checks, inserts and invalidations.

The new method compares favorably to various state-of-the-art dynamic caching approaches. Non-
transparent approaches such as [6] [15] [10] [15] require extensive programmer intervention to
indicate how cached data needs to be invalidated. A transparent approach such as [2] only provides
time-lagged consistency. In contrast, the method described in this paper provides both transparency
and consistency.

We have implemented our approach in an environment in which the server-side application is
written as Java servlets using embedded SQL statements. Analysis and transformation is done at the
level of Java bytecodes. Although our current implementation was carried out in this particular
environment, the methods are applicable to many common environments used for dynamic content
generation. The success of the methods depends on the accuracy of static analysis that can be
achieved.

We have evaluated this implementation using standard software components, including Apache,
Tomcat and MySQL, all running on current server-class PC hardware. We use the Rubis auction site
as our application, which has been used for various studies of dynamic content sites. We compiled this
application using the methods described in this paper. In addition, we have developed a hand-coded
caching version of the application, which takes advantage of application-specific knowledge. This
approach is included to provide a reasonable upper bound for the results that can be achieved using
web page caching for this application.

Measurements of this implementation show that, in addition to consistency and transparency, our
methods provide good performance. Average response time is reduced by up to 49% relative to no
caching, and up to 62% with hand-coded caching. Under high load, throughput is improved by 38%
relative to no caching, and is only 26% below that achieved by hand-coded caching. For our particular
combination of hardware, software and application, using caching removes the bottleneck from the
database server, explaining the performance improvement resulting from caching under high load. The
differences in performance between the hand-coded and the automated caching versions are due to a
cache-unaware coding style in the application and to imprecisions in our automated invalidation
algorithm.

The rest of this paper is organized as follows. Section 2 describes how an application is
transformed to perform caching. Section 3 describes the Rubis application, both the original version
that was used as input to the compiler and the version in which caching was added by hand. Section 4
describes the experimental environment. Section 5 describes the performance results, including a
discussion of the factors that affect performance differences between the various versions. Section 6
describes related work. Section 7 discusses some avenues for further work and draws conclusions.

2 METHODS
The cache consists of a set of web pages (or web page fragments). These web pages result from the

execution of read-only web request handlers, i.e., request handlers in the server-side application that
generate only read requests to the database. The goal is to avoid re-execution of read-only request
handlers with the same set of arguments, and return the results from the cache instead. The results, if
any, of request handlers that involve writes to the database are not cached, because they need to be re-
executed on each subsequent invocation.

2.1 Cache structure
The key used for accessing the cache is the URI of the request with all its associated input

information (arguments and cookies). Associated with each cache entry is dependency information.

 3

Roughly speaking, this dependency information records which database queries were executed to
obtain the cached web page.

2.2 Read-only request handler transformation
The compiler transforms the code of read-only request handlers to check for and to insert entries in

the cache. In particular, for each read-only request handler it inserts a pre-processing step that uses the
arguments of the current invocation (including cookies, if any) to check whether a valid entry exists in
the cache for this request and this set of arguments. If so, the cached page is returned immediately as a
response to the request, without any further execution. If not, the request handler is executed. The
compiler inserts code to collect dependency information after each database query. At the end of the
request handler, the compiler includes a post-processing step that inserts the page just produced in the
cache, accompanied by the dependency information, collected during the execution of the request
handler. In summary, each read-only request handler is transformed as seen in Figure 2.

Connection conn = …;

PreparedStatement stmt;

…

// Execute an SQL query

stmt = conn.prepareStatement("SELECT name, id FROM categories");

rs = stmt.executeQuery();

…

// Execute an SQL query

stmt = conn.prepareStatement("SELECT id FROM regions WHERE
name=?");

rs = stmt.executeQuery();

…

// Return the dynamic web page

...

Original code of a read-only request handler,
identified by readHandlerName and readHandlerArgs

String cachedPage = Cache.get(readHandlerName, readHandlerArgs);

If (cachedPage != null)
return cachedPage

Cache.add(wePage, readHandlerName, readHandlerArgs,
dependencyInfo);

dependencyInfo.add(info about “SELECT name, id FROM categories”);

dependencyInfo.add(info about “SELECT id FROM regions WHERE
name=?”);

Inserted code

pr
e-

pr
oc

es
si

ng
po

st
-p

ro
ce

ss
in

g
de

pe
nd

en
cy

 in
fo

de
pe

nd
en

cy
 in

fo

Connection conn = …;

PreparedStatement stmt;

…

// Execute an SQL query

stmt = conn.prepareStatement("SELECT name, id FROM categories");

rs = stmt.executeQuery();

…

// Execute an SQL query

stmt = conn.prepareStatement("SELECT id FROM regions WHERE
name=?");

rs = stmt.executeQuery();

…

// Return the dynamic web page

...

Original code of a read-only request handler,
identified by readHandlerName and readHandlerArgs

String cachedPage = Cache.get(readHandlerName, readHandlerArgs);

If (cachedPage != null)
return cachedPage

Cache.add(wePage, readHandlerName, readHandlerArgs,
dependencyInfo);

dependencyInfo.add(info about “SELECT name, id FROM categories”);

dependencyInfo.add(info about “SELECT id FROM regions WHERE
name=?”);

Inserted code

pr
e-

pr
oc

es
si

ng
po

st
-p

ro
ce

ss
in

g
de

pe
nd

en
cy

 in
fo

de
pe

nd
en

cy
 in

fo

Figure 2. Read-only request handler transformation

2.3 Write request handler transformation
The compiler applies a similar transformation to write request handlers. After each write query

(update, insert or delete), the compiler inserts code to collect invalidation information associated with
this query. A post-processing step is added at the end of the write handler to invalidate cache entries,
based on the invalidation information produced by the individual write queries (see Figure 3).

 4

Connection conn = …;

PreparedStatement stmt;

…

// Execute an SQL query

stmt = conn.prepareStatement(“INSERT INTO bids VALUES (…)");

rs = stmt.executeUpdate();

…

// Execute an SQL query

stmt = conn.prepareStatement(“UPDATE items SET nb_of_bids=?
WHERE id=?");

rs = stmt.executeUpdate();

…

Original code of a write request handler

Cache.remove(invalidationInfo);

invalidationInfo.add(info about “INSERT INTO bids VALUES (…)”);

invalidationInfo.add(info about “UPDATE items SET nb_of_bids=?
WHERE id=?”);

Inserted code

po
st

-p
ro

ce
ss

in
g

in
va

lid
at

io
n

in
fo

in
va

lid
at

io
n

in
fo

Connection conn = …;

PreparedStatement stmt;

…

// Execute an SQL query

stmt = conn.prepareStatement(“INSERT INTO bids VALUES (…)");

rs = stmt.executeUpdate();

…

// Execute an SQL query

stmt = conn.prepareStatement(“UPDATE items SET nb_of_bids=?
WHERE id=?");

rs = stmt.executeUpdate();

…

Original code of a write request handler

Cache.remove(invalidationInfo);

invalidationInfo.add(info about “INSERT INTO bids VALUES (…)”);

invalidationInfo.add(info about “UPDATE items SET nb_of_bids=?
WHERE id=?”);

Inserted code

po
st

-p
ro

ce
ss

in
g

in
va

lid
at

io
n

in
fo

in
va

lid
at

io
n

in
fo

Figure 3. Write request handler transformation

2.4 Benefits of code rewriting
This code rewriting strategy allows us to obtain, without programmer intervention, a precise

association between, on one hand, a request handler invocation (and its parameters) and the cache
entry it produced, and, on the other hand, the queries executed during that invocation. This is a major
advantage that allows us to build a consistent and transparent caching solution.

2.5 Computing invalidations
Ideally, we want to precisely determine whether the writeset (i.e., the set of database data items

written) of a write request handler invocation intersects with the readset (i.e., the set of database data
items read) of a read-only request handler invocation. If so, we need to invalidate the cache entry
resulting from that read-only request handler invocation. On one hand, the determination of this
intersection need not be entirely precise, as long as we conservatively invalidate each cache entry for
which we cannot determine that the intersection is empty. If we conservatively invalidate an entry for
which the intersection is empty, the execution remains correct, albeit perhaps less efficient, because
what could have been a cache hit is turned into a cache miss. On the other hand, collecting all the
information to precisely determine whether the intersection is empty may be prohibitively expensive.
For instance, in some cases it may involve database accesses. In short, there is a tradeoff between the
cost in time and space of collecting and storing dependency and invalidation information and the cache
hit ratio. We recognize the following four distinct positions along this tradeoff: 1) using information
about what (columns of) tables are accessed, 2) using database schema information, 3) using the query
selection predicates, and 4) using information in the database.

In its simplest form, the dependency and the invalidation information simply consist of the tables
read or written in the request handlers. A more selective approach is to record the columns read and
written, and check the intersection of those two sets. Collecting this information requires minimal run-
time processing.

The above approach can be refined by using uniqueness information from the database schema.
The schema specifies which columns must have unique values. A special case of such a column is the
primary key. It is frequently the case that read queries select a single row of a table based on a unique
column (most commonly based on the primary key). Even more frequently, write queries operate on a
single row by selecting it based on the primary key. Clearly, read and write queries in which the
selection is made based on an equality test of a unique column with a constant can only intersect if that

 5

constant is the same. By recording that constant with the dependency and the invalidation information,
and doing a simple equality test, we can determine that queries do not intersect, even if they access the
same columns. Since such queries (especially such update queries) are common, this refinement
improves cache hit rate at a very modest runtime cost.

Using the selection predicate in the queries, further unnecessary invalidations can be avoided. For
instance, if a read query contains a selection predicate based on an inequality involving one of the
attributes in the table, and a write query contains a selection predicate based on an equality of that
same attribute with a constant, emptiness of the intersection can be checked by recording the interval
boundaries and the constant, and performing the comparison. Since both the write query and the read
queries may involve complex predicates, this check can become expensive.

Our current implementation maintains a record of the columns read and written, refined by relying
on uniqueness information from the database schema. We also plan to check the selection predicates
of the read-only queries against insertion/update queries.

Finally, the cache could obtain extra information from the database to further reduce the number of
invalidations. An example occurs when the read query is a join between two tables and the write query
performs an insert into one of the tables. Without checking the other table for a row matching the
value of the join attribute, we have to conservatively assume that the resulting page needs to be
invalidated. We have for now rejected the idea of doing additional queries to the database to check the
validity of cache entries as this seems to undo the main purpose of keeping a cache in the first place,
although it may be useful if very complicated queries can be avoided in favor of simple ones.

2.6 Implementation Issues
2.6.1 Cache structure

Our cache structure is mainly composed of two data structures: a cache entries table and an
invalidation entries table, as respectively described by Table 1 and Table 2. The cache entries table
represents the cache itself, where the dynamically generated web pages are kept in memory for
subsequent use. Our Cache.get method introduced in Figure 2 looks for an entry in this table, given a
read-only request handler name and a set of arguments. If such an entry exists, the associated cached
web page is returned as a result. When a new entry is added to the cache entries table, using the
Cache.add method presented in Figure 2, the built dependency information is stored with this entry.
This information mainly consists of: a set of table columns on which the read-only request handler
depends, a flag that denotes that the column uniqueness was used in the read-only request handler, and
the associated unique value.

Dependency information URI
(readHandlerName

+
readHandlerArgs)

Cached

web page isUnique {(unique column, unique
value), …}

{non-unique column,
…}

Name1 + Args1 WebPage1 no – {column1, column2}

Name2 + Args2 WebPage2 yes {(column1, value1)} {column3}

… … … … …

Table 1. Cache entries table

The invalidation entries table is used for maintaining cache consistency. Indeed, when the
Cache.remove method is requested (see Figure 3), given invalidation information, i.e., table columns,
column and value uniqueness information, the invalidation entries table is used to find the cache
entries that are associated with the given invalidation information. These entries are therefore
invalidated, if the uniqueness optimization does not apply.

 6

Column name {readHandlerName + readHandlerArgs, …}

column1 { Name1 + Args1, Name2 + Args2, …}

column2 { Name1 + Args1, …}

column3 { Name2 + Args2, …}

… …

Table 2. Invalidation entries table

2.6.2 Application code transformation
In our implementation, the server-side application code uses Java servlets with embedded SQL

statements. Thus, the request handlers discussed above are servlets [11]. The compiler first statically
analyzes the application code in order to retrieve the SQL requests that are, directly or indirectly
(through sub-sequent method calls), executed by the application’s servlets. These SQL requests are
recognized as being parameters of the java.sql.Statement.executeQuery,
java.sql.Statement.executeUpdate or java.sql.connection.prepareStatement methods [12].

The compiler then rewrites the application code in order to add pre-processing, post-processing and
per-query dependency and invalidation information collection, as depicted by Figure 2 and Figure 3.
The code is also transformed in order to buffer the output strings (the dynamically generated web
page) produced during read-only servlet execution such that they are available for insertion in the
cache at the post-processing step.

We based the implementation of our static code analyzer and rewriter on the BCEL library (Byte
Code Engineering Library) [3]. This library allows us to manipulate the application bytecode, thus
providing us with an elegant way to transparently add consistent caching to web applications, only
using the application jar file or binary Java code and not requiring the application source code.

3 APPLICATION
3.1 RUBiS benchmark

The RUBiS benchmark implements the core functionality of an auction site: selling, browsing and
bidding [1]. It does not implement complementary services like instant messaging or newsgroups. We
distinguish between three kinds of user sessions: visitor, buyer, and seller. For a visitor session, users
need not register but are only allowed to browse. Buyer and seller sessions require registration. In
addition to the functionality provided during visitor sessions, during a buyer session users can bid on
items and consult a summary of their current bids, their rating and the comments left by other users.
Seller sessions require a fee before a user is allowed to put up an item for sale. An auction starts
immediately and lasts typically for no more than a week. The seller can specify a reserve (minimum)
price for an item.

The database contains nine tables: users, items, old_items, bids, buy_now, comments, categories,
regions and ids. The users table records contain the user’s name, nickname, password, region, rating
and balance. Besides the category and the seller’s nickname, the items and old_items tables contain the
name that briefly describes the item and a more extensive description, normally an HTML file. Every
bid is stored in the bids table, which includes the seller, the bid, and a max_bid value used by the
proxy bidder (a tool that bids automatically on behalf of a user). Items that are directly bought without
any auction are stored in the buy_now table. The comments table records comments from one user
about another. As an optimization, the number of bids and the amount of the current maximum bid are
stored with each item to prevent many expensive lookups on the bids table. This redundant
information is necessary to keep an acceptable response time for browsing requests. As users browse
and bid only on items that are currently for sale, we split the items table in separate items and
old_items tables. The vast majority of requests access the new items table, thus considerably reducing
the database working set.

 7

Rubis defines 26 interactions that can be accessed from the client’s Web browser. Among the most
important ones are browsing items by category or region, bidding, buying or selling items, leaving
comments on other users and consulting one’s own user page (known as My eBay on eBay [4]).
Browsing items also includes consulting the bid history and the seller’s information. We define two
workload mixes: a browsing mix made up of read-only interactions and a bidding mix that includes
15% read-write interactions. The bidding mix is the most representative of an auction site workload.

The system is sized according to some observations found on the eBay Web site. We always have
about 33,000 items for sale, distributed among eBay’s 40 categories and 62 regions. We keep a history
of 500,000 auctions in the old_items table. There is an average of 10 bids per item, or 330,000 entries
in the bids table. The buy_now table is small, because less than 10% of the items are sold without any
auction. The users table has 1 million entries. We assume that users give feedback (comments) for
95% of the transactions. The comments table contains about 500,000 comments. The total size of the
database, including indices, is 1.4GB.

Rubis has been used in other dynamic content web site experiments. Its code is freely available
from www.objectweb.org.

3.2 Hand-coded caching for RUBiS
We wrote a version of Rubis that uses caching. This hand-coded caching version relies on

knowledge of the application, and is of course not transparent. For instance, the
SearchItemsbyCategory read-only servlet builds a web page with the list of items that belong to a
given category argument. And the RegisterItem write servlet adds a new item to the table of items.
With the hand-code caching, the pages resulting from the SearchItemsbyCategory read-only servlet are
invalidated if later a RegisterItem occurs with the same category argument. They are left valid if the
argument of RegisterItem is different.

The cache structure of this hand-coded caching system is similar to the one for the automated
cache. A cached web page key for lookup is the same as before, i.e., a URI (servlet name and
arguments). The dependency information is simplified, and just contains a few servlet-specific values.

The code for the servlets is (by hand) transformed in a way similar to the way we automatically
transform the code. In particular, read-only servlets have a pre-processing step, in which they check
for a valid cache entry, and a post-processing step, in which they insert a page and its dependency
information in the cache. A write servlet has a post-processing step, in which it potentially invalidates
cache entries. Unlike the automated version, there is no per-query code added to either read-only or
write servlets.

4 EVALUATION ENVIRONMENT
4.1 Client emulation

The Rubis benchmark comes with a client-browser emulator. A client session is a sequence of
interactions for the same client. For each client session, the client emulator opens a persistent HTTP
connection to the Web server and closes it at the end of the session. Each emulated client waits for a
certain think time before initiating the next interaction. The next interaction is determined by a state
transition matrix that specifies the probability to go from one interaction to another.

The think time and session time for both benchmarks are generated from a negative exponential
distribution with a mean of 7 seconds and 15 minutes, respectively. These numbers conform to clauses
5.3.1.1 and 6.2.1.2 of the TPC-W v1.65 specification [15]. We vary the load on the site by varying the
number of clients.

All experiments start with a cache warmed up for 1 hour. The measurements are collected during
the following 30-minute period.

 8

4.2 Software
We use Apache v.1.3.22 as the Web server. We increase the maximum number of Apache

processes to 512. With that value, the number of Apache processes is never a limit on performance.
The servlet engine is Jakarta Tomcat v3.2.4, with the MM-MySQL v2.04 type 4 JDBC driver [8],
running on Sun JDK 1.4.2. We use MySQL v.3.23.43-max [9] as our database server with the
MyISAM tables. All machines run the 2.4.12 Linux kernel.

4.3 Hardware
Each machine has an Intel Xeon 2.4GHz CPU with 1GB ECC SDRAM, and a 120GB 7200pm

disk drive. The database server runs on a separate machine because it is the bottleneck for the version
without caching. The web server and the application server run on the same machine. This never
causes a bottleneck on that machine. The client emulator runs on a separate machine. We have verified
that in none of the experiments the client emulator is the bottleneck. All machines are connected
through a switched 1GMbps Ethernet LAN.

5 EXPERIMENTAL RESULTS
We present results for the application without caching, with automated caching and with hand-

coded caching. For the browsing mix there is almost no difference between the automated caching and
the hand-coded caching versions, and the two perform much better than the version without caching.
The throughput of the two caching versions continues to grow with increasing numbers of clients
(see Figure 4). At 1500 clients, the largest client population measured, throughput is 17200 requests
per minute.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

500 700 1000 1200 1500

Number of clients

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

/ m
in

ut
e)

No cache Automated cache Hand-coded cache
Figure 4. HTTP request throughput for RUBiS – Browsing mix

Similarly, average response time for the two caching versions remains low, from a low of 8
milliseconds at 500 clients up to a maximum of 31 milliseconds at 1500 clients (see Figure 5). In
contrast, without caching, response time grows from 20 milliseconds at 500 clients to 1.8 seconds at
1500 clients.

 9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

500 700 1000 1200 1500

Number of clients

R
es

po
ns

e
tim

e
(m

s)

No cache Automated cache Hand-coded cache
Figure 5. HTTP request response time for RUBiS – Browsing mix

These results can be first explained by comparing the hit rates in the automated cache and the hand-
coded cache, which are almost the same as shown by Figure 6. The results can also be explained by
the CPU utilization on the application server and on the database machine. Without caching, the CPU
utilization on the database server reaches 99%. This bottleneck at the database explains the flat
throughput curve and the rapid growth in response time. In contrast, with caching, the CPU utilization
on the database server remains low, while it grows on the application server, with increasing number
of clients. For hand-coded caching the maximum CPU utilization (80%) is a little lower than for
automated caching (90%), reflecting the higher overhead of automated caching.

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

500 700 1000 1200 1500

Number of clients

H
it

ra
te

Automated cache Hand-coded cache
Figure 6. Cache hit rate for RUBiS – Browsing mix

The results for the bidding mix confirm the benefits of caching when the load increases, but, unlike
for the browsing mix, the hand-coded caching performs better than the automated caching. At 1500
clients, the hand-coded caching version achieves 17340 requests per minute, the automated caching
14580, and the version without caching 10560.

 10

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

500 700 1000 1200 1500

Number of clients

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

/ m
in

ut
e)

No cache Automated cache Hand-coded cache
Figure 7. HTTP request throughput for RUBiS – Bidding mix

The response time for both caching systems is always better than the one obtained without caching
(see Figure 8). For instance at 1500 clients, automated caching achieves an average response time of
1.2 seconds, hand-coded caching 0.9 second, and no caching 2.3 seconds. The difference of
performance between the automated caching and the hand-coded caching is due to the fact that the
latter performs less cache invalidations on writes than the former, thanks to its knowledge of the
application semantics. These different invalidation strategies also explain the difference in cache hit
rates as shown by Figure 9.

0

500

1000

1500

2000

2500

500 700 1000 1200 1500

Number of clients

R
es

po
ns

e
tim

e
(m

s)

No cache Automated cache Hand-coded cache
Figure 8. HTTP request response time for RUBiS – Bidding mix

 11

0%

20%

40%

60%

80%

100%

500 700 1000 1200 1500

Number of clients

H
it

ra
te

Automated cache Hand-coded cache
Figure 9. Cache hit rate for RUBiS – Bidding mix

6 RELATED WORK
Much work has been done on the caching of Web content. Most of it focuses on static content. Two

types of caching have been applied to caching of dynamic Web content. In database caching, the
results of previous queries to the databases are cached, either as query results or as materialized
views [13] [7] [15]. Alternatively, in dynamic web page caching whole pages or page fragments
(either in HTML or in XML) are cached. The two approaches are complementary and can be
combined. This paper focuses solely on dynamic web page caching. Our work distinguishes itself from
other work on dynamic web page caching in that we provide both consistent and transparent caching.
Previous work in this area has only provided one of these two qualities. Among these works, we single
out as representative examples CachePortal [2] (transparent but not consistent) and DynamicWeb [6]
(consistent but not transparent).

Transparency in CachePortal is achieved by logging the HTTP requests to and responses from the
Web server, the queries made to the database, and the updates made to the database, each of which
with a (wall clock) timestamp [2]. CachePortal faces the same problem as our work: how to associate
queries with requests in a transparent manner. Their approach to this problem is completely different.
They conservatively assume that all queries in the database log with timestamps between the time of
an HTTP request and its reply are associated with that request. In contrast, by transparently rewriting
the application code, we get a precise association between requests and queries. In addition, they
provide time-lagged consistency. Periodically, they read the database update log and perform
invalidations according to the association between HTTP requests and queries. They evaluate their
system only under low load with a synthetic application and a fixed hit rate. Under high load, the
precision of our request-query association with the attendant reduction in number of invalidations
should lead to higher rates and superior results.

DynamicWeb provides an API for specifying a dependency graph between certain events, in
particular between write queries and cached web pages [6]. The occurrence of said events triggers
invalidations. Invalidations are instantaneous and Dynamic WebCache therefore provides consistency,
but at the expense of considerable effort from the application programmer. In our experience with the
hand-coded caching system, precisely locating all dependencies even in the relatively simple Rubis
benchmark (25 servlets and 4,600 lines of code) proved to be a major challenge.

Other non-transparent approaches include Weave [16], in which the programmer is required to use
a specialized language to describe dynamic web pages and event handlers to specify invalidations, and
various commercial solutions such as e.g., SpiderCache [10] and XCache [15], both of which provide
an event API. In addition, these systems typically support periodic updates and therefore only time-
lagged consistency.

 12

Our work is orthogonal to issues of caching granularity. Partial page caching can be implemented
using ESI or similar techniques [5]. Our analysis method can be extended to insert, check and
invalidate a cache containing page fragments defined by ESI or similar annotations.

7 CONCLUSIONS AND FUTURE WORK
We have demonstrated consistent and transparent caching of dynamic web pages by transformation

on the server-side application code. A compiler transforms the code to perform cache checks,
insertions, and invalidations. In order to perform precise invalidations, we record the relevant aspects
of the selection predicates in the queries used to produce a dynamic web page. Inserts are then checked
against these selection predicates to determine if a cached web page needs to be invalidated.

We have built a prototype system that implements these methods for server-side applications
written as Java servlets. We have demonstrated hit rates and attendant improvements in response time
and throughput approaching those of a hand-coded caching version of the application, that took
considerable effort to develop. We have also illustrated the reasons for the remaining gap between the
hand-coded and the automated version.

One way to potentially close the gap is to use both a dynamic web page and a database query result
cache. Although systems exist that incorporate both (e.g., Weave), none of them integrate the two
caches. The database query result cache could be used to produce more precise automatic
invalidations. If looking at the query predicates, as proposed in this paper, is not sufficient to assert the
validity of a cache entry, the system could look into the query result to further eliminate unnecessary
invalidations.

Our approach is completely transparent when all database updates go through the server-side
application. If this is not the case, then transparency is difficult to achieve. Our approach can easily be
extended with an API similar to the ones provided by Dynamic WebCache and Weave to allow an
external entity to invalidate cache entries. This external entity could, for instance, work through
database triggers. Given the high cost of trigger mechanisms, our approach would still offer an
important performance improvement, if the majority of the database updates go through the
application.

8 REFERENCES
[1] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani and

W. Zwaenepoel. IEEE 5th Annual Workshop on Workload Characterization (WWC-5), Austin, TX, USA,
Nov. 2002.
http://rubis.objectweb.org

[2] K. S. Candan, W. S. Li, Q. Luo, W. P. Hsiung, D. Agrawal. Enabling. Enabling Dynamic Content
Caching for Database-driven Web Sites. ACM SIGMOD’2001, Santa Barbara, CA, USA, 2001.

[3] M. Dahm. Byte Code Engineering. Java-Information Tage (JIT’99), Düsseldorf, Germany, Sep. 1999.
[4] eBay Inc. http://www.ebay.com/
[5] Edge Side Includes. http://www.esi.org/
[6] A. Iyengar, J. Challenger. Improving Web Server Performance by caching Dynamic Data. USENIX

Symposium on Internet Technologies and Systems (USITS’97), Monterey, CA, USA, Dec. 1997.
[7] Q. Luo, J. F. Naughton. Form-Based Proxy Caching for Database-Backend Web Sites. 27th Very Large

Data Bases Conference (VLDB’2001), Roma, Italy, 2001.
[8] MM-Mysql. MM MySQL JDBC Drivers.

http://mmmysql.sourceforge.net/
[9] MySQL. MySQL Open Source Database.

http://www.mysql.com/
[10] Spider Software. SpiderCache Enterprise 2.0:Dynamic Content Delivered Faster. Spider Software

Technical White Paper, September 2001.
http://www.spidercache.com/

[11] Sun Microsystems. Java Servlet Technology.
http://java.sun.com/products/servlet/

 13

[12] Sun Microsystems. Java 2 Platform Standard Edition – API Specification.
http://java.sun.com/j2se/1.4.2/docs/api/

[13] TimesTen. TimesTen Real-Time Event Processing System. TimesTen White Paper, 2003.
http://www.timesten.com

[14] Transation Processing Performance Council. TPC-W: a transactional web e-Commerce benchmark.
http://www.tpc.org/tpcw/

[15] XCahe Technologies. XCache Overview.
http://www.xcache.com

[16] K. Yagoub, D. Florescu, V. Issarny, P. Valduriez. Caching Strategies for Data-Intensive Web Sites. 26th
Very Large Databases Conference (VLDB’2000), Cairo, Egypt, 2000.

