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Abstract 
 

We present a consistent and transparent caching system for dynamic web pages produced by a server-
side application using a back-end database. Cached pages always reflect current database values. No 
intervention from the programmer is necessary to implement caching. The system is an improvement 
on earlier methods that either did not guarantee consistency and/or relied on substantial programmer 
intervention. 

The novel idea is that a compiler analyzes and transforms the server-side application code to include 
cache checks, inserts, and invalidations. In order to provide precise invalidations and attendant good 
hit ratios, we check the intersection of the database table columns used by the read and the write 
queries, augmented by uniqueness information from the database schema and comparison of the query 
selection predicates against values inserted in the database. 

We use Java bytecode rewriting to implement the transformation of the server-side application. Using 
the Rubis benchmark, we demonstrate that transparent and consistent caching achieves substantial 
improvements in response time and throughput. 

1 INTRODUCTION 
An increasing percentage of web content is dynamically generated. Web servers for dynamic 

content are usually implemented using a three-tier architecture, using an HTTP server as a web front-
end and provider of static content, an application server to execute the business logic of the 
application, and a database to store the dynamic content. Dynamic content generation places a 
significant burden on the servers, often leading to performance bottlenecks. As a result, various 
techniques have been studied for server-side acceleration of dynamic-content web sites, including 
replication and clustering of the three tiers, and caching of content at various levels. The use of these 
techniques is rendered more complicated by the dynamic nature of these services, requiring 
mechanisms to maintain consistency between various cached or replicated copies of the data. 

  
Figure 1. Architecture of dynamic web applications 
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This paper introduces a new method for server-side caching of dynamically generated web pages. 
The method provides both consistency and transparency with good performance. Strong consistency is 
achieved, i.e., the cached pages reflect current values in the database. The method is transparent in the 
sense that no effort is required from the programmer to achieve consistent caching. The key novel idea 
is the use of static analysis and transformation of the server-side application code. In other words, a 
compiler analyzes and transforms the code to perform cache checks, inserts and invalidations. 

The new method compares favorably to various state-of-the-art dynamic caching approaches. Non-
transparent approaches such as [6] [15] [10] [15] require extensive programmer intervention to 
indicate how cached data needs to be invalidated. A transparent approach such as [2] only provides 
time-lagged consistency. In contrast, the method described in this paper provides both transparency 
and consistency. 

We have implemented our approach in an environment in which the server-side application is 
written as Java servlets using embedded SQL statements. Analysis and transformation is done at the 
level of Java bytecodes. Although our current implementation was carried out in this particular 
environment, the methods are applicable to many common environments used for dynamic content 
generation. The success of the methods depends on the accuracy of static analysis that can be 
achieved. 

We have evaluated this implementation using standard software components, including Apache, 
Tomcat and MySQL, all running on current server-class PC hardware. We use the Rubis auction site 
as our application, which has been used for various studies of dynamic content sites. We compiled this 
application using the methods described in this paper. In addition, we have developed a hand-coded 
caching version of the application, which takes advantage of application-specific knowledge. This 
approach is included to provide a reasonable upper bound for the results that can be achieved using 
web page caching for this application.  

Measurements of this implementation show that, in addition to consistency and transparency, our 
methods provide good performance. Average response time is reduced by up to 49% relative to no 
caching, and up to 62% with hand-coded caching. Under high load, throughput is improved by 38% 
relative to no caching, and is only 26% below that achieved by hand-coded caching. For our particular 
combination of hardware, software and application, using caching removes the bottleneck from the 
database server, explaining the performance improvement resulting from caching under high load. The 
differences in performance between the hand-coded and the automated caching versions are due to a 
cache-unaware coding style in the application and to imprecisions in our automated invalidation 
algorithm. 

The rest of this paper is organized as follows. Section 2 describes how an application is 
transformed to perform caching. Section 3 describes the Rubis application, both the original version 
that was used as input to the compiler and the version in which caching was added by hand. Section 4 
describes the experimental environment. Section 5 describes the performance results, including a 
discussion of the factors that affect performance differences between the various versions. Section 6 
describes related work. Section 7 discusses some avenues for further work and draws conclusions. 

2 METHODS 
The cache consists of a set of web pages (or web page fragments). These web pages result from the 

execution of read-only web request handlers, i.e., request handlers in the server-side application that 
generate only read requests to the database. The goal is to avoid re-execution of read-only request 
handlers with the same set of arguments, and return the results from the cache instead. The results, if 
any, of request handlers that involve writes to the database are not cached, because they need to be re-
executed on each subsequent invocation.  

2.1 Cache structure 
The key used for accessing the cache is the URI of the request with all its associated input 

information (arguments and cookies). Associated with each cache entry is dependency information. 
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Roughly speaking, this dependency information records which database queries were executed to 
obtain the cached web page.  

2.2 Read-only request handler transformation 
The compiler transforms the code of read-only request handlers to check for and to insert entries in 

the cache. In particular, for each read-only request handler it inserts a pre-processing step that uses the 
arguments of the current invocation (including cookies, if any) to check whether a valid entry exists in 
the cache for this request and this set of arguments. If so, the cached page is returned immediately as a 
response to the request, without any further execution. If not, the request handler is executed. The 
compiler inserts code to collect dependency information after each database query. At the end of the 
request handler, the compiler includes a post-processing step that inserts the page just produced in the 
cache, accompanied by the dependency information, collected during the execution of the request 
handler. In summary, each read-only request handler is transformed as seen in Figure 2. 
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// Execute an SQL query
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Figure 2. Read-only request handler transformation 

2.3 Write request handler transformation 
The compiler applies a similar transformation to write request handlers. After each write query 

(update, insert or delete), the compiler inserts code to collect invalidation information associated with 
this query. A post-processing step is added at the end of the write handler to invalidate cache entries, 
based on the invalidation information produced by the individual write queries (see Figure 3). 
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Connection conn = …;

PreparedStatement stmt;

…

// Execute an SQL query

stmt = conn.prepareStatement(“INSERT INTO bids VALUES (…)");
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Figure 3. Write request handler transformation 

2.4 Benefits of code rewriting 
This code rewriting strategy allows us to obtain, without programmer intervention, a precise 

association between, on one hand, a request handler invocation (and its parameters) and the cache 
entry it produced, and, on the other hand, the queries executed during that invocation. This is a major 
advantage that allows us to build a consistent and transparent caching solution. 

2.5 Computing invalidations 
Ideally, we want to precisely determine whether the writeset (i.e., the set of database data items 

written) of a write request handler invocation intersects with the readset (i.e., the set of database data 
items read) of a read-only request handler invocation. If so, we need to invalidate the cache entry 
resulting from that read-only request handler invocation. On one hand, the determination of this 
intersection need not be entirely precise, as long as we conservatively invalidate each cache entry for 
which we cannot determine that the intersection is empty. If we conservatively invalidate an entry for 
which the intersection is empty, the execution remains correct, albeit perhaps less efficient, because 
what could have been a cache hit is turned into a cache miss. On the other hand, collecting all the 
information to precisely determine whether the intersection is empty may be prohibitively expensive. 
For instance, in some cases it may involve database accesses. In short, there is a tradeoff between the 
cost in time and space of collecting and storing dependency and invalidation information and the cache 
hit ratio. We recognize the following four distinct positions along this tradeoff: 1) using information 
about what (columns of) tables are accessed, 2) using database schema information, 3) using the query 
selection predicates, and 4) using information in the database.  

In its simplest form, the dependency and the invalidation information simply consist of the tables 
read or written in the request handlers. A more selective approach is to record the columns read and 
written, and check the intersection of those two sets. Collecting this information requires minimal run-
time processing. 

The above approach can be refined by using uniqueness information from the database schema. 
The schema specifies which columns must have unique values. A special case of such a column is the 
primary key. It is frequently the case that read queries select a single row of a table based on a unique 
column (most commonly based on the primary key). Even more frequently, write queries operate on a 
single row by selecting it based on the primary key. Clearly, read and write queries in which the 
selection is made based on an equality test of a unique column with a constant can only intersect if that 
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constant is the same. By recording that constant with the dependency and the invalidation information, 
and doing a simple equality test, we can determine that queries do not intersect, even if they access the 
same columns. Since such queries (especially such update queries) are common, this refinement 
improves cache hit rate at a very modest runtime cost. 

Using the selection predicate in the queries, further unnecessary invalidations can be avoided. For 
instance, if a read query contains a selection predicate based on an inequality involving one of the 
attributes in the table, and a write query contains a selection predicate based on an equality of that 
same attribute with a constant, emptiness of the intersection can be checked by recording the interval 
boundaries and the constant, and performing the comparison. Since both the write query and the read 
queries may involve complex predicates, this check can become expensive. 

Our current implementation maintains a record of the columns read and written, refined by relying 
on uniqueness information from the database schema. We also plan to check the selection predicates 
of the read-only queries against insertion/update queries. 

Finally, the cache could obtain extra information from the database to further reduce the number of 
invalidations. An example occurs when the read query is a join between two tables and the write query 
performs an insert into one of the tables. Without checking the other table for a row matching the 
value of the join attribute, we have to conservatively assume that the resulting page needs to be 
invalidated. We have for now rejected the idea of doing additional queries to the database to check the 
validity of cache entries as this seems to undo the main purpose of keeping a cache in the first place, 
although it may be useful if very complicated queries can be avoided in favor of simple ones. 

2.6 Implementation Issues 
2.6.1 Cache structure 

Our cache structure is mainly composed of two data structures: a cache entries table and an 
invalidation entries table, as respectively described by Table 1 and Table 2. The cache entries table 
represents the cache itself, where the dynamically generated web pages are kept in memory for 
subsequent use. Our Cache.get method introduced in Figure 2 looks for an entry in this table, given a 
read-only request handler name and a set of arguments. If such an entry exists, the associated cached 
web page is returned as a result. When a new entry is added to the cache entries table, using the 
Cache.add method presented in Figure 2, the built dependency information is stored with this entry. 
This information mainly consists of: a set of table columns on which the read-only request handler 
depends, a flag that denotes that the column uniqueness was used in the read-only request handler, and 
the associated unique value. 

 

Dependency information URI 
(readHandlerName 

+ 
readHandlerArgs) 

 
Cached  

web page isUnique {(unique column, unique 
value), …} 

{non-unique column, 
…} 

Name1 + Args1 WebPage1 no – {column1, column2} 

Name2 + Args2 WebPage2 yes {(column1, value1)} {column3} 

… … … … … 

Table 1. Cache entries table 

The invalidation entries table is used for maintaining cache consistency. Indeed, when the 
Cache.remove method is requested (see Figure 3), given invalidation information, i.e., table columns, 
column and value uniqueness information, the invalidation entries table is used to find the cache 
entries that are associated with the given invalidation information. These entries are therefore 
invalidated, if the uniqueness optimization does not apply. 
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Column name {readHandlerName + readHandlerArgs, …} 

column1 { Name1 + Args1, Name2 + Args2, …} 

column2 { Name1 + Args1, …} 

column3 { Name2 + Args2, …} 

… … 

Table 2. Invalidation entries table 

2.6.2 Application code transformation 
In our implementation, the server-side application code uses Java servlets with embedded SQL 

statements. Thus, the request handlers discussed above are servlets [11]. The compiler first statically 
analyzes the application code in order to retrieve the SQL requests that are, directly or indirectly 
(through sub-sequent method calls), executed by the application’s servlets. These SQL requests are 
recognized as being parameters of the java.sql.Statement.executeQuery, 
java.sql.Statement.executeUpdate or java.sql.connection.prepareStatement methods [12]. 

The compiler then rewrites the application code in order to add pre-processing, post-processing and 
per-query dependency and invalidation information collection, as depicted by Figure 2 and Figure 3. 
The code is also transformed in order to buffer the output strings (the dynamically generated web 
page) produced during read-only servlet execution such that they are available for insertion in the 
cache at the post-processing step. 

We based the implementation of our static code analyzer and rewriter on the BCEL library (Byte 
Code Engineering Library) [3]. This library allows us to manipulate the application bytecode, thus 
providing us with an elegant way to transparently add consistent caching to web applications, only 
using the application jar file or binary Java code and not requiring the application source code. 

3 APPLICATION  
3.1 RUBiS benchmark 

The RUBiS benchmark implements the core functionality of an auction site: selling, browsing and 
bidding [1]. It does not implement complementary services like instant messaging or newsgroups. We 
distinguish between three kinds of user sessions: visitor, buyer, and seller. For a visitor session, users 
need not register but are only allowed to browse. Buyer and seller sessions require registration. In 
addition to the functionality provided during visitor sessions, during a buyer session users can bid on 
items and consult a summary of their current bids, their rating and the comments left by other users. 
Seller sessions require a fee before a user is allowed to put up an item for sale. An auction starts 
immediately and lasts typically for no more than a week. The seller can specify a reserve (minimum) 
price for an item. 

The database contains nine tables: users, items, old_items, bids, buy_now, comments, categories, 
regions and ids. The users table records contain the user’s name, nickname, password, region, rating 
and balance. Besides the category and the seller’s nickname, the items and old_items tables contain the 
name that briefly describes the item and a more extensive description, normally an HTML file. Every 
bid is stored in the bids table, which includes the seller, the bid, and a max_bid value used by the 
proxy bidder (a tool that bids automatically on behalf of a user). Items that are directly bought without 
any auction are stored in the buy_now table. The comments table records comments from one user 
about another. As an optimization, the number of bids and the amount of the current maximum bid are 
stored with each item to prevent many expensive lookups on the bids table. This redundant 
information is necessary to keep an acceptable response time for browsing requests. As users browse 
and bid only on items that are currently for sale, we split the items table in separate items and 
old_items tables. The vast majority of requests access the new items table, thus considerably reducing 
the database working set. 
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Rubis defines 26 interactions that can be accessed from the client’s Web browser. Among the most 
important ones are browsing items by category or region, bidding, buying or selling items, leaving 
comments on other users and consulting one’s own user page (known as My eBay on eBay [4]). 
Browsing items also includes consulting the bid history and the seller’s information. We define two 
workload mixes: a browsing mix made up of read-only interactions and a bidding mix that includes 
15% read-write interactions. The bidding mix is the most representative of an auction site workload. 

The system is sized according to some observations found on the eBay Web site. We always have 
about 33,000 items for sale, distributed among eBay’s 40 categories and 62 regions. We keep a history 
of 500,000 auctions in the old_items table. There is an average of 10 bids per item, or 330,000 entries 
in the bids table. The buy_now table is small, because less than 10% of the items are sold without any 
auction. The users table has 1 million entries. We assume that users give feedback (comments) for 
95% of the transactions. The comments table contains about 500,000 comments. The total size of the 
database, including indices, is 1.4GB. 

Rubis has been used in other dynamic content web site experiments. Its code is freely available 
from www.objectweb.org. 

3.2 Hand-coded caching for RUBiS 
We wrote a version of Rubis that uses caching. This hand-coded caching version relies on 

knowledge of the application, and is of course not transparent. For instance, the 
SearchItemsbyCategory read-only servlet builds a web page with the list of items that belong to a 
given category argument. And the RegisterItem write servlet adds a new item to the table of items. 
With the hand-code caching, the pages resulting from the SearchItemsbyCategory read-only servlet are 
invalidated if later a RegisterItem occurs with the same category argument. They are left valid if the 
argument of RegisterItem is different. 

The cache structure of this hand-coded caching system is similar to the one for the automated 
cache. A cached web page key for lookup is the same as before, i.e., a URI (servlet name and 
arguments). The dependency information is simplified, and just contains a few servlet-specific values. 

The code for the servlets is (by hand) transformed in a way similar to the way we automatically 
transform the code. In particular, read-only servlets have a pre-processing step, in which they check 
for a valid cache entry, and a post-processing step, in which they insert a page and its dependency 
information in the cache. A write servlet has a post-processing step, in which it potentially invalidates 
cache entries. Unlike the automated version, there is no per-query code added to either read-only or 
write servlets. 

4 EVALUATION ENVIRONMENT 
4.1 Client emulation 

The Rubis benchmark comes with a client-browser emulator. A client session is a sequence of 
interactions for the same client. For each client session, the client emulator opens a persistent HTTP 
connection to the Web server and closes it at the end of the session. Each emulated client waits for a 
certain think time before initiating the next interaction. The next interaction is determined by a state 
transition matrix that specifies the probability to go from one interaction to another.  

The think time and session time for both benchmarks are generated from a negative exponential 
distribution with a mean of 7 seconds and 15 minutes, respectively. These numbers conform to clauses 
5.3.1.1 and 6.2.1.2 of the TPC-W v1.65 specification [15]. We vary the load on the site by varying the 
number of clients.  

All experiments start with a cache warmed up for 1 hour. The measurements are collected during 
the following 30-minute period. 
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4.2 Software 
We use Apache v.1.3.22 as the Web server. We increase the maximum number of Apache 

processes to 512. With that value, the number of Apache processes is never a limit on performance. 
The servlet engine is Jakarta Tomcat v3.2.4, with the MM-MySQL v2.04 type 4 JDBC driver [8], 
running on Sun JDK 1.4.2. We use MySQL v.3.23.43-max [9] as our database server with the 
MyISAM tables. All machines run the 2.4.12 Linux kernel. 

4.3 Hardware 
Each machine has an Intel Xeon 2.4GHz CPU with 1GB ECC SDRAM, and a 120GB 7200pm 

disk drive. The database server runs on a separate machine because it is the bottleneck for the version 
without caching. The web server and the application server run on the same machine. This never 
causes a bottleneck on that machine. The client emulator runs on a separate machine. We have verified 
that in none of the experiments the client emulator is the bottleneck. All machines are connected 
through a switched 1GMbps Ethernet LAN. 

5 EXPERIMENTAL RESULTS 
We present results for the application without caching, with automated caching and with hand-

coded caching. For the browsing mix there is almost no difference between the automated caching and 
the hand-coded caching versions, and the two perform much better than the version without caching. 
The throughput of the two caching versions continues to grow with increasing numbers of clients 
(see Figure 4). At 1500 clients, the largest client population measured, throughput is 17200 requests 
per minute. 
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Figure 4. HTTP request throughput for RUBiS – Browsing mix 

Similarly, average response time for the two caching versions remains low, from a low of 8 
milliseconds at 500 clients up to a maximum of 31 milliseconds at 1500 clients (see Figure 5). In 
contrast, without caching, response time grows from 20 milliseconds at 500 clients to 1.8 seconds at 
1500 clients. 
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Figure 5. HTTP request response time for RUBiS – Browsing mix 

These results can be first explained by comparing the hit rates in the automated cache and the hand-
coded cache, which are almost the same as shown by Figure 6. The results can also be explained by 
the CPU utilization on the application server and on the database machine. Without caching, the CPU 
utilization on the database server reaches 99%. This bottleneck at the database explains the flat 
throughput curve and the rapid growth in response time. In contrast, with caching, the CPU utilization 
on the database server remains low, while it grows on the application server, with increasing number 
of clients. For hand-coded caching the maximum CPU utilization (80%) is a little lower than for 
automated caching (90%), reflecting the higher overhead of automated caching. 
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Figure 6. Cache hit rate for RUBiS – Browsing mix 

The results for the bidding mix confirm the benefits of caching when the load increases, but, unlike 
for the browsing mix, the hand-coded caching performs better than the automated caching. At 1500 
clients, the hand-coded caching version achieves 17340 requests per minute, the automated caching 
14580, and the version without caching 10560. 
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Figure 7. HTTP request throughput for RUBiS – Bidding mix 

The response time for both caching systems is always better than the one obtained without caching 
(see Figure 8). For instance at 1500 clients, automated caching achieves an average response time of 
1.2 seconds, hand-coded caching 0.9 second, and no caching 2.3 seconds. The difference of 
performance between the automated caching and the hand-coded caching is due to the fact that the 
latter performs less cache invalidations on writes than the former, thanks to its knowledge of the 
application semantics. These different invalidation strategies also explain the difference in cache hit 
rates as shown by Figure 9. 
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Figure 8. HTTP request response time for RUBiS – Bidding mix 



 11

0%

20%

40%

60%

80%

100%

500 700 1000 1200 1500

Number of clients

H
it 

ra
te

Automated cache Hand-coded cache  
Figure 9. Cache hit rate for RUBiS – Bidding mix 

6 RELATED WORK 
Much work has been done on the caching of Web content. Most of it focuses on static content. Two 

types of caching have been applied to caching of dynamic Web content. In database caching, the 
results of previous queries to the databases are cached, either as query results or as materialized 
views [13] [7] [15]. Alternatively, in dynamic web page caching whole pages or page fragments 
(either in HTML or in XML) are cached. The two approaches are complementary and can be 
combined. This paper focuses solely on dynamic web page caching. Our work distinguishes itself from 
other work on dynamic web page caching in that we provide both consistent and transparent caching. 
Previous work in this area has only provided one of these two qualities. Among these works, we single 
out as representative examples CachePortal [2] (transparent but not consistent) and DynamicWeb [6] 
(consistent but not transparent). 

Transparency in CachePortal is achieved by logging the HTTP requests to and responses from the 
Web server, the queries made to the database, and the updates made to the database, each of which 
with a (wall clock) timestamp [2]. CachePortal faces the same problem as our work: how to associate 
queries with requests in a transparent manner. Their approach to this problem is completely different. 
They conservatively assume that all queries in the database log with timestamps between the time of 
an HTTP request and its reply are associated with that request. In contrast, by transparently rewriting 
the application code, we get a precise association between requests and queries. In addition, they 
provide time-lagged consistency. Periodically, they read the database update log and perform 
invalidations according to the association between HTTP requests and queries. They evaluate their 
system only under low load with a synthetic application and a fixed hit rate. Under high load, the 
precision of our request-query association with the attendant reduction in number of invalidations 
should lead to higher rates and superior results. 

DynamicWeb provides an API for specifying a dependency graph between certain events, in 
particular between write queries and cached web pages [6]. The occurrence of said events triggers 
invalidations. Invalidations are instantaneous and Dynamic WebCache therefore provides consistency, 
but at the expense of considerable effort from the application programmer. In our experience with the 
hand-coded caching system, precisely locating all dependencies even in the relatively simple Rubis 
benchmark (25 servlets and 4,600 lines of code) proved to be a major challenge.  

Other non-transparent approaches include Weave [16], in which the programmer is required to use 
a specialized language to describe dynamic web pages and event handlers to specify invalidations, and 
various commercial solutions such as e.g., SpiderCache [10] and XCache [15], both of which provide 
an event API. In addition, these systems typically support periodic updates and therefore only time-
lagged consistency. 
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Our work is orthogonal to issues of caching granularity. Partial page caching can be implemented 
using ESI or similar techniques [5]. Our analysis method can be extended to insert, check and 
invalidate a cache containing page fragments defined by ESI or similar annotations. 

7 CONCLUSIONS AND FUTURE WORK 
We have demonstrated consistent and transparent caching of dynamic web pages by transformation 

on the server-side application code. A compiler transforms the code to perform cache checks, 
insertions, and invalidations. In order to perform precise invalidations, we record the relevant aspects 
of the selection predicates in the queries used to produce a dynamic web page. Inserts are then checked 
against these selection predicates to determine if a cached web page needs to be invalidated. 

We have built a prototype system that implements these methods for server-side applications 
written as Java servlets. We have demonstrated hit rates and attendant improvements in response time 
and throughput approaching those of a hand-coded caching version of the application, that took 
considerable effort to develop. We have also illustrated the reasons for the remaining gap between the 
hand-coded and the automated version. 

One way to potentially close the gap is to use both a dynamic web page and a database query result 
cache. Although systems exist that incorporate both (e.g., Weave), none of them integrate the two 
caches. The database query result cache could be used to produce more precise automatic 
invalidations. If looking at the query predicates, as proposed in this paper, is not sufficient to assert the 
validity of a cache entry, the system could look into the query result to further eliminate unnecessary 
invalidations.  

Our approach is completely transparent when all database updates go through the server-side 
application. If this is not the case, then transparency is difficult to achieve. Our approach can easily be 
extended with an API similar to the ones provided by Dynamic WebCache and Weave to allow an 
external entity to invalidate cache entries. This external entity could, for instance, work through 
database triggers. Given the high cost of trigger mechanisms, our approach would still offer an 
important performance improvement, if the majority of the database updates go through the 
application. 
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