
Finally the Weakest Failure Detector

for Non-Blocking Atomic Commit

Rachid Guerraoui Petr Kouznetsov

Distributed Programming Laboratory
EPFL

Abstract

Recent papers [7, 9] define the weakest failure detector for solving the Non-Blocking Atomic
Commit problem (NBAC) in a message passing system where processes can fail by crashing and
a majority of processes never crash.

In this paper, we generalize the result by presenting the weakest failure detector to solve NBAC
in any environment, i.e., without any assumption on the number of processes that can crash. We
present the result in a modular manner through determining first the weakest failure detector for
quittable consensus, a variant of consensus introduced in [9].

1 Introduction

Problem. The Non-Blocking Atomic Commit (NBAC) [5, 8, 11] problem captures the notion of
distributed transaction termination. The problem consists for a set of processes to reach a common
decision, commit or abort, according to some initial votes of the processes, yes or no, such that the
following properties are satisfied:

• Agreement: no two processes decide differently;

• Termination: every correct process eventually decides;

• C-Validity: abort can only be decided if some process votes no or crashes;

• A-Validity: commit can only be decided if all processes vote yes.

For brevity, we denote yes and commit by 1, while no and abort by 0.
In this note, we determine the weakest failure detector for solving NBAC in a distributed crash-

stop asynchronous message-passing model. Informally, the model is one in which processes exchange
messages through reliable communication channels, processes can fail by crashing, and there are no
bounds on message transmission delay and relative processor speeds. Processes have access to failure
detector modules that provide them with hints about failures.

The result of this note is a strict generalization of recently obtained results [7, 9] on the weakest
failure detector for NBAC asuming an environment with a majority of correct processes.

Background. In [6], failure detector ?P, called the anonymously perfect failure detector, was
introduced and shown to be necessary for solving NBAC. ?P outputs 0 at every process as long as
there are no failures. If a failure occurs, then ?P eventually outputs 1 at every process. In other
words, ?P correctly detects that some process has crashed, but does not tell which process has
actually crashed.

1

In [9], a convenient modularization of NBAC was proposed, based on a variant of consensus,
called quittable consensus (QC). Solving quittable consensus consists for a set of processes to choose
a common value in {0, 1, Q}, based on their input values in {0, 1}, so that the following properties
hold:

• Agreement: no two processes decide differently;

• Termination: every correct process eventually decides;

• QC-Validity:

(a) Q is decided only if a failure occurs;1

(b) A value v ∈ {0, 1} is decided only if some process proposes v.

It was shown in [9] that NBAC is equivalent to QC modulo ?P. Further, the weakest failure
detector, denoted here by Ψ, to solve QC with a majority of correct processes was defined in [9].
Combined with [6], this implies that ?P + Ψ is the weakest failure detector to solve NBAC with a
majority of correct processes. (This result was concurrently obtained through directly attacking the
NBAC problem [7].)

Failure detector Ψ [3] behaves as follows. Initially, Ψ outputs ⊥ at every process. Eventually, Ψ
either behaves like Ω [1] at all processes, or, only if a failure occurs, outputs a predefined value F at
all processes. When F is output at every process, we say that a crash is detected.

We address the question of the weakest failure detector for solving NBAC in any environment
using the result of [3] on the weakest failure detector for solving consensus in any environment. This
failure detector was denoted by Ω + Σ where, roughly speaking, the liveness part of consensus is
provided by Ω [1], and the safety part of consensus is provided the quorum failure detector Σ [3]. At
every process and at each time, Σ outputs a set of processes, called quorum, so that (i) eventually,
quorum contains only correct processes, and (ii) every two quorums intersect.

Contribution. In this note, we determine the weakest failure detector to solve QC in any envi-
ronment, i.e., without any assumptions on the number of processes that can fail. In particular, we
show that any failure detector that solves quittable consensus can, in some clearly defined scenarios,
be used to implement both Ω [1] and Σ [3]. In all other scenarios, the processes uniformly detect a
failure by outputting F. As a result, we obtain the weakest failure detector for solving QC in any
environment. This failure detector, denoted by X , is similar to Ψ but, X behaves like Ω+Σ in cases
when no crash is detected (F is not output). As a corollary, we show that ?P + X is the weakest
failure detector for solving NBAC.

2 Model

We consider in this note a crash-prone asynchronous message passing model augmented with the
failure detector abstraction. We recall here what in the model is needed to state and prove our
results. More details on the model can be found in [1, 2].

1In [9], QC has a slightly stronger definition in which Q can only be decided if a failure previously occurred.
Accordingly, in the version of NBAC considered in [9], abort can be decided only because of previously occurred failure.
In this note, we consider the original definition of NBAC given in [8]. The distinction between these definitions is not
important here, since it does not affect the difficulty of determining the weakest failure detector.

2

System. We assume the existence of a global clock to simplify the presentation. The processes
do not have direct access to the clock (timing assumptions are captured within failure detectors).
We take the range T of the clock output values to be the set of natural numbers and the integer 0,
({0}∪N). The system consists of a set of n processes Π = {p1, .., pn}(n > 1). Every pair of processes
is connected by a reliable communication channel. The system is asynchronous: there is no time
bound on message delay, clock drift, or the time necessary to execute a step [4].

Failures and failure patterns. Processes are subject to crash failures. A failure pattern F is
a function from the global time range T to 2Π, where F (t) denotes the set of processes that have
crashed by time t. Once a process crashes, it does not recover, i.e., ∀t < t′ : F (t) ⊆ F (t′). We define
correct(F) = Π − ∪t∈T F (t) to be the set of correct processes. A process pi /∈ F (t) is said to be up
at time t. A process pi ∈ F (t) is said to be crashed (or incorrect) at time t. An environment E is a
set of failure patterns. We denote by F0 the failure-free failure pattern (correct(F0) = Π).

Failure detectors. A failure detector history H with range R is a function from Π × T to R.
H(pi, t) is the output of the failure detector module of process pi at time t. A failure detector D is a
function that maps each failure pattern F to a set of failure detector histories D(F) with range RD.

Every process pi has a failure detector module Di that pi queries to obtain information about the
failures in the system. We do not make any assumption a priori on the range of a failure detector.
Among the failure detectors defined in the literature the following ones are of particular interest in
this paper

Eventual leader Ω [1]: the output of each failure detector module Ωi is a single process pj , that pi

currently trusts, i.e., that pi considers to be correct (RΩ = Π). For every failure pattern, there
is a time after which all correct processes always trust the same correct process.

Anonymously perfect failure detector ?P [6]: the output of each module ?Pi is either 0 or 1. When
the failure detector module of ?P at a process pi outputs 1, we say that pi detects a crash.
?P satisfies the following properties: (anonymous completeness) If some process crashes, then
there is a time after which every correct process permanently detects a crash; and (anonymous
accuracy) No crash is detected unless some process crashes.

Quorum failure detector Σ [3]: the output of each failure detector module Σi at time t is a subset
of processes Q(i, t) so that (quorum completeness) Eventually, Q(i, t) includes only correct
processes; (quorum accuracy) For all pi, pj in Π and t, t′ in T , Q(i, t) ∩Q(j, t′) 6= ∅.

Algorithms. We model the set of asynchronous communication channels as a message buffer which
contains messages not yet received by their destinations. An algorithm A is a collection of n (possibly
infinite state) deterministic automata, one for each of the processes. A(pi) denotes the automaton
running on process pi. In each step of A, process pi performs atomically the following three actions:
(receive phase) pi chooses non-deterministically a single message addressed to pi from the message
buffer, or a null message, denoted λ; (failure detector query phase) pi queries and receives a value
from its failure detector module; (local state update phase) pi changes its state; and (send phase)
sends a message to all processes according to the automaton A(pi), based on its state at the beginning
of the step, the message received in the receive phase, and the value obtained by pi from its failure
detector module.2

2The necessary part of our result also applies to weaker models where a step can atomically comprise at most one
phase and where a process can atomically send at most one message to a single process per step. The sufficient part
also holds in these models, since the algorithm of Section 3 is still correct there.

3

Configurations, schedules and runs. A configuration defines the current state of each process
in the system and the set of messages currently in the message buffer. Initially, the message buffer is
empty. A step (pi,m, d, A) of an algorithm A is uniquely determined by the identity of the process
pi that takes the step, the message m received by pi during the step (m might be the null message
λ), and the failure detector value d seen by pi during the step. We say that a step e = (pi,m, d, A)
is applicable to the current configuration if and only if m = λ or m is a message from the current
message buffer destined to pi. e(C) denotes the unique configuration that results when e is applied to
C. A schedule S of algorithm A is a (finite or infinite) sequence of steps of A. S⊥ denotes the empty
schedule. We say that a schedule S is applicable to a configuration C if and only if (a) S = S⊥, or
(b) S[1] is applicable to C, S[2] is applicable to S[1](C), etc. For a finite schedule S applicable to
C, S(C) denotes the unique configuration that results from applying S to C.

A partial run of algorithm A in an environment E using a failure detector D is a tuple R =
〈F,HD, I, S, T 〉, where F ∈ E is a failure pattern, HD ∈ D(F) is a failure detector history, I is an
initial configuration of A, S is a finite schedule of A, and T ⊂ T is a finite list of increasing time
values, such that |S| = |T |, S is applicable to I, and for all t ≤ |S|, if S[t] is of the form (pi,m, d, A)
then: (1) pi has not crashed by time T [t], i.e., pi /∈ F (T [t]) and (2) d is the value of the failure
detector module of pi at time T [t], i.e., d = HD(pi, T [t]).

A run of algorithm A in an environment E using a failure detector D is a tuple R = 〈F,HD, I, S, T 〉,
where S is an infinite schedule of A and T ⊆ T is an infinite list of increasing time values indicating
when each step of S occurred. In addition to satisfying the properties (1) and (2) of a partial run,
run R should guarantee that (3) every correct process in F takes an infinite number of steps in S
and eventually receives every message sent to it (this conveys the reliability of the communication
channels).

Weakest failure detector. A problem (e.g., NBAC, QC or consensus) is a set of runs (usually
defined by a set of properties that these runs should satisfy). We say that a failure detector D solves
a problem M in an environment E if there is an algorithm A, such that all the runs of A in E using
D are in M (i.e., they satisfy the properties of M).

Let D and D′ be any two failure detectors and E be any environment. If there is an algorithm
TD′→D that emulates D with D′ in E (TD′→D is called a reduction algorithm), we say that D is
weaker than D′ in E , or D �E D′. If D �E D′ but D′ �E D, we say that D is strictly weaker than D′

in E , or D ≺E D′.3 Note that TD′→D does not need to emulate all histories of D; it is required that
all the failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure detector to solve a problem M in an
environment E if two conditions are satisfied: (1) Sufficiency: D solves M in E , and (2) Necessity: if
a failure detector D′ solves M in E then D �E D′.

3 The weakest failure detector for solving QC

Candidate. Our candidate to be the weakest failure detector to solve QC in any environment,
denoted by X , behaves as follows. For any failure pattern F , X eventually either outputs value F at
every process or outputs a history H ′ of failure detector Ω + Σ, H ′ ∈ (Ω + Σ)(F). When X outputs
F we say that X detects a crash. When X outputs H ′ ∈ (Ω + Σ)(F), we say that X behaves like
Ω + Σ. X guarantees that no crash is detected unless some process crashes.

Now we give a sketch of the proof that X can be emulated from any failure detector that solves
QC. Let QCD be any QC algorithm using a failure detector D. In this section, we present a reduction
algorithm that transforms D into X .

3Later we omit E in ≺E and �E when there is no ambiguity on the environment E .

4

Multivalued quittable consensus. So far we considered the binary version of quittable consen-
sus: the set of non-Q decision values is {0, 1}. A multivalued quittable consensus is a generalization
of binary quittable consensus where processes propose values in a given set V and eventually choose
a common value in V ∪ {Q} so that, in addition to agreement and termination of QC, the following
property is satisfied:

• Multivalued QC-Validity:

(a) Q is decided only if a failure occurs;

(b) A value v ∈ V is decided only if some process proposes v.

By applying the transformation algorithm proposed in [10], we can easily transform any solution
of quittable binary consensus into a multivalued quittable consensus.4

Agreement on a “good” simulation forest First we observe that, in failure-free executions,
QC behaves exactly like consensus. Thus, as long as there are no failures, we can use QC to make
processes agree on a consistent system state.

Let I be the set of all possible initial configurations of QCD.
In the first phase of our reduction algorithm, every process pi periodically samples the current

failure detector history, advertises its current state and, by simulating partial runs of QCD, constructs
an ever-growing simulation forest [1], denoted by Υi, until, for each input configuration in I, Υi

contains a schedule in which some process decides (this is going to happen eventually for every
correct process pi [1]). Then pi proposes Υi to an instance of QC. If Q is returned, pi outputs
F (X detects a crash). Otherwise, let Ῡ be the resulting simulation forest. For a given input
configuration I ∈ I, consider the first schedule in Ῡ in which processes start from I and at least one
process decides (the deciding schedule for I in Ῡ). Again, if Q is decided in the deciding schedule,
pi outputs F (X detects a crash).

Now assume that, for each I ∈ I, the deciding schedule for I in Ῡ returns a value in {0, 1}. (Note
that the processes either uniformly agree on such a “good” simulation forest Ῡ or uniformly agree
that a crash is detected and output F as a history of X .)

Quorum emulation Now we show that, having agreed on a “good” simulation forest Ῡ, the
processes can emulate a history of the quorum failure detector Σ [3].

Let Il ∈ I be an initial configuration in which teams (non-empty partitions of Π) Ql0 and Ql1

propose, respectively 0 and 1. Let Sl be the corresponding schedule in Ῡ in which a process decides
on a value in {0, 1}. Let σ0, . . . , σm be the sequence of all “subschedules” of Sl (σ0 = Il and σm = Sl).
By construction, some process decides in σm.

Processes proceed in rounds. In each round r, and for each Il ∈ I, every process pi does
some gardening. More precisely, pi periodically queries its failure detector and sends the results of
the queries to all processes tagging all its messages with r (the current round number). For each
k ∈ [0,m], pi maintains a growing tree Ῡirlk which has σk as a basis and, besides vertexes of σk,
Ῡirlk includes only vertexes tagged with r or higher round numbers. Process pi lets Ῡirlk grow until
Ῡirlk includes a schedule in which pi decides [1]. Let Qirlk be the “quorum” of this decision, i.e.,
the set of processes which have vertexes in Ῡirlk tagged with r. After having computed Qirlk for all
k ∈ [0,m] and Il ∈ I, pi outputs Qir = ∪l,kQirlk. In parallel, pi computes and outputs its estimate
of Ωi using the algorithm of [1] as presented in [7, 9].

The reduction algorithm is presented in Figure 1.

Lemma 1 ∀r, r′ ∈ N,∀i, j ∈ [1, n] : Qir ∩Qjr′ 6= ∅
4The transformation algorithm of [10] uses uniform reliable broadcast which is given for free in our model.

5

1: outputi ← ⊥
2: Maintain Υi until it contains a deciding schedule for each Il ∈ I
3: Ῡ← QCD(Υi) { Agreement on a forest }
4: Υi ← Ῡ
5: if (Ῡ = Q) or (Q is decided in some schedule in Ῡ) then
6: outputi ← F { Crash is detected }
7: else
8: r ← 0
9: while true do

10: r + +
11: Update simulation forest Υi with Ῡ taken as a basis
12: pc ← deciding process of the smallest decision gadget of Υi [1, 7, 9]
13: Compute Qir

14: outputi ← (pc, Qir)

Figure 1: Reduction algorithm TD→X for process pi.

Proof: By contradiction, assume that there exists a partition of Π into two teams Q0 and Q1, such
that Qir ⊆ Q0 and Qjr′ ⊆ Q1.

Consider Il ∈ I in which all processes in Q0 propose 0 and all processes in Q1 propose 1. Let
σ0, . . . , σm be the sequence of vertexes of the deciding schedule for Il in Ῡ.

By construction, for each k ∈ [0,m], there exist two schedules Sk
i and Sk

j , respectively, in Ῡirlk

and Ῡjr′lk, such that:

(i) both Sk
i and Sk

j extend σk;

(ii) after σk, no process in Q1 takes any step in Sk
i , and no process in Q0 takes any step in Sk

j ;

(iii) there exist vk
i and vk

j in {0, 1, Q}, such that pi decides vk
i in Sk

i and pj decides vk
j in Sk

j .

Moreover, since failure detector samples used in the schedules Sk
i and Sk

j are taken from the same
failure detector history H ∈ D(F), where F is the current failure pattern, there exists a common
schedule Sk of QCD in which all processes in Q0 take the same steps as in Sk

i and all processes in
Q1 take the same steps as in Sk

j . (Clearly, to comply with H, Sk must respect the order of failure
detector samples taken in Sk

i and Sk
j .)

Now we proceed through the following claims:

Claim 1. For each k ∈ [0,m], vk
i = vk

j .
Follows immediately from the fact that, in Sk, pi decides vk

i and pj decides vk
j . By the agreement

property of QC, vk
i = vk

j .
Denote vk = vk

i = vk
j .

Claim 2. v0 = Q
Suppose not. Without loss of generality, assume that v0 = 0. But no process in Q0 takes any

step in S0
j and all processes in Q1 propose 1. By the validity property of QC, pj cannot decide 0 in

S0
j , it must be either 1 or Q — a contradiction with Claim 1.

Claim 3. There exists k ∈ [0,m− 1], such that vk 6= vk+1.
Assume, by contradiction, that ∀k ∈ [0,m − 1], we have vk = vk+1. From Claim 2 we conclude

that vm = Q. But by construction, at least one process decides on a value in {0, 1} in σm. By agree-
ment of QC, in any extension of σm, no process can decide Q. That is, vm ∈ {0, 1} — a contradiction.

6

Now we establish a final contradiction through the following claim:

Claim 4. Claim 3 is false.
Let k ∈ [0,m−1] be such that vk 6= vk+1. By construction, σk+1 is the result of applying a single

step of some process ps to σk. Without loss of generality, assume that ps ∈ Q0. Thus, the processes
in Q1 have the same states in σk and σk+1.

Denote by S̄k
j the suffix of Sk

j consisting of steps of the processes in Q1 taken after σk. Note that
the steps of S̄k

j are all taken after σm and, thus, after σk+1. Since no process in Q0 takes any step
in S̄k

j , and the processes in Q1 cannot distinguish between σk and σk+1, S̄k
j also applies to σk+1.

Thus, there is an extension of σk+1, S1, in which only the processes in Q1 take steps after σk+1

and in which pj decides vk. On the other hand, there is an extension of σk+1, S0, in which only the
processes in Q0 take steps after σk+1 and in which pi decides vk+1. The two subsets Q0 and Q1 are
disjoint. Moreover, the two schedules S0 and S1 use the samples of the same history H ∈ D(F).
Thus, we can construct a common schedule consisting of the steps of S0 and S1 in which agreement
is violated — a contradiction. 2

Lemma 2 There exists r′ ∈ N such that ∀r > r′, Qir includes only correct processes.

Proof: By the algorithm, Qir includes only processes that take steps tagged with round number r
or higher. Since there is a round number r′, such that no faulty process participates in any round
r > r′, we have the lemma. 2

The result. Lemmata 1 and 2 imply that, when no crash is detected, we can emulate the quorum
failure detector Σ [3]. On the other hand, when no crash is detected, the algorithm of Figure 1
emulates Ω [1, 7, 9]. Thus, in the case when no crash is detected, Ω + Σ is emulated. By our
construction, a crash can be detected only if some instance of QCD returns Q. By validity of QC,
some process has crashed. Thus, no crash is detected unless some process crashes. X is emulated.

Ω + Σ solve consensus (and, hence, QC) using read-write memory [3]. Thus, if no crash is
detected, we have an algorithm to solve QC. Otherwise, if a crash is detected (line 6 in Figure 1),
then processes can safely decide Q.

Theorem 3 X is the weakest failure detector to solve QC in any environment.

Employing the reduction proposed by Hadzilacos and Toueg [9], we obtain the following corollary:

Corollary 4 ?P + X is the weakest failure detector to solve NBAC in any environment.

References

[1] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal
of the ACM (JACM), 43(4):685–722, July 1996.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM (JACM), 43(2):225–267, March 1996.

[3] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Shared memory vs message passing. Technical
Report IC/2003/77, EPFL, December 2003. Availabe at http://icwww.epfl.ch/publications/.

[4] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM (JACM), 32(3):374–382, April 1985.

7

[5] J. Gray. A comparison of the byzantine agreement problem and the transaction commit problem. In
Proceedings of the Workshop on Fault-Tolerant Distributed Computing, volume 448 of LNCS, pages 10–17.
Springer-Verlag, 1986.

[6] R. Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with failure detectors.
Distributed Computing, 15:17–25, January 2002.

[7] R. Guerraoui and P. Kouznetsov. The weakest failure detector for non-blocking atomic commit. Technical
Report IC/2003/47, EPFL, May 2003. Availabe at http://icwww.epfl.ch/publications/.

[8] V. Hadzilacos. On the relationship between the atomic commitment and consensus problems. In Pro-
ceedings of the Workshop on Fault-Tolerant Distributed Computing, volume 448 of LNCS, pages 201–208.
Springer-Verlag, 1986.

[9] V. Hadzilacos and S. Toueg. The weakest failure detector to solve quittable consensus and non-blocking
atomic commit. Unpublished manuscript – private communication, May 2003.

[10] A. Mostefaoui, M. Raynal, and F. Tronel. From Binary Consensus to Multivalued Consensus in asyn-
chronous message-passing systems. Information Processing Letters, 73(5–6):207–212, Mar. 2000.

[11] D. Skeen. NonBlocking commit protocols. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 133–142. ACM Press, May 1981.

8

