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Abstract. Peer-to-peer (P2P) systems are strongly decentralized and
asynchronous distributed settings involving a potentially large number
of hosts. A common programing model for P2P infrastructures is that
of a distributed hashtable (DHT), though which peers share resources
they host. On the quest for a corresponding object-oriented high-level
programming abstraction, a core question has turned out to be how to
represent and handle resources, such that they could capture the broad
variety of P2P applications.

Answering this question has brought us to revisit parameter passing se-
mantics. This papers presents lazy parameter passing, a parameter pass-
ing model which combines the best of pass-by-value and pass-by-reference
semantics, and is not limited to P2P settings, but is appealing for any
asynchronous distributed object setting.

We have put lazy parameter passing to work in a high-level general ab-
straction for P2P programming, with prototypes for Java and .NET. In
this paper, we illustrate the principle of lazy parameter passing through
former prototype. We depict the role of Java’s concept of dynamic prox-
ies in the implementation of our novel parameter passing semantics, and
other distinctive features of our abstraction, and present a general ex-
tension to that concept whose scope exceeds by far the context given by
our abstraction.
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1 Introduction

The recent success of so-called peer-to-peer (P2P) infrastructures has once more
reveiled the massive amount of resources spread in a completely decentralized
manner throughout the Internet, and the potential behind an infrastructure for
providing the means of discovering and using these resources.

Towards a high-level abstraction for P2P programming. The model
considered by such infrastructures for P2P computing (e.g., Can [22], Chord
[23]) is that of a distributed hashtable (DHT), where peers can add their own
resources in order to share them with others, and query for resources they are
in need of.
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High-level abstractions for P2P programming providing the asynchrony man-
dated by the strongly decentralized and dynamic nature of P2P settings are how-
ever still missing. Current practices include indeed useful schemes, yet are either
targeted at a specific kind of application [10, 1], or are for the average use overly
complex (e.g., forcing the programmer to view resources in raw XML format,
and to employ complex lookup mechanisms for finding these resources [11]).

This observation has motivated our quest for a general high-level abstraction
for P2P programming, similarly to (1) the tuple space for the distributed shared
memory model of parallel and distributed systems, or (2) the remote procedure
call and publish/subscribe and abstractions for one-to-one, and one-to-many (i.e.,
multicast), interaction in a message passing model respectively. More precisely,
we started looking for a general object-oriented abstraction at the same level
as the (1) object space (e.g., [18]), the (2) remote method invocation (RMI, e.g.,
[27]), and the (3) type-based publish/subscribe (e.g., [13]) paradigms respectively.

P2P Resources. When viewing resources in a P2P system as objects [7] —
whether these resouces are inodes in distributed file systems [1] (of which the
(in)famous MP3 file sharing systems would only represent a particular instance),
or computing resources for peer-based distributed grid [10] computations, an
important question becomes how to pass (and access) these objects between
(from) remote address spaces.

This question has led us to revisiting object passing semantics in distributed
systems. On the one hand, files downloaded by peers would be logically passed by
value. On the other hand, processing resources for grid computing, could not be
passed by value, but would be passed by reference, i.e., accessed by RMIs through
proxies. Though the use of latter semantics for passing objects in distributed
systems has been largely critized in the past (e.g, [20,17]), it would seem to be
the only reasonable way of capturing resources representing entire “services”,
whose transfer by value would in certain cases be simply infeasible, or appear
disproportionate should they involve a large state and only a single invocation
be performed on them on a target site.

The best of both worlds. But intuition suggests that not everything can be
black or white; resources are not only either “small” objects that need no syn-
chronization on them (ideal for pass-by-value semantics), or “large” and location-
dependent ones (pass-by-reference semantics). There are many grayscales: re-
sources with an intermediate size, such that the overhead of transferring them
by value to a client would have to be balanced against the intensity and seman-
tics of their use by the client. And this exercise would potentially have to be
repeated for every client of a same resource.

This argument is valid for any asynchronous distributed object setting, but
develops its full flavor in P2P applications, where peers interact with asyn-
chronous query mechanisms: client peers express queries, and due to the absence
of centralized knowledge, are subsequently passed a potentially large number of



resources matching their queries. Not the entire set of these resources is then
effectively used; one can investigate these first, or grab the first n ones.

This is precisely where lazy parameter passing kicks in: objects are first
passed by reference. At choice, and only if necessary, these objects are then
either transferred by value (1) implicitly, i.e., upon first use (first invocation), or
(2) explicitly, i.e., at a point dictated by the application. Intuitively, just like a
lazy RMI (i.e., future invocation [31]) better captures the asynchronous nature
of the Internet in pairwise client/server interaction, lazy parameter passing (lazy
pass-by-value semantics) better captures multi-party interaction, typical of self-
organized P2P settings.

Contributions. After revisiting parameter passing models in distributed set-
tings and pointing out the need for more flexible models, this paper advocates
for specific support for lazy parameter passing. While hints to schemes for explic-
itly transferring remote objects by value can be found in literature (e.g., [19]),
this paper is, to the best our knowlege, the first to present a thorough study of
motivating scenarios, principles and implications of lazy parameter passing.

We describe two flavors of lazy parameter passing in a general context, and
compare them with related work on flexible parameter passing, and with future
invocations. We then discuss different ways of expressing lazy parameter passing
in Java, putting emphasis on a solution retained for supporting the first class
notion of resource objects in our high-level abstraction for P2P programming
called borrow/lend (BL) [7]. The BL abstraction is a general abstraction in the
sense that it unites flavors of several established abstractions and could be built
on top of most common DHTs, yet manifests (P2P-) specific characteristics, and
has been used to validate protocols of our own (e.g., [8]) in prototypes for Java
as well as .NET [2].

We present how we have made use of dynamic prozies [26] to implement not
only lazy parameters, but also future invocations, (different levels of) structural
conformance, and the type-safe expression of resource queries in Java itself, in our
BL abstraction. Together with an example of the use of (lazy parameter passing
with) our BL abstraction, we point out an inherent weakness of dynamic proxies,
which does not only affect the implementation of the above-mentioned features
of our BL abstraction, but is of more general nature. In the context of the
implementation of lazy parameter passing in our BL abstraction, we hence focus
on different extensions we made to the dynamic proxy mechanism. This includes
a general scheme for transforming field accesses to invocations of automatically
generated access method at class loading.

Roadmap. Section 2 reviews parameter passing models in distributed object
systems. Section 3 motivates and introduces the two variants of our lazy pa-
rameter passing model. Section 4 discusses ways of expressing this model in a
language such as Java. Section 5 presents our BL abstraction, and its use of
dynamic proxies. Section 6 presents our extension to the dynamic proxy mech-
anism. Section 7 concludes the paper.



2 Revisiting Parameter Passing Models

In this section we recall the pros and cons of the classic parameter passing mod-
els, i.e, pass-by-value and pass-by-reference semantics, and discuss previous ef-
forts on improving over those models. This exercice is made in a general context;
any remote interaction can be pictured as a source and a target each performing
a method, whether these methods have the same signatures and are application-
defined (cf. RMI) or predefined. The importance is the way the parameters to
these methods are handled.

2.1 Pass-by-Value Semantics

With pass-by-value semantics, as illustrated by Figure 1(a), an object o of type
T passed as parameter to some interaction between two remote sites is commonly
copied entirely (dark grey arrow) from the source address space to the target
address space(s). For a target space, this leads to the creation of a clone in that
space, i.e., a distinct object o, of type T with an own identity (dark grey circle),
whose initial state is the same as the state of the original object at the moment
the interaction was triggered. An invocation on such a transferred object o (in the
following illustrations, T is supposed to declare a single parameter-less method
m() with return type S) is hence performed on the target site.

The main dangers with, and hence arguments against, pass-by-value seman-
tics are the following;:

VS-I (no synchronization): Since any action performed on a clone on a target
site has no effect on the original object, passing parameters by value leads
to a pure communication, and does not inherently! involve synchronization
between hosts.

VS-II (excessive transfer): Network resources can be wasted with pass-by-
value semantics if a “large” object is transferred and in the end only a “small
part” of it is used, or without the object being used at all. This becomes par-
ticularly flagrant when not only the state of the object has to be transferred,
but also the corresponding code (e.g., byte code, assembly).

VS-I is commonly countered through the argument that, for any form of
remote interaction to take place, and be it pure synchronization, there must be
a means of passing at least some data structures by value (even if transparently).

2.2 Pass-by-Reference Semantics

With pass-by-reference semantics, as depicted by Figure 1(b), an object o passed
as parameter from one address space to another is most commonly incarnated
on the target site as prozy (or stub) o, (white arrow/circle). Such a proxy for an

! Synchronization can be achieved separately. E.g., the tuple space allows the passing
of an object by value to only one among an unlimited number of potential receivers.
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Fig. 1. Classic parameter passing models

object of type T is usually of a subtype T, of T (T, <: T), and represents a refer-
ence to the original object o, forwarding any method invocation m() performed
on it to that object. The return value o’ of such an invocation can be itself passed
either by value or by reference (light grey arrow/circle) to the client/target site.
Proxies, and therethrough the RMI, are intrinsically tied to pass-by-reference
semantics. There is no point in passing around first class references to objects,
if one can not “use” (i.e., invoke) these.

RMIs, and thus pass-by-reference semantics, have been the subject of long
debates around both reliability and efficiency (e.g., [20,17,12], to mention only
few). The main arguments against reference semantics are the following;:

RS-I (flow coupling): Through bi-directional interaction between clients and
remotely invoked objects, bad performance of a component, or also network
links, affects other components.

RS-II (failure coupling): By creating a spiderweb of links between proxies
and original objects, the RMI tends to create strong dependencies, such that
even a single host failure might make an entire application fail.

RS-III (failure hiding): The RMI abstracts over physical distribution, and in
particular, over communication and host failures, making it impossible to deal
with these realistic phenomenons.

RS-IV (excessive invocation): The wide use of RMI as a communication
mechanism wastes network resources: rather than transferring an object once
to a client site, and performing many operations on it from there, all operations
have to pass through the network.

2.3 Advanced Parameter Passing Models

Based on the seemingly crushing evidence (RS-I..IV) against the RMI, early
related work consisted in reducing or entirely eliminating RMIs, and diminishing
(VS-II), i.e., the amount of data unnecessarily transferred by value.
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Fig. 2. Advanced parameter passing models

Adaptive parameter passing. In order to avoid transferring large objects and
using only “small parts” of them on the target site, [17] suggests programmer
support (through a graphical editor) to define the “necessary” parts of objects
with respect to pass-by-value semantics in remote interaction. This approach,
depicted in Figure 2(a), has the shortcoming that it assumes that in all contexts
in which instances of a given type T are transferred, the corresponding targets
all require the exact same parts of the received objects of type T.

Parameter substitution. The system described in [20] refrains from transfer-
ring an object o by value from a source space to a target space in the case latter
space already hosts a copy o, of that same logical entity (received earlier). This
can lead to inconsistencies if the state of that copy in fact has been modified
since it was created, e.g., o has been modified between the creation of o., and
the second time it is transferred (and hence before the invocation of m()) in
Figure 2(b). Defining whether objects are immutable, or what inconsistencies
can be tolerated becomes the main task.

3 Lazy Parameter Passing Semantics

This section presents the principle of lazy pass-by-value semantics, and discusses
these in the face of other parameter passing models, and also of other paradigms
for asynchronous interaction in distributed object settings.

3.1 Motivation and Overview

Despite numerous efforts to ban the RMI, it remains, legitimately, to date one
of the most popular paradigms for distributed programming.

On the one hand, pass-by-value semantics are necessary, and clear apply
well to objects which are small (e.g., numbers, strings, or aggregates thereof),
and/or “passive” (i.e., whose methods mainly serve as access means to their



fields, e.g., events [13]). On the other hand, objects which represent larger entities
(e.g., “servers”, or entire “services” [27]), possibly with “active” behavior, are
simply better handled by references, especially if they are location-dependent
(e.g., databases).

Hence there is a clear need for both parameter passing models. Most critiques
of the RMI were mostly due to the way it was put to work in early systems, and
have been addressed since:

Contra RS-I: Several asynchronous variants of the RMI have been adopted in
practice (cf. CORBA Messaging [21]). The concept of group proxy (e.g., [3])
opens the door to other than strict synchronous one-to-one interaction models.

Contra RS-II: Group proxies also enable the replication of critical objects, and
the combination of RMI with transactions further embraces fault tolerance.

Contra RS-IITI: Current implementations of RMI make distribution explicit.
Proxies do not (should not, and actually can not [15]) pretend to be the
original objects, and distribution-related failures are reflected through specific
exceptions. In Java for instance, methods declared by types of remotely
invocable objects must all be able to throw RemoteExceptions raised by the
underlying communication protocols.

However, the problem of judicious network resource utilization remains (RS-
IV and VS-II resp.). What model to use when passing a given object? This
question can not simply be answered by defining a threshold on the size of object
representations, which would solomonically divide the object universe into such
passed by value and such passed by reference. Transferring an entire service for
the mere purpose of invoking it once wastes network capacities the same way
as performing a large number of invocations on that very same service does,
especially if the input parameters and the return values also represent massive
amounts of data.

The approach taken in this paper consists in providing support for the rep-
resentatives of the large family of objects which are somewhere between the
extremes of string objects and database servers. This support consists in passing
these objects by reference initially for a “first contact” (see Figure 3(a)), and by
value later on, at a precise instant, and only if really required in the respective
context.

This parameter passing model is useful in any distributed system where in-
teraction, taking place asynchronously, is proposed to components without ques-
tioning their interest in it. But even in (synchronous) RMIs, where due to the
inability /inadequacy of updating static interfaces of services regularly not all
parameters to these RMIs are always used, this model is relevant.

A yet more pertinent example is given by the P2P model. When attempting to
borrow resources, i.e., querying other peers for resources, a peer is most likely to
be provided several resources. This is a consequence of the absence of centralized
and hence strongly consistent knowledge in the large scale, dynamic, and self-
organized settings that P2P systems are [22,23].
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Fig. 3. Implicit lazy parameter passing vs implicit lazy invocations

3.2 Variants

In the following we describe two variants of lazy parameter passing, differing in
the definition of when to trigger the passing of an object value.

Implicit lazy parameter passing. With implicit lazy parameter passing, an
object o is first incarnated on a target site by a proxy o,. Upon the first use of
o through o,, the “download” of o is triggered. This is shown by the invocation
of m() in Figure 3(a), which blocks until it can be locally processed.

In P2P queries, this variant is particularly useful when the first, say n, re-
sources received in reply to a query are to be used, irrespective of their individual
characteristics.

Explicit lazy parameter passing. With explicit lazy pass-by-value semantics,
the program(mer) defines at what moment a corresponding object should be
transferred by value to the considered target address space. For the time being,
the object is handled like an object passed by reference (cf. Figure 1(b)), meaning
that it can be invoked in a RMI style. This can for instance help to acquire
knowledge about more detailed characteristics of that object, aiding in making
the decision of whether to trigger a transfer by value at all.

The advantage is clear in P2P queries. When receiving multiple resources in
reply to such a query, these can be futher investigated before being selectively
“downloaded”.

3.3 In Perspective

We discuss here lazy parameter passing in the face of related work introduced in
the previous section, and more importantly, of future invocations. This discussion
is indicated at this point, as latter concept will be combined with lazy parameter
passing in the following.



Vs alternative parameter passing models. Interestingly, the two improve-
ments for pass-by-value semantics analyzed in Section 2.3 can be viewed as
orthogonal with respect to each other, and also as orthogonal to our proposal.

Let us elucidate this further. Lazy parameter passing defines if and when
exactly a given object should be passed by value. Provided that an object should
be passed by value, [20] defines whether it is effectively necessary to pass the value
of the given object. In case some “valid” copy of the object is already present
on the target site, that one can be used. Otherwise, [17] designates what ezactly
then the value to be passed is, i.e., what parts of the object representation are to
be passed.

Vs future invocations. Lazy parameter passing is close in spirit to the
paradigm of future (method) invocation [31] introduced to repress RS-I (and
RS-1I): as illustrated by Figure 3(b), a two-way (remote) invocation of a method
m() returns immediately a future object o}, which will be linked to the effective
“value” o’ as soon as that value has been computed and received (o}) on the
target/client site (no matter the passing semantics). In the meantine, the client
is only blocked upon further invocation of a method m'() on oj,.

Yet, lazy parameters are not simply future objects. The transfer of a (return)
value represented by a future object starts immediately, once that value is avail-
able. The goal is thus to decouple the control flows of source and target sites
by masking the computation/transfer of such a value. With a lazy parameter, it
is not even clear whether the corresponding object will have to be transferred
eventually, i.e., the goal is to reduce unnecessary transfers (Figure 3(a)). Passing
from one abstraction to the other is hence not straightforward. To pass an object
with lazy pass-by-value semantics by making use of future invocations, one would
have to query the object’s entire state through future invocations, and recon-
struct a new object on the target site — a largely inefficient task presupposing
that the entire state of the object can be queried remotely.

Lazy parameter passing however, just like future invocations, come in an
explicit and an implicit (a.k.a. wait-by-necessity [4]) flavor. Akin to implicit fu-
tures, implicit lazy parameter passing hides the decoupling from the programmer
to a large extent. Le., the code does not reflect decoupling, though a program-
mer should be aware of it to best exploit it: while an implicit future object o},
(Figure 3(b)) should be used as late as possible to make sure the correspond-
ing value o' has been computed and transferred in the meantime, an object o,
(Figure 3(a)) passed by value lazily should be used only if necessary. With both
paradigms, explicit flavors provide more control to the advanced programmer.
However, whereas explicit future invocations require the return types of meth-
ods to change, explicit lazy parameter passing applies to objects as a whole,
and not to (the invocation of) their methods, and thus respects original method
signatures.

Combining lazy parameter passing and future invocations. Being two
different paradigms, wait-by-necessity (in the following, we will only more focus



on implicit future invocations) and lazy parameter passing can be provided side-
by-side. Care is only required when invoking in a wait-by-necessity style an object
passed with implicit lazy pass-by-value semantics to the invokee site: to respect
wait-by-necessity, the object should return a future object immediately in reply,
and not block until the object itself is received. This subtlety will in fact be
exploited in the following to provide the choice, when triggering the download
of an object with lazy pass-by-value semantics, between non-blocking (wait-by-
necessity enabled) and blocking (disabled) semantics for the method invocation
triggering the download.

Note that one could also think of a third variant of lazy parameter passing
inspired by wait-by-necessity, where the transfer of a parameter by value would
start immediately, and a proxy would, similarly to a future object, be passed to
the target site for the time being. This could be useful to perform an interaction
involving large state-full parameters, before those objects have been yet passed.
This variant will however not be further pursued in this paper, as we believe
that with parameters of such important size (in P2P computing) it is advisable
to first query the target site about any intended use.

4 Expressing Lazy Parameter Passing

This section first outlines mechanisms for supporting the expression of different
parameter passing models, before presenting two ways of expressing lazy pass-by-
value semantics in Java; (1) a simple scheme, and (2) a scheme more specifically
targeted at the use in our BL abstraction. Alternatives are discussed on the fly.

4.1 Mechanisms for Expressing Parameter Passing Models

Intra-process parameter passing occurs in most object-oriented programming
languages, similarly to distributed contexts, by value or by reference. Alternative
models, such as the pass-by-name semantics of Algol [16], are rare. Support for
expressing different parameter passing modes in (object-oriented) programming
languages consists mainly in providing tags or specific types.

Tags. C++ [24] is an example of a language leveraging on the distinction be-
tween parameter passing modes. Instances of the same type can be passed with
different semantics in different contexts. The choice is made via tags, which make
part of the syntax of formal argument/variable declarations, e.g., &, *, const.

The possibility of passing the same objects with different semantics in differ-
ent contexts offers much flexibility, and is easy to achieve inside a single address
space, as the objects are readily available.?

A sample tag-based solution for distributed contexts is given by [19], where
the keyword separate denotes variables or formal arguments potentially refer-
encing objects under control of a distinct processing unit, and possibly residing

2 For the same reason, lazy pass-by-value semantics are less relevant for local contexts.



in a different space. Object types can be also a priori declared as separate for
convenience. A second tag, expanded, is introduced for pass-by-value semantics.
As mentioned, [19] describes a scheme for explicitly transferring separate ob-
jects by value, which is however confusing since the two kinds of tags are said
to be mutually exclusive.

Types. The more common approach in distributed contexts consists in associat-
ing remote semantics with the types of objects, i.e., using explicit supertypes as
tags. This is motivated by the fact that the remote use of objects can impose con-
straints on them/their types. In (Java) RMI, restrictions can occur on method
signatures, and the notion of object identity is delicate, as a proxy represents
(1) another object, possibly even (2) on a remote host.

Also, programmer support for serialization and deserialization of objects
passed remotely by value is sometimes necessary, or at least useful. Certain
objects should simply not be passed by value, and the possibility of customizing
serialization yields a base for the scheme proposed in [17].

Java consequently offers two abstract supertypes for objects which can be
passed by value and by reference respectively, namely Serializable (package
java.io) and Remote (java.rmi). Java RMI demonstrates the advantage of
tags over types in terms of flexibility, by invariably passing objects which are
serializable and remote by reference.

Mainly for achieving interoperability, CORBA [21] introduces keywords in
and out to denote parameters and return values, respectively, passed by value.
These tags can also be combined to denote pass-by-reference semantics. For pass-
ing objects other than instances of primitive types by value, the corresponding
types nonetheless still explicitly must inherit from a root “value” type.

4.2 A Simple Scheme in Java

For illustration purposes, we present here a simple way of putting explicit and
implicit lazy parameter passing to work in Java, in a way following the spirit of
the existing support for distributed parameter passing in Java.

Lazy types. Objects passed by value lazily (instances of the Lazy type in
Figure 4)) are both serializable and remote. The handling of such instances is
performed through the LazyHandling class. With its isLocal() method, one
can verify whether an object has been transferred already. Implicit lazy semantics
appear as specialization of explicit lazy semantics only for obtaining a root “lazy”
type for the formal arguments of methods in class LazyHandling. The solution
presented here makes it possible to explicitly download() also an instance of
ImplicitLazy, if one knows that it will be used anyway. This could be easily
ruled out by inverting the subtyping order, and using the resulting ExplicitLazy
type in the signature of download().



public interface Lazy extends Serializable, Remote {}
public interface Implicit extends Lazy {}

public final class LazyHandling {
public static boolean isLocal(Lazy o) throws RemoteException {...}
public static void download(Lazy o) throws RemoteException {...}
public static Object deref(Lazy o) throws RemoteException {...}

}

Fig. 4. A simple approach to lazy parameter passing

Failures. The transfer of an object, like any remote interaction, can suffer
from a failure in the underlying distributed infrastructure. A failure in an
explicit download() of an object is reflected by throwing a specific kind of
RemoteException (java.rmi). When implicitly transferring an object by value
upon its invocation, the same exception is thrown as “result” of the invocation.
Methods of objects passed by value in a lazy style must hence, like those of any
Remote objects, reflect these exceptions in their signatures.

Proxies. The rmic precompiler can be easily extended to support lazy param-
eter passing, by applying the same type checking rules to subtypes of Lazy as to
any subtype of Remote, and creating corresponding proxies. Interestingly, adding
a new type WaitByNecessity as subtype of Remote would in contrast require
the rules of Java RMI (and hence rmic) to be strengthened, at least in the con-
text of subtypes of that new type. Indeed, any method of such a type could only
return a value of interface type, as this is the only way of ensuring that a proxy
can be created for such a future object (like for all Remote types in Java). We
will come back to this in Section 5.4.

With the scheme presented in Figure 4, an object (o in Figure 3(a)) passed
by value lazily is first represented, i.e., incarnated, in the target address space as
a proxy (op). Unless modifying the Java runtime (i.e., the virtual machine), this
object can not be swapped, transparently to all local references to it, against
the effective object it represents (o.) after downloading latter object. In other
terms, after downloading an object, that object is still accessed, indirectly, via a
proxy (see Section 5.3). Method deref () has been added to class LazyHandling
to offer the possibility of obtaining the referenced object when required.

Note that since the use of lazy pass-by-value semantics has no direct impact
on the implementation of corresponding objects, and hence on their types, a
backward-compatible solution could consist in accepting any object which is both
serializable and remote as lazy pass-by-value object. This would however not
obsolete the (re-) creation of proxies (supporting lazy pass-by-value semantics)
for these types.



4.3 Resources in P2P Computing

The second approach presented here is the one retained in the context of our BL
abstraction. The flexibility required to make such an abstraction general (i.e., to
support a wide variety of P2P applications), has been achieved by offering the
same possibilities as with tags: applications can switch, back and forth, between
(1) synchronous and asnchronous (wait-by-necessity) invocations for any remote
object, and simultaneously between (2) implicit and explicit semantics for any
object subject to lazy parameter passing. And this independently for any client
(target) of the object.

Contract methods. Two alternatives to the previously outlined simple scheme
are worth mentioning in order to introduce the present approach. These con-
sist namely in declaring the method download() (1) such as to return an ob-
ject (dereferencing implicitly), and/or (2) as part of the Lazy type. The former
proposition only would have helped in the case of explicit transfer of an object
by value, and in the case of a pass-by-value triggered implicitly (by invoking a
method other than download()) the programmer would have still be left with a
proxy. The latter proposal would have contributed to making lazy pass-by-value
semantics both more explicit and simpler to use on a target site, but at the
expense of polluting the types of objects passed with lazy pass-by-value: whom
would be left the responsibility of implementing the download () method?

We can conclude from the first alternative that one can not avoid incarnating
implicit lazy parameters by proxies on target sites in all cases. But if this is so,
why don’t we let proxies do the things they do best, such as implementing the
download () method mentioned above in a decorator pattern [9] style. This is
to some extent already exploited in Java RMI, through the RemoteExceptions
declared in the signatures of methods of remote objects, but effectively thrown
by the underlying communication protocols.

This concept has been systematically expanded in the context of our BL ab-
straction. Individual characteristics of the different resource types (see Figure 5)
introduced to support various applications types, are captured by so-called con-
tract methods. These are methods predefined for individual resource types, which
reflect the contracts incurred by the use of such resources. These methods vary
strongly in semantics. While some can be implemented such as to do noth-
ing since corresponding proxies will provide the implementation, others can be
specifically implemented by a resource class to override default behavior.

Resource types. Types ValueResource and ReferenceResource are self-
explanatory. Any object of latter type can benefit from wait-by-necessity. It is
sufficient for a client of such a resource to change the invocation style from the
default synchronous mode to the asynchronous, wait-by-necessity mode. When
doing so, a handler for exceptions thrown by possible communication or peer
failures must be provided. For a same resource, this mode can be repeatedly
switched.



public interface Resource {
public Object deref() throws NoSupportException;
public boolean isLocal() throws NoSupportException;
public void setProtocol(Protocol p) throws NoSupportException;
public void setQoS(QoS qos) throws NoSupportException;

}

public interface ValueResource extends Resource, Serializable {}

public interface ReferenceResource extends Resource, Remote

{

public void setInvocation(boolean asynchronous, RemExcHandler h)
throws NullPointerException;

}

public interface LazyResource extends ValueResource, RemoteResource

{

public void setDownload(boolean automatic);
public void download() throws RemoteException, NoSupportException;

}

public interface RemExcHandler { public void handle (RemoteException re); }

Fig. 5. Basic resource types in the BL abstraction

Resource types whose instances can be used with either flavor of lazy pass-
by-value semantics subtype type LazyResource. Through the setDownload()
contract method, a potential client peer can choose between the two variants
(default is explicit). The download () method finally triggers the transfer of such
a resource. Depending on the chosen invocation style, this call (like an implicitly
triggered download of such a resource) either blocks until the resource has been
transferred, or returns immediately.

The BL abstraction encompasses many further abstract resource subtypes
(not presented in detail for the sake of brevity), such as dynamic resources (de-
void of statically defined interfaces), replicated resources (fault tolerance through
automatic replication in the face of updates), or replaceable resources (transpar-
ent updating of resources). Abstract resource types can of course also be com-
bined (according to given rules), and can also be used recursively, e.g., for types
of return values or arguments of (remote) resource methods.

Dynamic proxies. To avoid the implementation and use of a precompiler a
la rmic for the creation of proxy classes, we have made use of the concept of
dynamic prozies [26] added to Java at version 1.3.

In short, a dynamic proxy is an object which conforms to a non-empty set
of interfaces, for which that proxy (’s class) was created through class Proxy.?

3 For presentation simplicity, we omit the package name java. lang.reflect common
to all types for reflection (except class meta-objects, i.e., java.lang.Class).



A proxy can be used as an instance of any of the interfaces it was created for,
i.e., it can be cast and invoked accordingly. An invocation performed on such
a dynamic proxy object is however reified, somehow stepping from a statically
typed context to dynamic interaction where any action can be performed in the
confines of a method invocation.

Hence, it is an ideal means for implementing the targeted decorator pat-
tern. Consequently, all resource objects passed by parameter are incarnated by
dynamic proxies on target sites.

5 Putting Lazy Parameter Passing to Work

In this section we depict how we have put explicit and implicit lazy pass-by-
value semantics to work in our borrow/lend (BL) abstraction. We illustrate this
through our Java prototype of BL, pointing out how dynamic proxies have been
used to implement the various parameter passing semantics, and also other dis-
tinctive features of the BL abstraction aiming at decoupling peers. Thereby, we
also pinpoint limitations of dynamic proxies.

5.1 Borrowers and Lenders

The BL abstraction (Figure 6) is based on the model of P2P programming
sketched previously (cf. Section 1), leading to two classes Borrower and Lender
which are instantiated by peers whenever they intend to borrow or lend resources,
respectively. Our prototype relies on Sun’s compiler prototype for genericity [25]
to improve type safety by introducing a type parameter to borrowers and lenders.

This type parameter represents the first of three criteria through which a
resource borrower can describe the resources it is interested in:

Type: Borrower intererests are expressed for objects of a given type B, with which
the type L of a resource borrowed from a lender must “conform”. Different
“depths” of conformance between L and B are possible, ranging from nominal
(explicit) conformance over different levels of structural (implicit) conformance
to a form of completely dynamic interaction (dynamic resources). More pre-
cisely, with a depth of 0, L has to be a declared subtype of B or B itself,
while with a depth of 1, L only has to provide all the members declared by
B. With depth 2, types of fields and method parameters in L only have to be
conformant at depth 1 with those of B, etc.

Key: Lenders can explicitly attach a key in the form of an array of bytes to a
resource when lending that resource. This key plays the role of access control
mechanism, and a corresponding argument is hence present on the borrower
side as well.

Predicates: “Content-based” criteria can be expressed through predicates, based
on the members of the type specified by borrowers (and lenders). This is best
illustrated by the following example.



public interface Participant<R extends Resource> {
public void activate() throws ActiveException, RemoteException;
public void deactivate() throws InactiveException, RemoteException;
public R setConstraints() throws InvalidConstraintException;

}

public class Lender<R> implements Participant<R> {
public Lender(R lent, bytel[] key) {...}

}...

public class Borrower<R> implements Participant<R> {
public Borrower(Inbox<R> in, byte[] key) {...}
public R setConformance(int depth) throws {...}

}...

public interface Inbox<R> { public void deliver(R r); }

Fig. 6. Borrower and Lender types (excerpt)

5.2 Exchanging Music

Consider the (in)famous scenario of songs being shared throughout the Inter-
net. A typical Java type for incarnating such songs is proposed in Figure 7.
An instance of Song hence conveys information about (1) the title, (2)
the artist, and (3) the effective track (type AudioInputStream in package
javax.sound.sampled) for a song.

A music track can now be shared with other users as follows (exception
handling omitted for simplicity):

Song 1Song = new Song("The next love song", "The next boys band", ...);
Lender<Song> sLender = new Lender<Song>(1Song, ...);
sLender.activate();

Symmetrically, interest in songs can be expressed by peers as follows:

Borrower<Song> songs =
new Borrower<Song>(new Inbox<Song>() {
public void deliver(Song bSong) {
if (!Jukebox.isQueued(bSong));
bSong.download(new ftp(...));
Jukebox . queue (bSong) ;

}
| S

Song pSong = songs.setConstraints();
pSong.setInvocation(true, new RemoteErceptionHandler{...});
pSong.getdrtist().equals("The next boys band");
songs.activate();



public class Song implements LazyResource {
public String getTitle() throws RemoteException {...}
public String getArtist() throws RemoteException {...}
public AudioInputStream getStream() throws RemoteException {...}
public Song(String title, String artist, AudioInputStream s) {...}

Fig. 7. Representing songs

Here, duplicates are filtered by storing songs in a jukebox and checking whether
a (new) received song is already present. To that end, songs are compared
through getTitle() and getArtist () invoked remotely on the new song rep-
resented through bSong, by the jukebox (details omitted). Only if not already
present, the song is then downloaded by invoking the download () method with
wait-by-necessity remote invocation. Thanks to the lazy synchronization of that
download procedure, the song can be enqueued by the jukebox before having
effectively been entirely received at that point — releasing the corresponding
thread. This lazy synchronization is achieved by making that call on a dynamic
proxy, which is marked in the example by emphasizing that call. Similarly, all
invocations made in the context of predicates, including such based on contract
methods, are made on dynamic proxies, and hence emphasized. In the example,
interests are expressed in objects which are instances of Song and of a certain
band (an or of several conditions requires these to be expressed on individual
proxies obtained by successive calls to setConstraints()).

5.3 Dynamic Proxies in the BL Abstraction

We illustrate in the following the different places in the BL abstraction in which
dynamic proxies are used to achieve strong decoupling of remote peers in re-
sponse to the asynchronous and dynamic nature of P2P systems:

Time decoupling: Upon constraint expression, i.e., when “registering” invoca-
tions of contract methods as well as resource-specific methods with proxies
(e.g., through m() .m’ () on 7, in Figure 8(a)), time decoupling is achieved be-
tween components. In the example above, the borrower can receive new songs
of “The next boys band” (e.g., ?) lent by peers after the borrower expressed
its interests through pSong.

Flow decoupling: By delivering resources as proxies, lazy synchronization can be
provided when invoking remote resources (wait-by-necessity, e.g., o invoked
through o, in Figure 3(b)), even when triggering an automatic lazy pass-by-
value transfer of resources with such invocations. In the above example, a song
can be queued for playing before it has been entirely downloaded.

Space decoupling: Space decoupling is similarly nicely demonstrated through
lazy synchronization. When an object is finally passed by value (o, resp. o, in
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Fig. 8. Decoupling and dynamic proxies (I)

Figure 3(a)), a reference to that object (e.g., o’, in Figure 8(b)) is switched
from a remote “reference” to a local copy of the object (o! and o? resp. in
Figure 8(b)). Without hooks into the virtual machine, this is the only means
of transparently to the program swapping at any moment the object pointed
to by a variable of arbitrary type.

Also, the chosen decorator pattern does not pollute resource types, unlike the
regrouping of contract methods in abstract resource classes to be subclassed
by application-defined resource ones. This is a substantial benefit in a language
with single inheritance such as Java.

Type decoupling: The adapter pattern supported by dynamic proxies can be
used to implement structural conformance between types of lent and bor-
rowed resources (Figure 9(a)). When expressing interests in a type Track not
explicitly related to Song but encompassing a subset of the members of Song
(Song C: Track), a borrower could nevertheless receive the published songs by
adapting its constraints (e.g., songs.setConformance(1)).

5.4 Limitations

The elucidations above hide one important caveat: dynamic proxies are only
available for interfaces, i.e., it is not possible to create a dynamic proxy and
assign it to a variable of class type. Hence, wherever a parameter is to benefit
from wait-by-necessity or lazy passing, the corresponding formal argument must
be declared as an interface type. This constraint applies recursively. E.g., return
values of methods invoked with wait-by-necessity, or lazy pass-by-value parame-
ters to invocations on remote resources, have to be interface types as well. Also
queries are strongly limited by this. None of the constraints expressed in the
example can be put to work as presented, since Song is a class. Circumventing
this shortcoming boils down to using exclusively interface types in variable and
formal argument declarations, and making use of classes only in instantiations.
This constraint is the more annoying, as unlike with the use of a precompiler
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Fig. 9. Decoupling and dynamic proxies (II)

a-la rmic for compile-time proxy generation, it can not be verified statically (see
Section 4.2).

This shortcoming of dynamic proxies is not tied to our uses. It awakes serious
doubts as to their usefulness for realizing behavioral reflection [14], which they
are often praised for. Indeed, while the absence of transparency in the association
of a behavior, represented by a meta-level [14] object, with a base-level object,
through a proxy, turns out to be an advantage in our case (see “Contra RS-III”,
Section 3.1), other known lacks of a proxy approach are namely amplified:

Self-invocations: Invocations made by methods of base-level objects on other
methods of themselves can not intercepted (cf. “self problem” [15]).

Self-references: Similarly, self-references returned by a base-level object invoked
through a proxy would have to be recognized, such that a proxy could be
returned instead (cf. “encapsulation problem” [15]).

Latter issue includes also references provided by an object to its fields. To
not break with reflection, these fields have to be shielded again behind dynamic
proxies, meaning that the return type of any method providing such access has
to be an interface.

6 Implementing Lazy Parameter Passing

In this section, we first present in more detail the concept of dynamic proxies
introduced with Java 1.3., before describing our extension to that mechanism
motivated by the limitations pointed out above.

6.1 Internals of Dynamic Proxies

As conveyed by Section 4.3, dynamic proxies are a type-safe means of obtaining,
at run-time, an object which conforms to any set of interfaces.



public class Proxy implements Serializable {

public static Class getProxyClass(ClassLoader 1, Class[] is)
throws IllegalArgumentException {...}

public static Object newProxyInstance(ClassLoader 1, Class[] is,

InvocationHandler h)

throws IllegalArgumentException {...}

public static InvocationHandler getInvocationHandler(Object p)
throws IllegalArgumentException {...}

}...

public interface InvocationHandler {
public Object invoke(Object p, Method m, Object[] as) throws Throwable;

}

Fig. 10. Proxy and InvocationHandler types (excerpt)

Creating dynamic proxies. Dynamic proxies are implemented as a library.
Invoking the getProxyClass () method in class Proxy leads to creating a proxy*
class, directly as byte code, as a subclass of Proxy which implements the inter-
faces specified by Class meta-objects (unless a proxy class has already been
created for that precise set of interfaces). The newProxyInstance() method in
addition instantiates the possibly generated proxy class.

The Proxy class hence has a dual purpose. First, it contains class meth-
ods, described above, which permit the generation of proxies/proxy classes, thus
serving as “factory”. Second, the Proxy class serves as supertype for all dynamic
proxy classes, making it possible to easily verify (instanceof) whether a given
object is a proxy.

Note that in certain cases it is impossible to create a proxy class for a set of
interfaces ([26]). Failures might especially occur whenever conflicts would also
arise if a class was explicitly, i.e., statically, defined implementing the specified
set of interfaces.

Invocation handlers. An invocation performed on a dynamic proxy is reified
and passed to an InvocationHandler (Figure 10) object, associated to that
proxy at instantiation, through the handler’s invoke() method (Figure 9(b)).
The arguments for invoke () include (1) the proxy object on which the method
was originally invoked, (2) a meta-object representing the method (Method) that
was originally invoked, and (3) the effective arguments (an array of Objects) to
that invocation. The invoke () method is hence capable of handling any method
invocation (parameters of primitive types are transformed to the corresponding
wrapper types). It can be pictured as the symmetric counterpart to the invoke ()
method of class Method: while the latter method defers to run-time the choice of
which method to invoke, the former method defers to run-time what to do upon

4 In the following the qualifier “dynamic” might be omitted when given by the context.



invocation of a method (Figure 9(b)). Behavioral reflection is easily achieved by
combining the two, as illustrated by Figure 9(b).

According to the specification [26], particular exceptions can be thrown upon
invocation of a proxy (signalled by Throwable, cf. invoke()) — typically when
the returned values or thrown exceptions do not match the specification of the
invoked method in the interface the proxy was created for.

6.2 Dynamic Proxies for Classes

Our approach to supporting “dynamic proxies for classes” builds on the principle
applied for the generation of proxies for interfaces, that is, a proxy class for a
set of types including a class is generated when needed at run-time as byte
code, loaded, and linked. By retaining the original principle, the corresponding
libraries have remained fully backward compatible.

Extension approach. A proxy class created for a set of types including a
class C must not only implement the specified interfaces, but must in addition
subclass C. This approach can be characterized as an extension approach (ex-
tending classes to be reflected upon) in contrast to prominent implementations
of behavioral reflection which rather follow an envelopment approach (wrapping
code instructions with jumps to the meta-level, e.g., [30,28]). In order for a proxy
to be able to reify any action performed on it, its class must hence “override” all
superclass members. Quite obviously, this poses problems in the case of final
(cf. [28]) and private methods, as well as fields. In the following, we propose
a set of transformations performed at byte code level by an instrumenting class
loader for dealing with those cases.

Proxy types and access handlers. Since proxy classes created for a set
of types including a class cannot subclass class Proxy, we introduce the
ProxyType interface as common supertype for all proxy types. The Proxy class
still serves as superclass for proxy classes created for interfaces exclusively,
and hence implements ProxyType. This is depicted in Figure 11, in which
modifications/additions in the new backwards-compatible version of the Proxy
class are reported, and emphasized. Type AccessHandler is introduced to deal
with (instance) field accesses in addition to (instance) method invocations in
the case of proxies for classes.

Handling field accesses. Since in Java, like in many other languages, fields can
not be overridden by subclasses, but merely shadowed, we propose to transform
field accesses to invocations of automatically generated access methods, and to
override these in proxy classes to enable interception. Due to this same principle
of shadowing, simply defining a getter /setter method pair & la getf () /setf()
for each field £ does however not suffice.

Our solution consists in conveying information about the declaring classes
of fields by their respective getter/setter methods. This is illustrated in the



public class Proxy implements ProzyType {

public static Class getProzyClass(ClassLoader 1, Class[] is, Class cl)
throws IllegalArgumentExzception {...}
public static Object newProzylnstance(ClassLoader 1, Class[] 1is,
Class cl, InvocationHandler th,
AccessHandler ah) throws ...
public static AccessHandler getdccessHandler(Object p) throws ...

}...

public interface ProxyType extends Serializable {}

public interface AccessHandler {
public Object get(Object p, Field f) throws RuntimeException;
public void set(Object p, Field f, Object val) throws RuntimeException;

}

Fig. 11. Additions to the Proxy class and auxiliary types (excerpt)

following through three recursive subclasses (in source code rather than byte
code for readability):

class C1 { = class C1 {
String f; String f;
} String get$C1$£f() { return f; }
void set$C1$f(String f) { this.f = f; }
}
class C2 extends C1 {} B class C2 extends C1 {}
class C3 extends C2 { £ class C3 extends C2 {
String f; String f;
} String get$C3$£f() { return f; }
void set$C3$f(String f) { this.f = f; }
}

Observe the corresponding transformations when accessing these fields (variable
cx is of type Cx):

cl.f = ...; £ cl.set$C1$f(...);

. =cl.f; ... = cl.get$C1$£();
c2.f = ...; B0 c2.set$C1$f(...);

. = c2.f; ... = c2.get$C1$£ () ;
c3.f = ...; - c3.set$C3$F(...);

. = c3.f; ... = c3.get$C3$£();

Without loss of validity, the package name of a class is viewed as part of its name.



Private fields and methods. The dispatch of a private (getter/setter or
not) method resembles field lookup, in that such a dispatch starts at the declar-
ing class and proceeds upwards in the superclass hierarchy, hence mocking any
attempt of overriding such a method in a subclass.

This resemblance has suggested the adoption of a similar scheme for inter-
ception of application-defined private methods as for field accesses, consisting
in complementing private methods with stub methods, through which former
methods are indirectly invoked. A stub method differs from its corresponding
original method in its visibility modifier (package visibility), and name (the name
of the original method is prefixed by C$, C being the name of the declaring class).
These prefixes, just like the infixes in getter/setter methods, are used to avoid
accidental overriding in subclasses.

Note that modifying (renaming) private methods directly would invalidate
lookup tables of corresponding native methods.

Final classes and methods. The workaround to the limitations introduced by
the final keyword consists in handling such classes and methods as non-final
ones when linking these, but remembering occurrences of these keywords for the
verification of classes, in order to indicate violations.

As a result, unlike in the original implementation of dynamic proxies, final
methods of the root object type Object can now be overridden, and intercepted.

Proxy class instantiation, safety and security. [6] provides more details
on various issues, such as the implementation of our instrumenting class loader,
the creation of constructors for the instantiation of proxy classes, or safety: e.g.,
how to deal with invocations and field accesses made through introspection, or
how to add keys to names of generated methods for obfuscating these.

With respect to the issue of security often raised in the context of reflec-
tion [5], we can safely say that, considering our class loader to be trusted (a
common assumption [30, 28]), our approach does not introduce any further im-
plications compared to the original dynamic proxy mechanism.

7 Summary and Conclusions

With the continuously increasing scale of distributed applications — and nowa-
days nearly any industrial-scale application is distributed — it becomes ever
more important to reveil certain characteristics of the underlying distributed
infrastructure to the application developer, rather than hiding them. “Harmful”
characteristics culminate in P2P settings, which namely involve an unprece-
dented number of participants (large scale), joining and leaving (dynamic) with-
out coordination (completely decentralized). P2P computing is not a topic made
up by research. It is a reality, whose recent thorough investigation has been in-
versely driven by the desire to understand the fundamentals of a concept already
widely applied practice.



We believe that the fundamentals of (distributed) object-oriented program-
ming and software design have to evolve with these new constraints. This paper
can be seen as a step in that direction, focusing on parameter passing semantics
in modern distributed systems. Just like a lazy RMI (future invocation) bet-
ter captures the asynchronous nature of the Internet in pairwise client/server
interaction, the lazy parameter passing model proposed in this paper in two dif-
ferent flavors better captures multi-party interaction in modern asynchronous
decentralized distributed systems.

While implementing lazy parameter passing in our BL abstraction for P2P
computing, our efforts have been stifled by the limitations of dynamic proxies
in Java, which hamper the potential of this mechanism (e.g., for behavioral
reflection) overall. While several authors have suggested ways of augmenting
Java’s reflection capabilities in the large, we have in this paper presented an
approach to broadening the scope of Java’s own concept of dynamic proxies.

The proposed solution relies on byte code manipulations performed at load-
time — an established technique in Java. These manipulations include a general
scheme for transforming field accesses to invocations of automatically generated
getter/setter methods, making a case against the claim that field access inter-
ception is impossible without modified virtual machine [5].

The issues addressed in this paper are not only relevant for Java. Microsoft’s
.NET platform [29] for instance proposes a closely related concept of dynamic
proxies. When implementing our .NET prototype of the BL abstraction, we had
to deal with the same limitations with respect to dynamic proxies as in Java.
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