
From Set Membership to Group Membership:
A Separation of Concerns

André Schiper
�

Andre.Schiper@epfl.ch

Sam Toueg
�

sam@cs.toronto.edu

Abstract

We revisit the well-known group membership problem, and show how it can be considered a spe-
cial case of a simpler problem, the set membership problem. In the set membership problem, processes
maintain a set whose elements are drawn from an arbitrary universe: they can request the addition or
removal of elements to/from that set, and they agree on the current value of the set. Group membership
corresponds to the special case where the elements of the set happen to be processes. We exploit this
new way of looking at group membership to give a simple and succint specification of this problem
and to outline a simple implementation approach based on the state machine paradigm. This treatment
of group membership separates several issues that are often mixed in existing specifications and/or im-
plementation of group membership. We believe that this separation of concerns greatly simplifies the
understanding of this problem.

1 Introduction

Group membership is one of the most widely studied problems in the area of fault-tolerant distributed
computing. Despite the extensive literature on this problem, however, the existing specifications are still
complex and difficult to understand. Since group membership is a paradigm for simplifying the design
of fault-tolerant applications, it is important that its specification be as simple and clear as possible.

The first goal of this paper is to give a simple and succinct specification of the primary partition
group membership problem.1 Our starting point is to note that the complexity of the existing specifica-
tions of group membership is due to a mixing of concerns. In the literature, group membership is almost
always defined as the problem of maintaining and agreeing on the set of processes that are currently up
— a set that dynamically changes. We note that this problem consists of two sub-problems: (a) deter-
mining the set of processes that are currently up, and (b) ensuring that processes agree on the successive
values of this set. Even though these two subproblems are orthogonal, most existing specifications and
implementations deal with the combination as a single problem. Our approach is to completely decouple
these two problems, and deal with each one separately, as we now explain.

We first specify a very simple problem, called set membership. In this problem, a set of processes �
maintain, and agree on the content of a dynamically changing set of elements drawn from an arbitrary
universe. Processes can request the addition or removal of elements to/from the set, and the set changes
accordingly. Each time the set changes, all processes are notified of the new value of the set. It is
important to note that, in contrast to group membership, the set is not necessarily a set of processes. For
example, set membership can be used to maintain and agree on the current value of a mailing list, a set of
employees, or the set of unsold seats on a particular flight. Obviously, with set membership, the content
of the set maintained by processes has nothing to do with failures.

�
Research supported in part by the Swiss National Science Foundation under grant number 21-67715.02 and by Hasler Stiftung

under grant number DICS-1825. Authors’ address: Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzer-
land.�

Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada. Author’s
address: Department of Computer Science, 10 King’s College Road, University of Toronto, Toronto, Ontario, Canada M5S 3G4.

1This problem is different from the so-called partitionable group membership problem. See Section 6.

1

We then consider a special case of set membership, namely, the case where the set maintained by the
processes in � happens to be a subset of � . Here processes in � can request to add or remove processes
in � . We call this special case group membership, and the set maintained is called a group.

Our specification of the set and group membership problems is not concerned by the reason(s) why
a process requests the addition or removal of an element to/from the set: such reasons are outside the
scope of the problems. It is up to each application that uses group membership to decide what should
cause the addition or removal of a process from the group. For example, in some application, a process
may decide to request the removal of a process � from the group because the security clearance of �
has been revoked. It may also decide to request the removal of � because � seems to have failed. Our
specification of the group membership problem does not differentiate between these two requests.

With group membership, i.e., in the special case when the set maintained is a group of processes,
there are some interesting variants which may be desirable to some applications. For example, recall that
in set membership all the processes are notified of every set change. In contrast, in group membership,
each time the group changes, only the current members of the group may have to be notified. In the
paper, we consider this and a few other possible variants to the basic specification of group membership
problem.

In addition to providing simple specifications to the set and membership problems, we also consider
the problem of implementing such services. We first note that in purely asynchronous systems with
failures, these problems are not solvable. These impossibility results are not because processes are
trying to determine the set of processes are currently up (indeed the set membership problem cannot be
solved even though the set maintained by processes has nothing to do with failures). Rather, it is because
both problems embed some form of consensus on some set. 2

Despite the above impossibility results, however, set membership and group membership can still
be solved using randomization, unreliable failure detectors, or with other assumptions on the system
(exactly as with consensus). We outline a stepwise implemention of these two services based on the
well-known state machine approach [21, 27]. This systematic approach allows us to give simple and
easily understandable implementations that clearly separate the service provided from orthogonal imple-
mentation issues (e.g., the degree of fault-tolerance desired, which processes provide the service, and the
details of how it is done). In particular, for group membership, this approach clearly decouples the set of
processes that provide the membership service and the set of processes that are currently in the group.
This is in contrast to existing implementations, where the processes that provide the membership service
(i.e., maintain the group) are the current members of the group (or a subset of this group).

Finally, we explain how our group membership service can be used for the special purpose of main-
taining and agreeing on the set of processes that are deemed to be operational — which is the principal
(and often only) goal of group membership protocols in the literature. As we mentioned above, this
problem consists of two sub-problems: (a) determining the set of processes that appear to be operational,
and (b) ensuring that processes agree on the successive values of this set. Roughly speaking, we can use
a (reliable or unreliable) failure detector to solve sub-problem (a), and our group membership service to
solve sub-problem (b).

Roadmap

The rest of the paper is organized as follows. The set membership and group membership services are
specified in Sections 2 and 3, respectively. The problem of implementing such services is addressed
in Section 4. Specifically, in Section 4.1 we show that these services cannot be implemented in purely
asynchronous systems, and in Section 4.2 we outline a simple implementation approach based on the
state machine paradigm (for systems where consensus or atomic broadcast can be solved, e.g., asyn-
chronous systems with unreliable failure detectors or randomized algorithms). In Section 5, we explain
how our group membership service can be used for the special purpose of maintaining and agreeing on

2The impossibility of a very weak form of group membership, one that did not try to track process failures, was already pointed
out in [4]. The proof given in [4], however, was for systems with ����� processes. Our impossibility proof for the set and group
membership problems holds for ����� .

2

the (dynamically changing) set of processes that are currently operational. A brief section on related
work and a conclusion complete the paper.

2 Specification of the set membership service

2.1 Preliminaries

We define a set membership service (SMS) that allows processes to maintain, and agree on the content
of a dynamically changing set of elements drawn from an arbitrary universe. Processes are allowed to
issue operations to add or remove elements of the set. The service executes these operations sequentially
and notifies all the processes of the content of the set after each operation. With these notifications,
processes agree on the � -th incarnation of the set for every � . We now describe the specification of this
set membership service in more detail.

Consider a set � of processes that maintain a dynamically changing set of elements drawn from an
arbitrary (countable) universe � . A view of the maintained set is a tuple �������
	 , where ����
 , and ����� :
intuitively, view �������
	 indicates that the value of the � -th incarnation of the set is � . Processes issue
operations to add or remove elements to/from the set. Operations are tuples of the form � ��������� ������	�	 ,
where ��� � , ����
 , � ���! #"%$�$&��'��#()�+*,��- , and �.�/� : intuitively, � ��������� ������	�	 denotes that the � -th
operation issued by process � is � �����+	 .

The local history of process � , denoted 021 , is a finite or infinite sequence of operations and views.3

If a view * is in 031 , we say that � installs * . If � is the � -th operation in 041 , � is of the form � ��������56	 ,
and we say that � issues operation � . Moreover, if * is the last view before operation � in 0�1 , we say
that � issues operation � in view * .

From the point of view of the set membership service, the set has some initial value, the service
successively applies the process operations on the current value of the set, and each operation results in
a new value of this set, i.e., a new view. Thus, the global history of the membership service, denoted 0 ,
is a finite or infinite sequence of alternating views and operations of the form: 0879*,: — �<; — *�; —
��= — *6= — >?>@> We say that *�: is the initial view of 0 . Moreover, if 0 is finite it must terminate with a
view, called the final view of 0 . We require that for all �BA!C :

1. *6DE7F�G�����
	 for some ����� ;

2. � D�H ; is an operation (we say that � D�H ; is executed in view * D); and

3. operation �6D�H ; applied to view *<D results in view *<D�H ; in the natural way. More precisely, if
*6DI7J�K�����
	 and �6D�H ; 7J�L5M��5M��� ������	�	 then *6D�H ; 7N�K�PORQ<���PS�	 where �
S is the set that results by
applying � �E�G��	 to set � .4

We assume that processes may fail, but they can do so only by benign failures [18], e.g., by crashing.
In the following, T denotes the set of correct processes.

2.2 Specification of the basic SMS

A set of local histories of processes #041VU ��� �W- satisfies the specification of the basic set membership
service, if there is a global history of the membership service 0 with the following properties:

S1: View Sequence Agreement: For every process � , the sequence of views in the local history 0�1 of �
is a subsequence of the sequence of views in the global history 0 of the membership service.

S2: Integrity: Every operation executed by the membership service is requested by some process, and
it is executed only once: X��V�)0NY[Z ��� �R\<�2�)021 and X��%����S]��0^\<�`_7a��S

L1: View installation: Every view generated by the membership service is installed by every correct
process: X �)�)T , Xb*.�)0 : *.�)031

L2: Operation execution: Every operation issued by a correct process is executed by the membership
service: X �)�/T , X]�2�)031 : �4�)0

3This sequence is arbitrary, and in particular operations and views do not have to alternate in a local history.
4Note that it is possible to have c�dfe�c .

3

2.3 A variant of SMS

For some applications, a simple modification of the basic set membership service specified above may
be desirable. To see this, suppose that the current view at process � is *�7 �������
	 , for some index �
and set value � , and that � issues an operation to add or remove an element to/from � . This operation,
which is issued in view * , may be semantically tied to * : the view * is the “context” of � ’s request. If
this operation is received by the set membership service after the view * has changed (it may have been
modified by an operation issued by another process), then this operation may no longer be appropriate
in the new context. So, for some applications, operations issued in a given context (i.e., a view) should
not be executed in a different context. We can enforce this restriction by adding the following safety
requirement:

S3: Same context: An operation � is executed in view * only if � was issued in * .

This safety requirement however is incompatible with the liveness requirement that all operations of
correct processes must be executed by the set membership service (requirement L2). To see this, suppose
the initial view is *6: 7 �GCf�@ #"b� � -+	 , and � issues "%$,$&���@	 in *6: , while concurrently � issues ",$,$b�G$%	 also in
*�: (and these are the only operations ever issued). By S3, it is clear that only one of these two operations
can be executed by the set membership service, violating L2. Thus an application that requires S3 must
weaken L2. One possibility is to require that if a correct process � issues an operation � in view * then
some operation, maybe a different one from � , is executed in * , i.e., the view * eventually changes. More
precisely, we replace L2 with the following weaker liveness requirement:

L2a: Operation execution: If a correct process � issues an operation � in a view * , then * is not the final
view of the global history 0 of the membership service.

3 The group membership service: a specialization of SMS

The group membership service, denoted GMS, can be considered a special case of the set membership
service where the elements of the set being maintained happen to be processes. More precisely, GMS
is just the special case of SMS when � 7 � : the set included in each view is now a subset of � . This
subset represents the membership of the “group”.

Since processes now issue operations to add and remove processes (a self-reference) to/from the set,
some simple variants of the GMS requirements may be desirable for some applications. We consider
below some of the possible variants (they make sense only for the special case where � 7 �). In the
following, if view * 7F���<���
	 and process ����� , we say that � is in view * .

1. In SMS every correct process must install every view of the set (requirement L1). For some GMS
applications, however, it may not be necessary for a correct process to install the views that it does
not belong to. For such an application, the liveness requirement L1 can be weakened to:

L1a: View installation: A correct process must install every view it belongs to:

X �)��T , Xb*.�)0 : ��� *4Y *`�)031 5

2. In SMS every process can issue an operation (i.e., request a group membership change) at any
time. In GMS, an application may want to restrict the authority to request membership changes: a
process may be allowed to request a membership change only if it belongs to the group, according
to its current view. This optional requirement is specified by the following safety property:

S4: Authority to request a view change: A process � can issue an operation in a view * only if � is
in * .

3. To understand another possible requirement, consider the following scenario. Process � is in the
current group and requests a group membership change, but when the membership service receives

5Note that this does not forbid a process to install views it does not belong to. In fact, when a process � is removed from a
group, it may be useful for � to install the first view that does not contain it. This is what makes � aware that it was removed from
the group.

4

the request, � is no longer in the group. Should the group membership service execute � ’s request?
For some applications, processes “expelled” from the group should not have the ability to modify
the group. This is enforced by the following safety requirement:

S5: Authority to execute a view change: An operation � issued by a process � is executed in a view
* only if � is in * .

Note that it makes no sense to require S5 but not S4, because doing so would mean the following:
On one hand, by not requiring S4, we allow a process � that is not in the current view to issue
an operation, while on the other hand, by requiring S5, we prevent � ’s operation to be executed,
unless, by some lucky event the view changes to include � and � ’s operation happens to be received
after this view change. In other words, by requiring S5 but not S4, we allow � to issue its operation
even though � is not in the current view, and “hope” that this operation will be received in some
future view that does include � (otherwise the operation will be ignored, and so it is useless). This
is not reasonable, and so we assume that any application that requires S5 also requires S4.

Note that safety requirement S5 is incompatible with liveness requirement L2. To see this, suppose
the initial view is *6: 7 ��Cf� ��� �,-+	 , and � issues '��#(�+*%�%� �6	 in *6: , while concurrently � issues
'��#()�+*,�%� �]	 also in *�: (and these are the only operations ever issued). By S5, it is clear that only
one of these two operations can be executed by the membership service, violating L2. Thus an
application that requires both S4 and S5 must weaken L2.

Instead of L2 we could require L2a (Section 2.3). But L2a is too weak: it allows the group mem-
bership service to ignore an operation if the view changes, even when the issuer of this operation
remains in the new view, i.e., even when the execution of this operation is still authorized according
to S5. A stronger liveness requirement that better matches S5 is as follows. If a process � issues
an operation in a view * 6, then � ’s operation must be executed by the membership service, unless
the membership service eventually removes � from the view. More precisely, with S4 and S5 we
can require:

L2b: Operation execution: If a correct process � issues an operation � in a view * , then either � is
executed by the membership service, i.e., �4��0 , or there exists a view * S after * in 0 such that �
is not in *%S .

Remarks: A few remarks about optional requirements S3, S4 and S5 are now in order. First note that the
combination of S3 and S4 implies S5. Moreover, if an application requires S1 through S5, the appropriate
liveness requirement is L2a rather than L2b. This is because requirement L2b is not compatible with
S3. To see this, suppose � issues operation � in view * , and the group membership service changes *
to *%S before � is executed (this could be due to another operation that was issued concurrently with �).
Assume that � is still in *%S . On one hand, liveness requirement L2b requires � to be executed (because
the issuer of � is still in the view), on the other hand S3 forbids the execution of � in * S (because the
context of � changed) — these two requirements are incompatible.

Finally, note that a GMS that satisfies S4 (and/or S5) has the following behavior: if the group ever
becomes empty, it will stop evolving. This is because processes outside the group are not authorized
to issue operations to modify the group. Thus, a GMS that satisfies S4 should not be started with the
“empty” initial view *�: 7 �GC � � 	 . Furthermore, if such a GMS ever generates a view with an empty
group, it is up to the application that uses this GMS to restart the GMS (with some non-empty initial
view) if it wishes to do so.

A summary of the specifications of the set and group membership problems is given in Appendix A.

4 On implementing SMS and GMS

4.1 Impossibility results

In this section we prove that in a purely asynchronous system subject to process crashes, it is impossible
to solve the basic SMS problem or any of its variants that we considered in this paper. In particular, all

6By S4, � is necessarily in � .

5

the variants of the GMS problems that we defined here are also unsolvable in such a system.
It is important to note that these impossibility results are not because the membership service is trying

to keep track of which processes are up or down (a task that is trivially impossible in an asynchronous
system). In fact, the set maintained by a set membership service is not necessarily a set of processes
(e.g., it could be the set of unsold seats on a flight), and so it may have nothing to do with the issue of
which processes are currently up or down in the system. The impossibility of SMS (and all its variants)
stems from another simple reason: it is because this service allows processes to agree on the various
incarnations of a dynamically changing set — a form of consensus that cannot be achieved in a purely
asynchronous system with failures.

One way to show this, is to just apply the impossibility result given in [4]: it is easy to see that all the
GMS variants that we consider here satisfy the Weak Group Membership (WGM) specification defined
in [4]. However, the impossibility of WGM was shown only for systems with ��A � processes. For this
reason, we prefer to give here a simple unified proof that holds for � A�� (for all the variants of the SMS
problem that we gave).

Theorem 1 For all ��A�� , the basic version of the SMS problem, and each one of its variants considered
here, cannot be solved in asynchronous systems with process crashes. This holds even if we assume that
at most one process may crash and all links are reliable.

PROOF. Consider an asynchronous system with � A�� processes � 7 � ; � � = �@>@>?> � ���b- , and assume
that at most one of them may crash. Suppose, for contradiction, that algorithm � solves (one of the
variants of) the SMS problem in this system. In the following, processes in the system use � to maintain
a set � whose elements are processes, i.e., ��� � .7. We consider two cases.

1. � 7�� , i.e., � 7 � ; � � = - . In this case the result follows from a standard partitioning ar-
gument. Partition � into � ; - and � = - . Suppose that the initial view of both � ; and � = is
* : 7 ��Cf�@ � ; � � = -+	 . In run R1 of algorithm � , � ; is correct and executes '��#(�+*%�%� � = 	 in view * : ,
while � = is dead. It is easy to see that, for each variant of the SMS problem that we defined, � ;
must eventually install the new view *�7 � Q�� � ; -+	 ; say it does so by time 	 ; . Run R2 of algo-
rithm � is symmetric: � = is correct and executes '��?()�+*%�,� � ; 	 in view * : , while � ; is dead; � =
must eventually install the new view *MSB7J��Q<�@ � = -+	 ; say it does so by time 	 = . In run R3 of � ,
��; executes '+�#()�+*,�%� �&=#	 , while �b= executes '+�#()�+*,�%� �];?	 , in view *6: . All the messages between
��; and �&= are delayed to a time 	 greater than max �
	�;+��	 =?	 . For process ��; , runs R3 and R1 are
indistinguishable up to time 	 , and � ; installs * 79��Q<�@ ��;#-+	 by time 	 ; for process �]= , runs R3 and
R2 are indistinguishable up to time 	 , and so �]= installs *,S 7J� Q<�@ �b=�-+	 by time 	 . Thus, run R3
of algorithm � violates ��; , the view sequence agreement property of (every variant of) the SMS
problem — a contradiction.

2. �
��� . In this case, the result can be obtained by reducing consensus to the SMS problem solved
by algorithm � , and then applying the well-known impossibility result of [15]. Processes in �
use the SMS algorithm � to solve binary consensus as follows. The initial view at every process
is *�: 7 �GC � �I	 . Every process with initial value 0 uses � to issue the operation '��#(�+*%�%� ��;?	 ,
while every process with initial value 1 uses � to issue the operation '+�#()�+*,�%� ��=+	 . Then each
process � waits to install a new view after *6: . Let * be the first view that � installs after *6: . If
*�7 ��Q<� ��� �];#-�	 then � decides 0, and if * 7 � Q�� ���a �]=+-+	 then � decides 1. Note that some
process � (either � ; or � =) does not belong to the new view * , and so, in some variants of the SMS
problem (those with liveness requirement L1a instead of L1) process � is not required to install
* . Thus, the reduction algorithm that we just described does not force � to decide. But since,
����� and at most one process may crash, � has at least two correct processes, and so the set
��� �,- contains at least one correct process other than � . That correct process is forced to install
* (in every variant of the SMS problem that we considered), and hence to decide. Recall that the
impossibility result of [15] holds even if only one process is required to decide. It is now easy to

7To show the impossibility of SMS, we could take c����������������! ! � "���$#&% , a set unrelated to processes. But to ensure that our
proof also applies to all the GMS variants, we take the special case that '�e)(.

6

verify that all the properties of consensus considered in [15] are indeed satisfied by this reduction,
independent of the variant of the SMS problem solved by algorithm � . So � can be used to solve
consensus — a contradiction to the impossibility result of [15].

4.2 Possibility results

Despite the impossibility results described in the previous section, SMS and its variants can be imple-
mented in practice. In fact, just as with consensus, there are approaches that can be used to effectively
circumvent such impossibility results, e.g., the use of randomization [8] or unreliable failure detec-
tors [5].

In this section, we first give simple implementations that assume a single non-faulty server, and
then refer to the well-known state-machine approach [21] to replace this non-faulty server with a fault-
tolerant replicated one. Our goal here is not to give the most efficient implementation of every possible
SMS and GMS variant, or to give all the details. Rather, we want to show that it is possible to implement
them incrementally, in a relatively simple way that does not mix the service provided with orthogonal
implementation issues.

After showing how our GMS can be implemented, in Section 5 we explain how this GMS can be used
for the special purpose of maintaining and agreeing on the set of processes that are currently deemed to
be operational.

4.2.1 Using a non-faulty server

In this section, we assume the availability of a non-faulty server, and show that with this assumption it is
very easy to implement all the variants of SMS and GMS that we considered in this paper.

The basic idea is quite simple: (a) the non-faulty server maintains the current value of the view; (b)
processes wishing to issue an operation (to add or remove an element from the set) send their operations
to the server; (c) the serve executes these operations sequentially, and after each operation it sends the
resulting new view to processes; and (d) processes install every view they receive from the server.

This scheme, which implements the basic set membership service, is shown in more detail in Fig-
ure 1. It works for asynchronous systems where processes (the clients that issue operations to the set
membership server) are subject to crashes or other benign failures, and the links to/from the non-faulty
server are reliable and FIFO.8 It is straightforward to verify that under these assumptions, the algorithm
in Figure 1 indeed satisfies the complete specification of the basic SMS, i.e., requirements S1, S2, L1
and L2.

All the SMS and GMS variants that we considered in this paper can be implemented by simple
modifications to the basic algorithm in Figure 1. To enforce the additional safety requirement S3 (an
operation can be executed only in the context in which it was issued), a process that sends an operation
to the server also includes its local view in the message, and when the server receives such an operation
it executes it only if the current view (according to the server) is equal to the view associated with the
operation.9 This simple modification is shown in Figure 2. This algorithm implements the variant of the
SMS requiring S1, S2, and S3, as well as L1 and L2a.

Now consider the GMS variants (where � 7 �). To replace L1 with the weaker requirement L1a
(the correct processes in a view are the only ones required to install this view), the server sends each new
view only to the current members of this view. To satisfy S4, a process � does not issue an operation
unless it is a member of the group (according to its � ’s current view). To satisfy S5, the server executes
an operation issued by a process � only if � is a member of the group (according to the server’s current
view). These three simple modifications to the basic algorithm are shown in Figure 3. It is easy to see
that the algorithm given in this figure implements a GMS that satisfies the optional requirements S4 and
S5 (in addition to S1 and S2) as well as L1a and L2b.

8The FIFO assumption is just to simplify the presentation of the algorithm: it can be easily enforced using the sequence number
that each operation and view carries.

9By the view sequence agreement property, each view is uniquely identified by its index, so a process can send the index of
its local view rather than the whole view, and the server can compare this index with the index of its current view. We omit this
obvious optimization from the code.

7

4.2.2 Using a fault-tolerant replicated server

In the above, we showed how SMS and GMS can be implemented assuming the existence of a single
non-faulty server. This was done to better understand the services that we want to implement, and to
decouple them from complex implementation concerns that may blur the simplicity of these services.

To remove the assumption of a single non-faulty server, we can use the well-known state-machine
approach [21]. This method replaces the non-faulty server with a replicated server and uses standard
techniques (based on consensus or atomic broadcast) to ensure that the replicated server works as if it
were a single failure-free server.

For example, we could replace the single non-faulty server of Figures 1, 2, and 3, with a replicated
server consisting of a static set of � 	6O�Q processes, 	 of which may crash, and run consensus among these
� 	PO9Q processes to ensure that they behave consistently (i.e., they execute the same set of operations
issued by the clients, in the same order). Even though consensus cannot be solved in purely asynchronous
systems, it can be solved using randomization [8], unreliable failure detectors [5], or assuming some
model of partial synchrony [12, 13, 11]. For example, in a recent work, Urbán et. al. implemented an
extremely robust replicated server using the failure-detector based consensus algorithm of [5]. In this
implementation, the replicated server continued to work even under the most severe workload, one that
saturated the network [29, 28].

Note that the replicated server consisting of � 	%O�Q processes need not be static, nor separate from the
set of processes � : these � 	&O�Q processes can be in � and dynamically change. In fact, the set of � 	&O�Q
processes that form the replicated server can dynamically agree on changing the membership of this set.
They can do so by using the same consensus (or atomic broadcast) algorithm that they use to agree on
the order of the clients operations. A detailed discussion of this technique, however, is beyond the scope
of this paper, and therefore omitted.

As a final remark, it is worth emphasizing that failure detectors are not necessary to solve SMS
and GMS in asynchronous systems with crashes. As we mentioned above, one can use randomization
instead. Furthermore, if we do use failure detectors to solve SMS or GMS, it is only to enforce agreement
among the � 	�O Q processes that form the fault-tolerant replicated server. But these failure detectors are
not used to decide the content of the view (i.e., to decide whether to include a process in the current
view).

5 Group membership and agreeing on the set of operational pro-
cesses

In the literature, group membership is often defined and implemented as a service to maintain and agree
on the content of one particular set, namely, the set of processes that are currently deemed to be op-
erational. To provide this service, one must solve two orthogonal problems: (a) determining the set of
processes that appear to be up in the system, and (b) agreeing on each successive view of this dynamically
changing set.10

We consider the above service to be just one possible application of our GMS. In fact, to implement
this service an application can use one of our GMS variants, together with some failure detector

�

that gives (reliable or unreliable) information about which processes have crashed: Processes use
�

to
decide on when to issue operations to add or remove processes from the group, and they use a variant of
our GMS to process these operations and agree on the current membership of the group. Since failure
detector

�
ultimately determines which processes are in and out of the group, its Quality of Service [6]

can be chosen by each application according to its particular needs (e.g., how fast the application wants
a crashed process to be expelled from the group, and how costly it is for the application to erroneously
remove a non-faulty process from the group).

10Note that both problems are unsolvable in purely asynchronous systems with failures. The first one is impossible for obvious
reasons. The impossibility of the second one is non-trivial: as shown in Theorem 1, it is mostly based on the well-known result
of [15].

8

An important remark is now in order. In existing implementations of the group membership service,
the same failure detector is often used to solve both problems (a) and (b). This is not necessary, and in
practice it is better to decouple the mechanisms that are used to solve these two orthogonal problems. In
fact, as we mentioned earlier, failure detection is not even necessary for solving problem (b), e.g., one
can use randomization instead. Moreover, even if we use failure detectors for solving both problems (a)
and (b), these failure detectors are used for radically different purposes, and so they have different QoS
requirements, as we now explain.

For problem (a), the failure detector is used to decide which processes are operational. In this case,
the cost of a failure detector mistake (i.e., suspecting that a process � has crashed while it is actually
up) is usually very high: the erroneously suspected process � is first removed from the group, and when
this mistake is later recognized, � is reinserted in the group. This may involve expensive protocols and a
costly state transfer done by the application. So an appropriate failure detector for problem (a) is likely
to be one that favors higher accuracy at the expense of a slower detection time [6]. For these reasons,
typical group membership protocols have failure detectors with large timeouts (on the order of tens of
seconds).

For problem (b), however, the purpose of the failure detector is quite different: it is used by the
replicated server to reach agreement on each new view of the group (it is not used to decide whether to
add or remove processes from the group). In this case, the cost of a failure detector mistake is usually
much smaller. For example, suppose that we implement a fault-tolerant group membership server using
� 	�O Q processes, and that these processes reach agreement on each new view of the group by running the
rotating-coordinator consensus algorithm in [5] or in [26, 24] that uses failure detector �3� 11. We first
note that with these consensus algorithms, a failure detector mistake can be harmful only if this mistake
happens to be about the current coordinator. And even in this case, the cost of such a mistake is not
very high: no process is removed, another coordinator just takes over. For this reason, an appropriate
failure detector for problem (b) is likely to be one that favors a faster detection time at the cost of lower
accuracy. A good timeout for such a failure detector may be orders of magnitude smaller than the one
used for problem (a).

6 Related Work

The group membership problem has been extensively studied, and many specifications and implemen-
tations exist in the literature. The first papers to study the group membership problem were [10] (in the
context of synchronous systems) and [25] (in the context of asynchronous systems). These two papers
considered the primary partition version of the group membership problem, which requires that group
views are totally ordered. In another version of group membership problem, called partitionable, group
views are only partially ordered (e.g., [1, 3, 14]). A recent survey of group communication and group
membership appeared in [7].

Despite their many differences, most (if not all) papers on the subject consider the problem of keeping
track of who is up, down, or partitioned away in the system, to be an integral part of group membership.
This is evident from the following quotes (taken from papers whose publication dates span a decade):

[10]: The specification requires crashed processes to be excluded within a given delay D.

[25]: The specification requires to react to failure detection.

[23]: Membership is determined by whether or not a processor has failed.

[19]: Membership deals with the problem of keeping track of which processes are faulty and
which are fault-free.

[20]: A membership service is live with respect to failure if it is guaranteed to report that
type of change eventually.

[9]: The group membership service implements a kind of failure detector that allows surviv-
ing processes to agree on which processors have failed.

11Roughly speaking, with � c every process that crashes is eventually suspected, and there is a time after which some non-faulty
process is not suspected.

9

[7]: The task of a membership service is to maintain a list of the currently active and con-
nected processes.

[3]: In the absence of partitionings, every correct process should install the same view and
this view should include exactly those members that have not crashed.

In contrast to the above, our specification of set and group membership does not relate the content of the
set/group being maintained to (reliable or unreliable) information about processes failures or network
partitions. Indeed, our specification is not concerned by the reasons why elements are added or removed
from the maintained set/group.

It is widely recognized that the task of giving a precise specification of group membership is difficult,
and in fact many of the existing specifications are either difficult to understand or problematic [2]. It has
been claimed that the source of this difficulty is the impossibility of reaching consensus, i.e., process
agreement, in asynchronous environment with failures. For example:

[16]: Most of the difficulties in building a specification for the Group Membership Problem
arise from the impossibilities result in [4] and [15].

But this reason is not entirely valid: the impossibility of consensus and atomic broadcast in asynchronous
systems with failures was never an obstacle to the simple and precise specifications of these problems.

We believe that the difficulty in specifying group membership originated from the mixing of two
orthogonal concerns, namely, determining who is up or down, and agreeing on this set. As we mentioned
before, it may be better to decouple the mechanisms used to solve them. This is usually not the case,
e.g., in [22], an oracle is used to decide whether to exclude a process from the group and the same oracle
is also used to achieve consensus on each view, and in [25] the same failure detection mechanism is
used to determine who is down and to agree on each view. Finally, note that the decoupling of the two
mechanisms implicitly appeared in [17] where a consensus service is used to solve agreement problems.

7 Conclusion

Our treatment of group membership clarifies the problem by separating several orthogonal concerns that
are often mixed in existing specifications and/or implementations of group membership services.

First, we separate the problem of agreeing on the content of a dynamically changing set (the SMS
problem) from the issue of the domain of that set. In the special case of group membership (the GMS
problem), this set contains processes.

Second, in our formulation of GMS, we decouple the issue of why processes are added or removed
from the group — a concern that does not even appear in our specification of GMS — from how they are
added or removed. Existing group membership services usually tie the removal or addition of a process
to some (reliable or unreliable) information about this process failure or recovery.

Third, in our GMS implementation outline, we decouple the service from the issue of which pro-
cesses actually provide the service and what is the degree of fault-tolerance provided. Specifically, the
� 	 OFQ processes that provide the GMS service are not required to be current members of the group.
Moreover, the size of the current group may be smaller or larger than � 	,O�Q . In contrast, in most existing
group membership services, the service is provided by the processes in the current group, and the degree
of fault-tolerance is proportional to the current size of the group.

Fourth, our treatment of group membership decouples two types of failures: (a) the failure of a
process that belongs to the group (which may cause a request to remove this process from the group), and
(b) the failure of a process that provides the membership service (which may hinder reaching agreement
on the new value of the group).

Finally, our treatment of group membership also separates the two mechanisms needed to (a) deter-
mine and (b) agree on the set of processes that are deemed to be operational: a failure detector can be
used for (a), but is not necessary for (b) — e.g., randomization can be used instead. Moreover, as we
explained in Section 5, even if we decide to use failure detectors for both (a) and (b), they should be
decoupled: each one solves a different problem and has different requirements in practice.

10

Acknowledgments. We would like to thank Marcos K. Aguilera, Carole Delporte-Gallet, Jonathan
Eisler, Hugues Fauconnier, and Arnas Kupšys for their insightful comments on an earlier version of the
paper.

11

CODE FOR SET MEMBERSHIP SERVER:

on initialization:

1 � \ 7 � : initial value of the set, such that � : � � -
2 �
\ 7aCV initial index of the view -
3 *.\ 7F�G�����
	P initial view of the set -
4 send (*) to every ��� �a send initial view to all -
5 start task 0

task 0: To process requests to modify the set and generate new views accordingly -
6 upon receive � �����]��� ���G��	�	P � ���G��	 is an operation to add or remove � to/from the set -
7 if � � 7a",$,$ then ��\ 7a��� #��- else � \ 7 ��� #��- execute � �E�G��	 on the current value of the set -
8 � \ 7 ��O Q increment index of the view -
9 *.\ 7F�G�����
	
 generate new view of the set -
10 send (*) to every ��� � send new view to all -

CODE FOR EACH PROCESS ��� � :

on initialization:

11 �.\ 7 CW number of operations issued by �.-
12 �G� � "����I� �	�R\ 7�
 � ’s local view of the set -
13 start tasks 1 and 2

task 1: To issue requests to modify the set -
14 repeat forever
15 if � wants to issue an operation � ������	 then � ���� #"%$,$ ��'+�#()�+*,��- and �W�.� -
16 �.\ 7 �WOaQ
17 send � �����]��� �����+	�	 to the set membership server

task 2: To install new views of the set -
18 upon receive �K*M	P a new view generated by the set membership server -
19 �G� � "����W� �	�R\ 7 *4 � installs the new view -

Figure 1: Basic SMS implementation (using a non-faulty server and FIFO reliable links).

12

CODE FOR SET MEMBERSHIP SERVER:

on initialization:

1 � \ 7 � : initial value of the set, such that � : � � -
2 �
\ 7aCV initial index of the view -
3 *.\ 7F�G�����
	P initial view of the set -
4 send (*) to every ��� �a send initial view to all -
5 start task 0

task 0: To process requests to modify the set and generate new views accordingly -
6 upon receive � ��� � "���� � �	�V�#� �����]��� �E�G��	�	��& operation � �E�G��	 was issued in ��� � "����I� �	�a-
7 if *47 �G� � "���� � � � then if the current view is equal to �G� � "����W� �	� -
8 if � � 7 ",$,$ then ��\ 7 ��� #��- else ��\ 7 ��� #��- execute � �E�G��	P-
9 �
\ 7 ��O Q increment index of the view -
10 *.\ 7 �K�����
	 generate new view of the set -
11 send (*) to every ��� � send new view to all -

CODE FOR EACH PROCESS ��� � :

on initialization:

12 �.\ 7 CW number of operations issued by �.-
13 �G� � "����I� �	�R\ 7�
 � ’s local view of the set -
14 start tasks 1 and 2

task 1: To issue requests to modify the set -
15 repeat forever
16 if � wants to issue an operation � ������	 then � ���� #"%$,$ ��'+�#()�+*,��- and �W�.� -
17 �.\ 7 �WOaQ
18 send � �G� � "����W� �	�V�#� �����]��� ���G��	�	�� to the set membership server

task 2: To install new views of the set -
19 upon receive �K*M	P a new view generated by the set membership server -
20 �G� � "����W� �	�R\ 7 *4 � installs the new view -

Figure 2: Basic SMS implementation satisfying optional requirement S3.

13

CODE FOR GROUP MEMBERSHIP SERVER:

on initialization:

1 � \ 7 � : initial value of the group, such that � : � �a-
2 �
\ 7aCV initial index of the view -
3 *.\ 7F�G�����
	P initial view of the group -
4 send (*) to every ������ send initial view to every process in the initial group -
5 start task 0

task 0: To process requests to modify the group and generate new views accordingly -
6 upon receive � �����]��� ���G��	�	P operation � �����+	 was issued by �`-
7 if �)�/� then if � is a member of the current group then -
8 if � � 7 ",$,$ then ��\ 7 ��� #��- else ��\ 7 ��� #��- execute operation requested by � -
9 �
\ 7 ��O Q increment index of the view -
10 *.\ 7 �K�����
	 generate new view of the group -
11 send (*) to every ���)�� send new view to every process in the current group -

CODE FOR EACH PROCESS ��� � :

on initialization:

12 �.\ 7 CW number of operations issued by �.-
13 �G� � "����I� �	�R\ 7�
 � ’s local view of the group -
14 start tasks 1 and 2

task 1: To issue requests to modify the group -
15 repeat forever
16 if � is in �G� � "����I� �	� and � wants to issue an operation � �E�G��	 then � ���� +",$,$&��'��#(�+*%��- and �W� � -
17 �.\ 7 �WOaQ
18 send � �����]��� �����+	�	 to the group membership server

task 2: To install new views of the group -
19 upon receive �K*M	P a new view generated by the group membership server -
20 �G� � "����W� �	�R\ 7 *4 � installs the new view -

Figure 3: Implementation of GMS with optional requirements L1a, S4 and S5 (here �����).

14

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership Algorithms for Multicast Communi-
cation Groups. In 6th Intl. Workshop on Distributed Algorithms proceedings (WDAG-6), (LCNS,
647), pages 292–312, November 1992.

[2] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal specification of group mem-
bership services. Technical Report 95-1534, Department of Computer Science, Cornell University,
August 1995.

[3] O. Babaoglu, R. Davoli, and A. Montresor. Group Communication in Partitionable Systems: Spec-
ification and Algorithms. IEEE Trans. on Software Engineering, 27(4):308–336, 2001.

[4] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility of group
membership. In Proc. of the 15th ACM Symposium on Principles of Distributed Computing, pages
322–330, Philadelphia, Pennsylvania, USA, May 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal
of ACM, 43(2):225–267, 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure detectors. IEEE
Transactions on Computers, 5(51):561–580, May 2002.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Comprehen-
sive Study. ACM Computing Surveys, 4(33):1–43, December 2001.

[8] B. Chor and C. Dwork. Randomization in Byzantine Agreement. In S. Micali, editor, Advances in
Computing Research, Randomness in Computation, volume 5, pages 443–497. JAI Press, 1989.

[9] M. Clegg and K. Marzullo. A Low-Cost Group Membership Protocol for a Hard Real-Time Dis-
tributed System. In Proc. 18th IEEE Real-Time Systems Symposiun (RTSS’97), pages 90–98, De-
cember 1997.

[10] F. Cristian. Reaching Agreement on Processor Group Membership in Synchronous Distributed
Systems. Distributed Computing, 4(4):175–187, April 1991.

[11] F. Cristian and C. Fetzer. The timed asynchronous distributed system model. IEEE Transactions
on Parallel & Distributed Systems, 10(6):642–657, June 1999.

[12] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for distributed con-
sensus. Journal of ACM, 34(1):77–97, January 1987.

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal
of ACM, 35(2):288–323, April 1988.

[14] A. Fekete, N. Lynch, and A. A. Shvartsman. Specifying and Using a Group Communication Ser-
vice. ACM Trans. on Computer Systems, 19(2):171–216, May 2001.

[15] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus with One Faulty
Process. Journal of ACM, 32:374–382, April 1985.

[16] M. Franceschetti and J. Bruck. A Group Membership Algorithm with a Practical Specification.
IEEE Transactions on Parallel & Distributed Systems, 12(11):1190–1200, November 2001.

[17] R. Guerraoui and A. Schiper. The Generic Consensus Service. IEEE Trans. on Software Engineer-
ing, 27(1):29–41, January 2001.

[18] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. Technical Report
94-1425, Department of Computer Science, Cornell University, May 1994.

[19] M. A. Hiltunen. Membership and System Diagnosis. In 14th IEEE Symp. on Reliable Distributed
Systems (SRDS-14), pages 208–217, Bad Neuenahr, Germany, September 1995.

[20] M. A. Hiltunen and R. D. Schlichting. A Configurable Membership Service. IEEE Transactions
on Computers, 47(5):573–586, May 1998.

[21] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. ACM,
21(7):558–565, July 1978.

15

[22] K. Lin and V. Hadzilacos. Asynchronous Group Membership Service. In 13th. Intl. Symposium on
Distributed Computing (DISC’99), pages 79–93. Springer Verlag, LNCS 1693, September 1999.

[23] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Processor Membership in Asynchronous
Distributed Systems. IEEE Transactions on Parallel & Distributed Systems, 5(5):459–473, May
1994.

[24] A. Mostefaoui and M. Raynal. Solving Consensus using Chandra-Toueg’s Unreliable Failure De-
tectors: A Synthetic Approach. In 13th. Intl. Symposium on Distributed Computing (DISC’99).
Springer Verlag, LNCS 1693, September 1999.

[25] A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure Detection in Asyn-
chronous Environments. In Proc. of the 10th ACM Symposium on Principles of Distributed Com-
puting, pages 341–352, August 1991.

[26] A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Distributed
Computing, 10(3):149–157, April 1997.

[27] F. B. Schneider. Implementing Fault Tolerant Services Using the State Machine Approach: A
Tutorial. Computing Surveys, 22(4):299–319, December 1990.

[28] P. Urbán. Evaluating the Performance of Distributed Agreement Algorithms: Tools, Methodology
and Case Studies. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, August
2003. Number 2824.

[29] P. Urbán, X. Défago, and A. Schiper. Chasing the FLP Impossibility Result in a LAN or How
Robust Can a Fault Tolerant Server Be? In 20th IEEE Symp. on Reliable Distributed Systems
(SRDS-20), pages 190–193, New Orleans, USA, October 2001.

16

A Appendix: Specification summary

Processes in � maintain a set of elements from an arbitrary universe � . They issue operations to add and
remove an element to/from that set, and install views of the maintained set (a view consists of a set value
and an index). The set membership service executes these operations sequentially, and notifies processes
of each new view of the set that it generates.

A local history 031 of a process � is a sequence of operations (issued by �) and views (installed by
�). A global history of the set membership service 0 is an alternating sequence of operations (executed
by the service) and views (generated by the service): 0 starts with an initial view of the set, and each
operation in 0 changes the view that precedes it into the view that follows it, in the natural way.

A.1 The set membership service (SMS)

A set of local histories (one 021 for each process � in �) satisfies the basic SMS specification if there is
a global history of the membership service 0 with the following properties:

S1: View Sequence Agreement: For every process � , the sequence of views in the local history 0 1 of �
is a subsequence of the sequence of views in the global history 0 of the membership service.

S2: Integrity: Every operation executed by the membership service is requested by some process, and
it is executed only once: X��V�)0NY[Z ��� �R\<�2�)021 and X��%����S]��0^\<�`_7a��S

L1: View installation: Every view generated by the membership service is installed by every correct
process: X �)�)T , Xb*.�)0 : *.�)0 1

L2: Operation execution: Every operation issued by a correct process is executed by the membership
service: X �)�/T , X]�2�)031 : �4�)0

The following additional requirement to the basic SMS is optional:

S3: Same context: An operation � is executed in view * only if � was issued in * .

For applications requiring the optional safety property S3, liveness requirement L2 must be weakened
to:

L2a: Operation execution: If a correct process � issues an operation � in a view * , then * is not the final
view of the global history 0 of the membership service.

A.2 The group membership service (GMS)

The GMS specification is identical to the SMS specification where � 7 � . Some GMS variants may
be desirable, and we list some of them here (they make sense only because � 7 �). We first note that
liveness requirement L1 may be weakened to:

L1a: View installation: A correct process must install every view it belongs to: X �9� T , Xb* �F0 :
���)*4Y *.��0V1 .

Some of the following additional safety requirements may be also desirable:

S4: Authority to request a view change: A process � can issue an operation in a view * only if � is in
* .

S5: Authority to execute a view change: An operation � issued by a process � is executed in a view *
only if � is in * .

If an application requires S5, it should also require S4. Moreover, if S4 and S5 are required, we must
weaken liveness requirement L2 to L2a, or to L2b given below:

L2b: Operation execution: If a correct process � issues an operation � in a view * , then either � is
executed by the membership service, i.e., �4��0 , or there exists a view * S after * in 0 such that �
is not in *%S .

17

