
Distributed Reliable Object-Oriented

Programming (DROOP)

P. Eugster

November 3, 2003

Abstract

The Simple Object-Oriented Concurrent Programming (SCOOP) model
proposed by Bertrand Meyer and illustrated through the Eiffel program-
ming language is a simple yet powerful model for concurrent program-
ming. In this paper, we analyze the applicability of the SCOOP model to
physically distributed systems manifesting transient and permanent fail-
ures. We suggest additions to the basic SCOOP model in order to cope
with such failures, coining the term Distributed Reliable Object-Oriented
Programming (DROOP).

1 SCOOP and Distribution

This section first summarizes the SCOOP model, and then evaluates it roughly
in the context of distributed programming.

1.1 Summary of SCOOP

With the SCOOP concurrency control model [9], objects are assigned (implicitly
or explicitly) to processors. Latter notion captures well active entities executing
the code of objects, and hence the application itself. These entitites can range
from lightweight OS threads, over OS processes, to CPUs themselves. Oper-
ations called on a target object are executed by the processor associated with
that object. The distinction between a call to a “local” object, i.e., an object
associated with the same processor as the caller, and a call to an object governed
by a distinct processor, becomes then necessary. The distinction is made by tag-
ging corresponding definitions with the keyword separate, the only syntactic
addition to the language required by the scheme.

1.2 Evaluation in the Face of Distribution

The clear separation of execution flow management and executed software text,
just like the distinction between the judicial and the legislative (with the effective
CPU’s taking the role of the executive), seems very plausible and appealing at

1



the same time. The use of a single primitive speaks for the simplicity of the
solution.

Coming from a distributed systems context, the main reservation one might
have regarding the core mechanism is the seeming absence of distinction between
concurrent and distributed execution. In fact, concurrency at a thread level
(intra-process), a process level (inter-process), and even host level (network)
do indeed manifest similarities. They can even be considered as responding
the same rules, but only as long as failures are not considered. The likelihood
that a pipe between two OS processes fails might be negligible, but is it safe
to say as much about the probability that a process fails? The eventuality of
the failure of a host, or of the communication with it, especially when targeting
realistic large scale and distributed settings (i.e., Internet-scale) is not to be ne-
glected. Transient network failures, e.g., due to congestion, can be counteracted
by repeatedly sending the same information, but can lead to unbounded delays,
hampering the overall performance of a distributed application, and ultimately,
its correctness. Permanent failures on the other hand, are yet more wicked,
as they can not be distinguished from transient ones in a practical distributed
environment such as the Internet [5].

Even by granting only a weak probability to process or host failures, the shier
size (in terms of involved hosts) and load of modern distributed applications
makes these probabilities accumulate to a considerable threat. It is this size
also, that introduces a strong dynamism into such settings, as one can expect
participants to join and leave at runtime, sensitive events which themselves are
associated with failures.

Different ways exist to obtain reliable distributed applications in the face
of failures and dynamism. Two of the best known paradigms are (1) transac-
tions, as a mechanism enforcing concurrency, and (2) (software) replication, as
a solution for ensuring availability of components.1 How the concurrency model
of SCOOP relates to those paradigms, or how the SCOOP model could be en-
hanced with those paradigms, will be discussed in the next section. Last but
not least, asynchrony, is an essential ingredient to a distributed programming
model as it permits to reduce dependencies between components and hence po-
tentially sustain higher failure rates. This issue will also be discussed in detail
in the next section.

2 Towards Reliable Distributed Programming

In the following, several concerns about the applicability of the SCOOP model in
the face of physical distribution are detailed. These concerns are less about the
core model; the presented thoughts are more centered around the implications
of the model. Proposals for improvement are provided where possible, and are
all mostly orthogonal.

1This is illustrated by the wide application of so-called “application servers” in industrial
software development, which precisely provide such features and greatly hide cumbersome
details of their implementation.

2



2.1 Failures

As outlined in the first section, distribution entails specific failure patterns.
These should be reflected in an application. In a setting in which all remote
communication takes place through remote operation call, these remote calls
should reflect the possibility of failures, for instance network failures result-
ing from temporary network congestion, through specific exceptions. This is
independent from the semantics (and the implementation) of the remote com-
munication, i.e., best-effort, at-most-once, as ultimately, target processes can
fail. A poor (but at least some) way of expressing this possibility [3] is given by
the Java binding of CORBA, where remote calls can raise exceptions, however
of a specific type which does not imperatively have to be handled by the caller.
This gives the impression that remote calls are identical to local ones. Better
practice can be observed in Java RMI, where features of remotely callable object
types must explicitly indicate the possibility of returning exceptions related to
remote communication in corresponding operation signatures, and callers are
obliged to handle these exceptions (checked at compilation).

In the context of the SCOOP model, one could easily add a rule that, when-
ever a separate object is called, the caller has to deal with a specific type of ex-
ception reflecting distribution-related problems. The necessity for dealing with
failures upon invocation of separate objects seems to be somewhat already given
by the possibility of aborting remote calls because of express messages. Special
care would be required in the context of wait-by-necessity; not waiting for a
remote command call to terminate means losing the ability of knowing whether
the call has completed, or whether a failure has occurred (see Section 2.3).

The possibility of failures should also be considered when reserving ob-
jects. As a feature is only executed once all its arguments declared formally
as separate are reserved, one can enter a blocking situation if any of these
objects has failed, or communication with such an object exhibits failures.

2.2 Dynamism

The use of a configuration file seems interesting for bringing together the ju-
diciary and the executive (see above). In any distributed scenario, a form of
bootstrapping is required for remote entities to meet in the first place, and
a configuration file can be used for that. However, the dynamism of modern
distributed systems must be allowed more room.

More precisely, configuration files can be useful for defining at a physically
local scale what processors should be associated with, and can help physically
remote parties make first contact. A solution where remote hosts and remote
interaction are hardwired does in general however not embrace the dynamic
nature of modern distributed applications. A server may at some point run on
a particular machine, and later on another. Changing a configuration file, and
possibly even several ones (as distributed components might not have access to
the same file system), every time the setting changes seems overly cumbersome.
In particular, at the beginning of the execution of a distributed application, the

3



host of a crucial server might not even be known at all.
The configuration file should not be the first choice for finding remote parties.

A well-known, and widely used, concept for building reliable distributed object
systems is that of a lookup service, such as a name service (comparable to white
pages) or a trade service (comparable to yellow pages). Such a service is easily
built, and provided to the application as a set of classes. It is typically the
address of such a service which can be put in a configuration file.

The suggestion for separate creation in the software text, as introduced on
page 970 in [9] and discussed on page 974 goes in that direction. The entries
in the software text however seem a bit redundant to those of the configuration
file. Surely reasonable effort would suffice to provide a solution which has at
least the practical benefits of current practical solutions, and by being tailored
to SCOOP, can even achieve a level of language-support not reached previously.

2.3 Concurrency

The concurrency scheme offered by SCOOP is interesting, and intriguing at the
same time for distributed systems practitioners.

The consistency model of SCOOP is strongly based on wait-by-necessity and
its definition on pages 989-991 in [9]. It requires that in a series of invocations
on the same separate object, a query can only proceed if all preceding calls
have completed. In distributed systems, wait-by-necessity is usually further
stretched, leading to waiting for the return value of a remote call only if one
needs that value effectively and immediately in the calling code. The goal is to
return, upon a remote query call, an object representing the return value (e.g.,
some form of proxy), but only “populating” that object once the value has been
effectively received from the callee site. As long as the object is not used, e.g.,
queried itself in the context of further processing, one has no reason to block
if the object is not ready. As such, this mechanism hence surely makes sense
mostly with queries, but can also be used with commands which are sometimes
pictured as having implicit return values, representing the success of their remote
execution.

With such a scheme, one could hence very well proceed even after a query,
on the client side. In [9] this possibility is pointed out, but said to require a
boolean attribute for proxies to declare when the value is ready or not. This is
useful in practice, but not a necessity. The goal can be simply to delay the use
of the return value of a query as much as possible in the software text, in the
hope that at execution the value will be available until then. If not, the client
has to nevertheless start waiting, as the value is needed (which accounts for the
name of this paradigm). Any invocation of the non-ready value hence implicitly
leads to blocking. The main argument against wait-by-necessity is, as hinted
in Section 2.1, the reaction to failures. A remote call whose “result” (simply
a return signal, or a return value) is not used (immediately), can not indicate
through an exception any failure in completing (whether due to a distribution-
related failure or “logical” failure).

It appears that there is further room for increasing concurrency by focusing

4



on effective (and possibly different flavors of) consistency requirements. The
model suggested currently, i.e., a target object executes only operations issued
by a single client object at a time, and that client object can issue several con-
secutive calls by “reserving” the target object, boils down to a form of strict
consistency [11]. This model, though surely useful, allows only little concur-
rency, easily leads to blocking, and imposes constraints stricter than what many
shared objects/their applications in fact require. Examples of weaker semantics
are given by sequential consistency [8], causal consistency [1], or linearizabil-
ity [7]. These can be implemented with a higher degree of concurrency, and
hence better performance, but giving individual clients the same view of the
execution as if they were the only ones. The fact that the distinction between
query and command operations in such consistency models is already promoted
by Eiffel, cries for a closer investigation of the wide body of research behind
such consistency models in the face of the SCOOP model.

Investigating consistency models mainly affects the interplay of concurrent
clients acting on the same object. Investigating the client and server side, also
possible in isolation, makes even more sense when having a second look at
consistency models. While on the callee site, intuition would suggest that two
operations of a same object, whose bodies and preconditions do not involve the
same attributes could be executed concurrently, the reservation semantics on the
callee site more importantly could be replaced or supplemented by transactional,
“all-or-none”, semantics for the set of calls (possibly a choice made by library
calls) made in the context of an operation.

Such a variant would also embrace fault tolerance. Since a client can fail, and
such a failure can block a reserved callee object forever, a callee object has to ob-
serve caller objects with timeout mechanisms. Due to the unpredictable nature
of asynchronous systems such as the Internet [5], such a timeout can however
also expire without the client having effectively failed, leading to the sudden
abortion of an operation, and leaving the computation of the surrounding rou-
tine in an intermediate state. In particular, by making use of wait-by-necessity,
the state (i.e, which previous operations have completed, and which have not)
can not be determined. With transactional semantics, the (partial) effects of
such a routine could be made undone. Such a scheme could be implemented
already with the current strict consistency model.

2.4 Availability

The paradigm of choice to deal with failures of critical objects is replication [2],
which builds on so-called group communication [12]. Any sensitive environment
for reliable distributed programming should provide access to at least a limited
form of group communication.

Many group communication systems have been built throughout the past,
say, 20 years; more recently, also object-oriented ones have appeared (e.g., [6]).
Such services are usually available through libraries. A common technique in
object systems exists in using so-called “group proxies”, which represent a group
of replicas of an object rather than a singleton object, and encapsulate the more

5



complex communications protocols used for group communication. Such group
proxies could also be added to offer, optionally, increased fault tolerance for
critical components of distributed applications.

2.5 Asynchrony

Though an asynchronous mode for computing remote operations based on wait-
by-necessity is presented in [9], the only means of communicating in SCOOP
seems to be nonetheless bidirectional, one-to-one client/server communication,
as suggested also by the title.

The need for more inherently asynchronous communication, and in particu-
lar, one-to-many interaction (“multicast”) has been recognized in the context of
Eiffel, as illustrated by [10]. That proposal suggests a form of type-based pub-
lish/subscribe interaction, where interests are expressed by subscribers on types
of events. Those events, like in most schemes, are viewed as tuples, without
operations. A subscription is issued by registering a callback procedure, which
takes as argument an instance of the tuple type.

The proposed scheme makes no mention to content-based filtering, based on
“properties” of event objects, while virtually all industrial engines, in order to
faithfully implement standardized API’s such as the Java Message Service or
the CORBA Notification Service, include such support. The scheme obtained
without content-based filtering could be qualify as “(type) broadcast”, as op-
posed to a “ (type) multicast”. Type multicast is admittedly in general difficult
to achieve in combination with type-safety and encapsulation, by supporting
the distributed application of filters expressed on properties of event objects [4].

The question that comes to mind, is whether one could not use the concept
of precondition, inherent to Eiffel, precisely to express content-based interests.
An alternative to viewing events as instances of specific types could be to pic-
ture them as specific calls, i.e., calls of command features on proxies created
explicitly for given types, representing all “subscribers” of that type. Such calls
would then namely be performed on all objects of that type, which previously
subscribed. An event, making the correspondence between publishers and sub-
scibers, would then be defined by the called type and feature, and the values of
the arguments of that call. The set of target subscribers which subscribed to
that type by registering a callback object of that very type, and whose respec-
tive preconditions are fulfilled by the arguments, whould receive the event by
seeing the corresponding feature called on their callback objects.

Such specific proxies would hence be a particular form of the group proxies
presented above, or could possibly appear in a form unified with those.2

2Intuition suggests that such a marriage should be possible, as the concept of pub-
lish/subscribe is in fact an offspring of group communication, with weaker semantics and
targeting at a larger scale.

6



3 Summary and Conclusions

SCOOP is indeed a very interesting model for concurrent programming. What
distinguishes distributed programming from classic concurrent programming is
mainly that of physical distribution, and the imposed consideration of failures.
This report has presented various improvements to reflect such failures in Eif-
fel/SCOOP — further ones could be thought of. The remaining guestion is
probably that of the gained benefits of these individual benefits in comparison
with their respective intrusiveness. Answering this question is strongly related
to answering the question of the level of failure-awareness and -tolerance that
is most appropriate for SCOOP. To not break with the goal of keeping SCOOP
simple yet general, one might retain only proposals (or parts of) in mind which
are implementable as libraries, and view them as accessible in the context of a
particular instantiation of SCOOP, for distributed reliable object-oriented pro-
gramming (“DROOP”).

References

[1] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal Memory:
Definitions, Implementations, and Programming. Distributed Computing,
September 1995.

[2] K.P. Birman, T. Joseph, T. Raeuchle, and A. El Abbadi. Implementing
fault tolerant distributed objects. IEEE Transactions on Software Engi-
neering, 11(6):39–59, February 1985.

[3] P.Th. Eugster and S. Baehni. Abstracting Remote Object Interaction in
a Peer-to-Peer Environment. to appear in Concurrency & Computation:
Practice and Experience, 2004.

[4] P.Th. Eugster and R. Guerraoui. Distributed Programming with Typed
Events. To appear in IEEE Software, 2003.

[5] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM, 32(2):217–246,
1985.

[6] R. Guerraoui, P.Th. Eugster, P. Felber, B. Garbinato, and K. Mazouni. Ex-
periences with Object Group Systems. Software - Practice and Experience,
30(12):1375–1404, October 2000.

[7] M. Herlihy and J. Wing. Linearizability: a correctness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[8] L. Lamport. How to Make a Multiprocessor Computer that Correctly Ex-
ecutes Multiprocess Programs. ACM Transactions on Computer Systems,
28(9):690–691, September 1979.

7



[9] B. Meyer. Object-Oriented Software Construction, 2nd edition (chapter
”Concurrency, Distribution, Client-Server and the Internet”). Prentice
Hall, 1997.

[10] B. Meyer. The Power of Abstraction, Reuse and Simplicity: An Object-
Oriented Library for Event-Driven Design. To appear in Festschrift in
Honor of Ole-Johan Dahl, eds. Olaf Owe et al., Lecture Notes in Computer
Science 2635, Springer-Verlag, 2003.

[11] C.H. Papadimitriou. The Serializability of Concurrent Database Updates.
Journal of the ACM, 26(4):631–653, October 1979.

[12] D. Powell. Group Communications. Communications of the ACM,
39(4):50–97, April 1996.

8


