Electronic Notes in Theoretical Computer Science 80 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume80.html 18 pages

Applying FONDUE to Specify a
Drink Vending Machine

Alfred Strohmeier, Thomas Baar !

Software Engineering Laboratory
Swiss Federal Institute of Technology Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

Shane Sendall 2

Software Modeling and Verification Laboratory
University of Geneva, Computer Science Department
24, rue du Général-Dufour, CH-1211 Genéve 4, Switzerland

Abstract

The purpose of the paper is to present our approach for specifying system behavior
during analysis, part of the Fondue software development method. The approach
is exemplified on a case study, a Drink Vending Machine (DVM). It is based on
Operation Schemas and a Protocol Model. The Protocol Model describes the tem-
poral ordering of the system operations by an UML protocol statemachine. An
Operation Schema describes the functionality of a system operation by pre- and
postconditions; they are written in the Object Constraint Language (OCL), with a
few amendments and extensions.

Our approach offers a middle ground between the informal descriptions of Use
Cases and the solution-oriented models of object interaction in UML. We believe
that declarative behavioral specification techniques, like the one proposed in this
paper, lead to more confidence in the quality of the software because they allow one
to reason about system properties.

Key words: Object-Oriented Software Development; Software
Development Method; Software Specification; Formal
Specification; Unified Modeling Language (UML); Object
Constraint Language (OCL); Fondue Software Development
Method.

! Email: [Alfred.Strohmeier|Thomas.Baar]@epfl.ch
2 Email: Shane.Sendall@cui.unige.ch

(©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume80.html

STROHMEIER, BAAR, AND SENDALL

1 Introduction

UML and OCL

UML [7] is an informally founded language that offers a rich set of notations for
modeling both the static and dynamic aspects of an object-oriented system
under development. Currently in industry much of what would be loosely
classified as system specification is performed with Use Cases [2]. Use Cases
are an excellent tool for capturing behavioral requirements of software systems.
They are informal descriptions, almost always written in natural language, and
consequently they lack rigor and a basis to reason about system properties.

On the other hand, formal specification approaches such as Z [12] and
VDM [5] propose declarative specifications of system behavior by pre- and
postconditions. They provide the capability to reason about system proper-
ties, and they promote rigor and precision. They define the system behavior
by stating changes of the system on a conceptual model. Use Cases, alterna-
tively, define the interactions between the system and external actors, in terms
of actor goals, stakeholder concerns and system responsibilities. Formal spec-
ifications also normally require a high-level of mathematical maturity to read
and understand, and therefore are not primarily targeted towards stakeholder
comprehension, as is the case for Use Cases.

Formal methods, like Z and VDM, suffer from the problem that they are
very costly to introduce into software development environments, because of
their high requirements for mathematical maturity on the user. On the other
hand, OCL, part of the UML [7], has the advantage of being a relatively small
and mathematically less-demanding language that is targeted at developers.
One of the secrets of OCL “s simplicity is that it uses navigation and operators
manipulating collections rather than relations. Also, OCL was created for
the distinct and sole purpose of navigating UML models, making it ideal for
describing constraints and expressing predicates when a system is modeled
with the UML.

Fondue

Fondue is an object-oriented software development method developed by the
Software Engineering Lab of EPFL. Fondue covers in a consistent approach
all phases from requirements elicitation, and analysis, over design to imple-
mentation. As we will see, it leads from requirements based on Use Cases to
system operation specifications using pre- and postconditions written in OCL.

The Fondue method was first described in [10], and then enhanced by
the addition of a requirements elicitation activity [11]. The Fondue analy-
sis phase, together with more advanced, somewhat speculative, material was
documented in a Ph.D. thesis [9)].

Fondue has its origins in the well-known Fusion method [3]; it adopts its
process, but uses the UML notations. In addition to Fusion, Use Cases are

2

STROHMEIER, BAAR, AND SENDALL

proposed for requirements elicitation and are taken into account during the
analysis phase. The Fondue method not only provides an internal view of
the class model and the behavior of individual classes, but it includes mod-
eling of system-wide functionality and a step-by-step process that leads the
development team from an initial requirements document through to the im-
plementation of an object-oriented software system. Fondue defines a number
of deliverables, one of which defines a specification of system behavior. The
specification includes three principal views [10], see Fig. 1.

Requirements Models

| Domain Model| |UseCase Model |
4 X

AY

7 \
Analysis /" | Environment Model | \
Models / - 7 X \
// -7 N N \
/ ad N \
/ i \
S Behavior Models
e | Protocol Model |
Concept Model L ___

A ST TSI 21 Operation Model

| A

| |

| |

| |

Design

A—>B A depends on B: a change in B induces a change in A

Fig. 1. Fondue Specification Models

* Operation Model: The Operation Model is composed of Operation Schemas,
one for each system operation. An operation schema describes by pre- and
postcondition assertions written in OCL the effects on system state and
messages output by the system caused by the execution of an operation;

e Protocol Model: a restricted form of UML statechart that defines the al-
lowable temporal ordering of operations; and

* Concept Model: a description, constructed using the UML class diagram
notation, that defines the system state that is required to describe the effects
of operation executions in the Operation Schemas.

The underlying system model is reactive in nature and all communication
with the environment is achieved by sending messages. Upon reception, a
message triggers an asynchronous event, which might eventually trigger a
system operation.

STROHMEIER, BAAR, AND SENDALL

Environment Model

Message signatures and, more importantly, the exchange of messages with
actors belonging to the system s surroundings is shown in an ancillary model,
called the Environment Model.

Concept Model

The Concept Model, a special-purpose class model, is used to describe all the
concepts and relationships part of the system, and all actors that are present in
the environment. Therefore, the class model as we define it here is not a design
class model. Classes and associations model concepts of the problem domain,
not software components. Objects and association links hold the system state.
Classes do not have behavior; the decision to allocate operations or methods
to classes is deferred until design.

Operation Model

An Operation Schema describes the effect of the operation on an abstract
state representation of the system and by messages sent to the outside world.
It is written in a declarative form that abstracts from the object interactions
inside the system which will eventually realize the operation. It describes the
assumed initial state by a precondition, and the change in system state after
the execution of the operation by a postcondition. Operation Schemas use
UML s OCL formalism, which was built with the purpose of being writable
and readable by developers. Operation Schemas as we define them here specify
operations that are assumed to be executed atomically and instantaneously.

All system operations are triggered by input events, normally of the same
name as the triggering message and the triggered operation.

The change of state resulting from an operation’s execution is described
in terms of objects, attributes and association links, which are themselves
described in the Concept Model. The postcondition of the system operation
can assert that objects are created, attribute values are changed, association
links are added or removed, and certain messages are sent to outside actors.
The association links between objects act like a network, guaranteeing that
one can navigate to any state information that is required by an operation.

Protocol Model

A Protocol Model is a UML protocol statemachine that focuses on the tem-
poral ordering of the system operations only, and therefore the usage of the
UML statechart notation is very specific, and only a limited use is made of
the notation. Whereas Operation Schemas describe the services offered by
the system, the Protocol Model describes the allowable sequencing of these
services.

STROHMEIER, BAAR, AND SENDALL

Behavior Model

Both the Operation Model and the Protocol Model are refined from Use Cases
and they combine to define a precise specification of system behavior, the Be-
havior Model. An approach for mapping Use Cases to Operation Schemas has
been proposed in [11]. To see how this work fits into a software development
analysis activity, the reader is referred to [10].

Case Study

The use of the Fondue method for specifying a system will be showcased on a
Drink Vending Machine. This machine corresponds to a typical, but simple,
reactive system. It is composed by a controller, whose software has to be
developed, and several peripheral hardware devices. These devices interact
with the software system by exchanging asynchronous messages. Ordering
constraints for the messages are specified by the Protocol Model, whereas the
effect of receiving a message is specified by an Operation Schema.

Structure of the paper

We start in Section 2 by presenting informally the problem, that is the Drink
Vending Machine. The typical usages of such a machine are described in
Section 3 by Use Cases. In Section 4 we start elaborating the correspond-
ing Fondue specification by modeling the environment of the Drink Vending
Machine. Section 5 provides its Concept Model. Allowable sequences of op-
erations performed on the Drink Vending Machine are shown by the Protocol
Model in Section 6. The Operation Model of Section 7 completes the specifi-
cation. Section 8 states the lessons learnt and draws some conclusions.

2 Original Problem Statement

When using a Drink Vending Machine the following steps typically are taken:

(i) the consumer introduces coins in the machine,
(ii) s/he selects the desired drink, and

(iii) the dispenser supplies the drink via the bottom drawer.

One has to distinguish between three levels: the physical machine, the
controller, and human interaction. The physical machine consists of several
components: a money box, drink shelves, an information panel, drink selec-
tion buttons, and an eject coins button. The controller is a program that
coordinates the activities of the system’s components by receiving messages
from and sending commands to them. Human interaction takes place between
the consumer or service person and the system s components, for example, a
consumer presses a drink selection button or the service person replenishes a
shelf.

STROHMEIER, BAAR, AND SENDALL

The money box is composed of two different collectors of coins: the first
one keeps coins until the consumer presses the eject button or chooses a drink;
in the latter case the coins are released by the first collector to the second one.

Drinks are stored on shelves. Each shelf is associated with a beverage kind
and a price. The service person adds drinks to the shelves. Initially, there are
no drinks. The system has some constraints:

e the consumer can only insert coins up to a certain limit greater than the
highest drink price; any additional coin will be released immediately by the
first collector (in order to enforce the consumer to choose a drink or to press
the eject button),

* the money box (second collector) has limited capacity,

¢ the number of shelves that the machine possesses is fixed (i.e., constant
throughout the life of the system),

e each shelf is subdivided in slots,
e there is a maximum of one drink per slot,

¢ all shelves have the same number of slots and their number is fixed for the
life of the system.

3 Use Cases

|

|

|
Consumer :

|

____________________ Service Person

Fig. 2. Use Case Diagram of DrinkVendingMachine

The Use Case diagram shown in Fig. 2 is very simple. The essential infor-
mation is kept in the Use Case descriptions. The Fondue format to describe
Use Cases is similar to the format proposed by Cockburn [2].

As usual, during analysis it was discovered that the problem statement,
including the Use Cases, was imprecise and incomplete. We provide here some
additional rules:

(i) When the money box (second collector) is full, then the DVM gets out
of order.

(ii) As long as the DVM is not out of order, it is able to collect the money
needed for buying a drink. Otherwise stated, the money box (second
collector) is either full, or it has enough capacity to collect the money
due for another drink.

STROHMEIER, BAAR, AND SENDALL

(iii) When a shelf delivers its last drink, it reports that it became empty.

(iv) The DVM does not have a clever money system. One might e.g. suppose
that it accepts only one kind of coins, e.g. quarters, and that all prices
are multiples of the value of that coin, e.g. 25 cents. Also, it is then easy
to return coins that are too many compared with the price.

3.1 Buy Drink

Use Case: buy drink
Scope: Drink Vending Machine
Level: User Goal, Black-box

Intention in Context: The intention of the Consumer is to buy a drink from

the machine. This involves the exchange of a certain amount of money for
a drink.

Primary Actor: Consumer

Precondition: System must be initialized (where a shelf has a known price).

Main Success Scenario:

1. Consumer introduces a coin into the machine.

Step 1 can be repeated as many times as the Consumer wishes.

2. Consumer selects a drink.

3. System validates that there are sufficient funds for the selection,
takes the specified amount of money (returning the excess amount
of money to Consumer)* and dispense drink.

4. Consumer obtains drink from machine.

Extensions:

la. DVM is out of order:
la.1. System releases inserted coin;
la.2. Consumer collects money; Use Case ends in failure

(1-2)a. Consumer requests ejection of money:
(1-2)a.1. System ejects money.
(1-2)a.2. Consumer collects money; Use Case ends in failure.
3a. System determines that there are insufficient funds for the purchase:
3a.1. System informs Consumer; Use Case continues at step 1 or 2.
3b. System determines that there are no drinks left in that category:
3b.1. System informs Consumer ; Use Case continues at step 1 or 2.
4 || a. Money box informs System that it is full:
4 || a.1. System informs Consumer that it is out of order**;
Use Case ends.

Notes: * We need to be careful that the Consumer does not request to eject
the money after selecting a drink, but before the system has taken the
money, i.e., so that the Consumer does not succeed in getting his/her money

7

STROHMEIER, BAAR, AND SENDALL

back as well as a drink.
** The System stays out of order until reset by a Service Person.

3.2 Service DVM

Use Case: service DVM
Scope: Drink Vending Machine
Level: User Goal, Black-box
Intention in Context: The intention of the Service Person is to maintain
the system by ensuring that the machine has drinks available and by col-
lecting the money earned.
Primary Actor: Service Person
Main Success Scenario:
1. Service Person adds drinks to a shelf.
2. Service Person sets or changes the price of drinks on a shelf.
Steps 1 and 2 are repeated for each shelf, in any order.
3. Service Person collects money earned from machine.
Extensions: — None

Notes: Steps 1 and 2 constitute the initialization of the system.

4 Environment Model

insertMoney

DVMController | boxIsFull
ejectMoney boxIsNotFull
— P
Y

EjectBtn returnMoney MoneyBox
takeMoney

releaseMoney

* selectDrink setPriceOfShelf
— L

ShelfSelectBtn PricePanel

displayMoney
insufficientFunds

B isEmpty drinkNotAvailable
% isReplenished outOfService
—\ AN
— -

PhysicalShelf giveDrink InformationPanel

Fig. 3. Environment Model of DVMController

The Use Cases provide a structured but yet informal description of the
system behavior. In order to get a formal behavior description, we first have to
identify the subcomponents of the system and how they communicate among
each other. As the next step, Fondue proposes therefore the development of
an environment model as in Fig. 3.

STROHMEIER, BAAR, AND SENDALL

The Environment Model identifies all messages the system sends to and
receives from the environment. The environment is modeled by actors. Note,
that Fondue allows (in opposite to official UML) actors to be decorated by
a star (PhysicalShelf, ShelfSelectBtn). This indicates that more than one in-
stance of the actor can interact with the system.

It might be a surprise to have different actors in the Environment Model
and the Use Case diagram. The confusion disappears, once it is realized that
we are mainly interested in the software part of the Drink Vending Machine,
i.e. the controller that coordinates the activities of the system s components.
The coordination is achieved by sending messages between the controller and
the components. From the viewpoint of the controller, the system s compo-
nents belong to the environment. The following question may arise: If the
system s components constitute the environment, where do the actors Con-
sumer and Service Person used in the Use Cases belong to? In Fondue they
do not play any further role. They interact with the DVM by pressing the
eject button, inserting money into the money box, etc. However, for the
DVMController, it is not relevant how the human interaction with the sys-
tem s components is performed, i.e. how the Consumer presses the button.
Relevance for the controller has only the result of an interaction, e.g. the fact
that the button was pressed.

The Environment Model given in Fig. 3 lacks some information which are
both necessary and helpful within the next development steps. For the sake
of brevity, the arguments of a message are suppressed in the diagram. They
are given in the next table together with an informal description of actors and
messages. This detailed description facilitates the understanding of the formal
specification in the next Sections.

EjectBtn button for ejecting all coins which are currently in-
serted into the first collector of the money box

ejectMoney () the eject button has been pressed

ShelfSelectBtn button for selecting a drink shelf; each ShelfSe-
lectBtn corresponds to exactly one PhysicalShelf
(see Concept Model in Section 5)

selectDrink() the select button has been pressed

PhysicalShelf physical drink shelf; is divided into slots and stores
the drinks

isEmpty/() all slots are empty; Assumption: isEmpty() occurs

after the last available drink was dispensed

isReplenished() the shelf was replenished and is not empty anymore

STROHMEIER, BAAR, AND SENDALL

giveDrink() request from DVMController to dispense one drink

MoneyBox consists of two collectors and a money return com-
partment; when the first collector is full, additional
coins fall through; when the capacity of the second
collector is exceeded, the DVM waits for the Service
Person to exhaust the second collector

insert Money(m:Money)
a coin of amount m was inserted (while the first
collector was not full)

boxIsFull() the second collector became full, i.e. there is no ca-
pacity left for paying another drink (occurs after
collecting for good the money for a drink)

boxIsNotFull() the second collector has again enough capacity due
for another drink; boxIsNotFull() occurs after the
Service Person has exhausted the second collector

returnMoney (m:Money)
request from DVMController to eject the specified
amount m to the Consumer

takeMoney() request from DVMController to release all the
money currently inserted into the first collector to
the second collector

releaseMoney () request from DVMController to eject all the money
currently inserted into the first collector

PricePanel panel used by Service Person to set for each shelf
the price of its drinks

setPriceOfShelf(s:Shelf,price:Money)
the price of drinks in shelf s was set to price

InformationPanel component to display status information; different
kinds of information can be displayed (e.g. text,
graphics, lights, etc)

displayMoney(m:Money)
request from DVMController to display m as the
amount of money currently inserted into the first
collector

10

STROHMEIER, BAAR, AND SENDALL

insufficient Funds(on:Boolean)
if on=true: request from DVMController to display
a text saying that the money currently inserted into
the first collector is not sufficient to pay for the se-
lected drink, if on=false: request from DVMCon-
troller to erase an earlier text of this kind;

drinkNot Available(on:Boolean)
similar to insufficientFunds; the shelf of the selected
drink is empty

outOfService(on:Boolean)
similar to insufficientFunds; the system is out of
order and waits for maintenance by a Service Person

5 Concept Model

Once the messages are identified, the next goal is to describe how the sys-
tem behaves after receiving and dispatching input messages. However, the
behavior depends on internal states of the DVMController and thus we need a
description of the internal structure of the DVMController first. The Concept
Model in Fig. 4 provides such a description by a class diagram.

1% 1%1

EjectBtn 1 1 MoneyBox
<system>
DVMController

% amountRegistered:Money=0 1
collectingMoney:Boolean
. out0fOrder:Boolean
1 <id> 1 1

ShelfSelect Btn 1T Shelf* PricePanel

isEmpty:Boolean
drinkPrice:Money 1

<id> 7
*
% / . 53 1
1

PhysicalShelf InformationPanel

Fig. 4. Concept Model of DVMController

The attribute amountRegistered enables the DVMController to keep track
of the money currently inserted into the first collector. The attributes col-
lectingMoney and outOfOrder record the current state of the DVMController
(see also Protocol Model in Section 6).

The component class Shelf is a logical representation of the component
PhysicalShelf and has two attributes with obvious meanings. The two as-
sociations between PhysicalShelf, ShelfSelectBtn, and Shelf and the chosen

11

STROHMEIER, BAAR, AND SENDALL

multiplicities ensure that every ShelfSelectBtn belongs to exactly one Physi-
calShelf. The <id> stereotype means that the system can identify an actor
starting from an object belonging to the system, e.g., given a shelf s, we can
find its corresponding physical shelf, denoted in OCL by s.physicalShelf. The
reason for the <id>> stereotyped association is that the system can only send
a message to an actor that can be identified. Identifying an external actor
form inside the system will be the only use of <id>> stereotyped associations.

6 Protocol Model

DVMController
isEmpty
isReplenished
setPrice0fShelf
insertMoney
(E—leadVJ
insertMoney
selectDrink
CollectingMoney
boxIsFull
X ejectMoney
isEmpty selectDrink
isReplenished
setPriceO0fShelf
insertMoney
boxIsNotFull (iOutOfOrder

Fig. 5. Protocol Model of DVMController

The Protocol Model defines the temporal ordering of system operations.
Each input message for the DVM from the environment refers to an asyn-
chronous operation invocation and the corresponding event. The message, the
event, and the invoked system operation have usually the same name.

A Protocol Model is described with a UML statechart which has no guards.
As usual, a transition in the Protocol Model is triggered by an input event
only if the system is in a state to dispatch it, i.e., there exists an arc with the
name of the input event. If not, the input event is ignored. A transition from
one state to another leads to the execution of the system operation with the
same name as the input event.

We only give a brief informal explanation of the intended meaning of the
states in Fig. 5. The state Ready represents the situation where both the
Consumer and the Service Person are allowed to interact with the system.
There is no money in the first collector, and no status information are displayed
on the information panel.

12

STROHMEIER, BAAR, AND SENDALL

The state Ready is left once the event insertMoney is dispatched. The
target state is CollectingMoney. Further coins can be inserted into the first
collector due to the self-transition from CollectingMoney to CollectingMoney
triggered by event insertMoney. Note that once it is full the first collector will
reject additional coins automatically without sending an insertMoney message
to the DVMController. This way, the capacity problem of the first collector
is solved “mechanically” by the actor MoneyBox itself.

Dispatching the event ejectMoney in state CollectingMoney causes a tran-
sition to Ready. After dispatching the event selectDrink in state Collecting-
Money the triggered transition is nondeterministic. The controller can change
its state to Ready or can remain in the state CollectingMoney, depending on
the amount of inserted money and the availability of drinks. Nondeterministic
state changes are permitted in Protocol Models because the nondeterminism
usually disappears once the operation behavior is taken into account.

In state Ready the events selectDrink and ejectMoney are ignored. This is
justified because in state Ready there is no money in the first collector neither
to pay for a selected drink nor to give it back to the Consumer. Note, that the
situation in state OutOfOrder is different for event insertMoney. Although,
the DVM waits for maintenance by a Service Person when being in state
OutOfOrder, the event insertMoney cannot be ignored here. InsertMoney
belongs to the group of non-ignorable events due to the requirements. Recall
that insertMoney occurs after the Consumer has successfully introduced a
coin into the first collector, i.e. the Consumer has already paid and expects
to get a drink or at least to get the money back. Note, that for preventing the
Consumer from inserting a coin when the machine is out of order, we would
need further assumptions, e.g. that the first collector gets locked.

In state Ready the event isEmpty as well as boxlsFull can be dispatched
causing a state transition to Ready and OutOfOrder, respectively. The two
events isReplenished and setPriceOfShelf cause a self-transition when dis-
patched in state Ready or OutOfOrder. The event boxlsNotFull is ignored in
state Ready. It causes a state transition to Ready when dispatched in state

OutOfOrder.

6.1 Synchronization Problems

Assuming the standard semantics for UML statecharts the Protocol Model
presented above is still incorrect. An additional assumption on synchronized
message handling is needed to solve the following problem:

The messages wsEmpty and boxlsFull are sent once it is detected that a
shelf is empty or the money box (second collector) has exceeded its capacity.
For the correct working of the DVM it is necessary to assume that all other
messages which are sent later are also processed later. However, this cannot
be guaranteed if the current semantics of UML statecharts is assumed.

Suppose, besides isEmpty and boxlsFull there is another event, say in-

13

STROHMEIER, BAAR, AND SENDALL

sertMoney, in the input queue of the DVM. It would be possible to dispatch
insertMoney before isEmpty and boxlsFull although it was raised after them.
Once the DVM has processed insertMoney it is in state CollectingMoney in
which isEmpty and boxlsFull would be simply ignored. This could obviously
lead to incorrect behavior.

The described effect is an inherent problem of message based asynchronous
systems.

7 Operation Model

Not all aspects of the system behavior are expressed in the Protocol Model so
far, e.g. we would like to specify that by inserting money into the first collector
the money display is updated as well. Fortunately, the missing information
can be expressed in an elegant form by OCL constraints.

The Operation Model contains detailed behavioral specification of the ef-
fect of all input messages. Since the input messages are solely operation calls,
there is one corresponding operation for each input message usually with the
same name.

The specification is mainly given by OCL pre-/postconditions. For the
sake of brevity, a generalized frame assumption is taken as granted for the
semantics of the postconditions. The frame of the specification is the list of
all variables that can be changed by the operation [6]. The postcondition of
a specification describes all the changes to the frame variables, and since the
specification is declarative, the postcondition must also state all the frame
variables that stay unchanged. One approach that avoids this extra work is to
imply a “... and nothing else changes” rule when dealing with specifications
[1]. This means that the specification implies that the frame variables are
changed according to the postcondition with the unmentioned frame variables
being left unchanged. This approach reduces the size of the specification, thus
increases its readability, and makes the activity of writing specifications less
error prone.

Most of the operations produce output messages which are sent to actors.
Thus, the specification takes advantage of the message construct recently in-
corporated into OCL. The expression receiver message can only occur in
the postcondition of an operation and indicates that during the execution of
the operation the message message has been sent to the object receiver. For
a detailed account see [8, Section 2.7].

Another peculiarity of our specification is the usage of the keyword sender.
This keyword is not part of the OCL standard but has proven to be extremely
useful in our specification. The keyword sender refers to that actor which
has invoked the operation. Recall, that every operation in Fondue is only
invoked after a message with the same name was dispatched. The keyword
sender allows an access to the sender of the dispatched message within OCL

14

STROHMEIER, BAAR, AND SENDALL

expressions. It is similar to the keyword self which provides access to the
object on which the operation has been invoked.

Operation: DVM::ejectMoney|()

Use Cases: buy drink

Messages: InformationPanel::{DisplayMoney, InsufficientFunds,

DrinkNotAvailable}
MoneyBox::{ReleaseMoney }

Pre :

Post : self.amountRegistered = 0 and
self.moneyBox " releaseMoney () and
self.informationPanel "displayMoney(0) and
self.informationPanel insufficientFunds(false) and
self.informationPanel "drinkNotAvailable(false) and

self.collectingMoney = false

Operation: DVM::selectDrink()
Use Cases: buy drink
Messages: InformationPanel::{DisplayMoney, InsufficientFunds,
DrinkNotAvailable}
MoneyBox::{ReturnMoney, TakeMoney }
PhysicalShelf::{ GiveDrink}
Pre :
Post : if sender.shelf.isEmpty then
self.informationPanel "drinkNotAvailable(true) and
self.informationPanel insufficientFunds(false) and
self.collectingMoney=true
elsif self.amountRegistered < sender.shelf.drinkPrice then
self.informationPanel insufficientFunds(true) and
self.informationPanel “drinkNotAvailable(false) and
self.collectingMoney=true
else — successful case, Consumer gets drink
self.amountRegistered = 0 and
self.moneyBox ™ takeMoney() and
self.moneyBox ™ returnMoney (self.amountRegistered @pre
- sender.shelf.drinkPrice) and
sender.shelf.physicalShelf giveDrink() and
self.informationPanel "displayMoney(0) and
self.informationPanel insufficientFunds(false) and
self.informationPanel "drinkNotAvailable(false) and

self.collectingMoney=false
Operation: DVM::isEmpty ()
Use Cases: buy drink

Pre :
Post : sender.shelf.isEmpty = true

15

STROHMEIER, BAAR, AND SENDALL

Operation: DVM::isReplenished()
Use Cases: service DVM

Pre :

Post : sender.shelf.isEmpty = false

Operation: DVM::insertMoney(m:Money)
Use Cases: buy drink
Messages: InformationPanel::{DisplayMoney, InsufficientFunds,
DrinkNotAvailable}
MoneyBox::{ReleaseMoney }
Pre :
Post : if not(self.outOfOrder) then
self.amountRegistered = self.amountRegistered@pre + m and
self.informationPanel "displayMoney (self.amountRegistered) and
self.informationPanel insufficientFunds(false) and
self.informationPanel “drinkNotAvailable(false) and
self.collectingMoney = true
else
self.moneyBox " releaseMoney()

Operation: DVM::boxIsFull()

Use Cases: buy drink, service DVM

Messages: InformationPanel::{OutOfService}

Pre :

Post : self.informationPanel “outOfService(true) and
self.outOfOrder = true

Operation: DVM::boxIsNotFull()

Use Cases: service DVM

Messages: InformationPanel::{OutOfService}

Pre :

Post : self.informationPanel “outOfService(false) and
self.outOfOrder = false

Operation: DVM::setPriceOfShelf(s:Shelf,price:Money)
Use Cases: service DVM

Pre :

Post : s.drinkPrice = price

In the postcondition of operation selectDrink() the attribute collecting-
Money is set in order to indicate whether the DVM remains in state Col-
lectingMoney or takes the transition to state Ready. This resolves the non-
determinism in the Protocol Model mentioned in Section 6. Unfortunately,
the specification has to keep track of the value of collectingMoney in all op-
erations which can enter or exit state CollectingMoney, i.e. the postcondition
of insertMoney and ejectMoney has to set collectingMoney as well. This is
rather clumsy since the post-state value is already known from the Protocol
Model.

16

STROHMEIER, BAAR, AND SENDALL

It would be possible to get rid of attribute collectingMoney and to use in the
postcondition the construct oclInState (e.g. self.oclinState(CollectingMoney)
instead of self.collectingMoney = true).

We did not apply this possibility yet, since it also introduces new depen-
dencies between the Operation Model and Protocol Model whose consequences
for the Fondue method have not yet been assessed.

8 Conclusion and Lessons Learnt

In this case study we gained some insights on the usage of OCL in the analysis
phase of software development. Some of the lessons learnt might be qualified
as Fondue-specific, but most of them are applicable in other cases as well.

simple statecharts Fondue restricts the Protocol Model to a simple kind of
statecharts. As seen in the case study, a lot of information usually captured
in statecharts (e.g. guards, raised actions) can also be expressed as pre-
/postconditions. The raising of actions can now be expressed by OCL,
because of the new message construct introduced into OCL 2.0.

oclInState If the OCL specification needs information about the current Pro-
tocol Model state, there are basically two possibilities. One can either in-
troduce a new attribute encoding the state, or one can use the construct
oclInState, which was incorporated into OCL recently (for a discussion of
its semantics the reader is referred to [4]). We discussed both solutions in
our case study and pointed out their advantages and disadvantages.

sender In the analysis phase of Fondue, operations are always system oper-
ations, which can be invoked only after a corresponding input event has
been dispatched. Sometimes, we have to know the sender of the mes-
sage, for instance when an internal data structure (e.g. shelf) representing
the state of the sending actor (e.g. PhysicalShelf) has to be updated (e.g.
sender.shelf.isEmpty = true).
Like the keyword self the keyword sender represents in Fondue a part of
the “context” of the current operation.

As we have seen, the solely use of asynchronous messages for modeling
the interaction between a system and outside actors can lead to synchroniza-
tion problems. We plan to investigate the possibilities of using synchronous
blocking calls, but also communication mechanisms based on memory shared
between the system and an actor.

We are aware that the shown specification might still contain errors and
inconsistencies because the specification is only paperwork so far. The next
step in our research will be the development of a toolset in order to animate
of effects of Fondue specifications.

The “end user” can then check by observation that the specification meets
his expectations, and the specifier what he wrote is consistent with what he
thought.

17

STROHMEIER, BAAR, AND SENDALL
References

[1] A. Borgida, J. Mylopolous, and R. Reiter. ...And Nothing Else Changes: The
Frame Problem in Procedure Specifications. In Proceedings of ICSE-15, pages
303-314. IEEE Computer Society Press, 1993.

[2] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

[3] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development: The Fusion Method. Prentice-Hall,
Englewood Cliffs, 1994.

[4] S. Flake and W. Miiller. Semantics of State-Oriented Expressions in the Object
Constraint Language. In Proceedings of 15th International Conference on
Software Engineering and Knowledge Engineering (SEKE 2003), pages 142—
149. Knowledge Systems Institute, 2003.

[5] C. B. Jones. Systematic Software Development using VDM. Prentice-Hall,
Upper Saddle River, NJ 07458, USA, 1990.

[6] C. Morgan. Programming from Specifications. Prentice Hall, 1994. Second
Edition.

[7] OMG. OMG Unified Modelling Language Specification, Version 1.5, Mar. 2003.
Available at: www.omg.org/technology/documents/formal/uml.htm.

[8] Response to the UML 2.0 OCL RfP, Version 1.6. OMG Document ad/2003-
01-07, Jan 2003.

[9] S. Sendall. Specifying Reactive System Behavior. PhD thesis, Swiss Federal
Institute of Technology in Lausanne, School of Computer and Communication
Sciences, 2002. No 2588.

[10] S. Sendall and A. Strohmeier. UML Based Fusion Analysis Applied to a Bank
Case Study. In R. France and B. Rumpe, editors, UML’99 - The Unified
Modeling Language. Beyond the Standard. Second International Conference,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume 1723 of
LNCS, pages 278-291. Springer, 1999. An extended version also available as
Technical Report EPFL-DI No 99/319.

[11] S. Sendall and A. Strohmeier. From Use Cases to System Operation
Specifications. In A. Evans, S. Kent, and B. Selic, editors, UML 2000 -
The Unified Modeling Language. Advancing the Standard. Third International
Conference, York, UK, October 2000, Proceedings, volume 1939 of LNC'S, pages
1-15. Springer, 2000. Also available as Technical Report EPFL-DI No 00/333.

[12] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.

18

	Introduction
	Original Problem Statement
	Use Cases
	Buy Drink
	Service DVM

	Environment Model
	Concept Model
	Protocol Model
	Synchronization Problems

	Operation Model
	Conclusion and Lessons Learnt
	References

