Porting OMTTs to CORBA

Raul Silaghil, Alfred Strohmeierl, Jorg Kienzle?

ISoftware Engineering Laboratory 2School of Computer Science
Swiss Federal Institute of Technology in Lausanne McGill University
CH-1015 Lausanne EPFL, Switzerland Montreal, QC H3A 2A7, Canada

E-mail: {Raul.Silaghi, Alfred.Strohmeier} @epfl.ch E-mail: Joerg.Kienzle@mcgill.ca

Abstract. The Common Object Request Broker Architecture standardizes a
platform- and programming-language-independent distributed object com-
puting environment. It also provides a standard for several distributed servic-
es. The Object Transaction Service provides an object-oriented framework
for distributed transaction processing, especially for Online Transaction Pro-
cessing in business applications. The current CORBA OTS allows multi-
threading inside a transaction, leaving, however, thread coordination to the
application programmer, which can be dangerous. Based on the Open Multi-
threaded Transaction model, we present in this paper the design of a Thread
Synchronization Coordinator, ThreadSyncCoordinator, which provides the
desired thread control inside a multithreaded transaction. A blocking commit
protocol ensures that once in a transaction, a thread cannot leave before the
outcome of the transaction has been determined, guaranteeing the ACID
properties for multithreaded transactions. We also show how the Thread-
SyncCoordinator can be used to design and implement complex applications,
e.g., an Online Auction System, in an elegant way.

Keywords. CORBA, Object Transaction Service, OMTTs, Transactions,
Concurrency.

1 Introduction

Online Transaction Processing is the foundation of the world’s business computing. It
is the system that ensures that the last two seats on flight LX 1754 to Catania (Sicily)
are assigned, fogether, to a honeymooning couple; that the balance printed on your
ATM ticket in Taipei exactly matches the balance in the bank’s central datastore in
Ziirich; or that the last discovered ancient sarcophagus is promised to only one museum.
Moreover, this reliability is accomplished even in the face of (noncatastrophic) failure
of hardware and software around the system.

Transactions are an important programming paradigm that simplify the construc-
tion of reliable business applications. Initially deployed in commercial applications to
protect data in centralized databases [1], the transaction concept has been extended to
the broader context of distributed data and distributed computation. Nowadays, it is
widely accepted that transactions are key to constructing reliable distributed enterprise

-1/22-

applications, ensuring the correct handling of interrelated and concurrent updates of
data and providing fault tolerance in the presence of failures.

A transaction is a unit of work comprised of several operations made on one or sev-
eral shared system resources (also referred to as transactional objects), governed by the
ACID properties: Afromicity, Consistency, Isolation, and Durability [1]. Once a new
transaction is started, all update operations on transactional objects are done on behalf
of that transaction. At any time during the execution of the transaction, it can abort,
which means that the state of the system is restored (i.e., rolled back) to the state at the
beginning of the transaction. Once a transaction has completed successfully (referred to
as committed), the effects become permanent and visible to the outside world.

Along with the Common Object Request Broker Architecture (CORBA), the Ob-
ject Management Group defined a set of standard object services. One of these services
is the Object Transaction Service (OTS), which provides an object-oriented framework
for distributed transaction processing. Besides the fact that the OTS supports flat and
nested transactions, it also allows multithreading inside a transaction, leaving, however,
thread coordination inside the transaction to the application programmer. Unfortunate-
ly, this can be dangerous. For example, a thread can decide to leave the transaction and
perform some other operations before the outcome of the transaction has been deter-
mined, or a thread can roll back the transaction without notifying the other threads. In
the OTS model, threads do not actually “join” a transaction, because the transaction
support is not aware of concurrency. Instead, they get associated a transaction context,
which makes them act on behalf of that transaction. Since transaction contexts can be
passed around, a thread might get associated a transaction context even if it is already
working within the scope of another transaction. In this case, the previous transaction
context associated with the thread is simply discarded. Using such a model, it is very
hard to guarantee the ACID properties for multithreaded transactions.

In order to overcome this drawback, we considered the Open Multithreaded Trans-
action (OMTT) model for controlling and structuring not only accesses to objects, as
usual in transaction systems, but also threads taking part in transactions. Based on this
model, we designed a Thread Synchronization Coordinator, ThreadSyncCoordinator,
that sits between the individual client threads and the CORBA OTS, providing safe
thread control inside a multithreaded transaction. With the help of this object, client
threads are able to explicitly join an ongoing transaction, and get access to the shared
transactional resources. A blocking commit protocol ensures that once in a transaction,
a thread cannot leave before the outcome of the transaction has been determined. Events
are used to signal all participant threads in a multithreaded transaction to vote on the
outcome of the transaction.

The outline of the rest of this paper is as follows: Section 2 provides an overview
of the CORBA Object Transaction Service, introducing the major components and in-
terfaces, the different application programming models, and the problems related to
multithreaded transactions. Section 3 describes briefly the Open Multithreaded Trans-
action model. Section 4 presents the design of the Thread Synchronization Coordinator
that implements the OMTT model on top of CORBA OTS; some issues related to the
proposed design are also discussed in this section. Section 5 shows how the Thread Syn-

-2/22-

chronization Coordinator can be used to design and implement an Online Auction Sys-
tem in an elegant way, and Section 6 draws some conclusions.

2 The CORBA Object Transaction Service

In this section, we provide a brief introduction to the Common Object Request Broker
Architecture with a special emphasis on the Object Transaction Service and the way it
provides transaction support to application developers. Towards the end, we highlight
the major problems in the current CORBA OTS with respect to multithreaded transac-
tions.

The Object Management Group (OMG) [2] is a standardization consortium involv-
ing more than six hundred international software companies. The Object Management
Architecture (OMA) provides a framework which defines the functions supported by
the component technology specifications within the OMG. The OMA Reference Model
consists of the following components: the Object Request Broker, the Object Services,
the Common Facilities, the Application Domains, and the Application Objects.

The Object Request Broker (ORB) is a software component that mediates the trans-
fer of messages between distributed objects, hiding the underlying complexity of net-
work communications from developers. The architecture and the specifications of the
ORB are described in the Common Object Request Broker Architecture (CORBA) [3].
The CORBA standard enables transparent interoperability between applications in het-
erogeneous distributed environments. Due to its Interface Definition Language (IDL),
CORBA allows the construction of complex applications in the form of a set of inter-
acting software components that may communicate across the boundaries of networks,
using different programming languages and operating systems. Mapping specifications
exist from IDL to several programming languages, including Java, C++, C, Smalltalk,
Python, COBOL, Ada, and Lisp, all available for download from the OMG web site at
[2]. According to the standard, ORB implementations for different languages and plat-
forms can work together using the Internet Inter-ORB Protocol (IIOP).

Object Services are a collection of basic services for using and implementing ob-
jects. These services are required to construct distributed applications, and are indepen-
dent of application domains. They should be designed to do one thing well, and they
should only be as complicated as they need to be. Not all services have to be provided
by a CORBA vendor; however, the most important ones, such as Naming, Event, Noti-
fication, Transaction, Concurrency, Persistence, and Security, usually are.

2.1 The Object Transaction Service

Transaction processing systems have become ubiquitous and are the basis for all facets
of commercial applications that rely on concurrent access to shared data. The fransac-
tion paradigm has been an integral part in designing reliable distributed applications.
The object computing paradigm has been proven to increase productivity and improve
quality in an application development that purports the reuse of components and distrib-
uted computing. Amalgamation of these paradigms successfully addresses the business
requirements of commercial transaction processing systems.

-3/22-

OMG’s CORBA Object Transaction Service (OTS) [4] provides transactional se-
mantics to the distributed objects world. It enables multiple objects that are distributed
over a network to participate in a single global transaction. A distributed application can
use the IDL interfaces provided by the OTS to perform transactional work involving
these distributed objects. While the ORB handles the complexity of network communi-
cation between distributed objects, the OTS provides a good framework to implement
critical applications in distributed environments by providing transactional integrity.

2.1.1 Transaction Service Architecture

Figure 1 illustrates the major components and interfaces defined by the Transaction
Service. The transaction originator is an arbitrary program that begins a transaction.
The recoverable server implements an object with recoverable state that is invoked
within the scope of the transaction, either directly by the transaction originator, or indi-
rectly through one or more transactional objects.

(transmitted with request)

transaction originator ‘ recoverable server
TransactionFactory Control
Control Resource Coordinator
Current Terminator SubtransactionAwareResource| Current| RecoveryCoordinator

Synchronization

Transaction Service

(associated with thread) (associated with thread)

Fig. 1. Major Components and Interfaces of the Transaction Service [4]

The transaction originator issues a request to a TransactionFactory to create a new top-
level transaction. The factory returns a Control object specific to the new transaction.
From the developer’s point of view, a Control object is the transaction representation at
the application level. However, the Control does not directly support management of
the transaction. Instead, it provides access to a Terminator and a Coordinator. Typical-
ly, it is the transaction originator that uses the Terminator to commit or rollback
the transaction; however, this is not a constraint. Any thread that gains possession of a
Control object, e.g., as a result of parameter passing, can get its Terminator object and
invoke one of the two operations to end the corresponding transaction. The Coordinator
can also be used to create subtransactions and to test relationships between transactions;
however, its main purpose is to serve recoverable servers, which register Resources
with the Coordinator. Each Resource implements the two-phase commit (2PC) proto-
col which is driven by the Transaction Service. A recoverable server may also register
a Synchronization with the Coordinator. The Synchronization implements a dependent
object protocol driven by the Transaction Service. A SubtransactionAwareResource,
which tracks the completion of subtransactions, can also be registered with a recover-
able server. A Resource uses a RecoveryCoordinator in certain failure cases to deter-

-4/22-

mine the outcome of the transaction and to coordinate the recovery process with the
Transaction Service.

To simplify coding, most applications use the Current pseudo object, which pro-
vides access to an implicit per-thread transaction context. More details about the trans-
action context, and the ways to deal with transaction management and transaction con-
text propagation are presented in the next section.

2.1.2 Issues Related to the Transaction Context

A transaction can involve multiple objects performing multiple requests. The scope of
a transaction is defined by a transaction context that is shared by the participating ob-
jects. As part of the environment of each ORB-aware thread, the ORB maintains such
a transaction context. The transaction context associated with a thread is either null (in-
dicating that the thread has no associated transaction), or it refers to a specific transac-
tion. A client thread can then issue requests and these requests will implicitly be asso-
ciated with the client thread’s transaction, i.e., they share the client thread’s transaction
context. It is permitted for multiple threads to be associated with the same transaction
at the same time, in the same execution environment or in multiple execution environ-
ments, as it is presented in section 2.1.3.

When nested transactions are used, the transaction context remembers the stack of
nested transactions started within a particular execution environment (e.g., process), SO
that when a subtransaction ends, the transaction context of the thread is restored to the
context in effect when the subtransaction was begun. However, when the transaction
context is passed between execution environments, the received context refers only to
one particular transaction, not a stack of transactions.

The Transaction Service allows a client program to manage a transaction indirectly
or directly. Indirect context management implies that the application program uses the
Current object to associate the transaction context with the application thread of con-
trol. Direct context management implies that the application program manipulates itself
the Control object and the other objects associated with the transaction. With these two
models in place for managing transactions, propagating the transaction context can hap-
pen in two different ways, implicitly or explicitly. With implicit propagation, the trans-
action context associated with the client thread is passed on to the transactional objects
without the client’s intervention. With explicit propagation, the application passes the
transaction context to transactional objects as explicit parameters in the method invoca-
tion. A client may use either form of context management and may control the propa-
gation of the transaction context by using either method of transaction context propaga-
tion. This provides us with four application programming models that a client can use
to communicate with transactional objects: indirect context management with implicit
propagation, direct context management with explicit propagation, indirect context
management with explicit propagation, and direct context management with implicit
propagation.

The two most used application programming models, indirect/implicit and direct/
explicit, are illustrated in Figure 2 a, and Figure 2 b, respectively, by means of short
code snippets. Please notice the number of Transaction Service interfaces used in each
approach, and the number of parameters in each request involving transactional objects.

-5/22-

CORBA.ORB orb = CORBA.ORB.init(...);
CosTransactions.Current tx_crt =
CosTransactions.CurrentHelper.
narrow (
orb.resolve_initial_references(
"TransactionCurrent")) ;

tx_crt.begin() ;

zlrichAccount.deposit (amount) ;

CORBA.ORB orb = CORBA.ORB.init(...);
CosTransactions.TransactionFactory f
CosTransactions.
TransactionFactoryHelper.narrow (
orb.resolve_initial_references(
"TransactionFactory")) ;

CosTransactions.Control control =
f.create(0) ;

zUrichAccount .deposit (amount,

control) ;

CosTransactions.Terminator t =
control.get terminator () ;
t.commit (false) ;

tx_crt.commit (false) ;

a. Indirect and Implicit b. Direct and Explicit

Fig. 2. Application Programming Models

As a final remark, all interfaces defined by the Transaction Service specification [4] are
located in the CosTransactions module.

2.1.3

Using the OTS, a transactional application is not restricted to a single thread within a
transaction. To allow multiple threads to participate in a transaction, a reference to the
transaction Control must be passed to any thread that wills to join the transaction. If
the direct/explicit application programming model is used, then this is enough. If the in-
direct/implicit model is used, then the threads still have to set their implicit transaction
context by calling CosTransactions.Current . resume and passing the Con-
trol object as input parameter.

OTS Support for Multithreaded Transactions

Thus, OTS actually allows multiple threads to access transactional objects on behalf
of the same transaction, but without paying special attention to this additional form of
cooperative concurrency. Figure 3 depicts such an OTS multithreaded transaction. One
thread, here Thread C, starts a transaction T1. Other threads will eventually learn about
the transaction’s Control object and will be able to access transactional objects on
behalf of T1. The OTS does not restrict the behavior of these threads in any way. They
can spawn new threads, or terminate within the transaction. Any thread can commit or
roll back the transaction T1 at any time, here Thread B, and the transaction will be com-
mitted or rolled back regardless of what the other participating threads might have vot-
ed. Thread exit from a transaction is not coordinated.

As seen in Figure 3, the OTS model is quite general and flexible, and may be suit-
able for many business applications. However, it leaves thread coordination inside a
transaction to the application programmer, and this can be error-prone. For example, a
thread can decide to leave the transaction and perform some other operations before the
outcome of the transaction has been determined, like Thread A in Figure 3. If this thread
makes further use of any information that has been computed inside T1, e.g., modifies
other transactional objects accordingly, then this might lead to information smuggling
if T1 gets rolled back later on. Another unpredictable outcome might arise when a
thread rolls back T1 without notifying the other threads. It might even happen that a

-6/22-

Op
Thread A

Thread B ends
the transaction

e

f—%
Thread C starts

the transaction Op
@ansactional Object9

Fig. 3. Multithreaded Transaction in CORBA OTS

thread gets associated with a new transaction context (Control object) although it is
already working on behalf of another transaction. In Figure 3, for example, Thread B’
switches directly from T1 to T2. A thread might also forget to vote on the outcome of
a transaction, for instance because an exception has caused the program to skip over the
commit statement. As a result, the transaction will hold resources for a potentially un-
limited amount of time. Finally, transactional objects might not be aware of intra-trans-
action concurrency either. If they do not provide mutual exclusion for update opera-
tions, concurrent execution of operations might corrupt their state.

It seems obvious that the CORBA OTS does not really integrate concurrency and
transactions; one might better say that concurrency and transactions coexist. The main
drawback of this model is that there is no real transaction border, making it hard to guar-
antee the ACID properties for multithreaded transactions.

3 The Open Multithreaded Transaction Model

In this section we provide a brief overview of the Open Multithreaded Transaction mod-
el, stressing out mainly the rules imposed by OMTTs for controlling and structuring not
only accesses to objects, as usual in transaction systems, but also threads taking part in
transactions.

Open Multithreaded Transactions (OMTTs), first introduced in [5] and then fully
described in [6], form an advanced transaction model that allows several threads to en-
ter the same transaction in order to perform a joint activity. It provides a flexible way
of manipulating threads executing inside a transaction by allowing them to be forked
and terminated, but it restricts their behavior when necessary in order to guarantee cor-
rectness of transaction nesting and enforcement of the ACID properties.

The life cycle of an open multithreaded transaction is depicted as a state diagram in
Figure 4. Any thread can create an open multithreaded transaction becoming its first

-7/22-

commit [N>1] / N:=N-1

Q /“ﬁ?mmit [N=1]

join / N:=N+1 Active

create / N

N : Number of Participants

Fig. 4. Life Cycle of an Open Multithreaded Transaction

Jjoined participant. The newly created transaction is said to be Open, and as long as it
remains as such, other threads are allowed to join it, thus becoming joined participants
of the transaction as well. A thread can join an open multithreaded transaction if and
only if it does not participate in any other transaction. Otherwise, information local to a
thread could be passed between transactions that should normally be isolated. Open
multithreaded transactions can be nested. A participant of a transaction that starts a new
transaction creates a nested transaction. Joined participant threads may spawn new
threads which automatically become spawned participants of the innermost transaction
in which the spawning thread participates. Any participant can decide to close the trans-
action at any time. Once the transaction is Closed, no new client threads can join the
transaction anymore; however, a joined participant can still spawn new threads. All par-
ticipants finish their work inside an open multithreaded transaction by voting on the
transaction outcome. The only possible votes are commit or rollback. In order for a
transaction to commit, all its participants must have voted commit. If any of the partic-
ipants votes rollback, the transaction is rolled back. Participants are not allowed to leave
the transaction (they are blocked) until its outcome has been determined. This means
that all participant threads of a committing open multithreaded transaction exit synchro-
nously. This rule prevents information smuggling by not allowing threads to make use
of, or to reveal uncommitted information to the outside world. If a transaction is rolled
back, the participants may exit asynchronously.

Figure 5 shows two open multithreaded transactions: T1 and T1. 1. Thread C cre-
ates the transaction T1, and threads A, B, and D join it. Threads A, B, C, and D are there-
fore joined participants of the multithreaded transaction T1. Inside T1 thread C forks a
new thread C’ (a spawned participant), which performs some work inside the transac-
tion and then terminates. Thread B also forks a new thread, thread B’ . B and B’ perform
anested transaction T1 . 1 inside of T1. B’ is a spawned participant of T1, but a joined
participant of T1. 1. In this example, all participants of T1 vote commit. The joined
participants A, C, and D are therefore blocked until the last participant, here thread B,
has finished its work and given its vote.

Even though the OMTT model incorporates several other features, such as disci-
plined exception handling adapted to nested transactions, we consider they go beyond
the purpose of this paper and they will not be addressed here.

-8/22-

Thread A —

R i i i P ey

Thread B’

Thread B

NN TN

Thread C !
NN

Thread D :
va\/vvvvvwwy\}
Thread C starts i - ’
the transaction Threads are blocked until the outcome of

the transaction is known

Fig. 5. An Open Multithreaded Transaction

OPTIMA (OPen Transaction Integration for Multithreaded Applications) [7] is the
name of an object-oriented framework that provides the necessary run-time support for
OMTTs. A prototype of the OPTIMA framework, available for download at [8], has
been implemented for the concurrent object-oriented programming language Ada 95. It
has been realized in form of a library based on standard Ada only. This makes the ap-
proach useful for all settings and platforms which have standard Ada compilers. Based
on the features offered by Ada 95, procedural, object-based, and object-oriented inter-
faces for the transaction framework have been implemented.

4 Porting OMTTSs to CORBA

In order to overcome the problems that might appear in CORBA multithreaded trans-
actions, as presented in section 2.1.3, we will present in this section the design of a
Thread Synchronization Coordinator, ThreadSyncCoordinator, that implements the be-
havior of OMTTs on top of CORBA OTS. The ThreadSyncCoordinator sits between
the individual client threads and the CORBA OTS, allowing several threads to explic-
itly join the same transaction in order to perform a joint activity on some shared trans-
actional resources. Moreover, thread control is improved inside a transaction, by en-
forcing a blocking commit protocol, which ensures that once in a transaction, a thread
cannot leave before the outcome of the transaction has been determined. With the help
of the ThreadSyncCoordinator we make sure that the rules imposed by OMTTs, as de-
scribed in section 3, are respected by the participating threads, so that we can ensure that
the ACID properties for CORBA multithreaded transactions are met.

4.1 The Design of the Thread Synchronization Coordinator

The design of the Thread Synchronization Coordinator is shown in Figure 6 by means
of a class diagram compliant with the Unified Modeling Language (UML) [9] notation.
Although not complete, the diagram shows all classes, attributes, and operations re-

-9/22-

ferred to in the sequel of this section. Design patterns [10], [11] were used in order to
maximize modularity and flexibility.

ThreadSyncTransactionFactory TransactionFactory|
o S<call>> <<call>>
| +create:ThreadSyncCoordinator [~ — | = — [+create:Control
Thread T +recreate:Control

Client

<<instantiate>>|

|
- - - <<instantiate>>|
+transactionalOperation:void \V4

1..* | participantThreads | ThreadSyncCoordinator 1 Control
[-status:Enum - o
<<Ca11>>|[-maxParticipants:int enclosed(ontrol +get7tenn‘11r'1ator. (e:rmlgfator
- +get_coordinator:Coordinator
+ThreadSyncCoordinator
-notifyTheRestToVote:void
-rollbackNotification:void
1 | -allVoted:boolean coordinator | 1 terminator | 1
-getThreadByName: Thread Coordinator Terminator

currentThreadSyncCoordinator <<use>>|

-addNewVoter:void ~ f————— = _ i
: +commit:void
+checkMembership:boolean rollback:void
+join:void A -
+close:void TS A

+get_coordinator:Coordinator
+commit:void

+rollback:void CosTransactions

Fig. 6. Design of the Thread Synchronization Coordinator

A ThreadSyncCoordinator has attributes for:

e transaction management: the attribute enclosedControl links ittoa CORBA
OTS Control object;

¢ thread management: the attribute status, indicating the status of the multi-
threaded transaction, the attribute participantThreads, yielding the list of
all threads participating in the multithreaded transaction together with some asso-
ciated information concerning their vote, and the attribute maxParticipants,
representing the maximum number of participants in the multithreaded transac-
tion.
A ThreadSyncCoordinator makes visible to the clients four operations: join,
close, commit, and rollback. The creation of a ThreadSyncCoordinator
is handled following the Factory design pattern by the ThreadSyncTransaction-
Factory, which provides one operation to the client, i.e., create.

The sequence diagram presented in Figure 7 illustrates that we use the current fa-
cilities offered by the CORBA OTS, and only enhance them with thread synchroniza-
tion when dealing with multithreaded transactions.

The ThreadSyncTransactionFactory acts like a proxy for the Transac-
tionFactory provided by the CORBA OTS. However, unlike in the Proxy design
pattern, the client is still allowed to use the CORBA OTS support directly (by connect-
ing to the TransactionFactory and obtaining Control objects), if s/he does not
plan to have multithreaded transactions, or if s’he does not care about the blocking com-
mit protocol for multithreaded transactions.

By invoking the TransactionFactory of the CORBA OTS, we geta CORBA
OTS Control object, which is further passed to the constructor of the Thread-
SyncCoordinator. This Control object, which is encapsulated inside the

-10/22-

initial transactionFactory
Objectl ThreadSyncTransactionFactory TransactionFactory

1: create():ThreadSyncCoordinator

|
|
|
1.1: newControl:=create():Control |

1.2: <constructor>(newControl) '

> threadSyncCoordinator
ThreadSyncCoordinator

|
|
|
|
| | |

T | [|

Fig. 7. Creating ThreadSyncCoordinator Object Instances

ThreadSyncCoordinator, will be used to interact with the transaction support of-
fered by the CORBA OTS. Even if we will require to pass around the ThreadSync-
Coordinator object, so that other threads can join it and participate in the same mul-
tithreaded transaction, we will use the encapsulated Control object for registering
multiple Resources with the same transaction, and thus, make use of the CORBA
OTS two-phase commit protocol for transaction completion. A multithreaded transac-
tion with thread synchronization inside is actually mapped to a normal CORBA trans-
action with an explicit external thread control mechanism. Our ThreadSyncCoor -
dinator is just a wrapper for the CORBA OTS Control object, providing it with
additional functionality, i.e., join, close, commit, and rollback, for better man-
agement of threads that participate in the same transaction (corresponding to the encap-
sulated Control object), for forcing them to vote on the outcome of the transaction,
for blocking them to leave before the outcome of the transaction has been determined,
and for ensuring in this way that the ACID properties are met for multithreaded trans-
actions as well.

We are not going to enter into concrete implementation details for any of the pre-
sented classes or methods, but we will use small code snippets to point out some impor-
tant aspects that the implementor should follow in order to get the intended functional-
ity. Moreover, we consider that the names of the methods presented in the class diagram
are sufficiently eloquent to give the implementor a good hint about their purpose.

4.1.1 Joining and Closing a Multithreaded Transaction

Like in the current CORBA OTS model, where transactions are modeled by using
Control objects at the application level, multithreaded transactions with thread syn-
chronization are modeled by using ThreadSyncCoordinator objects.

A thread can join a ThreadSyncCoordinator object, and implicitly the corre-
sponding multithreaded transaction, by simply calling the join method and providing
its name, e.g., Thread.currentThread () .getName () in Java (the Thread
class does not implement Serializable, so we can only send its name). In order to
achieve this, the client thread has to learn (at run-time) or to know (statically) the iden-
tity of the ThreadSyncCoordinator it wishes to join. Moreover, the multithread-
ed transaction needs to be in the Open status. Only threads that have already joined the

-11/22-

ThreadSyncCoordinator are allowed to invoke operations on transactional ob-
jects on behalf of the enclosing multithreaded transaction.

Only participant threads of a multithreaded transaction are allowed to close the
transaction by calling the close method. By closing a multithreaded transaction we
are blocking any further joins from other threads. This feature has been introduced for
two reasons:

* There might be static systems in which one of the participants (most probably the
creating thread) knows how many participants are needed to successfully com-
plete the transaction. In that case, it can specify the number of participants during
creation of the ThreadSyncCoordinator object. As soon as this number of
participants is reached, the ThreadSyncCoordinator object automatically
closes.

¢ In dynamic systems, i.e., systems where at transaction creation time the number
of participants is not known, there is a potential livelock, even though all partici-
pants behave correctly. In order to successfully commit a multithreaded transac-
tion, all participants must vote commi t. However, new participants can arrive at
any time. This might lead to the situation where all current participants have de-
cided to commi t, but before they can do so, a new participant arrives. It will take
some time for this participant to realize that all the work inside this transaction
has already been completed. Once it has, it also commits. But during this time,
anew participant might have arrived, and so on. In order to prevent this from hap-
pening, the transaction must be closed at some point. For some applications, it
makes sense to close the transaction as soon as one of the participants has voted
commit. Other applications might want to leave the decision to a participant that
plays a special role (like the seller in the auction system example presented in
section 5.2).

A discussion could be opened here on the operations that should be allowed inside a
closed multithreaded transaction: whether the participants should be allowed to contin-
ue to invoke operations on transactional objects, or they should be constrained to vote
on the outcome of the transaction, i.e., the only operations allowed would be commit
or rollback. We considered the first approach in our implementation.

4.1.2 Committing or Rolling Back a Multithreaded Transaction

In order to implement synchronous exit, the ThreadSyncCoordinator must have
a means to suspend the execution of its participants. In Java this is done using the
wait () method. As shown in Figure 8, the ThreadSyncCoordinator object sus-
pends a client thread when it votes commit and when there are still other participants
working on behalf of the transaction. Successively, all participant threads will go to
sleep in @, waiting for the last voting thread. The last participant, which will take the
then branch, triggers the final commit of the multithreaded transaction by getting the
Terminator object of the enclosed Control and calling the CORBA OTS commit
on this Terminator, and then wakes up the sleeping threads by calling notify-
Al11 () on the object that was considered for synchronization, in our case the Thread -
SyncCoordinator. The CORBA OTS two-phase commit protocol will ensure a

-12/22-

public void commit (public void rollback(

String clientThread) { String clientThread) {
if (! checkMembership (if (! checkMembership (

clientThread)) return; clientThread)) return;
synchronized (this) { synchronized (this) {
addNewVoter (clientThread) ; Terminator terminator =

enclosedControl.get_terminator() ;

if 11V
. (a, oted () { terminator.rollback() ;
Terminator terminator =

enclosedControl.get_terminator () ; rollbackNotification() ;

terminator.commit () ; this.notifyAll () ;

this.notifyAll();

} else {
notifyTheRestToVote () ;

} // end synchronized
return;
wait () ;
}
} // end synchronized

} return: @

Fig. 8. ThreadSyncCoordinator’s commit and rollback Operations
synchronous update of the changes made to different transactional objects on behalf of
the committing multithreaded transaction.

A similar approach is used for implementing the rollback operation, except the
fact that the blocking protocol is not needed anymore. Once a client thread votes rol1 -
back, all the participant threads may exit asynchronously, and changes made to trans-
actional objects on behalf of the multithreaded transaction will be undone by the COR-
BA OTS two-phase commit protocol.

Both the commit and rollback operations begin with a first check of the rights
the client thread has within the current ThreadSyncCoordinator. Only partici-
pant threads are allowed to commit or to roll back the enclosing multithreaded transac-
tion. Also, events ([12], or its evolved successor [13]) are used to signal all participant
threads in a multithreaded transaction to vote on the outcome of the transaction once a
client thread has voted commit, or to just let them know that the multithreaded trans-
action has rolled back. Of course, if the client does not want to complicate the structure
of his or her application by using events, we can imagine that a fixed “reasonable” tim-
eout, decided on a per-application basis, could be set for allowing all the other partici-
pants to vote.

An obvious problem that has not been discussed yet are deserters, i.e., threads par-
ticipating in a multithreaded transaction that suddenly disappear without voting on the
outcome of the transaction. This can happen if a thread is explicitly killed, or when the
process of a participant thread dies incidentally. This special cases are treated as errors,
and will cause the multithreaded transaction to roll back, ensuring the all-or-nothing se-
mantics of transactions.

4.2 Discussion

In this paper, we focused only on the blocking commit protocol, which ensures that
once in a transaction, a thread cannot leave before the outcome of the transaction has
been determined. However, other important issues are still to be addressed. One of the

-13/22-

most important probably is concerning concurrency within the same transaction. Since
the OMG’s Concurrency Control Service [14] does not address this issue (providing
only two ways to acquire locks: on behalf of a transaction, or on behalf of the current
thread, but the thread must be executing outside the scope of a transaction), it becomes
the job of the transactional objects to provide additional concurrency control mecha-
nisms (e.g., synchronized methods in Java) for preventing corruption of their state when
accessed within a multithreaded transaction.

For the time being, the ThreadSyncTransactionFactory and the
ThreadSyncCoordinator are implemented as stand alone CORBA objects. A po-
tential client has to use the Naming Service [15] to locate them, and only then s/he can
make use of their services. Ideally, the provided functionality could be integrated in the
future versions of the CORBA OTS specification, so that ORB vendors will have to im-
plement it (if they want to be compliant with the specification) and provide it directly
to the application developers.

The chosen name, i.e., Thread Synchronization Coordinator, was very much influ-
enced by the interface and the functionality that is provided to the client. Even though
we use a Factory, explicit propagation, and encapsulate a CORBA OTS Control,
the functionality of the ThreadSyncCoordinator object is not at all similar to the
one provided by a CORBA OTS Control. Itis not the responsibility of the application
programmer to get the Terminator and to commit the transaction on the CORBA
OTS. Instead, the interface is much closer to the CORBA OTS Current interface,
providing operations like commit, rollback, and even begin in a slightly different
way. However, the transaction context propagation is not performed implicitly, which
is the case with the CORBA OTS Current. Finally, the CORBA OTS Coordina-
tor came the closest to the functionality provided. Just as the OTS Coordinator is
used for registering Resources so they participate in the two-phase commit protocol
when a transaction ends, the ThreadSyncCoordinator allows threads to join (it
can be seen as a registration as well) a multithreaded transaction, providing them with
a blocking commit protocol until the outcome of the transaction has been determined.

As already shown in Figure 5, nested transactions and spawned threads are also
supported within OMTTs, and their use is clearly illustrated in the implementation of
the Online Auction System presented in section 5.2. For this, additional information is
kept with the ThreadSyncCoordinator. For example, the transaction hierarchy,
i.e., a list of subtransactions and a reference to the parent transaction, is managed by the
ThreadSyncCoordinator as well. The blocking commit protocol is enforced at
each level of nesting by different ThreadSyncCoordinator objects, one for each
multithreaded transaction. We also make a difference between joined and spawned par-
ticipants, and their role in committing a multithreaded transaction. Two additional rules
restrict thread behavior inside and outside of a multithreaded transaction: a thread cre-
ated inside an open multithreaded transaction must also terminate inside the transaction;
and, a thread created outside of an open multithreaded transaction is not allowed to ter-
minate inside the transaction.

The identity of the calling thread, its name, needs to be sent as a parameter every
time for at least one of the following reasons. First of all, we might need it for updating
our local information about the threads participating in the enclosing multithreaded

-14/22 -

transaction, like in the case of join. Second of all, we might need it for validation pur-
poses, like in the case of close, commit, and rollback. Everytime a client thread
invokes an operation on a ThreadSyncCoordinator we must ensure that it had
joined it previously. Another reason, which is more technical this time, is related to the
fact that the thread identity changes when making distributed calls. Client requests are
executed in some sort of TCP-Connection threads, which have nothing in common with
the calling client threads. Moreover, attention must be paid when using Graphical User
Interface elements on the client, since all Java GUI interactions are handled inside a spe-
cial thread, i.e., the AWT-EventQueue-0.

The create operation provided by the ThreadSyncTransactionFactory
does not take any parameter, which means that a thread can create as many Thread-
SyncCoordinator objects as it wants. In order to participate in a multithreaded
transaction, a client thread has to explicitly join one of these ThreadSyncCoordi -
nator objects. Moreover, in order to be compliant with the OMTT model, it must be
ensured that a client thread can join only one ThreadSyncCoordinator, and thus
participate in only one multithreaded transaction. Since this check cannot be done at the
ThreadSyncCoordinator level (it is not natural for a ThreadSyncCoordi -
nator to know about all the others ThreadSyncCoordinators currently existing
in the system), it has to be done at a higher level, where the developer decides to keep
track of all ongoing multithreaded transactions (like the AuctionManager in the
auction system example presented in section 5.3).

A similar functionality could be implemented on top of the CORBA OTS Cur-
rent, so that application developers familiar with the indirect/implicit application pro-
gramming model can use the benefits of multithreaded transactions without worrying
about thread control inside a transaction.

5 Online Auction System Implementation
Using Enhanced CORBA Multithreaded Transactions

An Online Auction System is an example of an inherently dynamic, distributed, and
concurrent application, with multiple auctions going on and with clients participating in
several auctions at the same time. As a consequence, the auction system becomes an ex-
cellent case study for testing the performance of new transaction models, in our case
CORBA multithreaded transactions with thread control provided by ThreadSync-
Coordinator objects.

51 Online Auction System Case Study Description

The informal description of the auction system presented in this section is inspired by
the auction service example presented in [16], which in turn is based on auction systems
found on various internet sites, e.g., www . ebay . com or www . ubid.com.

The auction system runs on a set of computers connected via a network. Clients ac-
cess the auction system from one of these computers. The system allows the clients to
buy and sell items by means of auctions. Different types of auctions may be imagined,
like English, Dutch, 1st Price, 2nd Price. In the English auction, which will be consid-
ered in this case study, the item for sale is put up for auction starting at a relatively low

-15/22-

minimum price. Bidders are then allowed to place their bids until the auction closes.
Sometimes, the duration of the auction is fixed in advance, e.g., 30 days, or, alternative-
ly, a time-out value, which resets with every new bid, can be associated with the auc-
tion.

After a first registration phase, the user becomes a member of the auction system.
Then, s/he has to log on to the system for each session in order to use the services pro-
vided. All members must deposit a certain amount of money to an account under control
of the auction system. Once logged, the member may choose from one of the following
possibilities: start a new auction, browse the current auctions, participate in one or sev-
eral ongoing auctions by placing bids, or deposit or withdraw money from his or her
account. Each bid is validated in order to ensure that the bidder has sufficient funds, that
a bidder does not place bids in his or her own auction, and that the new bid is higher
than the current highest bid.

If the auction closes and at least one valid bid has been made, then the auction ends
successfully and the participant having placed the highest bid wins the auction. The
money is withdrawn from the account of the winning participant and deposited on the
account of the seller, minus a commission, which is deposited on the account of the auc-
tion system for the provided services.

If an auction closes, and no participant has placed a valid bid, then the auction was
unsuccessful and no charge is required for the provided services.

The auction system must be able to tolerate failures. Crashes of any of the host com-
puters must not corrupt the state of the auction system, e.g., money transfer from one
account to the other should not be executed partially.

5.2 Enhanced CORBA Multithreaded Transactions: An Elegant Match

The auction system is an example of a dynamic system with cooperative and competi-
tive concurrency. Concurrency originates from the multiple connected members, who
may each participate in or initiate multiple auctions simultaneously. Inside an auction,
the members cooperate by bidding for the item on sale. On the outside, concurrent auc-
tions compete for external resources, such as the user accounts.

The number of participants in an auction is not fixed in advance. Therefore, auc-
tions must also be dynamic, allowing members to join ongoing auctions at any time.

And, at last, the most important requirement for auctions is to be fault-tolerant. All-
or-nothing semantics must be strictly adhered to. Either there is a winner, and the mon-
ey has been transferred from the account of the winning bidder to the seller account and
the commission has been deposited on the auction system account, or the auction was
unsuccessful, in which case the balances of the involved accounts remain untouched.

All these requirements can be met if an individual auction is encapsulated inside a
multithreaded transaction, and if the enclosing ThreadSyncCoordinator objectis
provided to the other participants, so that they can join the multithreaded transaction. A
graphical illustration of an English auction is shown in Figure 9.

Since the OMTT model requires a thread to be participant in only one multithreaded
transaction, every member must spawn a new thread that will act on his or her behalf
inside one particular auction. In this way, the original member thread can continue its

-16/22-

Member 1
Member 2
Member 3

Bidder

getHighep
create //_
id

getHighest(Bi
Auction Object]

placeBid

withdraw Member 2
Account

withdraw /“\ember 3
Account

rollback T1.1 —»

\
deposit . g
System Account 4

-<— commit T1.2

) Member 1
_ ' deposit _Account

commit T1
Fig. 9. The English Auction Multithreaded Transaction
work and maybe spawn other threads to join other multithreaded transactions. As a re-
sult, a member can participate in several auctions simultaneously.

In Figure 9, member 1 starts a new auction, creating a new seller thread. Once the
item form has been completed, the create method is invoked, which creates a new
ThreadSyncCoordinator object, and together with it, a new CORBA multi-
threaded transaction, here named T1, is started. Only then, the client auction with the
provided parameters is created and automatically added to the list of current auctions.
In our example, member 2 decides to participate. A new bidder thread is created, which
joins the multithreaded transaction T1 (using, of course, the ThreadSyncCoordi -
nator object). It queries the amount of the current bid by invoking the getHigh-
estBid method on the auction object. Before placing the bid, a new ThreadSync-
Coordinator object is created, and together with it, a new CORBA multithreaded
subtransaction, here named T1. 1, is started. Within the subtransaction, the required
amount of money is withdrawn from the account of member 2. Since there is enough
money on the account, the withdrawal completes successfully and the bid is announced
to the Auction object by calling placeBid. Please notice that at this point,

-17/22-

member 2 has not yet voted on the outcome of the subtransaction T1 .1, which means
that it can still be either committed or rolled back later on.

In the meantime, member 3 joins the auction, spawning also a bidder thread, which
joins the multithreaded transaction T1. After consulting the current bid, member 3 de-
cides to overbid member 2. Again, a subtransaction is started, here named T1 .2, and
the required amount of money is withdrawn from the account of member 3. The new
bid is announced to the Auct ion object by calling placeBid. Once the bidder thread
of member 2 gets to know this, it consequently roll (s) back the subtransaction
T1.1 (by talking to its corresponding ThreadSyncCoordinator object), which in
turn rolls back the withdrawal performed on the account of member 2. The money re-
turned to the account of member 2 can now be used again for placing new bids.

In the example shown in Figure 9, no other bidders enter the auction, nor does
member 2 try to overbid member 3. The bidder thread of member 2 has therefore com-
pleted its work inside the auction, and commits the global transaction T1. Since the
blocking commit protocol is enforced by the associated ThreadSyncCoordina-
tor, the bidder thread of member 2 will be blocked until the outcome of the multi-
threaded transaction is determined, i.e., until the other two participating threads give
their vote.

Once the auction closes, the bidder thread of member 3 gets to know that it has won
the auction. It then commits the subtransaction T1 .2, which confirms the previous
withdrawal. It also commits the global transaction T1. The seller thread in the mean-
time deposits two percent of the amount of the final bid on the account of the auction
system as a commission, deposits 98% of the amount of the final bid on the account of
member 1, and finally also commits T1.

Only now that all participants have voted commit, the ThreadSyncCoordi -
nator will invoke the CORBA OTS commit and will let the two-phase commit pro-
tocol make the changes made on behalf of T1 persistent, i.e., the creation of the auction
object, the bidding, the withdrawal from the account of member 3 (inherited from sub-
transaction T1.2), the deposit on the auction system account, and the deposit on the
account of member 1.

53 Online Auction System Design and Implementation

Figure 10 presents a UML class diagram describing our design of the auction system
that was previously presented in section 5.1. Inside the auction system, it is the task of
the AuctionManager to create auctions, to associate auctions with multithreaded
transactions, and to keep track of the current ongoing multithreaded transactions. It is
its responsibility to check whether a client thread has already joined a transaction, e.g.,
joinedSomewhere (), and to block it from joining other transactions. However, it
is the responsibility of the ThreadSyncCoordinator to check if a client thread has
previously joined it or not, and thus to accept or refuse operations called by a client in-
side the multithreaded transaction (in our case, operations on Auction objects).

Two UML collaboration diagrams show briefly how an Auction is actually cre-
ated (Fig. 11) and how client bids are handled by the auction system (Fig. 12). The
String in the method signatures represent the client thread’s identity, i.e., its name,

-18/22-

1.*

participantThreads

AuctionManager ThreadSyncTransactionFactory
Thread
i i ion: i <<call>>
Client <<call>> —.ge{ttlngAuctlon.Aucllon - =2 _> +create: ThreadSyncCoordinator
““““ -joinedSomewhere:boolean
+create: Auction |
+placeBid:void <<instantiate>>
+commit:void |
MemberManager +rollback:void [cccal> |
1 | ||
<<call>> | | <<instantiate>> | |
QL V o] V |
| <<instantiate>> .
Auction [|
| Drint <<call>> | |
« -ID:ini |
0. \'/ -name:String |
Member -description:String 1 : | |
-username:String |1 0..% -OpepingBid:tioat o— \ | |
-password:String [ojjer —explratlquate:Date : | |
-firstName:String -owner:String . \
-lastName:String —currentHighestB@d:ﬂoat) associatedTSC| 1 Vv \l/ \|/
-address:String 0.1 0..x | -currentHighestBidder:String ThreadSyncCoordinator
-email:String winner +Auction
-settingAuctionParameters:void +join:void
-updateBidInfo:void +close:void
1 +gettingAssociatedTSC: +commit:void
6 owns ThreadSyncCoordinator +rollback:void
1 +placeBid:void +checkMembership:boolean
Account - <<call>> | 1

-balance:float

+withdraw:void
+deposit:void

EnglishAuction

OtherAuction

currentThreadSyncCoordinator

Fig. 10. The Design of the Online Auction System

Objectl

AuctionManager

initial

1: create(Strin,

AuctionParameters): Auction

tscFactory
ThreadSyncTransactionFactory

1.1: joinedSomewhere(
clientThread):boolean

1.3: newTSC:=

if(joinedSomewhere(clientThread))

newTSC
ThreadSyncCoordinator

1.4: join(clientThread):void

create():ThreadSyncCoordinatoVr

]
|
1.5: <constructor>(newTSC, auctionPa{

X
)

L
|
|

D> newAuction
Auction
ams
1.5.1:

auctionParams):void

Fig. 11. Creating an Auction inside the Auction System

-19/22-

settingAuctionParameters(

initial auction

Objectl AuctionManager Auction
[] I
| auctionTSC
1: placeBid(int ThreadSyncCoordinator
String,

BidInfo):void

1.1: auction:= gettingAuction(

|
|
|
|
|
|
|
|
|
auctionID): Auction :

1.2: auctionTSC:= |
getting AssociatedTSC()
:ThreadSyncCoordinator

Ifj 1.3: joinedSomewhere(clientThread):boolean

if(! joinedSomewhere(clientThread))
T 1.4.1: join(clientThread):void
1.5: placeBid(clientThread, bidInfo):void

Fig. 12. Placing a bid in an Auction

.

T

further referred as clientThread in the diagrams. Besides all the checkings that are
done at different levels, please notice that the constructor of an Auction takes as pa-
rameter one ThreadSyncCoordinator object, which will handle thread coordina-
tion for that particular Auction.

The shaded rectangles in Figure 11 and Figure 12 indicate then branches of if
statements. The then branch in Figure 11 does not contain anything, which indicates
a return to the calling object. So, the diagram should be read as: if the client thread
is already a member somewhere else, then return, because it is not allowed to create
another multithreaded transaction.

One should also notice that the client thread is forced by the Auct ionManager
to join the ThreadSyncCoordinator associated with the Auct ion it wants to bid
in (Fig. 12, operation 1.4.1).

6 Conclusions

Allowing application developers to use multithreading inside a transaction can be dan-
gerous when there is no support for thread coordination inside the transaction. Threads
can decide to leave the transaction and perform some other operations before the out-
come of the transaction has been determined, or a thread can get associated a new trans-

-20/22-

action context while already acting on behalf of another transaction. This freedom
makes it very hard for application developers to guarantee the ACID properties for mul-
tithreaded transactions.

In order to overcome this drawback, we considered the Open Multithreaded Trans-
action model, which, based on a few rules, constrains the participating threads to behave
in a disciplined way, so that we can guarantee that the ACID properties are met for mul-
tithreaded transactions as well. Further on, the OMTT model was ported to CORBA by
implementing a Thread Synchronization Coordinator, ThreadSyncCoordinator, that
sits between the individual client threads and the CORBA OTS, providing the desired
thread control inside a CORBA multithreaded transaction. Thanks to the ThreadSync-
Coordinator, client threads are now able to explicitly join a transaction, and get access
to the shared transactional resources, simulating somehow that the transaction support
is aware of concurrency. A blocking commit protocol ensures that once in a transaction,
a thread cannot leave before the outcome of the transaction has been determined. Events
are used to signal all participant threads in a multithreaded transaction to vote on the
outcome of the transaction.

Implementing the Online Auction System has shown how the complexity of a dy-
namic, distributed, and concurrent application can be reduced by structuring it using en-
hanced CORBA multithreaded transactions with thread control provided by the Thread-
SyncCoordinator.

References

[1] Gray,J.; Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, 1993.

[2] Object Management Group, Inc.: http://www.omg.org/

[3] Object Management Group, Inc.: The Common Object Request Broker: Architecture and
Specification, v3.0, July 2002.

[4] Object Management Group, Inc.: Transaction Service Specification, v1.3, September
2002.

[5S] Kienzle, J.; Romanovsky, A.; Strohmeier, A.: Open Multithreaded Transactions: Keeping
Threads and Exceptions under Control. Proceedings of the 6th International Workshop on
Object-Oriented Real-Time Dependable Systems, Universita di Roma La Sapienza, Roma,
Italy, January 8-10, 2001. IEEE Computer Society Press, 2001, pp. 209 — 217.

[6] Kienzle, J.: Open Multithreaded Transactions: A Transaction Model for Concurrent Ob-
Jject-Oriented Programming. Ph.D. Thesis #2393, Swiss Federal Institute of Technology,
Lausanne, Switzerland, April 2001.

[7] Kienzle, J.; Jiménez-Peris, R.; Romanovsky, A.; Patifo-Martinez, M.: Transaction Sup-
port for Ada. Proceedings of the 6th International Conference on Reliable Software Tech-
nologies, Ada-Europe, Leuven, Belgium, May 14-18, 2001. LNCS Vol. 2043, Springer
Verlag, 2001, pp. 290 — 304.

[8] Kienzle, J.: OPTIMA: OPen Transaction Integration for Multithreaded Applications. ht-
tp://www.cs.mcgill.ca/~joerg/sel/research/optima.html

[9] Object Management Group, Inc.: Unified Modeling Language Specification, v1.5, March
2003.

-21/22-

(10]
(11]
(12]
(13]
[14]
[15]
[16]

(17]

(18]

(19]

(20]

(21]

(22]

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

Metsker, S. I.: Design Patterns: Java™ Workbook. Addison-Wesley, 2002.

Object Management Group, Inc.: Event Service Specification, v1.1, March 2001.

Object Management Group, Inc.: Notification Service Specification, v1.0.1, August 2002.
Object Management Group, Inc.: Concurrency Service Specification, v1.0, April 2000.
Object Management Group, Inc.: Naming Service Specification, v1.2, September 2002.
Vachon, J.: COALA: A Design Language for Reliable Distributed Systems. Ph.D. Thesis
#2302, Swiss Federal Institute of Technology, Lausanne, Switzerland, December 2000.
Silaghi, R.; Strohmeier, A.: Critical Evaluation of the EJB Transaction Model. Proceed-
ings of the 2nd International Workshop on scientiFic englneering of Distributed Java ap-
pllcations, FIDJI, Luxembourg-Kirchberg, Luxembourg, November 28-29, 2002. LNCS
Vol. 2604, Springer-Verlag, 2003, pp. 15 —29. An extended version is also available as
Technical Report, EPFL-IC-LGL N° IC/2002/069, September 2002.

Siegel, J.: CORBA 3 Fundamentals and Programming, Second Edition. Includes New
CORBA Component Model and Persistence Service. John Wiley & Sons, 2000.

Tari, Z.; Bukhres, O.: Fundamentals of Distributed Object Systems: The CORBA Perspec-
tive. John Wiley & Sons, 2001.

Vogel, A.; Rangarao, M.: Programming with Enterprise JavaBeans™., JTS, and OTS:
Building Distributed Transactions with Java™ and C++. John Wiley & Sons, 1999.
Elmagarmid, A. K.: Database Transaction Models for Advanced Applications. Morgan
Kaufmann Publishers, 1992.

Weikum, G.; Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers, 2002.

-22/22-

	Porting OMTTs to CORBA
	1 Introduction
	2 The CORBA Object Transaction Service
	2.1 The Object Transaction Service

	3 The Open Multithreaded Transaction Model
	4 Porting OMTTs to CORBA
	4.1 The Design of the Thread Synchronization Coordinator
	4.2 Discussion

	5 Online Auction System Implementation Using Enhanced CORBA Multithreaded Transactions
	5.1 Online Auction System Case Study Description
	5.2 Enhanced CORBA Multithreaded Transactions: An Elegant Match
	5.3 Online Auction System Design and Implementation

	6 Conclusions

