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Abstract. Self-stabilizing systems can automatically recover from ar-
bitrary state perturbations in finite time. They are therefore well-suited
for dynamic, failure prone environments. Spanning-tree construction in
distributed systems is a fundamental task which forms the basis for many
other network algorithms (like token circulation or routing). This paper
surveys self-stabilizing algorithms that construct a spanning tree within
a network of processing entities. Lower bounds and related work are also
discussed.

1 Introduction

Imagine what happens if you take an arbitrary distributed algorithm, e.g., for
termination detection, and start it in a state where one of its variables has been
set to a random value from its domain. Usually, the behavior is not predictable:
either the algorithm will output garbage (e.g., declare a computation as finished
although it is still running), or (most probably) it will deadlock (e.g., it will
fail to output anything at all). It may be argued, that changing the value of a
variable is unfair: no algorithm can tolerate such manipulations since algorithms
have to rely on proper initialization. This argument, however, is not true.

Self-stabilizing algorithms [19,22] are guaranteed to recover from an arbitrary
perturbation of their local state in a finite number of execution steps. This means
that the variables of such algorithms do not need to be initialized properly.
Assign to each variable (even the program counter) an arbitrary value from its
domain and the algorithm will eventually start to behave as expected. Arbitrary
state perturbations can also happen without curious users playing around with
their algorithm: Cosmic rays in spacecraft for example can arbitrarily change the
contents of memory cells in random access memory to a certain extent. Thus,
self-stabilizing algorithms have the desirable property to recover from such faults
automatically.



In distributed systems, a spanning tree is the basis for many complex dis-
tributed protocols. To define a spanning tree, the network is formalized as a
graph G = (V,E) where V is the set of network nodes (vertices) and E is the set
of communication links (edges) between network nodes (formally it is a relation
over V , i.e., a subset of E×E). A spanning tree T = (V,E′) of G is a graph con-
sisting of the same set of nodes V , but only a subset E′ ⊆ E of edges such that
there exists exactly one path between every pair of network nodes (see Fig. 1).
Basically, this means that the graph is connected (there is at least one path be-
tween any two nodes) and it does not contain cycles (there is at most one path
between any two nodes). One of the basic theorems of spanning trees states that
in a network of n nodes, the tree contains exactly n− 1 communication links. A
spanning tree is in general not unique.
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Fig. 1. Example of a network of five nodes (left) and a spanning tree of the network
(right).

A spanning tree in the network is often a prerequisite for more involved net-
work protocols like routing or token circulation. It can also increase the efficiency
of network protocols. Take for example the problem of broadcasting messages in
the network. There are algorithms which “flood” the network, i.e., the broadcast
message is sent to all neighbors. Consequently, the message crosses all commu-
nication links before the protocol has finished. However, if a spanning tree of the
network is available, the message only needs to be sent to all those nodes which
are neighbors in the spanning tree. Instead of crossing all E links, it just crosses
n−1 links, and since |E| is usually significantly larger than n−1 a spanning tree
can considerably reduce the message complexity of the broadcast algorithm.

In this paper, we survey self-stabilizing distributed algorithms which con-
struct a spanning tree in a distributed system. These algorithms solve a basic
problem in a very robust way and can be used as building blocks in fault-tolerant
and dynamic applications. Apart from collecting and organizing the references
to the literature, this survey also aims at aiding system designers in the choice
of which algorithm to apply in which setting. This survey tries to be complete
in its reference list, but this goal cannot be claimed because spanning tree con-
struction is such a basic task that it frequently is handled as a subtask of other
self-stabilizing protocols (see for example the paper by Arora and Gouda [11])
and so a treatment of the subject matter may be buried in any publication on
self-stabilization. The author of this survey invites readers to send suggestions on
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which other papers should be included in future revisions of this paper. Also, four
papers have not been available to the author at the time of writing [24, 38–40].
Support in obtaining copies of these works is also very much appreciated.

The paper first gives some background about the different system assump-
tions made in the literature (Section 2) and recalls impossibility results and lower
bounds (Section 3). We then present the most important basic algorithms and
algorithmic ideas in a historical perspective (Section 4), followed by a roundup
of other related work (Section 5).

2 System Assumptions

The system is usually modeled as a graph of processing elements (processors,
processes, nodes), where the edges between these elements model unidirectional
or bidirectional communication links. In this paper, we denote by n the number
of nodes in the system and by N an upper bound on n. Communication network
is usually restricted to the neighbors of a particular node. We denote by δ the
diameter of the network (i.e., the length of the longest unique path between two
nodes) and by ∆ upper bound on δ. A network is static if the communication
topology remains fixed. It is dynamic if links and network nodes can go down
and recover later. In the context of dynamic systems, self-stabilization refers to
the time after the “final” link or node failure. The term “final failure” is typical
for the literature on self-stabilization: Because stabilization is only guaranteed
eventually, the assumption that faults eventually stop to occur is an approxi-
mation of the fact that there are no faults in the system “long enough” for the
system to stabilize. In any case, it is assumed that the topology remains con-
nected, i.e., there exists a path between any two network nodes even if a certain
number of nodes and links may crash.

Algorithms are modeled as state machines performing a sequence of steps.
A step consists of reading input and the local state, then performing a state
transition and writing output. Communication can be by exchanging messages
over the communication channels. But the more common model for communi-
cation is that of shared memory or shared registers [22]. It assumes that two
neighboring nodes have access to a common data structure, variable or register
which can store a certain amount of information. These variables can be distin-
guished between input and output variables (depending on which process can
modify them). When executing a step, a process may read all its input vari-
ables, perform a state transition and write all its output variables in a single
atomic operation. This is called composite atomicity [27]. A weaker notion of
a step (called read/write atomicity [27]) also exists where a process can only
either read or write its communication variables in one atomic step. A related
characteristic of a system model is its execution semantics. In the literature on
self-stabilization this is encapsulated within the notion of a scheduler (or dae-
mon) [19]. Under a central daemon, at most one processing element is allowed
to take a step at the same time.

3



The individual processes can be anonymous, meaning that they are indis-
tinguishable and all run the same algorithm. Often, anonymous networks are
called uniform networks [27]. A network is semi-uniform if there is one process
(the root) which executes a different algorithm [27]. While there is no way to
distinguish nodes, in uniform or semi-uniform algorithms nodes usually have a
means of distinguishing their neighbors by ordering the incoming communica-
tion links. In the most general case it is assumed that processes have globally
unique identifiers.

An algorithm may be randomized, i.e., have access to a source of randomness
(a random number generator or a random coin flip). If an algorithm is not
randomized, we will call it deterministic.

Two kinds of spanning trees may be distinguished: breadth-first search (BFS)
trees result from a breadth-first traversal of the underlying network topology
[37]. Similarly, depth-first search (DFS) trees are obtained from a depth-first
traversal. A notion underlying DFS and BFS trees is that of a rooted tree. A
rooted spanning tree is a spanning tree of the network where the tree edges
are consistently directed with respect to a particular node (the root). Edges
can be directed towards the root or “away from” the root. Rooted spanning
trees have a notion of “parent” and naturally result from the execution of semi-
uniform algorithms. In fact, since almost all algorithms use a single pointer (to
a neighbor, the parent) to store the structure of the tree, all these algorithms
implicitly construct a rooted spanning tree.

3 Impossibilities and Lower Bounds

For the case of spanning-tree construction, Angluin [6] showed that it is impos-
sible to deterministically construct a spanning tree in uniform networks. Intu-
itively, this is caused by problems of symmetry, and so at least a semi-uniform
setting (e.g., a distinguished root processor) or a source of randomization is
needed. This work does not refer to self-stabilizing algorithms, but it should be
clear that the impossibility result also holds for self-stabilizing case since it is
“harder” to solve a problem without being able to rely on an initial state.

The usual time-complexity measure for self-stabilizing algorithms is that of
rounds [29]. In synchronous models algorithms execute in rounds, i.e., processors
execute steps at the same time and at a constant rate. Rounds can be defined
in asynchronous models too, where the first round ends in a computation when
every processor has executed at least one step. In general, the i-th round ends,
when every processor has executed at least i steps. In general, communication
between any two processors in a particular system takes at least Ω(d) rounds.
This is because it normally takes at least one round to propagate information
between two adjacent processors. For the case of self-stabilizing spanning-tree
construction and under certain assumptions, an arbitrary initial state may make
it necessary to propagate information through the entire network. Therefore, a
general lower bound of Ω(d) rounds can be assumed for self-stabilizing spanning-
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tree algorithms. By combining the algorithm with a hierarchical structure and
sacrificing true distribution, this bound can be lowered [28].

We are aware of only a single result on lower bounds regarding the space com-
plexity (i.e., the amount of state necessary to perform self-stabilizing spanning
tree construction). Dolev, Gouda, and Schneider [23] proved that self-stabilizing
spanning tree construction needs at least Ω(log n) bits per processor if the al-
gorithm is silent, i.e., if the contents of the communication registers eventually
stop changing. If the algorithm is not required to be silent, Johnen [35] showed
that it is possible to construct an algorithm using only O(1) bits per edge in a
uniform rooted network with a central daemon. In an appendix to their paper,
Itkis and Levin [34] did the same in anonymous networks using randomization.

4 Basic Algorithms

The first self-stabilizing spanning-tree constructions algorithms were published
in the beginning of the 1990s. A couple of papers were published at that time
which independently developed solutions for different network settings using
similar algorithmic ideas.

4.1 The Algorithm by Dolev, Israeli and Moran

One of the first papers to appear was by Dolev, Israeli and Moran [25, 27] in
1990. It contains a self-stabilizing BFS spanning-tree construction algorithm for
semi-uniform systems with a central daemon under read/write atomicity. In the
algorithm, every node maintains two variables: (1) a pointer to one if its incoming
edges (this information is kept in a bit associated with each communication
register), and (2) an integer measuring the distance in hops to the root of the
tree. The distinguished node in the network acts as the root. The algorithm
works as follows: The network nodes periodically exchange their distance value
with each other. After reading the distance values of all neighbors, a network
node chooses the neighbor with minimum distance dist as its new parent. It
then writes its own distance into its output registers, which is dist + 1. The
distinguished root node does not read the distance values of its neighbors and
simply always sends a value of 0.

The algorithm stabilizes starting from the root process. After sufficient acti-
vations of the root, it has written 0 values into all of its output variables. These
values will not change anymore. Note that without a distinguished root process
the distance values in all nodes would grow without bound. More specifically,
after reading all neighbors values for k times, the distance value of a process is at
least k + 1. This means, that after the root has written its output registers, the
direct neighbors of the root—after inspecting their input variables—will see that
the root node has the minimum distance of all other nodes (the other nodes have
distance at least 1). Hence, all direct neighbors of the root will select the root as
their parent and update their distance correctly to 1. This line of reasoning can
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be continued incrementally for all other distances from the root. Hence, after
O(δ) update cycles the entire tree will have stabilized.

The above algorithm is used by Dolev [21] as the basis for a topology update
algorithm in dynamic networks. This is the first paper we are aware of which
refers to the time optimality of the above algorithm.

Based on the same algorithmic idea, Collin and Dolev [18] present a semi-
uniform spanning-tree algorithm under a central daemon and read/write atom-
icity that constructs a DFS tree (instead of a BFS tree). A similar algorithm
which also constructs a DFS tree but uses composite atomicity. was published
by Herman [31, Chapter 6] three years earlier.

In this algorithm, the outgoing links at every process are ordered, and the
DFS tree is defined as the tree resulting from a DFS graph traversal always
selecting the smallest outgoing edge. Instead of writing its current level into
the output registers, it writes a representation of its current estimate of the
path (the sequence of outgoing link identifiers) to the root. The root repeatedly
writes the “empty path” ⊥ to its output registers. If a node has k neighbors,
there are k alternative paths to choose from. From these, the node chooses the
path which is minimal according to a lexicographic order which prefers smaller
link identifiers, For example, (⊥) < (⊥, 1) < (⊥, 1, 1) < (⊥, 2) < (1) and so a
node does not choose the shortest path to the root but along the smallest link
identifiers. The authors remark that this is the same principle as used in the
algorithm of Dolev, Israeli and Moran [25]. The memory requirements for the
DFS algorithm however are O(n log K) bits where K is an upper bound on the
maximum degree of a node. The time complexity is O(δnK) rounds.

4.2 The Algorithm by Afek, Kutten and Yung

In the same year as Dolev, Israeli and Moran [25] published their algorithm, Afek,
Kutten and Yung [3] presented an self-stabilizing algorithm for a slightly different
setting. Their algorithm also constructs a BFS spanning-tree in the read/write
atomicity model. However, they do not assume a distinguished root process.
Instead they assume that all nodes have globally unique identifiers which can be
totally ordered. The node with the largest identifier will eventually become the
root of the tree.

The idea of the algorithm is as follows: Every node maintains a parent pointer
and a distance variable like in the algorithm above, but it also stores the identifier
of the root of the tree which it is supposed to be in. Periodically, nodes exchange
this information. If a node notices that it has the maximum identifier in its
neighborhood, it makes itself the root of its own tree. If it learns that there is
a tree with a larger root identifier nearby, it joins this tree by sending a “join
request” to the root of that tree and receiving a “grant” back. The subprotocol
together with a combination of local consistency checks ensures that cycles and
fake root identifiers are eventually detected and removed.

The algorithm stabilizes in O(n2) asynchronous rounds and needs O(log n)
space per edge to store the process identifier. The authors argue this to be
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optimal since message communication buffers usually communicate “at least”
the identifier.

4.3 The Algorithm by Arora and Gouda

Also in 1990, Arora and Gouda [10,11] published a self-stabilizing BFS spanning-
tree algorithm for the composite atomicity model under a central daemon. Sim-
ilar to Afek, Kutten and Yung, they also assume unique identifiers and the node
with maximum identifier eventually acts as the root of the system. In contrast
to Afek, Kutten and Yung, the algorithm needs a bound N on the number n of
nodes in the network to work correctly.

The bound N is necessary because the algorithm uses a different technique
to detect and remove cycles. Again, every node maintains variables for distance,
parent and root identifier. Periodically, every node compares its own distance
and root identifier setting with the values stores in the node pointed to by the
parent variable. In the “finished” spanning tree, the root identifiers should be
the same and the distance should be the distance of the parent incremented by
1. If this is not the case, the root identifier is copied from the parent and the
distance is set to the parent’s distance plus 1. If there is a cycle in the tree (for
example due to improper initialization), the distance values are incremented
along this cycle without bound. Hence, a cycle is detected when the distance
value supercedes the bound N . The first node to detect this makes itself the
root of a new tree. A node also continuously monitors the root identifier and
distance settings of its neighbors. If a neighbor has a larger root identifier or the
same identifier with smaller distance, the node adjusts its values accordingly.

Knowledge of the bound N allows the algorithm of Arora and Gouda [11] to
be simpler than the one by Afek, Kutten and Yung [3] but the stabilization time
is O(N2), which can be much larger than O(n2). In dynamic networks where
network nodes may go down, a stabilization time in the order of the actual
number of nodes is preferable.

4.4 The Algorithms by Huang et al.

The same idea for cycle breaking (through “bumping up” the distance counter)
was presented in 1991 by Chen, Yu and Huang [16]. In this paper, they present a
self-stabilizing spanning tree algorithm for semi-uniform systems with composite
atomicity. The fact that there is a distinguished root makes the algorithm even
simpler than the one by Arora and Gouda [11]. However, the algorithm does not
necessarily stabilize to a BFS tree since the choice of a new parent after breaking
a cycle is non-deterministic (governed by the scheduler). This was adapted in a
later paper by Huang and Chen [33] to yield an algorithm which constructs a
BFS tree using knowledge of the size n of the network.

Interestingly, Huang and Chen [33] see the contribution of the latter algo-
rithm in the technique to prove stabilization, not in the algorithm itself since
the one by Dolev, Israeli and Moran [25] achieves the same goal but assumes
read/write atomicity instead of composite atomicity. Four years after Chen, Yu
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and Huang’s paper [16], the algorithm was re-invented (with slight modifica-
tions) by Antonoiu and Srimani [7]. In this paper too, the authors claim that
their proof technique is as important a contribution as the algorithm itself.

4.5 The Algorithm by Afek and Bremler

Afek and Bremler [1,2] revisit the problem of self-stabilizing spanning-tree con-
struction. They give an algorithm for systems with unidirectional, bounded ca-
pacity message passing links. They assume unique identifiers and give adoptions
of the algorithm for the synchronous and the asynchronous network case. The
network node with the minimum identifier eventually plays the role of the root
in the spanning tree.

The algorithm exploits a new design idea called “power supply” which enables
the algorithm to have unique features. For example, the algorithm stabilizes in
O(n) rounds without any knowledge about n. The power supply method exploits
the fact that self-stabilizing algorithms must continuously check their own state.
In the algorithm, nodes which are part of some spanning tree expect to receive
“power” from the root of the tree (power means a continuous flow of certain
messages, one per round). The idea of the algorithm is that only legal roots
may be the source of power and that nodes attached to fake roots eventually
fail to receive power and subsequently make themselves the root of a new tree.
Whenever a node receives power from a neighbor with a smaller identifier, it
attaches itself to its tree.

In the asynchronous case, the power supply idea is implemented using using
different types of messages: weak messages are exchanged periodically between
the nodes to synchronize their state, while strong messages carry power. Afek
and Bremler give a generic power supply algorithm which can be instantiated to
a leader election algorithm, or an algorithm to construct DFS or BFS spanning
trees.

5 Other Related Work

In all of the above algorithms, processes have to maintain a variable measuring
the distance from the root of the tree which must be communicated to the
neighbors. This means that communication variables must have at least O(log n)
bits. Work by Awerbuch and Ostrovsky [13] reduce this requirement to O(log∗ n)
bits per edge. As mentioned above, this memory requirement was reduced to O(1)
by Johnen [35].

For completeness, we briefly mention other papers which have investigated
spanning-tree construction.

Awerbuch, Patt-Shamir and Varghese [14] give an algorithm based on unique
identifiers within the paradigm of “local checking and correction”. Aggarwal and
Kutten [4, 5] give a spanning-tree algorithm for message passing environments
which uses a clever data structure to allow stabilization with O(δ) time with-
out any knowledge of network diameter or number of nodes. The basic version
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of the algorithm was designed for anonymous networks and uses randomization
to create unique identifiers. Awerbuch et al. [12] present another time-optimal
spanning-tree algorithm which is based on unique identifiers, but it requires
knowledge of a bound ∆ on the network diameter. Similarly, Dolev, Israeli and
Moran [20, 26] present an algorithm for anonymous networks which stabilizes
in O(δ) rounds but requires knowledge of a bound N on network size. Other
authors have investigated other flavors of spanning-tree construction (e.g., mini-
mum diameter spanning tree [15] and minimum spanning tree [8,9,32] in a graph
with weighted edges). Ghosh, Gupta and Pemmaraju [30] study fault-containing
spanning-tree construction, meaning that the effects of faults on the algorithm
(e.g., its stabilization time) depend on the severity of faults (e.g., the number
of corrupted processes). Their work is based on the algorithm by Chen, Yu and
Huang [16].

6 Conclusions

The spanning-tree algorithms mentioned in this paper have been applied in many
different settings in practice. A striking example is the self-stabilizing file sys-
tem developed by Dolev and Kat at Ben Gurion University in Israel [36] which
uses a variant of the algorithm by Dolev, Israeli and Moran [27] to implement
a reliable data storage subsystem. As another example, consider the protocol
eliminating redundant paths in switched Ethernets [17]. If a network segment
becomes unreachable or network parameters are changed, the protocol automat-
ically reconfigures the spanning-tree topology by activating a standby path (if
one exists). The protocol can be briefly described as follows: Initially, switches
believe they are the root of the spanning tree but do not forward any pack-
ets. Governed by a timer, they regularly exchange status information. These
messages contain (1) the identifier of the transmitting switch (usually a MAC
address), (2) the identifier of the switch which is believed to be the root of the
tree, and (3) the “cost” of the path towards the root. Using this information, a
switch chooses the “shortest” path towards the root. If there are multiple possi-
ble roots, it selects the root with the smallest identifier (lowest MAC address).
Links which are not included in the spanning tree are placed in blocking mode.
Blocking links do not forward packets but still transport status information.

We expect to see many other applications, derivations and re-inventions of
the algorithms presented in this paper in the future.
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