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Abstract

When devising a distributed agreement algorithm, it is common to minimize the time complexity
of global decisions, which is typically measured as the number of communication rounds needed for
all correct processes to decide. In practice, what we might want to minimize is the time complexity
of local decisions, which we define as the number of communication rounds needed for at least one
correct process to decide. The motivation of this paper is to figure out whether there is any difference
between local and global decision bounds, and if there is, whether the same algorithm can match
both bounds.

We address these questions for several models and various agreement problems. We show that, in
a synchronous model with crash failures, the local decision bound is generally strictly smaller than
the global decision bound, and rather surprisingly, depending on the number of failures that occur,
these bounds cannot both be achieved by a single algorithm. In synchronous runs of the eventually
synchronous model however, we show that the local decision bound is the same as the global bound.
All our bounds are tight, i.e., we give optimal algorithms to match each of our bounds.

1 Introduction

Local vs Global Agreement Decisions. Determining how long it takes to reach agreement among
a set of processes is an important question in distributed computing. For instance, the performance
of a replicated system is impacted by the performance of the underlying consensus service used to
ensure that the replica processes agree on the same order to deliver client requests [20]. Similarly, the
performance of a distributed transactional system is impacted by the performance of the underlying
atomic commit service used to ensure that the database servers agree on a transaction outcome [15].

Traditionally, lower bounds on the time complexity of distributed agreement have been stated in
terms of the number of communication rounds (also called steps) needed for all correct processes to
decide [22] (i.e., global decision), or even halt [10], possibly as a function of the number of failures f
that actually occur, out of the total number ¢ of failures that are tolerated.

From a practical perspective, what we might sometimes want to measure and optimize, is the number
of rounds needed for at least one correct process to decide, i.e., for a local decision. Indeed, a replicated
service can respond to its clients as soon as a single replica decides on a reply and knows that other
replicas will reach the same decision. Similarly, the client of an atomic commit service might be happy
to know the outcome of a transaction once the outcome has been determined, even if some database
servers have yet to be informed of the outcome.
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Motivations. Surprisingly, despite the large body of work on the performance of agreement, so far,
no study on local decision lower bounds has appeared in the literature. To get an intuition of some of
the ramifications underlying such a study, consider the (non-uniform) consensus problem [25, 23] in the
synchronous model where a set of processes, p1, po, ..., pn, proceed by exchanging message in a round
by round manner [19]. Any subset of the processes may fail, but only by crashing.

The problem consists for the processes to decide on a common final value, out of values they initially
proposed, such that all correct processes eventually decide and agree on a common decision. The
following algorithm (from [13]) conveys the fact that there can indeed be a difference between local and
global decision lower bounds. Process p; decides at round 0 (i.e., at the very beginning) its own initial
value, and then broadcasts this value to all. Process po decides at round 1, p;’s value if po receives it,
or otherwise its own value. At round 2, process p3 decides pi’s value if pg receives it, otherwise po’s
value if ps receives it, otherwise its own value, and so forth. In runs of this algorithm with at most
[ failures, at least one correct process decides by round f. Hence, if we denote by I the tight local
decision lower bound for consensus in runs of the synchronous model with f failures, the very existence
of the algorithm means that Iy < f. In fact, [; is exactly f. However, if we denote by g; the tight
global decision lower bound, we know from [22] that g is exactly f+ 1. This observation opens several
questions.

e Can we match both lower bounds with the same algorithm? The synchronous consensus algorithm
we just sketched matches the lower bound /; = f but does obviously not match the lower bound
g = f + 1. Is there any other algorithm that does so? Otherwise, we would be highlighting a
rather interesting trade-off in the design of consensus algorithms.

e What is the impact of the very nature of the agreement?

— Consider for instance the uniform variant of consensus [17], where no process disagrees with
any other process, even one that crashed. Clearly, the algorithm sketched above needs to be
revisited. We can relatively easily show for instance that o = 1, and we know from [18] that
go = 2. But, is gy = Iy + 1 in general, i.e., for any f?

— Similarly, consider the non-blocking atomic commit problem [26, 17], where the processes
have to decide 0 if some process proposes 0, and have to decide 1 if no process proposes 0 or
crashes. In this case, it is easy to see that no algorithm can have any correct process decide
at round 1, even in a run where no process crashes, i.e., [p > 1. In fact, lo = 2, which is
also go [9]. Does it mean that the local decision bound for non-blocking atomic commit is
generally strictly larger than for uniform consensus? This would draw an interesting sharp
line between the inherent time complexity of consensus and atomic commit.

e What is the impact of the model? What if we leave the purely synchronous model and consider
consensus for instance in the eventually synchronous model [8], where we would compare (a) the
number of rounds gy needed for all correct processes to decide in synchronous runs with f process
crashes, and (b) the number of rounds /5 needed for at least one correct process to decide in such
runs? We can show that no process can decide by round 1 (given n > 3), and there are several
algorithms where all correct processes decide by round 2 [18]. In other words, Iy = go = 2. But
what about other values of f?

Contributions. This paper shows that, in the synchronous model, except for some specific values of
f (which we precise in the paper), I; = gy — 1 for consensus, uniform consensus, non-blocking atomic
commit, and interactive consistency. Interestingly, (non-uniform) consensus introduces a surprising
trade-off: for any value of f < ¢, it is impossible for a consensus algorithm to match both l;; and g;.
These bounds are summarised in Table 1.



This paper also considers uniform consensus in the eventually synchronous model.! We show that,
for synchronous runs of this model, the tight lower bound for local decision is the same as that for
global decision. In fact, we show this result in the asynchronous round based model augmented with a
perfect failure detector [5, 12, 4]; the result immediately extends to synchronous runs of the eventually
synchronous model as well as to the synchronous model with send-omission [16]. Furthermore, in the
eventually synchronous model, the only fact we knew about consensus lower bound in synchronous runs
was that gf > f + 2 [3, 18, 7]. The general question of the tight lower bound was left open [7]. We
address this question by giving an optimal algorithm where gy =1y = f + 2.

Roadmap. Section 2 states and discusses our results in the synchronous model. We give our results
for the eventually synchronous model in Section 3. Section 4 concludes the paper with some final
remarks. We give our proofs in the optional appendices A and B, except that of Proposition 2, which
we include in Section 2 as a representative case. Our lower bound proofs are devised following the
layering technique of [24], also used in [18]. We slightly extend the layering scheme of [18] to deal with
local decisions. (An alternate valency-based technique for proving lower bounds in the synchronous
model is presented in [1].) To strengthen our results, we provide our lower bound proofs for the binary
version of the agreement problems (proposal values are restricted to 0 and 1), and propose matching
algorithms for the multivalued case.

2 Local Decision in the Synchronous Model

We recall below the assumptions underlying the synchronous model, and we give an overview of our
results in this model.

Assumptions. We assume a distributed system model composed of n > 3 processes, Il = {p1,p2,...,pn}
Processes communicate by message passing and every pair of processes is connected by a bi-directional
communication channel. Processes may fail by crashing and do not recover from a crash. Any process
that does not crash in a run is said to be correct in that run; otherwise the process is faulty. In any
given run, at most ¢ < m processes can fail. Processes proceed in rounds [19]. Each round consists
of two phases: (a) in the send phase, processes are supposed to send messages to all processes; (b) in
the receive phase, processes receive messages sent in the send phase, update local states, and (possibly)
decide.

If some process p; completes the send phase of the round, every process that completes the receive
phase of the round, receives the message sent by p; in the send phase. If p; crashes during the send
phase, then any subset of the messages p; is supposed to send in that round may be lost.

Agreement Problems. In the consensus problem [25, 23] processes start with a proposal value and
eventually decide on a final value such that the following properties are satisfied: (validity) if a process
decides v, then some process has proposed v; (agreement) no two correct processes decide differently;
and (termination) every correct process eventually decides. Binary consensus is a variant of consensus
in which the proposal values are restricted to 0 and 1. Uniform consensus [17] is a stronger variant of
consensus in which the agreement property is replaced by the following uniform agreement property:
no two processes decide differently.

In the non-blocking atomic commit problem [15], each process is supposed to cast a vote of whether
to abort or commit a transaction, and eventually decide. The termination and the agreement properties
are the same as that for uniform consensus. Validity is defined as follows: (abort validity) abort can be

In this model, neither non-blocking atomic commit nor interactive consistency is possible when ¢ > 1, and consensus
is similar to uniform consensus [13].



decided only if some process proposes to abort or fails, and (commit validity) commit can be decided
only if all processes propose to commit. For presentation uniformity, we make the following changes in
notations: (1) we say that a process proposes 0 (resp. 1) iff the process votes abort (resp. commit),
and (2) we say that a process decides 0 (resp. 1) iff the process decides to abort (resp. to commit).

In the Interactive Consistency (IC) problem [25], each process is supposed to propose an initial
value and eventually decide on a vector of values. Termination and agreement are the same as that for
uniform consensus. Validity is defined as follows: for any decision vector V, the j* component of V is
either the value proposed by p; or L, and may be L only if p; fails.

Time Complexity Metrics. Let AP be any of the agreement problems mentioned above. We say
that a process decides in round k£ > 1 iff it decides in the receive phase of round k. For convenience of
presentation, we say that a process decides at round 0 if it decides before sending any message in round
1 (i.e., apart from deciding in the receive phase of any round, a process may decide before sending any
message in round 1). A run of an AP algorithm globally decides in round k if all correct processes decide
in round %k or in a lower round, and some correct process decides in round k. For every 0 < f < ¢,
we define the global decision tight lower bound g; for AP, as the round number such that, every AP
algorithm has a run with at most f failures, which globally decides in round gy, or in a higher round,
and there is an AP algorithm, which globally decides by round gy in every run with at most f failures.
A run of an AP algorithm locally decides in round k if all correct processes decide in round & or in a
higher round and some correct process decides in round k. For every 0 < f < ¢, we define the local
decision tight lower bound l; for AP as the round number such that, every AP algorithm has a run with
at most f failures, which locally decides in round I; or in a higher round, and there is an AP algorithm,
which locally decides by round [y in every run with at most f failures.

Overview of the Results. Our results on local decision lower bound in the synchronous model are
summarized in Table 1, where they are put in perspectives with corresponding tight global decisions
bounds from the literature [22, 19, 3, 18, 6]. In addition, we show that no consensus algorithm can
match both gy and lf;; (for 0 < f <t —1). Since g1 and /s is the same for consensus and uniform
consensus, no uniform consensus algorithm can match both g;—; and /; (marked ® in Table 1).

‘ Problem ‘ ly ‘gf ‘ Scope ‘

C f f+1 0<f<t,1<t<n—-1

f+1 f+2 0<f<t—2,2<t<n—-1
ue f+1 f+1¢ | f=t—-1,1<t<n-1

£ f+1 | f=t1<t<n-—2

f f f=t,t=n-1

2 2 f=0,2<t<n-1

f+1 f+2 0<f<t—2,2<t<n—-1
NBAC/IC | f+1 f+1 f=t—-1,1<t<n-1

f f+1 | f=t1<t<n-—2

f f f=t,t=n—-1

Table 1: Tight global vs. local decision bounds in the synchronous model

Consensus. The algorithm (informally) presented in Section 1 implies that [y < f; i.e., there is a
consensus algorithm such that, for every 0 < f < ¢, and for every run with at most f failures, some
correct process decides in round f. We know from [22] that g; = f + 1. Intuitively, one can easily see



that Iy > gy — 1 (and hence, [y > f): since some correct process p; always decides by ¢, p; can send its
decision value to all in round [; + 1, and thus, force a global decision at round [y + 1.

Proposition 1 (a) Let 1 <t <n—1. For every consensus algorithm and for every 0 < f <, there is
a run with at most f failures in which no correct process decides before round f. (b) Let 1 <t <mn — 2.
For every consensus algorithm, and for every 0 < f <'t, there is a run with at most f failures in which
at most one correct process decides before round f + 1.

Proposition 1(a) states that I > f. Proposition 1(b) gives a lower bound on the number of correct
processes that can decide earlier than g;. Furthermore, Proposition 1(b) implies that, there is a run
with at most f failures in which at least n —¢ — 1 correct processes decide in round f + 1 or in a higher
round. When there are at least two correct processes (¢ < n — 2), it immediately follows that some
correct process decides in round f + 1 or in a higher round. In this sense, Proposition 1(b) can also be
seen as a generalization of the well-known f + 1 global decision lower bound of [22, 19, 1].

We have already seen an algorithm that matches local decision lower bound, and we know from [22]
that there is a matching algorithm for global decision lower bound. One wonders whether a single
algorithm can match both local and global decision bounds. Indeed, for a given value of f (0 < f <),
it is easy to design an algorithm which locally decides by I; = f and globally decides by g; = f + 1.
But in general, while designing an early deciding algorithm, we are interested in algorithms that are
optimal for a large range of f, preferably for every value of f from 0 to ¢. Surprisingly, for any value of
f, no algorithm can match both gy and /;,1. Thus, there does not exist a consensus algorithm which
is optimal for both local and global decision, even for two consecutive values of f.

Proposition 2 Let 1 <t < n—2. For any f such that 0 < f <t — 1, no consensus algorithm can
achieve both the following bounds: (a) in every run with at most f failures, every correct process decides
by round f+ 1, and (b) in every run with at most f + 1 failures, some correct process decides by round
f+1.2

Proof: (Sketch) A configuration at (the end of) round & > 1 in a run, is the collection of all process
states at the end of round k. For any configuration C at the end of round k, r(C) is a run in which
the round k configuration is C, and no process crashes after round k; val(C) is the decision value
of correct processes in r(C). We say a process is alive in C if it has not crashed in C. It is easy
to see that a process p; is alive in C iff p; is correct in r(C). Due to lack of space, we assume the
following elements (whose explanations are based on the layering scheme, and provided in the Optional
Appendix). We consider only those runs in the synchronous model in which at most one process crashes
in a round. Furthermore, we assume the following (slightly modified) lemma from [18]. For every binary
consensus algorithm and 0 < k < t, there are two k-round configurations y and y' such that (1) at most
k processes have crashed in each configuration, (2) the configurations differ at exactly one process, and
(3) val(y) = 0 and val(y') = 1.

Suppose by contradiction that there is a binary consensus algorithm A and an integer f such that
(a) at round f+ 1 of every run with at most f failures, every correct process decides, (b) at round f+1
of every run with at most f + 1 failures, some correct process decides, and (c) 0 < f <¢ —1.

From the lemma, assumed above, at the end of round f there are two configurations yy and y; such
that (a) at most f processes have crashed in each configuration, (b) the configurations differ at exactly
one process, say p;, and (c) val(yg) = 0 and val(y;) = 1.

Consider the run r(y). Obviously, r(yg) is a run with at most f failures, and from our initial
assumption, every correct process decides val(yp) = 0 at the end of round f + 1. Similarly, we construct
the run r(y;) which is a failure-free extension of y;, and every correct process decides val(y;) = 1 at

*Note that, if f = t, then bound (a) implies bound (b), because there are no runs with ¢ + 1 failures.



the end of round f + 1. There are two cases to consider.

Case 1. Process p; is alive in yg and y;. Consider the extension of yg to a run r’(yg) such that p; crashes
before sending any message in round f + 1, and no process crashes thereafter. (Recall that f <¢—1.)
Notice that 7’(yg) is a run with at most f + 1 failures and p; is a faulty process in 7’(yp). Thus, from
our initial assumption about A, it follows that there is a correct process p;(# p;) in r'(yo) which decides
some value v € {0,1} at round f + 1. (Notice that, since p; # p;, p; cannot decide before round f +1.)

Similarly, consider the extension of y; to a run 7’(y;) such that p; crashes before sending any message
in round f + 1, and no process crashes thereafter. Notice that, at the end of round f + 1, p; cannot
distinguish 7/(y1) from r'(yp) because p; does not receive any message from p; in round f + 1 of both
runs. Therefore, p; decides v at the end of round f + 1 in r'(y1).

Consider runs r'(y1—y) and r(y1—y). Since t < n—2, in run r’(y1—,) there is correct process p; which
is distinct from p; and p;. Obviously, p; is also correct in r(y1—,), and hence, p; decides val(y1—,) = 1—v
at the end of round f + 1 in 7(y; ).

Now we construct a run 7’ by extending configuration y;_,: process p; crashes at the beginning of
round f + 1 such that, in round f +1, p; receives a message from p; but p; does not receive any message
from p;. No process distinct from p; crashes in round f + 1 or a higher round. Obviously, p; and p; are
correct in r”’. At the end of round f + 1 of run r”, p; cannot distinguish r” from r'(y;_,) because p;
does not receive a message from p; in round f + 1 in both runs. Therefore, p; decides v at the end of
round f + 1 in r"”. However, since p; receives a message from p; in round f + 1, at the end of round
f + 1, p; cannot distinguish 7" from 7(y;_,), and therefore, decides 1 — v at the end of round f + 1; a
contradiction to consensus agreement.

Case 2. Process p; has crashed in either yg or y;. Without loss of generality, we can assume that p; has
crashed in g, and hence, p; is alive in y;. (Recall that p; has different states in the two configurations.)
Since ¢ <n — 2 and at most f — 1 processes have crashed in y;, there are at least two correct process p;
and p; (distinct from p;) in 7(y1). Consider the run r’ which extends y; such that process p; crashes in
round f 4+ 1 and only process p; does not receive round f + 1 message from p;, and no process crashes
after round f + 1. Obviously p; and p; are correct in 7. At the end of round f+ 1, p; cannot distinguish
7(yo) from ' because p; does not receive the round f + 1 message from p; in both runs. Thus, p; decides
0 at the end of round f+1 in 7/. At the end of round f +1, p; cannot distinguish r(y;) from ' because
pj receives round f + 1 message from p; in both runs. Thus, p; decides 1 at the end of round f + 1 in
r'; a contradiction. O

Uniform Consensus. The following proposition gives a local decision lower bound on uniform consen-
sus, and generalizes the well-known f+2 round lower bound on uniform consensus global decision [3, 18].

Proposition 3 (a) Let 1 <t < n—1. For every uniform consensus algorithm and every 0 < f <t—1,
there is a run with f failures in which no correct process decides before round f+1. (b) Let 3 <t <n—1.
For every uniform consensus algorithm and every 0 < f <t —3, there is a run with f failures in which
at most one correct process decides before round f + 2.

We give (in Appendix A.2.2) two new uniform consensus algorithms that match both the local and
global decision bounds (in Table 1), and thus, show that our lower bounds are tight. Since the tight
lower bounds of uniform consensus are in general larger than those of consensus, Proposition 2 does
not impact our uniform consensus algorithms, except for the following special case. Notice in Table 1
that g;—1 and [; are the same for both consensus and uniform consensus. By Proposition 2, there is
no uniform consensus algorithm that can achieve both g;—1 and l;. We thus give two algorithms. The
first algorithm (Figure 1, Appendix A.2.2) achieves all bounds in Table 1, except l;: in some runs



with ¢ failures the algorithm locally decides in ¢ 4+ 1 rounds (instead of I; = ¢). The second algorithm
(Figure 2, Appendix A.2.2) achieves all bounds in Table 1, except g;—1: in some runs with ¢ — 1 failures
the algorithm globally decides in ¢ + 1 rounds (instead of g;—1 = t).

The Iy and g; values for uniform consensus (in Table 1) hold even if the validity condition is
replaced by the following weak validity: for every value v € {0, 1}, there is a failure-free run in which
some correct process decides v [18]. Binary uniform consensus with weak validity is a weaker problem
than non-blocking atomic commit and interactive consistency. Hence, the lower bounds on uniform
consensus immediately extends to the other two problems.

Non-Blocking Atomic Commit (NBAC) and Interactive Consistency (IC). For the failure-
free case (f = 0), the local decision tight lower bound for non-blocking atomic commit is strictly larger
than that of uniform consensus.

Proposition 4 Let 2 < t < n. For every NBAC algorithm, there is a failure-free run in which no
process decides at round 1.

The above proposition highlights a fundamental difference between the time complexity of non-blocking
atomic commit and that of uniform consensus in the synchronous model. The proposition extends
to interactive consistency. In fact, any interactive consistency algorithm can be transformed to a non-
blocking atomic commit algorithm (without any additional rounds) as follows. Let V1 denote the vector
of n components in which every component is 1. Suppose we have an IC algorithm with IC-propose()
primitive. We implement the AC-propose() primitive of the NBAC specification in the following way.
When a process AC-proposes v € {0,1}, it IC-proposes v. If a process IC-decides V'1, then is AC-decides
1; otherwise it AC-decides 0. Note that the transformation by itself does not require any additional
communication, and hence can be performed in an asynchronous model.

Appendix A.3 gives an interactive consistency algorithm which matches the lower bounds for local
and global decision given in Table 1 (which can easily modified to a matching algorithm for non-
blocking atomic commit as well). The algorithm is modular: it composes instances of our optimal
uniform consensus algorithm to build the optimal algorithm (instead of giving one ad-hoc algorithm for
interactive consistency).

3 Local Decision in the Eventually Synchronous Model

Intuitively, the eventually synchronous model ES [8], is a model that is guaranteed to become syn-
chronous, but only after an unbounded period of time. In ES, computation proceeds in rounds. We
consider “communication-open” rounds: messages sent to correct processes are eventually received.?

In a round of ES, every process sends a message to all processes and waits for other messages sent
in the round. The model notifies the processes when to stop waiting for the messages in each round.
However, unlike the synchronous model, messages may be delayed (not received in the same round in
which they were sent) by an arbitrary number of rounds, provided that the following conditions are
met in every run: (1) messages sent to a correct process are eventually received, (2) in every round £,
if some process p; completes the round, then p; has received at least n — ¢t messages of that round, and
(3) there is an unknown round number GST [8], such that, in every round k > GST, for any process
pi, if some process completes round k without receiving round k£ message from p;, then p; has crashed
before completing round k. We say that a run in ES is synchronous if in every round k& > 1, for any
process p;, if some process completes round k without receiving round k& message from p;, then p; has
crashed before completing round k.

3ES can be emulated in an asynchronous system augmented with an eventually perfect failure detector OP [5]. In [7] we
specify the eventually synchronous model based on round-by-round fault detector framework [12] and denote it by RFop.



It is easy to see that atomic commit and interactive consistency are impossible to solve in ES when
t > 1. Furthermore, every algorithm which solves consensus also solves uniform consensus [13]. Hence,
we consider only the uniform consensus problem in this model. From [11] we know that for every
uniform consensus algorithm, and for every 0 < f < ¢ (¢ > 1), there is a run of the algorithm with at
most f failures which takes arbitrary number of rounds for local decision. Hence, we define /; and g;
in this model as bounds on the synchronous runs of the algorithm with at most f failures.

Since we consider only synchronous runs, the lower bounds for local and global decision for the
synchronous model, immediately extends to ES. Furthermore, we know from [7] that, whent—1 < f <1,
the global decision lower bound in ES is strictly higher than for the synchronous model. We show that,
for most values of f, the local decision lower bound is the same as the global decision lower bound (i.e.,
f + 2 rounds).

Proposition 5 Let1 <t < n—1. For every uniform consensus algorithm in ES and every 0 < f <¢-3,
there is a synchronous run with at most f failures where no correct process decides before round f + 2.

In fact, (in Appendix B) we prove Proposition 5 for the synchronous runs of an asynchronous round
based model enriched with the perfect failure detector [5, 12, 4]. The result immediately extends to
synchronous runs of ES because every run of the round based model with perfect failure detector is a
run of ES. The result also extends to the synchronous send-omission model [16] as well, with a slight
modification in the proof.

We also give (in Appendix B.2) an algorithm in ES that globally decides (and hence, locally decides)
within f 4+ 2 rounds in every synchronous run with at most f failures. Thus, the f 4+ 2 round global
decision bound is tight for 0 < f <t and the f + 2 round local decision bound is tight for 0 < f <¢—3.

4 Concluding Remarks

Beliefs. In [21], Lamport pointed out “two conflicting beliefs about the cost of making a decision” in
agreement algorithms.

o “One is that the leader can simply decide and then inform the other processors of its decision with
a single message delay [2].”

o “The other belief is that a three-phase commit a la Skeen [27] is needed.”

Lamport furthermore concluded that “If making a decision is interpreted as solving the consensus
problem, then neither belief is correct”.

Interpretations. By studying the local decision lower bound in various models and for various agree-
ment problems, we give in this paper precise interpretations of those beliefs that make them comple-
mentary rather than conflicting.

e We interpret the first belief as: the tight local decision lower bound for failure-free runs of (non-
uniform) consensus in a synchronous model is 0, i.e., [j = 0 for consensus in the synchronous
model.*

“Recall that, the consensus algorithm that we sketch in the introduction matches this lower bound.



¢ We interpret the second belief as: the tight local decision lower bound for failure-free runs of
non-blocking atomic commit is 2 (even in the synchronous model), i.e., [ = 2 for non-blocking
atomic commit in the synchronous model.’

Through our interpretation of the second belief, we show here that, in a rigorous sense, non-blocking
atomic commit (and hence interactive consistency) is inherently slower than uniform consensus. To our
knowledge, this is the first time a sharp line is drawn between non-blocking atomic commit and uniform
consensus in terms of time complexity, and this was possible precisely because we considered local
decisions. In terms of global decisions, there is no difference between these problems in the synchronous
model.

Initial Configurations. It is also important to notice that when determining local decision lower
bounds, we actually seek to determine the minimum number of rounds needed for some correct process
to decide, considering the worst case possible initial configuration. Devising algorithms that are optimal
for some specific initial configurations might however lead to interesting observations. For instance,
considering runs of non-blocking atomic commit in the synchronous model, the case (a) where all
correct processes decide 0 by round 1, in every run where some process proposed 0, is incompatible with
the case (b) where all correct processes decide 1 by round 2, in the failure-free run in which every process
propose 1. In particular, a closer look at the centralized three-phase commit algorithm [26] reveals that
the algorithm is indeed optimal for case (b) but not for case (a). (We prove in the Appendix A.3 that,
although each of the two bounds can be individually achieved, no algorithm can be optimal in both
cases.) In other words, if the goal is indeed to optimize the commit case where all processes propose 1,
then one needs to give up on the efficiency of the abort case where all correct processes decide at round
1 whenever some process proposes 0.
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A Synchronous Model

Proof Technique. We follow the layering scheme of [24], also used in [18]. Similar to [18, 24], we
consider only a subset of runs in the model for showing lower bounds. A subsystem is a subset of the set
of all possible runs in the model. We denote the synchronous crash-stop system by SCS. We consider
the subsystem subscs (of SCS) where at most one process may crash in every round. If p; crashes at
round k, any subset of the messages p; is supposed to send in that round may not be received.® Unless
otherwise mentioned, the remaining discussion in Appendix A is in the context of subgs.

A configuration at (the end of) round £ > 1 in a run is the collection of the state of all processes
at the end of round k. The state of a process which has crashed in a configuration is a special symbol
denoting that the process has crashed. We say that a process p; is alive in a given configuration if p;
has not crashed in that configuration. A initial configuration (or round 0 configuration) in a run is the
collection of initial state of all processes in that run. We denote the set of all initial configurations as
Init. A run of an algorithm is completely defined by its initial configuration, its initial state and its
failure pattern. (The failure pattern for a run, states for each round k, the process which crashes in
round k, and the set of processes which did not receive round k¥ message from the crashed process.)
Therefore, for any configuration C at round k (of an agreement algorithm), we can define r(C) as the
run in which (1) round & configuration is C, and (2) no processes crashes after round k. We denote by
val(C) the decision value of the correct processes in r(C). Note that a process p; is alive in C iff p; is
correct in r(C).

We denote a one round extension of a round k configuration C' as follows: for 1 <47 <n and S C1I,
C.(i,S) denotes the configuration reached by crashing p; in round k + 1 such that any process p; does
not receive a round k + 1 message from p; if any of the following holds: (1) p; = p;, (2) p; is crashed in
C,or (3) pj € S. C.(0,0) denotes the one round extension of C in which no process crashes. Obviously,
(7,8) for s > 0 and S C II is an applicable extension to C if at most ¢ — 1 processes have crashed in C
and p; is alive in C.

A layer L(C) is defined as {C.(4, S)|i € II, S C II, (4, S) is applicable to C'}. For a set of configurations
SC at the same round, L(SC) is another set of configurations defined as UcescL(C). LF(SC) is
recursively defined as follows: L°(SC) = SC and for k > 0, L¥(SC) = L(L*1(S0C)).

Two configurations C' and D at the same round are similar, denoted C' ~ D, if they are identical or
there exists a process p; such that (1) C and D are identical except at p;, and (2) there exists a process
p; # p; that is alive in both C' and D.

A set of configurations SC' is similarly connected if, for every C,D € SC there are states C =
Co,--.,Cpm = D such that C; ~ Cj;1 for all 0 < i < m. We now revisit Lemma 2.3 of [18] in subss.

Lemma 6 Let SC = L°(SC) be a similarly connected set of configurations in which no process has
crashed, then for all k < t, L*¥(SC) is a similarly connected set of states in which no more than k
processes are crashed in any configuration.

Proof: (A simple modification of the proof of [18].7) The proof is by induction on round number .
The base case k = 0 is immediate. For the inductive step, assume that L¥~1(SC) is similarly connected
and in every configuration at most k — 1 processes have crashed. Notice that in every extension which
is applicable to any configuration in L¥~(SC), at most one new process can crash. Therefore, in every
configuration in L*¥(SC) at most k processes have crashed.

5Notice that the subsystem in [18] contains runs with the additional restriction that, if a process p; crashes in the send
phase of round k, the round k messages may not be received by a prefiz of II. Thus, the subsystem in [18] is a subset of
Subscs.-

"The statement of the Lemma is the same, however, the proof is different because we consider a subsystem different
from that of [18].
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We now show that for any configuration C' € L¥~1(SC), L(C) is similarly connected. Consider any
two configurations in L(C), C1 = C.(i,S1) and C2 = C.(j,52), where S1,52 C II, and p; and p; are
alive in C. We will show that C1 and C.(0,() are similarly connected. Using the same procedure,
we can show that C2 and C.(0, () are similarly connected, thus showing that C1 and C2 are similarly
connected.

C.(i,0) ~ C(0,0) since the configurations only differ at p;. If S1 = @ then we are done. Hence,
let S1 = {q1,92,---,9m}. For 1 <1 < m, let S1; = {q1,...,q}, and S1p = 0. For 0 < [ < m,
C.(i,S81;) ~ C.(3,S1;41) because the two configurations differ only at ¢;y1. Thus, C(i,0) = C.(i,S1p)
and C1 = C.(i, S1,,) are similarly connected.

It remains to be shown that if C ~ D and C, D € L¥~1(SC) then there are configurations C’ € L(C)
and D' € L(D) which are similar. Let p; be the process such that C' and D are different only at p;.
Then, configurations C.(7,II) and D.(7,II) are identical because no process receives message from p; in
round k + 1. |

Lemma 7 (a) In a similarly connected set SC of states, if there are states C and D such that val(C) #
val(D), then there are two states C1,D1 € SC such that (1) C1 ~ D1 and (2) val(C1) # val(D1).

(b) For every binary consensus algorithm and 0 < k < t, there are two configurations y,y' € L¥(Init)
such that (1) at most k processes have crashed in each configuration, (2) the configurations differ at
exactly one process, and (3) val(y) =0 and val(y') = 1.

Proof: (a) Suppose, by contradiction, in a similarly connected set SC of states there are two states C
and D such that val(C) # val(D) and for every pair of similar states C'1, D1 € SC, val(C1) = val(D1).
Since C and D are similarly connected, there exist a set of sets, C' = Cy,C4,...,C,, = D, such that,
for 0 <1 < m, C; ~ Ci41. From our initial assumption, and a simple induction, it follows that
val(Cy) = val(Cy) = ... =val(Cp,); a contradiction.

(b) We use the well-known lemma that Init is similarly connected [11, 18]. Thus, from Lemma 1,
LF(Init) is similarly connected. Consider the configuration C at round k of the failure-free run in which
all processes propose 1. Obviously, C € L¥(Init), and from consensus validity, val(C) = 1. Similarly,
consider the configuration D at round k in the failure-free run in which all processes propose 0. We
have, D € L¥(Init) and val(D) = 0. Thus from Lemma 1 and Lemma 2(a), at the end of round k there
exists two configurations y and 3’ such that (1) at most k processes have crashed in each configuration,
(2) the configurations are similar, and (c) val(y) = 0 and val(y') = 1. Since, val(y) # val(y'), the
configurations cannot be identical. Thus, they differ at exactly one process. O

A.1 Consensus

Proposition 1 (a) Let 1 <t < n — 1. For every consensus algorithm and for every 0 < f < ¢, there is
a run with at most f failures in which no correct process decides before round f.
(b) Let 1 <t < n — 2. For every consensus algorithm and for every 0 < f < ¢, there is a run with at
most f failures in which at most one correct process decides before round f + 1.

Proof. (a) Suppose by contradiction that there exists a binary consensus algorithm A and a round
number f such that 0 < f <t and in every run with f failures, some correct process decides in round
f — 1 or in a lower round. Notice that, the contradiction is immediate for the case f = 0: no process
can decide in round —1 or in a lower round. So we consider the case 1 < f < t.

Consider the set of configurations at round f — 1: Lf~!(Init). From our assumption it follows that
in every configuration z € L ~1(Init), there is an alive process p; which has decided. (Otherwise, since
every correct process in r(z) is an alive process in z, r(z) is a run with less than f crashes in which no
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correct process decides in round f —1 or in a lower round.) Furthermore, p; decides val(z) in  because
p; is a correct process in r(z).

From Lemma, 7(b) we know that there are two configurations y,y’ € L{~!(Init) such that (1) at
most f — 1 processes have crashed in each configuration, (2) the configurations differ at exactly one
process (say p;), and (3) val(y) = 0 and val(y’) = 1. From our earlier discussion it follows that, in y,
there is an alive process ¢; which has decided val(y) = 0.

We now show that, in y, no alive process distinct from p; can decide. Suppose there is an alive
process p;(# p;) which has decided in y. As p; is alive in y, so p; is a correct process in (y), and hence,
p; decides val(y) = 0 in y. Furthermore, as p; # p;, p; has identical states in y and ¥/, so p; is alive
and has decided 0 in '. Thus, in 7(y’), p; is a correct process and decides 0. However, every correct
process in 7(y') decides val(y') = 1; a contradiction.

It immediately follows that p; = ¢1; i.e., p; is alive and has decided 0 in y. Consider any run 7’ such
that, r' is an extension of y and only process p; crashes after round f —1, e.g., v’ = r(y.(i,II)). At most
f processes crash in 7. At the end of round f — 1 in 7/, the only alive process which has decided is p;,
and p; is a faulty process in r’. Thus, r’ is a run with f failures in which no correct process decides in
round f — 1 or in a lower round, a contradiction.

(b) Suppose by contradiction that there is a binary consensus algorithm A and a round number f
such that, 0 < f <t and in every run with at most f failures, two correct processes decide in round
f or in a lower round. Consider the configurations of A, at the end of round f: Lf(Init). From our
assumption, in every configuration z € L/ (Init), there are two alive processes which have decided.
(Otherwise, since every correct process in r(z) is an alive process in z, r(z) is a run with f failures in
which less than two correct processes have decided in round f or in a lower round.) Furthermore, these
two processes have decided val(z) because they are correct in r(z).

From Lemma, 7(b) we know that there are two configurations y,y’ € Lf(Init) such that (1) y and ¢/
differ at exactly one process, and (2) val(y) = 0 and val(y') = 1. However, from our earlier discussion
it follows that (1) in y, there are two alive processes which have decided 0, and (2) in ¢/, there are two
alive processes which have decided 1. Since y and 3’ differ at exactly one process, in y, there is an alive
process, say p;j, which has decided 1. Thus, p; is correct and decides 1 in r(y). However, every correct
process in 7(y) decides val(y) = 0; a contradiction. O

A.2 TUniform Consensus
A.2.1 Lower Bound

Proposition 3 (a) Let 1 <t < n — 1. For every uniform consensus algorithm and every 0 < f <¢—1,
there is a run with f failures in which no correct process decides before round f + 1.

(b) Let 3 <t < n — 1. For every uniform consensus algorithm and every 0 < f < ¢ — 3 there is a run
with f failures in which at most one correct process decides before round f + 2.

Proof: (a) Suppose by contradiction that there is a binary uniform consensus algorithm A and a round
number f such that 0 < f <{¢—1, and in every run with at most f failures, some correct process decides
before round f + 1. Consider the set of configurations of A at the end of round f: L(Init). From our
assumption it follows that in every configuration z € L/ (Init), there is an alive process p; which has
already decided. (Otherwise, since every correct process in r(x) is an alive process in z, r(x) is a run
with f crashes in which no correct process decides before round f + 1.) Furthermore, p; decides val(z)
in z because p; is a correct process in r(z).

From Lemma 7(b) we know that there are two configurations y,4' € Lf(Init) such that (1) at most
f processes have crashed in each configuration, (2) the configurations differ at exactly one process, say
pi, and (3) val(y) = 0 and val(y') = 1. From our assumption it follows that, in y, there is an alive
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process g1 which has decided 0, and, in 9/, there is an alive process go which has decided 1. There are
following two cases.

(1) ¢1 # p;: As y and ¢ are identical at all processes different from p;, in ¢/, ¢; is alive and has decided
0. Thus in 7(y'), g1 is a correct process and decides 0. However, in r(y’) every correct process decides
val(y') = 1; a contradiction.

(2) g1 = p;: We distinguish two subcases:

- go = p;: Thus, p; = q1 = g2, and hence, p; is alive in y and y'. Consider a run r1 which extends y
and in which p; crashes before sending any message in round f + 1; i.e., 71 = r(y.(i,II)). (Recall
that f <t —1). As p; has decided 0 in y, from uniform agreement, it follows that every correct
process decides 0 in 1. Since t < n, there is at least one correct process, say p; in rl. Now
consider a run 72 which extends ' and in which p; crashes before sending any message in round
f+1;ie., 2 =r(y.(4,II)). Notice that no correct process can distinguish between r1 and r2:
no alive process which is distinct from p; can distinguish y from 4, and p; crashes before sending
any message in round f 4+ 1. Thus, every correct process decides the same value in r1 and 72,
in particular p; decides 0 in r2. However, p; = g2 decides 1 in r2; a contradiction of uniform
agreement.

- g2 # p;: Then, g2 has the same state in y and y’. Thus, in y, ¢o is alive and has decided 1. In any
extension of y, p; = g1 has decided 0 and ¢ has decided 1; a contradiction of uniform agreement.

(b) For this part we consider a subsystem subs.s1 which is the set of all runs in the synchronous crash-
stop model, i.e., any number of processes can crash in a round. (We revisit few definitions which were
presented in the context of the subsystem subs.s in which at most one process can crash in a round.)
We define the following in subs.s1. For any configuration C' at round k of a uniform consensus algorithm
A, we define R(C) as the run in which (1) the configuration at round % is C and (2) no process crashes
after round k. We denote by Val(C) the decision value of correct processes in R(C). Serial runs are
those runs of A which are in suby.s (i.e., runs in which at most one process crashes in every round).
Similarly, Serial configurations are the configurations of serial runs of A. As every run in subs. is a
serial run subscs1, from Lemma 7(b) we immediately have

Claim 3(c) For every binary consensus algorithm and 0 < k < t, there are two (serial) configura-
tions y,y' € LF(Init) such that (1) at most k processes have crashed in each configuration, (2) the
configurations differ at ezactly one process, and (3) Val(y) =0 and Val(y') = 1.

Proof of Proposition 3(b) continued. Suppose by contradiction that there is a binary uniform
consensus algorithm A and a round number f 4+ 1 such that 0 < f <t — 3, and in every run of A with
at most f failures, there are two correct processes which decide before round f + 2.

We know from Claim 3(c) that at the end of round f there are two serial configurations of A, y
and o, such that, (1) at most f processes have crashed in each configuration, (2) the configuration
differ at exactly one process, say p;, and (3) Val(y) = 0 and Val(y') = 1. Let z and 2’ denote the
configuration at the end of round f + 1 of R(y) and R(y’), respectively. From our initial assumption
about A, in z, there are two alive processes gq; and g which have decided 0. Similarly, in 2/, there are
two alive processes g3 and g4 which have decided 1. Since g; and g9 are distinct, at least one of them is
distinct from p;, say ¢1. Similarly, without loss of generality we can assume that g3 is distinct from p;.
(Processes g1 and g3 may or may not be distinct.) There are following two cases.
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Case 1. Process p; is alive in y and 3’. Consider the following two non-serial runs:®

R1 is a run such that (1) the configuration at the end of round f is y, (2) p; crashes in the send phase
of round f + 1 such that only ¢; receives the message from p;, (3) ¢1 and g3 crash before sending any
message in round f + 2, and (3) no process distinct from p;, g1, and g3 crashes after round f. Notice
that, ¢; cannot distinguish the configuration at end of round f+1 in R1 from z, and therefore, decides 0
at the end of round f+1 in R1. By uniform agreement, every correct process decides 0. Sincet < n—1,
there is at least one correct process in R1, say p;.

R2 is a run such that (1) configuration at the end of round f is ', (2) p; crashes in the send phase
of round f + 1 such that only g3 receives the message from p;, (3) ¢1 and g3 crash before sending any
message in round f + 2, and (3) no process distinct from p;, g1, and g3 crashes after round f. Notice
that, g3 cannot distinguish the configuration at end of round f + 1 in R2 from z’, and therefore, decides
1 at the end of round f + 1 in R2. However, p; can never distinguish R1 from R2: at the end of round
f + 1, the two runs are different only at p;, ¢1, and ¢3, and none of the three processes send messages
after round f+1 in both runs. Thus, (as in R1) p; decides 0 in R2; a contradiction of uniform agreement.

Case 2. Process p; has crashed in either y or /. Without loss of generality, we can assume that p;
has crashed in y, and hence, p; is alive in 3. (Recall that p; has different states in two configurations.)
Consider the following two non-serial run:

R12 is a run such that (1) configuration at the end of round f is y (and hence, p; has crashed before
round f + 1), (2) no process crashes in round f+ 1, and (3) ¢; and g3 crash before sending any message
in round f 4 2. No process distinct from p;, g1 and ¢3 crashes after round f. Notice that, ¢; cannot
distinguish the configuration at the end of round f + 1 in R12 from z because ¢; does not receive the
round f + 1 message from p; in both runs. Thus, (as in z) ¢; decides 0 at the end of round f + 1 in
R12. Due to uniform agreement, every correct process decides 0 in R12. Since f <t —3 < n — 4, there
is at least one correct process in R12, say p;.

R21 is a run such that (1) configuration at the end of round f is 4, (2) p; crashes in the send phase
of round f + 1 such that only g3 receives the message from p;, and (3) g1 and g¢3 crash before sending
any message in round f + 2. No process distinct from p;, g1 and g3 crashes after round f. Notice that,
g3 cannot distinguish the configuration at the end of round f + 1 in R21 from 2z’ because it receives the
message from p; in both runs. Thus, (as in 2’) ¢3 decides 1 at the end of round f + 1 in R21. However,
p; can never distinguish R12 from R21: at the end of round f + 1, the two configurations are different
only at p;, g1 and ¢3, and none of them send messages after round f + 1 in both runs. Thus, (as in
R12), p; decides 0 in R21; a contradiction of uniform agreement. O

Notice that in the proof of Proposition 3, runs R1 and R2 are not in subs.s: two processes crash at
round f 4 2. In fact, Lemma 5(b) does not hold in subs.. For example, there is a binary consensus
algorithm in subs.s, in every failure-free run of which two processes decide at the end of round 1.

A.2.2 Matching Algorithms

Proposition 8 The algorithm in Fig. 1 solves Uniform Consensus.

Proof: Termination is ensured as the algorithm executes for at most ¢+ 1 rounds. Validity follows from
the fact that processes initially start with their own initial value as estimate, exchange their estimate
thereafter, and eventually decide on their estimate value. Thus the estimate value of any process always
contains some initial value. To prove agreement, we proceed through a series of lemmas.

Lemma 9 If any process p; does not crash before the end of round i (1 <t —1), all processes adopt the
same estimate by round i.

8The runs are not serial because in round f + 2, two processes crash in each run.
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1: At process pi:

2: procedure propose(v;)
3: est; 1= v;

4:  decision; := L

5: forroundr=1,...,t—1do {Rounds 1 to (t — 1)}
6 if » =i then {Send Phase}
T send ESTIMATE(est;,i) to all

8: if r =4+ 1 then

9 send ALIVE(Z) to all

10: if receive ESTIMATE(est,,r) from p, then {Receive Phase}
11: est; := estyr

12: if r =i then

13: decision; := est;

14: if receive ALIVE(r — 1) then

15: decision; := est;

16: if i =¢t—1 then {Round t, Send Phase}
17: send ALIVE(t — 1) to all

18:  send ESTIMATE(est;,t) to all

19:  if receive ALIVE(t — 1) then {Receive Phase}
20: decision; 1= est;

21:  receive ESTIMATE(est.,t) from processes in S;
22:  if |Sy| >n—t+1 then

23: decision; := eStmin{j | p;€5:}

24:  if decision; # | then {Round (t + 1), Send Phase. Not needed if t =n — 1}
25: send DECISION(decision;,t + 1) to all {Not needed if t = n — 1}
26: else

27: send ESTIMATE(est;,t + 1) to all {Not needed if t =n — 1}
28:  if received DECISION(decision.,t + 1) from any process then {Receive Phase. Not needed if t =n — 1}
29: decision; 1= decision. {Not needed if t =n — 1}
30: else

31: receive ESTIMATE(est.,t + 1) from processes in Siq1 {Not needed if t =n — 1}
32: esti := estmin{j|p;€S, 41} {Not needed if t =n — 1}

33: decision; = est;

Figure 1: A synchronous uniform consensus algorithm

Proof: By the algorithm, process p; (i < ¢t —1) sends its estimate to all processes in round i. As p; does
not crash before the end of the round, its message reaches all processes. By the algorithm, all processes
adopt the received value as their estimate. O

Lemma 10 At the end of round (t — 1), either all alive processes adopt the same estimate or (t — 1)
processes have crashed.

Proof: By Lemma 9, if any process p; (i < t — 1) does not crash before the end of round 7, then all
processes adopt the same estimate by round 4. If two or more processes have distinct estimates by round
(t — 1), processes p1,...,pi—1 crashed. O

We derive an easy corollary of Lemma 10, as at most ¢ processes can crash.
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Corollary 11 At the end of round (t — 1), if two or more processes have distinct estimates, at most
one process can still crash.

Lemma 12 If any process receives an alive message in round (i + 1) from any process p; (i <t —1),
p; has decided on v and all processes have adopted v as estimate.

Proof: In the algorithm, process p; (i <t — 1) sends its estimate to all in round ¢, and sends an alive
message in round (i + 1). If any process receives an alive message from process p;, p; necessarily reaches
the end of round 7. By Lemma 9, all processes adopt the same estimate at the end of round 7. In the
algorithm, p; decides on its estimate at the end of round i. |

Lemma 13 If any process decides on value v by round (t — 1), each alive process either adopts or
decides on v.

Proof: In the algorithm, a process can decide at two different locations by round (¢ — 1), either (1) at
the end of the round in which it sends its estimate (round ¢, 1 < ¢t — 1), or (2) after receiving an alive
message. In case (1), by Lemma 9, all processes adopt v as estimate. In case (2), by Lemma 12, each
process has either decided or adopted v as estimate. O

Lemma 14 If two or more processes decide in round t, they all decide on the same value.

Proof: In round ¢, all alive processes send their estimate to each other. A process decides on the
minimum of theses estimates whenever it receives at least (n — t 4+ 1) estimates.

According to Lemma 10, processes may or may not have the same estimate at the end of round
(t = 1). If they do, all processes that decide in round ¢, decide on the same value, as they compute the
minimum function on the same set of identical values.

Consider now the case where two or more processes have distinct estimates at the end of round
(t —1). Assume by contradiction that two distinct processes p; and p; respectively decide on two
different values v and v in round ¢. Assume without loss of generality that v < v'. We denote by S;
(resp. S;) the set of estimate values received by p; (resp. p;) in round ¢. We have v ¢ S; otherwise p;
decides on v. Because p; and p; reach the end of round ¢, and p; does not receive v in round ¢, p; and
pj do not have v as estimate at the beginning of round ¢. Denote by p, the process that has v as its
estimate at the beginning of round ¢. Process p, necessarily crashes in round ¢, as p; does not receive
v. Nevertheless, p; receives (n — ¢+ 1) estimates in round ¢. By Corollary 11, there are (¢ — 1) crashed
processes at the beginning of round (¢ —1). Moreover, p, is alive at the beginning of round ¢ but crashes
in round ¢, without reaching p;; and there are (n — ¢ + 1) other processes whose messages are received
by pj. This contradicts the fact that we have n processes in the system. O

Lemma 15 If two or more processes have distinct estimates at the beginning of round t, and if any
process p; decides on value v in round t, either all processes decide on v in round t, or p; is correct.

Proof: If two or more processes have distinct estimates at the beginning of round ¢, then by Corollary 11,
at most one process can still crash at the beginning of round ¢. By Lemma 14, all processes that decide
in round ¢ decide on the same value. Consider now that process p; decides on v in round ¢, and any
process p; distinct from p; does not decide in round ¢. To not decide, p; receives less than (n — ¢+ 1)
estimates in round ¢. Thus some process distinct from p; and p; crashes in round ¢. By Lemma 10,
there now are t faulty process. Hence p; is necessarily correct. O

Lemma 16 If no process has decided by round t, no process can crash any more.
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Proof: Assume that no process has decided by round ¢, in particular distinct processes p; and p;. At
the end of round ¢, p; and p; receive less than (n —t + 1) estimates, otherwise they decide. This means
there are at most (n — t) alive processes, or equivalently, at least ¢ crashed processes. ]

(End of proof of Proposition 8) Consider the first process to decide in the algorithm. By Lemma 13,
if it decides before or at round (¢ — 1), all other processes adopt the same estimate, and agreement is
ensured. In rounds ¢ and ¢ + 1, agreement is trivially ensured if all processes have adopted the same
estimate. Otherwise, by Lemma 14 all processes that decide at round ¢ decide on the same estimate.
If any process p; decides in round ¢ and some process does not, because p; sends its decision in round
(t + 1), and, by Lemma 15, p; is correct, all processes that do not decide in round ¢ decide in round
(t+ 1) on the same value as processes in round ¢. If no process decides in round ¢, then all processes
that decide decide in round (¢ + 1), and, by Lemma 16, decide on the same estimate. O

Proposition 17 In the algorithm in Fig. 1, for 2 <t < n — 1, at least one process decides by round
f+1(0< f<t),in all runs with at most f failures, and all processes decide by round g = f + 2
0<f<t=2),9f=f+1t-1<f<t,t<n—-2)orgr=f(f=t t=n—1), in all runs with at
most f failures.”

Proof: We first consider the case 0 < f <t — 2. For [, consider any run r, such that there are at
most f faulty processes in . Assume by contradiction that no process decides by round f + 1. In the
algorithm, process p; decides on its estimate after sending it to all other processes, at the end of round 4.
If no process decides after (f + 1) rounds, there are necessarily (f + 1) faulty processes; a contradiction.
For gy, assume by contradiction that there exists at least one process that does not decide by round
(f + 2). In the algorithm, process p; (1 <4 < ¢ — 1) sends its estimate in round 4, and sends an alive
message in round (7 + 1). Any process that receives an alive message decides on its estimate. If some
process does not decide by round (f + 2), there must be f + 1 faulty processes; a contradiction.

For f =t —1, gy implies [y. Consider any run r, such that there are at most f failures in r. If any
of the (t — 1) processes to send its estimate in the (¢ — 1) first rounds is correct, the algorithm reaches
a global decision by round ¢. So consider that the first (¢ — 1) processes that send their estimate are
faulty. As there are at most (¢t — 1) faulty processes, there are at least (n —t+ 1) other correct processes.
In round ¢, each alive process receives at least (n — ¢ + 1) estimates, and decides.

For f = t, we show global decision (and hence, local decision) by round ¢+ 1. In the case t < n — 2,
the algorithm obviously reaches a global decision by round (¢ + 1). For ¢ = n — 1, consider any run r
with at most ¢ failures. If there are less that ¢ failures, all processes decide by round ¢. Otherwise, if
any process p; does not decide and is still alive at the end of round ¢, p; is necessarily the only alive
process remaining in the system, and it can safely decides on its own estimate value. O

Proposition 18 The algorithm in Fig. 2 solves Uniform Consensus.

Proof: Termination and validity are similar to Algorithm 1. To prove uniform agreement, we first
revisit Lemma 9 and extends it to rounds ¢ and ¢ + 1.

Lemma 19 If any process p; does not crash before the end of round i (i < t+ 1), all processes adopt
the same estimate by round 1.

Proof: By the algorithm, process p; (i < t+ 1) sends its estimate to all processes in round 7. As p; does
not crash before the end of the round, its message reaches all processes. By the algorithm, all processes
adopt the received value as their estimate. O

9This matches all I; and g5 except I;.
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1: At process pi:

2: procedure propose(v;)
3: est; 1= v;

4:  decision; := L

5: forroundr=1,...,t do {Rounds 1 to t}
6: if » =i then {Send Phase}
T send ESTIMATE(est;,i) to all
8: if r =i+ 1 then
9: send ALIVE(Z) to all
10: if receive ESTIMATE(est,,r) from p, then {Receive Phase}
11: est; := est,
12: if r =i then
13: decision; := est;
14: if receive ALIVE(r — 1) then
15: decision; := est;
16: if i=¢t+1 then {Round (t + 1), Send Phase. Not needed if t =n — 1}
17: decision; := est; {Not needed if t =n — 1}
18: send ESTIMATE(est;,i) to all {Not needed ift =n — 1}
19:  if receive ESTIMATE(estt+1,t + 1) from p;41 then {Receive Phase. Not needed if t =n — 1}
20: est; := esti4+1 {Not needed ift =n — 1}

21:  decision; := est;

Figure 2: A second synchronous uniform consensus algorithm

Lemma 20 At the end of round t, either all alive processes adopt the same estimate, or no process can
crash any more.

Proof: By Lemma 19, if any process p; (¢ < t) does not crash before the end of round 4, then all
processes adopt the same estimate by round 4. If two or more processes have distinct estimates at the
end of round ¢, processes p1,...,p; crashed, and no process can crash any more. O

(End of proof of Proposition 18) Consider the first process to decide in the algorithm. We consider
two cases. In case (1), process p; (i < t) decides after sending its estimate to all. By Lemma 19, all
other processes adopt the same estimate, ensuring agreement. In case (2), process p;y1 decides at the
beginning of round (¢ + 1). By Lemma 20, either all processes (including p;;1) already have the same
estimate at the beginning of round (¢ + 1), and eventually decide on that estimate, or no process can
crash. In the latter case, all processes receive the message sent by p;11 in round (¢ + 1), and decide on
that value, thus ensuring agreement. O

Proposition 21 In the algorithm in Fig. 2, for 2 <t < n — 1, at least one process decides by round
lp=f+10<f<t=1)orbyly=f (f=1),in all runs with at most f failures, and all processes
decide by round f+2 for 0 < f <t—1, bygr=f+1(f=t,t<n-2)orbygr=f(f=tt=n-1),
in all runs with at most f failures.'”

Proof: For the case 0 < f <t — 2, the algorithm is actually similar as the algorithm in Fig. 1, and the
proof is identical to Proposition 17, for both [; and g;.

'0This matches all I; and g5 except gi—1.
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Consider now the case f =t — 1. In any run r with at most f failures, by Lemma 19, some correct
process decides by round [y = f + 1. It then sends an alive message to all processes, which decide by
round gy = f + 2.

For the case f = t, consider any run r with at most f failures. By Lemma 19, if one of the processes
to send its estimate value in the first ¢ rounds is correct in 7, then it decides by round ¢. If all the
processes to send their estimate value in the first ¢ rounds are faulty in r, then by Lemma 20, p;4 is
correct, and it decides on its estimate at the beginning of round £+ 1. Hence [y = f. For gy, we trivially
have gf = f +1 in this case, as the algorithm executes for at most (¢ + 1) rounds. Note that in the case
t =n — 1, if any process p; # pi+1 is correct, all processes that decide, decide before round f. If pyyq is
the only process in the system at the end of round ¢, it does not need to send its estimate value. Hence

gf:f. O

A.3 Non-blocking Atomic Commit (NBAC) and Interactive Consistency (IC)

Proposition 4 Let 2 < t < n. For every NBAC algorithm, there is a failure-free run in which no
process decides at round 1.

Proof: Suppose by contradiction that 2 < t < n and there is a NBAC algorithm A such that, in every
failure-free run, there is a process which decides at round 1. Let C be the initial configuration in which
all processes propose 1. Consider the failure-free run R1 starting from C: R1 = r(C). Suppose some
process p; decides at the end of round 1. From AC-abort validity, we know that p; decides 1 in R1.

Consider another run R2 such that every process proposes 1. Some process p; (# p;) crashes in round
1 and only p; received round 1 message from p;. Process p; crashes in round 2, before sending round 2
message to any process, and no process crashes thereafter. That is, R2 = r(C.(4,II — {p;}).(¢,II)). At
the end of round 1, p; cannot distinguish R1 from R2. Thus, p; decide 1 in R2. From AC-agreement
we know that every process distinct from p; and p; decides 1. There exist at least one such process, say
p;, because 2 <t < n.

Let C0 be the initial configuration in which p; propose 0 and all other processes propose 1. Consider
a run R3 starting from C0 with the same failure pattern as R2: R3 = r3(C0.(3,II — {p;})-(4,1I)). No
process distinct from p; and p; can distinguish R2 from R3: at the end of round 1, only p; receives
message from p;, but p; crashes before sending any message in round 2. Therefore, every process distinct
from p; and p;, decides 1 (as in R2), in particular p;; a contradiction of AC-commit validity. O

Proposition 22 Early-Abort NBAC: There is an algorithm that globally decides at round 1 in every
run starting from an initial configuration in which some process proposes 0.

Proof: For presentation simplicity, we assume an underlying NBAC algorithm NBAC1. (We make no
assumption on the time complexity of NBAC1.) The required NBAC algorithm, denoted by NBAC2,
is as follows. In the first round, every process sends its proposal value to all. At the end of the first
round, a process decides 0 if it receives at least one 0, or if it receives less than n messages. At the
beginning of the second round, a process starts NBAC1 with proposal value 1 if it has not decided in
round 1, otherwise it does not invoke NBAC1.

AC-termination of NBAC2 follows from AC-termination of NBAC1. For showing AC-agreement of
NBAC2, we consider the following three exhaustive cases:

1. If no process invokes NBACI1, then any process which decides, does so at round 1, and therefore,
decides 0.

2. Consider any run 7 of NBAC2 when some process p; decides at round 1 (and hence does not
invoke NBAC1) and there is another process which invokes NBAC1. Obviously, every process
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which decides at round 1 (including p;) decides 0. Let us denote by S, the set of processes which
crash in round 1 or decide at round 1 of r. We have p; € S. From our algorithm, no process in S
invokes NBAC1. Therefore, the run of NBAC1 within r is indistinguishable from an independent
run of NBAC1 in which every process in S proposes 0 to NBAC1 and then crashes before sending
any message. Therefore, from AC-commit validity of NBAC1, every process which decides in r
after invoking NBAC1, decides 0.

3. If all processes invoke NBAC1, then no process has decided in round 1, and therefore, AC-
agreement of NBAC2 follows from the same property of NBACI.

To see the AC-commit validity of NBAC2, notice that a process cannot decide 1 at round 1, i.e.,
can decide 1 only after invoking NBAC1. From AC-commit validity of the NBAC1, the decision is 1
only if all processes propose 1 to NBAC1. A process proposes 1 to NBAC1 only if it receives 1 from all
processes in round 1 of NBAC2. Therefore, if a process decides 1 in a run of NBAC2, then all processes
have proposed 1 in that run.

If all processes propose 1 to NBAC2 and no process crashes, then every process receives 1 from all
processes, and hence, propose 1 to NBAC1 and do not crash. By the AC-abort validity property of
NBACI1, every processes decides 1. Thus, we have the AC-abort validity property of NBAC2.

It is easy to see that, for every run of NBAC2 starting from an initial configuration in which some
process proposes 0, all processes that decide, decide 0 at the end of round 1. O

Now we show that no early-aborting NBAC algorithm can have an efficient global decision in failure-
free run.

Proposition 23 For 3 <t <mn—1, there does not exist a NBAC algorithm that achieves the following
two bounds.

1. In every run starting from an initial configuration in which some process proposes 0, global decision
is reached by round 1.

2. In the failure-free run starting from the initial configuration in which all processes propose 1, there
is a global decision at round 2.1

Proof: Suppose by contradiction that there is a NBAC algorithm A which achieves the two bounds
mentioned above. We exploit indistinguishability between five different runs of A, and derive a contra-
diction.

Consider run R1, in which process p; proposes 0, and all other processes propose 1. Process p;
crashes before sending any message in round 1. By AC-commit validity, the only possible decision in
this run is 0. From property 1, every process distinct from p; decides 0 at the end of round 1, in
particular po.

Consider now run R2, starting from the initial configuration in which all processes propose 1 (in-
cluding p;). Process p; crashes in round 1 after sending a message to all processes but p,. Clearly, ps
cannot distinguish between R1 and R2. Thus it decides 0 at the end of round 1 in R2.

Consider now run R3, which is identical to R2, except that ps now crashes at the beginning of round
2, before sending any message in round 2, and ps crashes at the beginning of round 3. All remaining
processes are correct. Clearly, at the end of round 1, R2 and R3 are indistinguishable for ps, and hence,
po decides 0 at the end of round 1 in R3, and then crashes.

Now consider run R4, which is failure-free, starting from the initial configuration in which all pro-
cesses propose 1. From property 2, and the AC-abort validity property of A, all processes decide 1 at
the end of round 2 in R4, in particular ps.

"Notice that the second property is even weaker than “global decision in 2 rounds in every failure free run”.
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Finally consider run R5, similar to R4, but in which processes p; and py crash at the beginning of
round 2, each process sends a message to only p3 in round 2, and process p3 crashes at the beginning
of round 3. Clearly, R4 and R5 are indistinguishable for ps at the end of round 2. Thus it decides 1 at
the end of round 2, and then crashes.

In R3, process pa decides 0 and crashes. In R5, process p3 decides 1 and crashes. Runs R3 and R5
are however indistinguishable for all remaining processes. This contradicts our initial assumption that
algorithm A satisfies AC-agreement. O

The following Lemma generalizes Proposition 4 for IC.

Lemma 24 For any IC algorithm and any run in which f processes crash, for any f and t such that
0< f<t—2<mn-—3, no process decides at round 1.12

Proof: Suppose by contradiction that there is an binary IC algorithm A (i.e., valid proposal values are
0 and 1) such that A has a run with f failures (0 < f <t—2 < n—3) such that some process decides at
the end of round 1. Let r and p; be the corresponding run and the deciding process, respectively. Let p;
(and all correct processes) decide on the decision vector V in r, where V[j] denotes the j** component.

Consider another process p; distinct from p; and correct in . (Recall that f <n—3.) Let z € {0,1}
be the proposal value of p; in . By the IC-validity property, V[j] = .

Consider a one round configuration C' which is generated by an execution identical to the first round
of r, except that p; crashes in round 1, and any message sent by p; to processes distinct from p; is lost.
Obviously, p; cannot distinguish the first round of r from the round which generated C. Therefore, p;
has decided V in C. We construct a run r’ of A by extending C such that p; crashes before sending any
message in round 2, and no processes crashes thereafter. (Recall that f < ¢ — 2, and hence, two new
processes can crash in r’ as compared to r.) In 7/, p; decides V at round 1, and from IC-agreement it
follows that, every correct process decides V. In particular, there exists a correct process in ', say py,
which is distinct from p; and p;, and which decides V. (Recall that, t —2 < n — 3, i.e., there exists a
correct process in every run.)

Consider another run r” whose initial configuration and failure pattern are identical to r’ except that
p; proposes 1 —z. Notice that, no process distinct from p; and p; can distinguish r’ from r”. Therefore,
pi decides V' in r". Thus, p; proposes 1 — z in 7" but py decides V' with V[j] = z; a contradiction of
[C-validity. O

A.3.1 Matching Algorithm

We give now an optimal algorithm for Interactive Consistency that matches the lower bounds in Table 1
and Lemma, 24.

The algorithm is given in Figure 3, and is constructed out of n instances of our uniform consensus
algorithm (either that of Figure 1 or Figure 2) modified as follows. We denote by unifCons; the j™*
instance of modified uniform consensus algorithm, and by v; the value proposed by some process p; to
the interactive consistency algorithm. In unifCons;, p; plays the part of p1, pjt1 that of pa, ..., pp
that of p,_(j—1), p1 that of pn—j and so on (a cyclic shift by j —1).

Notice that in our original uniform consensus algorithm, if processes decide the proposal value of p;
then every p, such that y < 4 is faulty. Thus, in unifCons;, if processes decide the proposal value of
P, then (1) if j < z then all processes from pj, ..., p, are faulty, and (2) if j > z then all processes from
Djs---2Pn,P1,- -, D, are faulty (Ordering property).

In the interactive consistency algorithm, n instances of unifCons are run concurrently. Process p;
proposes v; to unifCons; if i = j, else p; proposes L. A process IC-decides when it has decided in
every unifCons.

2Note that, this result implies that, in every failure-free run, no process decides at round 1.

22



Proposition 25 The algorithm in Figure 8 is correct.

Proof: 1C-agreement and IC-termination properties trivially follow from the uniform agreement and
termination properties of the underlying uni f Cons algorithm. We now prove that the algorithm satisfies
IC-validity. Consider instance unifCons;, whose purpose is to agree on the component corresponding
to process p;:

1. By the algorithm, only two values, p;’s input value and 1, are ever proposed to this instance. By
the validity property of unifCons, the decided value is one of them.

2. If p; is correct, then by the ordering property of unifCons;, processes that decide, decide on p;’s
value in unifCons;.

From (1) and (2), IC-validity is ensured. ]

Proposition 26 The algorithm in Fig. 3 is optimal: it achieves the bounds in Table 1 and of Lemma 24.

Proof: (Sketch) In the following, we show that our interactive consistency algorithm achieves the gf
and [ of the underlying uniform consensus algorithm, except for /5. Thus showing the bounds to be
tight. We also match ly = 2 for interactive consistency.

In the failure-free run, every unifCons algorithm globally decides in round 2, and hence the inter-
active consistency algorithm globally (and locally) decides in round 2. Consider the case when f # 0.
In the following /; and gy denote the tight lower bounds for uniform consensus.

For gy, consider any run r with at most f > 0 failures. In r, every instance of algorithm unifCons
globally decides by round g;. Thus, the algorithm in Fig. 3 reaches a IC global decision by round g;.

For I, consider any run r with at most f > 0 failures. In each unifCons instance in Fig. 3, there
exists a process that locally decides by round Iy, and all processes that decide, decide by round g;. To
show that there exists a process that IC locally decides by round I, we proceed by contradiction.

Assume that no process IC locally decided by round [; in r. We know however that each individual
UC instance locally decides by round /. To prevent an IC local decision by Iy, there must exist at least
two instances which globally decide at g;(< Iy + 1). (If only one unifCons instance, say unifCons,,
globally decides after [, and all other uni f C'ons instances globally decide by [, then the correct process
which has decided by If in unifCons; has also decided in all other unifCons instances (and hence,
has IC-decided).

For any instance of our unifCons to globally decides after [, the f processes that send their estimate
during the first f rounds must be faulty (otherwise, if at least one process is correct among them, a
global decision is reached by round l;). Since processes play different parts each of the n instances
of unifCons, for any two distinct unifCons instances, there exists at least one process which (1) is
among the first f processes to send its estimate in one unifCons instance, and (2) is not among the
first f processes to send its estimate in the other one.

Thus, for two unifCons instances to globally decide after round Iy, there must exist at least f + 1
faulty processes, which contradicts our initial assumption that r has f faulty processes. O

B Eventually Synchronous Model

B.1 The Uniform Consensus Lower Bound

Before giving our lower bound result, we briefly recall two other models which are weaker than syn-
chronous model.
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: At process p;:
: procedure propose(v;)
Vii=[T,...,T]
for j from 1 to n do
if j =i then
unifCons;.propose(v;) {unifCons; is such that v; is decided if p; is correct}
else
unifCons;.propose(L)

PN DT W

o

: upon unifConsy.decide(v), for some 1 < k < n do
10:  Vilk] :=w

11:  if (V5)(Vi[j] # T) then

12: decide(V5)

Figure 3: An interactive consistency algorithm based on uniform consensus instances

o Synchronous Send-Omission: In addition to failure by crash-stop, a process may fail by send-
omission. If a process p; fails by send omission at a round k, then any message it sends in round &
or in a higher round, may be lost. However a process that fails by send omission does not stop and
keeps on executing subsequent rounds, unless it fails by crash-stop. The model is synchronous in
the following sense: if some process p; completes the send phase of the round and p; has not yet
failed by send omission, every process which completes the receive phase of the round, receives
the message sent by p; in the send phase.

e Round based model with Perfect Failure Detection (WS): Computation proceeds in rounds based
on a Perfect failure detector [5].1> Each round consists of a send and a receive phase. Processes
can crash in any phase. In send phase of any round &, each process p; is supposed to send messages
to all processes, and in the receive phase, for every process p;, p; waits until it receives round &
messages from p;, or the local failure detector module suspects p;. Every message sent to a correct
process is eventually received (maybe after a delay of arbitrary number of rounds). In [4] it is
shown that this model satisfies the following Weak Synchrony property: if any process completes
round k without receiving round k message from a process p;, then p; has crashed before completing
round k + 1.

In each of the three models weaker than the synchronous model (ES, synchronous send-omission,
WS) a run is synchronous if the following holds: in every round k > 1, if some process completes round
k without receiving round k message from p; then p; has crashed before completing round k.

We prove our lower bound result on WS and then extend it to the other two models. Let A be any
uniform consensus algorithm in WS. Synchronous configurations are the configurations of synchronous
runs of A. For any synchronous configuration C' at round k of A, we define R(C) as the synchronous
run in which (1) the configuration at round k is C and (2) no process crashes after round k. We denote
by Val(C) the decision value of correct processes in R(C). As every run in subs.s1 (Appendix A, proof
of Proposition 3(b)) is a synchronous run in WS, from Claim 3(c) we immediately have in WS§:

Claim WS1. There are two synchronous configurations at the end of round f (0 < f < t) of any
uniform consensus algorithm in WS, y and 3, such that, (1) at most f processes have crashed in each

18 A Perfect failure detector is a distributed oracle, which outputs a list of suspected processes at every process such
that: (a) (Strong Completeness) eventually every process that crashes is permanently suspected by every correct process,
and (b) (Strong accuracy) no process is suspected before it crashes.
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configuration, (2) the configurations differ at exactly one process, and (3) Val(y) = 0 and Val(y') = 1.

Lemma 27 Let 1 <t <n-—1. For every uniform consensus algorithm in WS and every 0 < f <t—3,
there is a synchronous run with at most f failures where no correct process decides before round f + 2.

Proof: Suppose by contradiction that there is a binary uniform consensus algorithm A in WS and an
integer f such that 0 < f < ¢ — 3 and in every synchronous run of A with at most f failures, some
correct process decides in round f + 1 or in a lower round. From Claim WS, we know that at the end
of round f there are two synchronous configurations of A, y and 3, such that, (1) at most f processes
have crashed in each configuration, (2) the configuration differ at exactly one process, say p;, and (3)
Val(y) = 0 and Val(y') = 1. Let z and 2’ denote the configuration at the end of round f + 1 in
synchronous runs R(y) and R(y'), respectively.

From our initial assumption on A, in z, there is at least one alive process, say ¢gi, which has decided
0. Similarly, in 2/, there is at least one alive process, say g2, which has decided 1. There are following
four cases:

Case 1. p; ¢ {q1,q2} and p; is alive in y and y'. Consider the following two synchronous runs of A.

R1 is a run such that (1) configuration at the end of round f is y, (2) p; crashes in the send phase of
round f + 1 such that only g; receives the message from p;, (3) ¢1 and g2 crashes before sending any
message in round f + 2, and (4) no process distinct from p;, g1, and g9 crashes after round f. Notice
that, g1 cannot distinguish the configuration at the end of round f + 1 in R1 from z, and therefore,
decides 0 at the end of round f 4+ 1 in R1. By uniform agreement, every correct process decides 0 in
R1. Since t < n — 1, there is at least one correct process in R1, say p;.

R2 is a run such that (1) configuration at the end of round f is ', (2) p; crashes in the send phase of
round f + 1 such that only g2 receives the message from p;, (3) ¢1 and g crashes before sending any
message in round f+2, and (4) no process distinct from p;, ¢1, and g2 crashes after round f. Notice that,
g2 cannot distinguish the configuration at the end of round f + 1 in R2 from 2’, and therefore, decides
1 at the end of round f + 1 in R2. However, p; can never distinguish R1 from R2: at the end of round
f + 1, the two runs are different only at p;, ¢1, and ¢o, and none of the three processes send messages
after round f+1 in both runs. Thus, (as in R1) p; decides 0 in R2; a contradiction of uniform agreement.

Case 2. p; ¢ {q1,92} and p; has crashed in either y or y'. Without loss of generality we can assume
that p; has crashed in y, and hence, p; is alive in y’. Consider the following two synchronous runs.
R12 is a run such that (1) configuration at the end of round f is y (and hence, p; has crashed before
round f + 1), (2) no process crashes in round f+ 1, and (3) ¢; and ¢, crash before sending any message
in round f + 2. No process distinct from p;, ¢ and ¢, crashes after round f. Notice that, ¢; cannot
distinguish the configuration at the end of round f + 1 in R12 from z because ¢; does not receive the
round f + 1 message from p; in both runs. Thus, (as in z) ¢; decides 0 at the end of round f + 1 in
R12. Due to uniform agreement, every correct process decides 0 in R12. Since ¢ < n — 1, there is at
least one correct process in R12, say p;.

R21 is a run such that (1) configuration at the end of round f is y', (2) p; crashes in the send phase of
round f + 1 such that only g2 receives the message from p;, and (3) ¢1 and go crash before sending any
message in round f + 2. No process distinct from p;, g1 and ¢y crashes after round f. Notice that, go
cannot distinguish the configuration at the end of round f + 1 in R21 from 2z’ because g2 receives the
message from p; in both runs. Thus, (as in 2) g, decides 1 at the end of round f + 1 in R21. However,
p; can never distinguish R12 from R21: at the end of round f + 1, the two configurations are different
only at p;, ¢1 and g2, and none of them send messages after round f + 1 in both runs. Thus, (as in
R12), p; decides 0 in R21; a contradiction of uniform agreement.
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Case 3. p; € {q1,q2} and p; is alive in both y and y'. Notice that if p; = ¢1 then R1 is not in WS;
p; cannot crash in the send phase of round f + 1, and decide at the end of round f + 1. (Similarly, if
p; = g2 then R2 is not in WS.) Thus, we construct non-synchronous runs of A to show the contradiction.
Without loss of generality we can assume that p; = ¢1. (Note that the proof holds even if p; = ¢1 = g2.)
Consider the following synchronous run R3 and two non-synchronous runs, R4 and Rb5.
R3 is a run such that (1) configuration at the end of round f is y, (2)p; crashes in round f + 1 before
sending any message, (3) if g2 # p; then go crashes before sending any message in round f + 2 and every
message send by g2 in round f+ 1 is received in the same round, and (4) no process distinct from p; and
g2 crashes after round f. Since t < n — 1, there is at least one correct process in R3, say p;. Suppose p;
decides v € {0,1} in some round K’ > f + 1.1
R4 is a run such that (1) configuration at the end of round f is y, (2) p; crashes before sending any
message in round f + 2, such that, in round f + 1, every message from p; to any process distinct from
p; and ¢y is delayed till round K'+ 1, (3) if g2 # p; then gy crashes before sending any message in round
f + 2 and every message send by g2 in round f + 1 is received in the same round, and (4) no process
distinct from p; and g9 crashes after round f. Notice that, p; cannot distinguish the configuration at
the end of round f + 1 in R4 from z (because p; receives its own message in round f + 1), and thus, p;
decides 0 at the end of round f 4+ 1 in R4. However, p; cannot distinguish the configuration at the end
of round K’ in R4 from that in R3 because (1) at the end of round f the two runs are different only
at p;, and all round f + 1 messages from p; to processes distinct from p; and ¢o are delayed till round
K'+ 1, and (2) p; and g2 does not send messages after round f + 1. Thus, (as in R3) p; decides v at
the end of round K.
R5 is a run such that (1) configuration at the end of round f is y', (2) p; crashes before sending any
message in round f + 2, such that, in round f + 1, every message from p; to any process distinct from
p; and ¢o is delayed till round K'+1, (3) if g2 # p; then ¢y crashes before sending any message in round
f + 2 and every message send by ¢2 in round f + 1 is received in the same round, and (4) no process
distinct from p; and ¢y crashes after round f. Notice that, go cannot distinguish the configuration at
the end of round f + 1 in R5 from 2’ ((because go receives the message from p; in round f + 1), and
thus, g2 decides 1 at the end of round f + 1 in R5. However, p; cannot distinguish the configuration at
the end of round K’ in R5 from that in R3 because, (1) at the end of round f the two runs are different
only at p;, and all round f + 1 message from p; to processes distinct from p; and ¢o are delayed till
round K’ 4 1, and (2) p; and ¢y does not send messages after round f + 1. Thus, (as in R3) p; decides
v at the end of round K'.

It is easy to see that either R4 or R) violates agreement: p; decides v in both runs, however, p;
decides 0 in R4 and ¢ decides 1 in R5.

Case 4. p; € {q1,92} and p; has crashed in either y or y’. Notice that the case p; = ¢1 = g2 is not
possible because, in that case, p; is alive in z and 2’, and hence in y and 3’. We show the contradiction
for the case when p; = q1 # g2. (The contradiction for p; = g2 # g1 is symmetric.)

Since, p; = qi, p; is alive in z, and hence, alive in y. Thus, p; has crashed in 3. Consider the
following non-synchronous runs.
R6 is a run such that (1) configuration at the end of round f is y, (2) p; crashes before sending any
message in round f + 2, such that, in round f + 1, every message from p; to a process distinct from p;, is
delayed till round f + 2, and (3) no process distinct from p; crashes after round f. At the end of round
f+1in R6, p; = ¢1 cannot distinguish the configuration from z (because p; receives its own message
in round f + 1), and therefore, decides 0 at the end of round f + 1 in R6. However, g2 does not receive

1470 see that p; cannot decide before round f + 1 in R3 notice that the state of p; at the end of round f is the same
in runs R(y), R(y') and R3. If p; decides v before round f + 1 in R3 then it also decides v in R(y) and R(y'). However,
Val(y) # Val(y').
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the round f + 1 message from p; in R6 (the message is delayed till the next round), and furthermore,
even in 2', g2 does not received the round f + 1 from p; (because p; has crashes in 4'). Thus, g2 cannot
distinguish the configuration at the end of round f + 1 in R6 from 2/, and hence, decides 1 in R6; a
contradiction of uniform agreement. O

Since every run in WS is a run is ES, and every synchronous run in WS is a synchronous run in
ES, Lemma 27 immediately extends to ES.

Proposition 5 Let 1 <t < n—1. For every uniform consensus algorithm in ES and every 0 < f <t—3,
there is a synchronous run with at most f failures where no correct process decides before round f + 2.

However, some non-synchronous run in WS are not valid runs in the synchronous send-omission
model: a delayed message to a correct process in WS is eventually received, but in the synchronous
send-omission model, every delayed message is lost. In particular, R4, R5, and R6 (in the proof of
Lemma 27) are not possible in the synchronous send-omission model. However, it is easy to see that
the proof of Lemma 27 holds in synchronous send-omission model if we simply modify R4, R5, and R6
such that every delayed message is lost. (This actually simplifies the proof.)

B.2 A Matching Algorithm (Figure 4)

Figure 4 gives a uniform consensus algorithm Ay, in the eventually synchronous model which matches
the f + 2 global decision lower bound (and hence, matches the local decision bound) in synchronous
runs. Namely, the algorithm satisfies the following property:

Fast Early Decision: Let 0 < ¢ < n/2. In every synchronous run of Ay, o with at most f failures
(0 < f <'t), every process which decides, decides in round f + 2 or in a lower round.

Af 9 assumes an independent uniform consensus algorithm C,'5 accessed by procedure proposec (*).
The fast decision property is achieved by Ao regardless of the time complexity of C. More precisely,
our algorithm assumes:

(1) the model ES with 0 <t < n/2;

(2) messages send by a process to itself is received in the same round in which it is send;

(3) an independent uniform consensus algorithm C in ES;

(4) the set of proposal values in a run is a totally ordered set; e.g., every process p; can tag its
proposal value with its index ¢ and then the values can be ordered based on this tag.

B.2.1 Description

The processes invoke propose(x) with their respective proposal values, and the procedure progresses in
round. Every process p; maintains three primary variables:

e STATE; at the end of a round denotes the fact that p; considers (a) the run to be non-synchronous
(STATE = NSYNC), (b) the run to be synchronous but p; cannot decide at the next round (STATE =
SYNC1), (c) the run to be synchronous with a possibility of deciding at the next round (STATE =
SYNC2).

e est; is the estimate of the possible decision value, and roughly speaking, the minimum value seen
by pi.

15This algorithm can be any ©P-based or ¢S-based uniform consensus algorithm (e.g., the one based on ¢S in [5])
transposed to ES.
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e Halt; is a set of processes. At the end of a round, Halt; contains p; if any of the following holds
in the current round or in a lower round: (1) p; did not receive a message from p;, (2) p; receives
a messages from p; with STATE = NSYNGC, or (3) p; receives a messages from p; with p; € Halt;.

In the first t+ 2 rounds, the processes exchange these three variables and then updates their variable
depending on the messages received. We say that a message is a state S’ message, if it is sent with
STATE = S'. Figure 5 shows the rules for updating STATE in each round k. At the end of round ¢ + 2,
if a process has not yet decided, then it invokes the underlying uniform consensus C' with its est as
the proposal value. The algorithm ensures the following elimination property: if a process completes
some round k < t + 2 with STATE = SYNC2 and est = est’ and no process decides in round k or in
a lower round, then every process which completes round k with STATE = SYNC1 has est > est’, and
every process which completes round k£ with STATE = SYNC2 has est = est’. (Processes which complete
round k with STATE = NSYNC may have est < est'.)

We now briefly discuss the uniform agreement property of our algorithm assuming the elimination
property. If every process which decides, decides at a round higher than ¢ 4+ 2 then uniform agreement
follows from the corresponding property of algorithm C. Consider the lowest round k' < ¢ + 2 in which
some process p; decides, say d. From line 14, at least n —t processes (a majority) completes round &' — 1
with STATE = sYN(C2, and hence, every process which completes round k — 1 receives a message with
STATE = NSYNC and est = d. From the elimination property, processes which complete round k' — 1
with est < d has STATE = NSYNC. Notice that, while updating est for the next round, processes with
STATE = SYNCl OrSTATE = SYNC2, ignore messages from processes with STATE = NSYNC (line 11,
line 12). Therefore, every process with STATE = SYNC1 or STATE = SYNC2, updates est to d (line 13).
Since a majority of processes sends round k' messages with est = d and STATE = SYNC2, every process
which completes round k&’ with STATE = NSYNC updates est to d (line 22). Consequently, every process
which completes round k', does so with est = d, and no value distinct from d can be decided at round
k' or at a higher round.

B.2.2 Correctness

The validity, termination, and integrity properties of Ao easily follow from the corresponding proper-
ties of the underlying uniform consensus algorithm C. We focus here on the uniform agreement and the
fast early decision properties. For presentation simplicity, we introduce the following notation. Given a
variable val; at process p;, we denote by val;[k] (1 < k < t+2) the value of the variable val; immediately
after the completion of round k; val;[0] denotes the value of val; immediately after completing line 4
(i.e., before sending any message in round 1). We assume that there is a symbol undefined which is
distinct from any possible value of the variables in the algorithm Ay ,. If p; crashes before completing
round k, then val;[k] = undefined; if p; crashes before completing line 4, then val;[0] = undefined. In
other words, if for any variable val, val;[k] # undefined then p; completed round k.

Lemma 29: Consider a process p; and a round 1 < k <t + 2, such that STATE,[k] € {SYNC1, SYNC2}
(pi completes round k with STATE = SYNCI or STATE = SYNC2). Let senderM Si[k] be the set of
processes which have sent the messages in msgSetj[k]. Then, sender M Sj[k] = II — Halt;[k].
Proof: Process p; completes round k with STATE = SYNC1 or STATE = SYNC2, and hence, updates
Halt and msgSet at line 11 and line 12 of round k, respectively. Consider any process p,, € II.
There are two exhaustive and mutually exclusive cases regarding the message from p,, to p; in round k
(1<k<t+2):

- If p; does not receive the messages from p,, in round k, then from the third condition in line 11,
pm € Halt;[k], and from line 12, p,, € sender M S[k].
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at process p;

1: procedure propose(v;)

2:

— =

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:

start Taskl; start Task 2

Task 1
STATE; < SYNCI ; est; < v;; Halt; < 0
for 1<k;<t+2
send(k;, est;, STATE;, Halt;) to all
wait until received messages in this round
if received(k;, est’, DECIDE, *) then
send(k; + 1, est’, DECIDE, 0) to IT\p;, return(est’) {decision}
if STATE; € {SyNcCl, sYNC2} then
Halt; < Halt;U {p; | (p; received(k;, *, NSYNC, *) from p;) or
(pi received(k;, *, *, Halt;) from p; s.t. p; € Halt;) or (p; did not receive round k; message from p;)}
msgSet; < { m | m is a round k; message received from p; ¢ Halt;}
est; < Min{est | (k;, est, *, *) € msgSet;}
if (STATE; = SYNC2) and (|Halt;| < t) and (STATE = SYNC2 for every message in msgSet;) then
send(k; + 1, est;, DECIDE, @) to II\p;, return(est;) {decision}
if |Halt;| < k; — 1 then
STATE; < SYNC2
if k; < |Halt;] <t then
STATE; < SYNCI1
if |Halt;| >t then
STATE; ¢ NSYNC
if (STATE = NSYNC) and (received(k;, est’, SYNC2, x)) then
est; «+ est’
return(proposec (est;))

Task 2
upon receiving (k', est’, DECIDE, *) do
when k; = k' + 1: send(k;, est’, DECIDE, () to II\p;, return(est’) {decision}

Figure 4: A Uniform Consensus algorithm Ay o in ES
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3. k-1 < | Halt | < t+1

ﬂ. | Halt | < k
4, x-1 < | Halt | < t+1

\—/2.\Halt\<k '\\
2. Rule 1

4.] Halt |>t
1. rcvd. DEC

A
No ) @
rcvd. DEC

not rcvd. DEC always

Rule 1: (| Halt | < t+l) and (every msg. rcvd. has STATE = SYNC2)

At a given STATE, transition conditions are evaluated in the order of their numbering

Figure 5: Rules for updating STATE at round k for process p; (algorithm Af_ )

30




- If p; receives the round the message from p,, in round k, then from line 12, p,,, € sender M S;[k]| iff
Pm ¢ Halt)[k]. O

Lemma 30. (Uniform Agreement) No two processes decide differently.

Proof. If no process ever decides then the lemma, is trivially true. If every process which decides, decide
in algorithm C, then the lemma follows from the uniform agreement property of C. Thus, we consider
the case where some process decides within the first ¢ 4+ 2 rounds. Consider the lowest round number in
which some process decides, say round k' + 1(< ¢t + 2). It is easy to see that, if some process decides v
in line 9 or line 27, then some other process has decided v in a lower round. Thus, some process decides
at line 15 of round &’ + 1. We claim the following;:

Claim 30.1: If there are two processes py and py such that STATE,[k'] € {SYNCI,SYNCZ} and STATE,[K']
= SYNC2 then esty[k'] > esty[k'].

[Proof of Lemma 30 cont.] We now complete the proof of uniform agreement assuming Claim 30.1.
We later give the proof of Claim 30.1. Suppose that some process p,, decides d at line 15 of round &' +1.
From line 14 it follows that p,, has completed round &’ with STATE = SYNC2 and est = d. Consider
another process p, which completes round k' with STATE = SYNC2 and est = d’. In Claim 30.1, if
we substitute p; by p,, and py by p, then, d > d'. Similarly, if we substitute p, by p, and p, by py,
then, d' > d. Thus, d’ = d, and any process which completes round k' with STATE = sYNC2, does so
with est = d. Notice that, every process which decides at line 15 in round &’ + 1, completes round &'
with STATE = SYNC2 and decides on its own est (line 14, line 15). Thus, every process which decides
in round k + 1 decides d. It remains to be shown that no process decides a different value in a higher
round.

From line 14 we have |Halt,, [k’ +1]| < ¢, and hence, Lemma 29 implies that msgSet,,[k'+ 1] contains
at least n — ¢ messages, i.e., messages from a majority of processes. Furthermore, the last condition
in line 14 requires that all messages in msgSet, [k’ + 1] has STATE = sYNc2. Applying Claim 30.1, we
have, in round k&’ + 1, messages from a majority of processes have STATE = SYNC2 and est = d, and
every message with STATE = sYNC1 has est > d.

Now consider the est value of any process p; at the end of round &’ + 1. If STATE;[K' + 1] = NSYNC,
then p; has received at least one message with STATE = SYNC2 and est = d (because a majority of
processes send such messages, and in every round p; receives messages from a majority of processes),
and therefore, updates its est to d (line 22). If STATE;[k’ + 1] # NSYNC then Halt;[k' + 1] < ¢ (line 20).
Therefore, msgSet;[k' + 1] contains at least n — ¢ messages (Lemma 29). Furthermore, msgSet;[k' + 1]
contains no message with STATE;[k' + 1] = NsYNC (line 11, line 12). Therefore, from Claim 30.1, every
message in msgSet;[k’ + 1] has est > d and at least one message with STATE = SYNC2 and est = d
(because a majority of processes sent messages with STATE = SYNC2 and est = d in round k' + 1).
Therefore, at line 13, p; updates est to d.

Thus, every process which completes round k' + 1 updates its est to d, and every process which
decides at line 15 of round &’ + 1, decides d. Now notice that the est value of a process at the end of
some round k is est value of some process at the end of round k — 1 (1 < k <t + 2). Therefore, for
round k such that ¥’ +1 < k < ¢+ 2, no process completes round k with est different from d (D1).
Notice that, if a process decides d’ at line 15 of round k such that ¥’ +1 < k < ¢+ 2, then its est is d’
at the end of round k — 1. Therefore, from D1, d' = d. Furthermore, proposal value for the underlying
consensus algorithm C' at a given process p; is the est value of p; at the end of round ¢+ 2. Hence, from
D1, every proposal value for algorithm C is d, and from validity property of C, every process which
decides in algorithm C, decides d. O

Claim 30.1: If k' +1 < t+ 2 is the lowest round in which some process decides then: if there

31



are two processes py and py such that STATE.[K'] € {SYNC1,SYNC2} and STATE,[K'] = SYNC2 then
esty[k'] > esty[k'].
Proof: Suppose by contradiction that there are two processes p, and p, such that

Assumption Al: STATE[k'] € {SYNC1,SYNC2}, STATE,[k'] = SYNC2, est,[k'] = ¢, esty[k'] = d, and
c<d.

We show Claims 30.1.1 to 30.1.7 based on the definition of &' and the assumption Al. Claim 30.1.4
contradicts Claim 30.1.7, which completes the proof of Claim 30.1 by contradiction.

Let us define the following sets for 1 < k < k' + 1:

o C[k] = {pilesti[k] < c} (Set of processes which complete round k with est < c.)
e crashed[k]= set of processes which crashes before completing round k.

e NSYN[k] = {p;|STATE;[k] = NSYNC}.

e Z[k] = C[k] U crashedlk] U NSY N[k].

Additionally, let us define, C[0] to be the set of processes whose proposal value is less than or
equal to ¢, crashed|0] to be the set of processes which crash before sending any message in round 1,
NSYNJ[0] = 0, and Z[0] = C[0] U crashed[0] U NSY N[0]. We make the following observation:
Observation A2: |C[0]| > 1, and hence, |Z[0]| > 1. Otherwise, if every process proposed a value greater
than ¢, then est;[k'] > ¢ (contradicts Al).

Claim 30.1.1: (a) For 0 < k < k' — 1, (crashed[k] U NSYNIk]) C (crashed[k + 1] U NSY N[k + 1]).
(b) For 0 < k <k'—1,if p; ¢ (NSYN[k]U crashed[k]) then p; sends messages with STATE € {syNcl,
SYNC2 } in round k and in the lower rounds.

Proof: (a) Suppose by contradiction that there is process p; such that p; € crashed[k] U NSY N|[k]
and p; ¢ crashed[k + 1)U NSY N[k + 1]. Obviously, crashed[k] C crashed[k + 1], and hence,p; ¢
crashed[k + 1] U NSY N[k + 1] implies p; ¢ crashedk]. Then,p; € crashed[k] U NSY N[k] implies
p; € NSY NIk], i.e., p; completes round k with STATE = NSYNcC. Notice that, by the definition of &'
(i.e., k' +1 is the lowest round in which some process decides), p; does not decide in round k + 1. Thus,
the STATE of p; remains NSYNC at the end of round &k + 1, i.e., p; € NSY N[k + 1]; a contradiction.
(b) If p; ¢ (NSY N[k]U crashed[k]), then from 30.1.1.a, it follows that, p; ¢ (NSY N[k1] U crashed[k;])
for 0 < k1 < k; i.e., p; completes every round lower than round k¥ with STATE # NSYNC. Thus, p;
cannot send message with STATE # NSYNCin round k or in a lower round. O

Claim 30.1.2: Z[k] C Z[k+1] (0 < k < K — 1).

Proof: Suppose by contradiction that there is a process p; and a round number k such that p; € Z[k]
and p; ¢ Z[k + 1]. Since p; ¢ Z[k + 1], then p; ¢ crashed[k + 1] U NSY N[k + 1]. Applying Claim
30.1.1.a, we get p; ¢ crashed[k] U NSY N[k]. However, p; € Z[k] = C[k] U crashed[k] U NSY N[k], and
hence, p; € C[k].

Since p; ¢ crashed[k], pi ¢ NSYNI[k], and p; € C[k], p; sends round k + 1 message m' with
est < ¢ and STATE # NSYNC. As p; ¢ crashed[k + 1)U NSY N[k + 1], so p; evaluates est in line 13
of round ¥ + 1. From Claim 30.1.1.b and p; ¢ NSY N[k], it follows that p; never sends a message
with STATE = NSYNC at round k or at a lower round. Since a process always receives the message
sent to itself without a delay and p; never sends a message with STATE = NSYNC at round k or at a
lower round, p; ¢ Halt;[k + 1]. Applying Lemma 29 we have, p; € sender M S;[k + 1], and therefore,
m' € msgSet;[k + 1]. Thus, when p; evaluate est in round k + 1, it consider message m’ with est < c,
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and adopts a values less than equal to ¢ as the new est. Thus, p; € C[k+1] C Z[k+1]; a contradiction. O

Claim 30.1.3: 0 < k < &' — 1,Vp; ¢ Z[k + 1], Z[k] C Hait;[k + 1].

Proof: Consider a process p; € Z[k] and a process p; ¢ Z[k + 1]. In round k + 1, msgSet;[k + 1] either
contains a message from p; or does not contain any message from p;. In the second case, Lemma 29 im-
plies that p; € Halt;[k+1]. Consider the case when msgSet;[k+1] contains a message m from p;. From
line 11 and line 12, it follows that, m has STATE # NSYNC, and hence, p; ¢ NSY N[k]. Furthermore, p;
sent a message in round k+1, and so, p; ¢ crashed[k]. Thus, p; € Z[k] but p; ¢ crashed[k]UNSY N k].
So, p;j € C[k]. Thus, m has est < ¢, and hence, est;[k + 1] < c¢. Thus, p; € Clk+1] C Z[k +1]; a
contradiction. Thus, msgSet;[k + 1] does not contains a message m from p;. O

Claim 30.1.4: |Z[k' —1]| < k' — 1.

Proof: Suppose by contradiction |Z[k' — 1]| > k' — 1. From Al, it follows that p, ¢ Z[k']. Therefore,
from claim 30.1.3, Z[k' — 1] C Halt,[k']. Hence, |Halty[k']| > k' — 1. However, STATE,[k'] = SYNC2 im-
plies that |Halt,[k']] < k' — 1 (line 16, line 17), a contradiction. 0

Claim 30.1.5: p, € Z[k] and p, ¢ Z[k' —2].
Proof: As est,[k'] = ¢, so p, € C[K'] C Z[k'].

For the second part of the claim, suppose by contradiction that p, € Z[k' — 2]. From Claim 30.1.3,
for every process p; ¢ Z[k' —1], py € Halt;[k' —1]. Therefore, in round &', if any process in IT — Z[k' — 1]
sends a message m, then p, € m.Halt (where, m.Halt denotes the Halt field of m). If p, receives m
then it includes the sender of m in Halt, (condition 2, line 11), and even if p; does not receive m then
it includes the sender of m in Halt, (condition 3, line 11). Thus, II — Z[k' — 1] C Halt,[k']. Using,
Claim 30.1.4, |Halty[k']| > T1 — Z[k' —1)]] > n— (k' —1). Since ¥’ +1 < t+2 and t < n/2, we have
|Halty[k']| > n —t > t. However, |Halt,[k']| > t implies that STATE,[k'] = NsyYNC (line 20, line 21); a
contradiction. O

Claim 30.1.6: (1) For every k such that 0 < k < k' —3: Z[k] C Z[k +1]. (Z[k] is a proper subset of
Zk+1]). (2)|1ZIK' —-2]| > k' — 1.
Proof: (1) Recall from Claim 30.1.2 that Z[k] C Z[k + 1] (0 < k < k' —1). Suppose by contradiction
that there is a round number s (0 < s < k' — 3), such that Z[s] = Z[s + 1].

We first show by induction on the round number & that, for s+1 < k <k —1, C[k] - (NSYN[k]U
crashed[k]) D Clk + 1] — (NSY N[k + 1] U crashed[k + 1]).

Base Case (k = s+1): C[s+1]—(NSY N[s+1]Ucrashed[s+1]) D C[s+2]—(NSY N[s+2]Ucrashed[s+2]).
Suppose by contradiction that there is a process p; such that p; € C[s+2]—(NSY N[s+2]Ucrashed[s+2])
(A4) and p; ¢ C[s + 1] — (NSY N|[s + 1] U crashed[s + 1]) (A5).

A4 implies that p; ¢ NSY N[s+2]Ucrashed[s+2]. Applying Claim 30.1.1, we have p; ¢ NSY N[s+
1]Ucrashed[s+1], and therefore, from A5 it follows that p; ¢ C[s+1]. Thus, p; completes round s+1 with
est > c. Furthermore, A4 implies that p; € C[s + 2], and hence, p; completes round s + 2 with est < c.
So, msgSet;[s + 2] contains a message with est < ¢ from some process p; (i.e., p; € sender M S;[s + 2]).
From the definition of Z[s 4 1], it follows that p; € C[s + 1] C Z[s + 1].

As p; ¢ NSYN|[s+ 1] Ucrashed[s + 1] and p; ¢ C[s + 1], so from the definition of Z[s + 1] we have
p;i ¢ Z[s+1]. Claim 30.1.3 implies that Z[s] C Halt;[s+1]. Recall that we assumed Z[s] = Z[s+1] and,
from line 11, Halt;[s+1] C Halt;[s+2]. Therefore, Z[s+1] C Halt;[s+2]. Thus, p; € C[s+1] C Z[s+1]
implies that p; € Halt;[s + 2]. Therefore, p; € sender M S;[s + 2] N Halt;[s + 2].

As p; ¢ NSY N|s + 2] U crashed[s + 2], then p; completed round s + 2 with STATE = SYNCl or
STATE = SYNC2. From Lemma 29 it follows that sender M S;[s + 2] N Halt;[s + 2] = (. However,
p; € sender M S;[s + 2] N Halt;[s + 2]; a contradiction.
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Induction Hypothesis (s+1 <k <r <k'—1): Clk]—(NSY N[k]Ucrashed[k]) 2 Clk+1]—(NSY N[k+
1] U crashed[k + 1]).

Induction Step (k=r+1): Clr+ 1] — (NSYN[r + 1] Ucrashed[r +1]) D C[r +2] — (NSYN[r + 2] U
crashed[r+2]). Suppose by contradiction that there is a process p; such that p; € C[r+2]— (NSYN[r+
2] U crashed[r + 2]) (A6) and p; ¢ C[r + 1] — (NSY N|r + 1] U crashed[r + 1]) (A7).

As in the base case, using A6, A7, and Claim 30.1.1, we can show p; ¢ NSY N[r+2|Ucrashed[r+2],
pi ¢ NSYN[r + 1] U crashed[r + 1], and p; ¢ C[r + 1]. Thus, p; ¢ Z[r + 1]. Since s +1 < r + 1, from
Claim 30.1.2, we have Z[s + 1] C Z[r + 1], and therefore, p; ¢ Z[s + 1].

Applying Claim 30.1.3 on p; ¢ Z[s + 1] implies that Z[s] C Halt;[s + 1]. Recall that we assumed
Z[s| = Z[s + 1], and from line 11, Halt;[s + 1] C Halt;[r + 2]. Therefore, Z[s + 1] C Halt;[r + 2] (A8).

From induction hypothesis, we have (C[s + 1] — (NSY N|s + 1] U crashed[s + 1])) 2 (C[r + 1] —
(NSY N[r+1]Ucrashed[r+1])). From the definition of Z[s+1], C[s+1]—(NSY N[s+1]Ucrashed[s+1]) C
Cls+1] C Z[s+ 1], and therefore, C[r + 1] — (NSY N[r + 1] U crashed[r + 1]) C Z[s+ 1]. Applying AS,
we have (C[r + 1] — (NSY N|[r + 1] U crashed[r + 1])) C Halt;[r + 2] (A9).

As p; ¢ Z[r + 1], p; completes round r + 1 with est > ¢. Furthermore, A6 implies that p; € C[r + 2],
and hence, p; completes round r + 2 with est < ¢. Therefore, msgSet;[r + 2] contains a message with
est < ¢ from some process p; (i.e., p; € sender M S;[r + 2]). From the definition of Z[r + 1], it follows
that p; € Clr + 1] C Z[r + 1].

As the round r + 2 message of p; is in msgSet;[r + 2], so from line 11 it follows that the message
sent by p; had STATE # NSYNC. Therefore, p; ¢ NSYN[r + 1] and p; ¢ crashed[r + 1]. Therefore,
pj € Clr +1] — (NSY N[r + 1] U crashed[r + 1]). From A9 it follows that p; € Halt;[r + 2].

As p; ¢ NSYN|[r + 2] U crashed[r + 2] (from A6), so p; completed round r + 2 with STATE =
SYNC1 or STATE = SYNC2. Lemma 29 implies that sender M S;[r + 2] N Halt;[r + 2] = (). However,
p; € sender M S;[r + 2] N Halt;[r + 2]; a contradiction.

From the above result, we have (C[k' — 2] — (NSY N[k’ —2]Ucrashed[k' —2])) 2 C[k']— (NSY N[k'|U
crashed[k'])). From Al, p, € CI[k'] — (NSYN[K'] U crashed[k'])). From Claim 30.1.5, we have
pr & Z[K' —2] O (ClK' — 2] — (NSYNI[K' — 2] U crashed[k’ — 2])). Therefore, there is process in
C[k'] — (NSYN[K'] U crashed[k']) which is not in C[k' — 2] — (NSYNI[kK' — 2] U crashed[k’ — 2]); a
contradiction.

(2) Part (1) of this lemma implies that for every k such that 0 <k < k' — 3, |Z[k + 1]| — |Z[K]| > 1.
We know from A4 that |Z[0]| > 1. Therefore, |Z[k' —2]| > k' — 1. m]

Claim 30.1.7: |Z[k' —1]| > k' — 1.
Proof: Suppose by contradiction that |Z[k' —1]| < k' —1. Since Z[k'—2] C Z[k' —1] (Claim 30.1.2) and
Z[K' —2]| > k' — 1 (Claim 30.1.6.b), we have Z[K' —2] = Z[k' — 1] and |Z[K' —2)| = |Z[F' —1]| = k' — 1
(A10).

We know from Claim 30.1.5 that p, ¢ Z[k' — 2] = Z[k' — 1]. Applying Claim 30.1.3, we have
Z|k'— 2] C Halty[k' —1]. As Z[k' — 2] = Z[k' — 1] (from A10), it follows that Z[k' — 1] C Halt,[k' —1].

Since, py ¢ Z[k' —1], p; completes round k' — 1 with est > ¢ and STATE # NSYNC. From Al, we also
know that p, completes round k' with est < ¢ and STATE # NSYNC. Therefore, msgSet,[k'] contains a
message, say from process p;, with est < ¢ (i.e., p; € sender M S;[k']). From the definition of C[k' — 1],
p; € C[k' —1] C Z[k' — 1]. However, we showed earlier that Z[k' — 1] C Halt,[k' — 1], and from line 11,
it follows that Halty[k' — 1] C Halt,[k'). Thus, Z[k' — 1] C Halt,[K'] and p; € Halt,[K'].

From A1, we know that p, completed round k' with STATE = SYNC1 or STATE = SYNC2. Therefore,
Lemma 29 implies that sender M S;[k'] N Halt,[k'] = 0. However, p; € sender M S (k'] N Halt,[k']; a
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contradiction. O

Lemma 31. In a synchronous run, consider any process p; which completes round k < t+ 2. FEvery
process in Halt;[k] crashes before completing round k.

Proof. Let H[l] (0 <! <t+ 2) be the union of Halt;[l] such that Halt;[l] # undefined. We claim the
following which immediately implies the lemma: FEwvery process in H[l] (0 <1 < t+ 2) crashes before
completing round 1.

We prove the claim by induction on round {. For [ = 0, the lemma is trivially true, because H[l] = ()
(base case). Suppose that the claim is true for 0 <1 <[1—1 < ¢t+1: every process in H[l] crashes before
completing round ! (induction hypothesis). Consider H[I1] (induction step). If H[I1] — H[I1 —1] =0
then the induction step is trivial. Suppose by contradiction that there is process p; € H[I1] — H[I1 — 1]
such that p; completes round /1. Thus, there is a process p, such that p; ¢ H,[l1 — 1] and p; € H,[I1].

Since p; completes round /1 and the run is synchronous, in that round, p, must have received the
round /1 message m of p;. Since, p; € Hy[m], m contains either (a) STATE = NSYNC or (b) Halt; such
that p, € Halt;. Now, we show both the cases to be impossible and thus prove the induction step by
contradiction.

From our assumption, for every round lower than /1, every process in Halt; has crashed. Since more
than ¢ processes can never crash in a run, in rounds lower than /1, |Halt;| is never more than ¢. Thus,
p; can not update its STATE to NSYNC in rounds lower than 1 (line 20). Thus, the round /1 message
from p; does nor contain STATE = NSYNC.

If the round /1 message from p; contains Halt; such that p, € Halt; then p, € Halt;[l1 — 1] C
H[I1 — 1]. However, from our assumption, every process in H[l1 — 1] crashes before completing round
[1 — 1, which implies that p, crashes before completing round /1 — 1; a contradiction. O

Lemma 32. (Fast Early Decision) In every synchronous run of Asio with at most f failures (0 < f <
t < n/2), every process which decides, decides at round f + 2 or at a lower round.

Proof. Consider a synchronous run in which at most f processes fail. From Lemma 31, |Halt| at every
process is less than or equal to f in the first ¢ + 2 rounds (A11). Suppose by contradiction that some
process p; completes round f + 2 but does not decides in that round. Then, either (1) STATE;[f + 2] =
NSYNGC, or (2) some process p; sent a message in round f + 2 with STATE = syNcl. For case 1 to hold,
|Halt;| >t in round f + 2 or a lower round (line 20), which clearly violates Observation A11. For case
2 to be true, STATE;[f + 1] = SYNC1, and therefore, |[Halt;[f + 1]| > f + 1 (line 18), which contradicts
A1l as well. O
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