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Abstract: The Byzantine failure model allows arbitrary behavior of a certain fraction
of network nodes in a distributed system. It was introduced to model and analyze the
effects of very severe hardware faults in aircraft control systems. Lately, the Byzantine
failure model has been used in the area of network security where Byzantine-tolerance
is equated with resilience against malicious attackers. We discuss two reasons why
one should be careful in doing so. Firstly, Byzantine-tolerance is not concerned with
secrecy and so special means have to be employed if secrecy is a desired system pro-
perty. Secondly, in contrast to the domain of hardware faults, in a security setting it
is difficult to compute the assumption coverage of the Byzantine failure model, i.e.,
the probability that the failure assumption holds in practice. For this latter point we
develop a methodology which allows to estimate the reliability of a Byzantine-tolerant
solution exposed to attackers of different strengths.

1 Introduction

A group of scientists from all over the world regularly gathers for scientific
meetings do discuss recent advances in their field. The meetings are organi-
zed by one particular member of this group who—when necessary—fixes a
date and a place for the meeting and informs all other members of the group.
However, the good spirit which usually prevailed in this group deteriorated
during the most recent meeting because some members hadn’t shown up. In
fact, exactly those members didn’t show up which had severely criticized the



results presented by the organizer during the last meeting. The organizer, ho-
wever, confirmed that he had informed everybody about the meeting. Contac-
ted via telephone, the missing participants stated that they had in fact been
notified about the meeting but they thought the meeting was to be held at a
different date. They accused the organizer of not having given them the cor-
rect information because he was reluctant to discuss his results with them
again. The organizer protested against these accusation and said that this was
a conspiracy to bring him into discredit. The participants now discussed how
to avoid this problem for the next meeting.

The problem description above (which is taken from [Bor97]) is an instance of what is
known as theInteractive Consistency Problem[LSP82]. Interactive Consistency is one of
the most fundamental tasks in fault-tolerant distributed computing and a solution to this
problem has many applications. In this application domain, a critical (database) server for
example is replicated several times to ensure availability even when one of the servers
fails. However, all servers must update their state in the same way so that accesses to
the replicated data do not return inconsistent values. The server which is about to initiate
an update to its state plays the role of the conference organizer in the scenario above. The
other servers resemble the conference participants. A protocol which solves the Interactive
Consistency Problem allows to prevent the confusion which happened above and ensures
that all (well-behaving) participants consistently agree on the same update.

Interactive Consistency is sometimes also known as theByzantine Generals Problem[LSP82]
which was originally presented in a more militaristic setting where the conference parti-
cipants are generals of the Byzantine army which want to agree on whether to attack an
enemy town or not. The generals are either loyal or traitors. Traitors can act in arbitrary
ways, i.e., they can send conflicting messages to the other generals during decision ma-
king. From this story, the assumption that computer components can act in arbitrary ways
is now called theByzantine failure assumption. It originated from work in the area of fault-
tolerant aircraft control systems [WLG+78] and was intended to model worst case faulty
behavior.

Recently, we are seeing an increasing use of the Byzantine failure model in the area of
security [Rei96, KM99, CKS00, CLNV02, Kur02, YMV+02, ZSvR02]. This is because
the worst case assumption of arbitrary behavior can also be regarded as malicious behavior
of an attacker of the system. Hence, a Byzantine-tolerant system can also be regarded as
secure against malicious attackers.

There are two main concerns indicating that the Byzantine failure model should be used
with care in the context of secure systems. The first concern is that Byzantine-tolerant
solutions (for example to Interactive Consistency) are not concerned withsecrecy. For ex-
ample, if a database is fully replicated to maintain availability in the presence of Byzantine
failures, an attacker compromising at least one database server will know the entire con-
tents of the database. If file contents are required to be kept secret, then standard algorithms
for Interactive Consistency from the fault-tolerance area (e.g., the classic ones of [LSP82]
or [BO83]) can only be applied if specific firewall architectures are used [YMV+02].

If secrecy of replicated data is required, mechanisms from cryptography have to be applied,
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usually some instance ofsecret sharing. In this approach, data is stored in a distributed way
so that it needs a certain fraction of nodes to collaborate in the reconstruction of the data.
If this fraction is higher than the number of nodes which may be faulty, then the Byzantine
nodes cannot by themselves reconstruct arbitrary data. However, if standard agreement
protocols are used, nothing can prevent a Byzantine node from receiving information about
what has been proposed as the database update by individual processes.

Interestingly, a similar problem to Interactive Consistency where individual process in-
puts can be kept secret has been studied for years in the area of cryptography under the
heading ofsecure multi-party computation(see Goldwasser’s invited lecture [Gol97] or
Goldreich’s survey [Gol02] for an overview). In a secure multi-party computation, a set
of processes wants to compute a deterministic function of all their inputs without trusting
each other. A common example is the millionaires’ problem: Two millionaires want to
know who of them has more money but they don’t want to tell each other how much they
really have. A multi-party computation can computeany function even though a certain
fraction of nodes exhibits Byzantine behavior. It does this in a way so that a Byzantine
process learns nothing about the inputs of other processes to the computation (apart from
what is derivable from the result of the function). It is obvious that Interactive Consistency
can be formulated as an instance of secure multi-party computation and often researchers
in fault-tolerance are not aware of this fact leading to multiple re-inventions of the wheel.

The second concern suggesting care in using Byzantine failures in security is related to
measures of reliability. The Interactive Consistency problem (as well as secure multi-party
computation) is provably impossible if at least one third of the processes can behave in a
Byzantine fashion [PSL80]. If we denote byf the maximum number of faulty processes
and byn the total number of processes, this means that we needf < n/3 for the pro-
blem to be solvable. In practice, we cannot predict with certainty thatf < n/3 will hold,
we (sometimes) can merely give a probability, which is called theassumption coverage
[Pow92]. The best solution to Interactive Consistency is useless in practice if the assump-
tion coverage off < n/3 is 0, i.e., in practical situations where this bound cannot be
guaranteed.

In the fault-tolerance domain, calculating assumption coverage is an established area. The
relevant input measure is thereliability of a component which is defined as the proba-
bility that the component is not faulty until a certain timet. Experience from large data
collections of component failures shows that the reliability of components can be mode-
led as a random variable satisfying a certain distribution [Bir99]. The overall reliability of
a complex system can then be calculated from the reliability of its components. An im-
portant assumption which makes these calculations possible (and which can be justified in
practice) is that the failures of the nodes are statistically independent.

In the area of security, there are (up to now) no extensive and standardized databases of
security violations (maybe the closest is the recently established Internet Storm Center
[The03]). It is also often argued that Byzantine failures in the security setting are not
random events: If a new security vulnerability is published, the probability of a server
being compromised rises. But maybe most importantly it is very difficult to argue that the
occurrences of security related Byzantine failures are statistically independent (especially
if all servers run the same operating system). So although Byzantine failures still result in
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arbitrary behavior, they are not random events in security.

There has been some work to study the effects of different levels of reliability on Byzantine-
tolerant solutions in the area of fault-tolerance [Rei85, Bab87, Vai93]. For example, Rei-
schuk [Rei85] gives a protocol for Interactive Consistency and analyzes the probability of
termination given the reliability of the individual nodes and communication channels. All
this work assumes statistically independent failures.

In this paper we study ways of measuring the reliability of a system in a security setting.
We argue that in such a setting two types of (often indistinguishable) Byzantine behavior
can occur: (a) traditional Byzantine failures through hardware faults, and (b) Byzantine
behavior as a result of the server being fully compromised by an attacker. We introduce
a work-factor related measure of faults of class (b) and show how it can be related to the
traditional measuring techniques of faults of class (a). To the best of our knowledge, this
is the first work which enables statements about the reliability of a system in the presence
of certain types of attackers.

2 Background

2.1 General System Setting

The general system setting is a group ofn servers (sometimes also called nodes) in a
fully connected network which communicate via message passing. For simplicity (and to
avoid known impossibilities [FLP85]) we assume a synchronous model of computation,
i.e., there are known upper bounds on message delivery delays and the relative difference
in server execution speeds.

Servers can become faulty by exhibiting arbitrary (Byzantine) behavior due to two diffe-
rent types of reasons:

• Hardware faults: occurrence of these faults is random and statistically independent.

• Server takeovers by an attack: in this case we assume that an adversary has full
control over the server.

We denote byf the maximum number of servers which are allowed to behave arbitrarily.
If not stated otherwise, we assume thatf < n/3.

2.2 Measuring Reliability

The reliability R of a system is the probability that it will perform its expected function
for a given time interval [Bir99]. Taking the time interval as a parameter, thereliability
functionR(t) denotes the probability that the system is non-faulty until timet. In general,
we assume thatR(0) = 1.
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The failure-free operating time of a system is generally a random variable [Bir99, p. 3].
The empirical failure rateλ̂(t) of a system is the number of failures per time unit and
computed by looking at the time it takes of a set of statistically identical systems to exhibit
faulty behavior. If the number of observed components rises, the empirical failure rate is
assumed to converge to the “true”failure rateλ(t). The failure rate fully determines the
reliability function in the following way [Bir99, p. 5]:

R(t) = e−
∫ t
0 λ(x)dx (1)

In practice it is usually assumed that the failure rate is (nearly) constant and so for allt ≥ 0
we have thatλ(t) = λ. From Eq. 1 follows that

R(t) = e−λt (2)

In this case the failure-free operating time is exponentially distributed. Typical figures for
λ in practice are10−10 to 10−9h−1 [Bir99]. The well-known measures of MTTF (mean
time to failure) can be calculated from the reliability function.

Given a set ofn servers each of which having the same reliability functionR(t), we are
interested in the overall reliability functionRs(t) of a system where at leastk out of n
servers remain non-faulty. For the case of statistically independent failures this can be
computed as the sum of the probabilities whereexactlyk out of n, exactlyk + 1 out of
n, . . . , exactlyn out of n servers remain non-faulty (note that these cases are mutually
exclusive). The individual probabilities (i.e., where exactlyk out of n are non-faulty) can
be calculated in the standard way using the binomial coefficient

(
n
k

)
giving the number

of all distinct combinations ofk elements from a set ofn elements. This results in the
following formula:

Rs(k, n, t) =
n∑

i=k

(
n

i

)
Ri(t)

(
1 −R(t)

)n−i
(3)

Eq. 3 will be important later to evaluate the reliability of the system in the presence of
attacks.

2.3 Measuring Security

How to correctly assess the security of a given system is still very much an open problem
(see for example the many different views on this subject in [App01]). Schneier [Sch01]
even argues that developing useful security related measures is not possible now, and might
never be.

An example from the area of physical security which is often mentioned in this context is
the rating standard of safes by the company Underwriters Laboratories [Und00]. The stan-
dard distinguishes between the methods and the time needed to break into a certain safe.
Ratings can be “tool resistant” (TL), i.e., resistant against hand and power tools (ham-
mers, drills), “torch resistant” (TR), i.e., resistant against oxyacetylene cutting torch, and
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“explosive resistant” (TX). An overall rating of TL-30 for example means that the safe
is tool resistant for at least 30 man-minutes. The notable difference between this measu-
re and the reliability metric used in fault-tolerance is that it is aneffort related measure.
Effort is usually associated with the time and the “force” which an adversary must invest
to perform the attack. Effort related measures also prevail in cryptography where security
is often proven with respect to an adversary who is computationally bounded (e.g., by an
arbitrary polynom). In security, effort (or work-factor) related measures seem to be more
appropriate than mere probabilities. However, the problems (given by Schneier [Sch01])
for practical security measures, like time- and context-dependencies, have limited concre-
te proposals (maybe the most advanced are Schneier’s attack trees [Sch99]) and resulted
in some rather theoretical statements like Jacob’s security orderings [Jac92] or Meadows’
denial-of-service framework [Mea98].

3 Coverage Calculations in a Security Context

3.1 Defining Attacker Classes

Because of the difficulties in defining concrete security measures which were explained
in Sect. 2, we define a set of effort-related general attacker classes with ideas borrowed
from complexity theory. Similar to the measurements of reliability we regard the system
which is put into operation at a timet = 0 and observe its behavior if it is exposed to an
adversary from a certain attacker class. The attacker classes basically define how fast an
attacker is able to compromise individual servers of the system.

We define anattacker functionC(t) which returns the number of servers which have been
fully compromised until timet. We make several simplifying assumptions here which
have analogies to the area of reliability measurements. Firstly, we do not consider “partial
failure”, i.e., either the attacker has fully compromised the system or not. In practice this
means that we just consider attacks in which at some point an attacker gains superuser
(root) privileges and had no control over the server before. Secondly, we do not consider
“repair”, i.e., once a server has been compromised there is no action to restore it in an
uncompromised state. In practice this means that the system administrator does not reboot
the server from a “clean” image of the operating system.

We now define and motivate four different classes of attackers. All classes are parametrized
by some valuep.

• Constant time attacker with parameterp > 0.

Such an attacker needs a constant amount of time, namelyp, to fully compromise
all servers in the system. This models scenarios in practice where all servers run the
same operating system and an attacker exploits some (un)known vulnerability.

The attacker function of the constant time attacker with parameterp is defined as
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follows:

C(t) =

{
0 if t ≤ p,

n otherwise.
(4)

• Linear time attacker with parameterp > 0.

Such an attacker compromises servers one after the other, i.e., he needs the same
amount of time, namelyp, anew to break in to a server. This models scenarios in
practice where operating system diversity is applied to prevent constant time attacks,
e.g., every server is running a different version of the operating system in the hope
that not all exhibit the same vulnerability.

The attacker function of the linear time attacker with parameterp is defined as fol-
lows:

C(t) = min{bt · pc, n} (5)

• Logarithmic time attacker with parameterp > 1.

Such an attacker needs a certain amount of time to break in to the first server. The
time to break in to the second server follows a logarithmic curve, i.e., it takes increa-
singly longer to compromise each attacked server. This models scenarios in practice
where the system administrators have discovered that their system is under attack
and are constantly strengthening the defenses of the remaining (uncompromised)
servers, making it increasingly hard for the attacker to break in.

The attacker function of the logarithmic time attacker with parameterp is defined as
follows:

C(t) = min{blogp tc, n} (6)

• Polynomial time attacker with parameterp > 0.

Such an attacker gets increasingly faster in breaking in to the servers of the system.
This models scenarios in practice where the attacker “learns” secret information
about the attacked system from breaking in to servers. For example, breaking in to
the first server makes it easier to exploit vulnerabilities originating from file sharing
mechanisms.

The attacker function of the polynomial time attacker with parameterp is defined as
follows:

C(t) = min{btpc, n} (7)

More classes can be defined analogously.

3.2 Relating Reliability to Attacker Classes

To give an estimate of the system reliability in the presence of attacks, we need to do two
things:
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1. Choose an attacker class which is reasonable for the given setting and instantiate
the parameterp. From this, derive the attacker functionC(t). For now, we have to
defer concrete rules of how to do this to future work. Note however that these classes
can be (partially) ordered according to their strength, i.e., assuming a constant time
attacker is clearly more pessimistic than assuming a linear time attacker.

2. Choose a reliability functionR(t) with respect to hardware failures for an individual
server. This can be done with established methodologies mentioned in Sect. 2.

The idea of the following calculations is that the attacker function limits the “remaining”
redundancy for hardware faults. For example, if no server has been compromised, for
f = 3 andn = 10, the reliability of the entire system is calculated from the Eq. 3 for
a “k out of n” system wherek = n − f . However, if a single server has already been
compromised, this server is not part anymore of the system redundancy used to tolerate
hardware faults. This means the reliability decreases to that of a “k out ofn − 1” system.

In general, the overall reliabilityRC for f andn in the presence of attackerC(t) calculates
to the reliability of a “k out ofn − C(t)” system. Taking Eq. 3 this can be formalized as:

RC(f, n, t) = Rs(n − f, n − C(t), t)

=
n−C(t)∑
i=n−f

(
n − C(t)

i

)
Ri(t)

(
1 −R(t)

)n−C(t)−i
(8)

Note that the reliability drops to 0 onceC(t) ≥ f , i.e., in this case the attacker has used up
the entire redundancy of the system. The calculation implicitly assumes that an attacker
may not compromise a faulty server.

3.3 Examples

Using the definition ofRC above it is now possible to give an account of the reliability
of a certain system in the presence of attacks. We have calculated the reliability functions
for two different classes of attackers (constant and linear time) with different parameters
p. The failure rateλ defining the reliability of an individual server was constantly set to 1.
The number of serversn was set to 10 and the maximum number of failuresf was set to
3.

The case of the constant time attacker is plotted in Fig. 1 for a time ranget between 0 and
2 · λ. The strength of the attackerp also varies between 0 and2 · λ. It can be seen that the
reliability functionRC follows the original curve but suddenly drops to 0 oncep time has
elapsed, i.e., once the attacker has compromised the entire system. Note that a lower value
of p indicates a faster and therefore stronger attacker. The figure shows that the reliability
of the system remains unchanged ifp is sufficiently large.
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constant time attacker with parameter p
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Abbildung 1: System reliability assuming a constant time attacker of varying strengths.

The case of the linear time attacker is plotted in Fig. 2 for a timet between0 and2 ·λ. This
time the strengthp of the attacker varies between0 and4 · λ. Note that in contrast to the
constant time attacker, larger values ofp indicate stronger adversaries (more compromised
servers per time unit) and so for increasing values ofp, the system reliabilityRC decreases
faster. For example, forp = 1, the first server is compromised att = 1 leading to a sudden
but slight drop of the reliability function. Forp = 4, the first server is compromised at time
t = 0.25, the second server at timet = 0.5, the third one att = 0.75. As soon as the fourth
server is compromised at timet = 1, the reliability drops to 0. The figure shows that linear
time attackers do not have “linear success” in degrading system reliability: Every newly
compromised server decreases system reliability less than the previous one.

The data plotted in Fig. 2 can also be visualized similar to characteristic curves of transistor
elements which are known from electrical engineering. Fig. 3 can be used by an engineer
to determine the reliability of his system with respect to a particular strength of an attacker.
For example, the reliability of the system at timet = 0.4 is 0.6 for an attacker of strength
0 and 2, but 0.4 for an attacker of strength 4. Similarly the graph can be used to derive the
maximum attacker strength tolerable given a certain target reliability and mission time.
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linear time attacker with parameter p
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Abbildung 2: System reliability assuming a linear time attacker of varying strengths.

For example, for a mission duration of 0.5 and a minimum reliability of 0.2 the system can
sustain an attacker of strength 2 and below.

4 Conclusions and Future Work

In this paper we have argued that one should be careful when using the Byzantine failure
model in the context of security. The main reason for this is that there is no accepted
measure to estimate the “coverage” of the necessary assumption that at most a certain
fraction of processes can be fully compromised. We have introduced an effort-related form
to model attackers and a corresponding set of attacker classes that allow to attribute some
meaning to the statement that “the reliability of the system at timet is x” in the presence of
attacks. The attacker classes group different adversaries by distinguishing the “speed” (in
a complexity theoretic sense) in which they can compromise servers. This can be seen as
a first step to reconcile standard reliability measures from fault-tolerance with new effort-
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Abbildung 3: System reliability assuming a linear time attacker of strengthp for three different
values.

related measures from security.

The problem of choosing the right attacker class and instantiating the attacker parameter
p remains and leaves room for much future work. From the motivating examples given
in Sect. 3 it should be clear that the different attacker classes do have some relation to
practice and so it may after all be feasible to arrive at a sensible choice of an attacker class
considering a specific application scenario. Such a classification would be helpful in the
area of risk management [GLS03] since it would provide some indication of how much
company resources should be invested into countermeasures (i.e., reducing the attacker
strength or improving the attacker class).

Another line of future work could more closely investigate the interrelations between atta-
cker classes and system reliability. The figures in Sect. 3 show nicely that there are trade-
offs between attacker class, attacker strength and system reliability. For different values of
p the system reliability can be higher even if a more severe attacker class is chosen. The
simplifying assumptions made in Sect. 3 also invite to explore many other questions, for
example to consider attacker models with “repair” and their effect on system reliability.
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