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Abstract

Many applications, such as the dissemination of stock quote events, require reliable and totally ordered
delivery of broadcast messages to a large number of processes. Recently, gossip-based broadcast algorithms
have been praised as an interesting alternative to deterministic broadcast algorithms for such reliable
information propagation, by providing an appealing tradeoff between reliability and scalability.

However, despite the importance of ordering guarantees, only little work exists on gossip-based broad-
cast algorithms providing guarantees stronger than (probabilistic) reliability. In fact, it is still not clear
how (well) a probabilistic approach marries with such ordering guarantees.

In this paper, we present a novel algorithm, called Atomic Probabilistic Broadcast, for totally ordered
delivery of broadcast messages to members of large groups. This algorithm is hybrid in the sense that
it has both probabilistic and deterministic characteristics: while the propagation of broadcast messages
and ordering information is probabilistic, this ordering information is computed deterministically in a
decentralized manner, thereby providing availability and consistency. We point out the advantages of
such a hybrid approach, in terms of reliability, scalability, and consistency, and convey these through
both analysis and simulation.

1 Introduction

The success of publish/subscribe systems reflects the need of modern applications for group commu-
nication primitives deployable at large scale. Yet, group communication algorithms aiming at strong
guarantees in the face of communication and process failures hardly scale. This statement is increas-
ingly valid when considering algorithms additionally aiming at ordered, e.g., totally orderered, delivery
of messages issued concurrently. Yet, many applications, such as the dissemination of stock quotes to a
large number of stock brokers, typically require such guarantees on delivery order.

Atomic Broadcast. The “classic” solution of [18] to Atomic Broadcast (a.k.a. Total Order Broad-
cast) can be described as completely (1) deterministic and (2) symmetric (decentralized) with respect
to both the propagation of broadcast messages, and ordering of these messages. The algorithm toler-
ates L”%lj process failures within a group of n processes, but involves communication rounds of O(n?)
messages for broadcasting messages, and furthermore requires each process to know every other process,

leading to a membership knowledge of O(n) for each process.

Asymmetric approaches. Literature is very rich in further solutions to the problem of Atomic
Broacast (cf. [11]). A major principle in improving over the above-described approach consists in
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separating the propagation of messages from the computation of the delivery order for these messages.
This aids in reducing the overhead of latter task — a predominant factor to the latency of message
delivery [24].

This introduces a large family of algorithms, which can be characterized as (1) deterministic but (2)
asymmetric. Typical representatives are algorithms relying on sequencers/tokens for determining the
delivery order of messages (cf. [24]). Whilst incurring a reduced overhead for message ordering (possibly
also by making assumptions on broadcasters, e.g., number, disposition), such algorithms naturally
provide a lower degree of reliability (i.e., availability) than the approach of [18], as the failure of a
sequencer (the loss of a token) does not go unnoticed, but conversely incurs a sensible failover time.
Many publish/subscribe systems (e.g., [6],[1, 2]) carry asymmetry even further, by making use of an
overlay graph of “message routers” for interconnecting group members much like a spanning tree. Such
a tree can be used for propagating messages with low complexity, e.g., O(n) by requiring every (router)
process to know only a number of processes that can be upper bound by a constant. This graph can
then also be exploited to order messages at “concentration points”. However, it is not clear whether
such approaches offer reliability (i.e., availability) in the face of (router) process failures, and if they do
so (e.g., by replicating routers), whether and how consistency of the computed delivery order is ensured.
[1, 2] for instance mentions the use of redundancy in the overlay graph, but the ordering algorithm of
[1] does admittedly not cope with failures of processes broadcasting or ordering messages. Motivated by
the desire of achieving delivery even despite temporary disconnections of group members, all broadcast
messages are logged on stable storage, making persistence the mechanism of choice for reliability. Thus,
it appears that the overhead of order determination (and message propagation) is somewhat traded
against an overhead of message logging, and in particular, a loss of availability.

Probabilistic approaches. Another recent trend in the design of broadcast algorithms consists in
using “gossips” [12] for achieving good scalability (by requiring typically O(n In n) messages for broad-
casting a message [20]), and a high “degree” of reliability which gracefully degrades in the face of an
increasing number of process failures [21].

However, only little work exists on gossip-based broadcast algorithms with more than (probabilistic)
reliability guarantees. The seminal Probabilistic Broadcast (pbcast) algorithm of Birman et al. is
originally described informally with an inherent scheme for achieving total order [3], and later on is
presented as a Reliable Broadcast component which can be simply “plugged” into Atomic Broadcast
[16]. In both cases, the guarantees achieved for the consistency of the delivery order are not clear.
Probabilistic Atomic Broadcast (pabcast) [15] is fully (1) probabilistic, and (2) symmetric. By mixing
message ordering and propagation as in [18], but basing these on gossips, pabcast achieves lower com-
plexity than [18] by sacrificing reliability in the sense of both order consistency and delivery reliability.
This reflects through individual probabilities associated with its Validity, Agreement, and Total Order
guarantees, which however gives the false impression that the respective probabities are independent:
while the first two properties are defined with respect to a single message, the third property introduces
dependencies between these messages. This manifests in [15] through the absence of an analytical eval-
uation of the probability associated with the third property. The behavior of pabcast is hence hard to
grasp, as no information is given on the intersection of the different properties. Furthermore, pabcast,
just like pbcast, imposes a membership knowledge of O(n) on every process.

A hybrid approach. This paper presents Atomic Probabilistic Broadcast (apbcast), a novel algorithm
implemented for publish/subscribe programming in the DACE platform [10]. apbcast is hybrid: its (1a)
deterministic ordering of messages ensures the consistency of the delivery order of broadcast messages,



and its (1b) probabilistic, i.e., gossip-based, propagation of broadcast messages and order information
provides a high level of reliability in the face of an increasing number of process failures.

apbcast achieves the best of both worlds, naturally, by relying on an inherent L— recursive subdivision
of process groups. This fully (2) asymmetric approach inherently provides “concentration points” for
ordering broadcast messages. By making use of R such points which deterministically order broadcast
messages for each primary subdivision group, an ideal tradeoff is achieved between ordering overhead
(greatly keeping traffic “local” to such subgroups) and availability (by tolerating at least | 251 ] failures
among the B broadcasting processes, and [%J failures of ordering processes within each subgroup).
And this tradeoff can be tuned through R. Furthermore, the dissemination of a broadcast message
involves only O(n In n) network messages (typical for symmetric gossip-based broadcast), by imposing
however only a membership knowledge of O(n'/”) on processes.

The consistency of the total order delivery reflects in that Atomic Probabilistic Broadcast only introduces
a probabilistic Agreement property (hence the emphasis on “Atomic” in constrast to pabcast [15]). This
is particularly appealing since processes can detect missed messages, and are thus able to undertake
more heroic efforts to recover these (e.g., by querying other processes, or making use of loggers) and
deliver them without violating total order.

In this paper, we first provide our Atomic Probabilistic Broadcast specification, and then present our
algorithm implementing it. We convey the scalability (e.g., in terms of message and time complexity,
membership knowledge) and reliability of our algorithm through both analysis and simulation results,
and discuss various ways of tuning the performance of apbcast.

Roadmap. The rest of this paper is organized as follows. Section 2 presents assumptions made on
the system and the specification of Atomic Probabilistic Broadcast. Section 3 provides an overview
of our apbcast algorithm. Section 4 presents the weakly consistent membership underlying apbcast.
Section 5 presents the algorithm for message ordering in apbcast. Section 6 presents the broadcast
message propagation in apbcast. Section 7 proves the correctness of our algorithm. Section 8 analyses
our apbcast algorithm. Section 9 presents preliminary simulation results. Section 10 discusses various
issues, such as tuning mechanisms. Section 11 presents related work in more detail. Section 12 draws
final conclusions.

2 Model and Problem

In this section, we first present the assumptions made on the system, and then provide the specification
of Atomic Probabilistic Broadcast.

2.1 System Model and Assumptions

We consider an asynchronous (in the sense of [19]) system II of uniquely identified processes {p1, ...}
communicating over fair lossy channels.

Processes communicate with two pairs of primitives, namely (1) SEND and RECEIVE, which model
unreliable communication associated with a probability 1 — € of successful message transmission, and
(2)RSEND and RRECEIVE, which model reliable communication, built on top of fair-lossy channels.

A small subset U = {b, ...} C II of B processes are broadcasters. Each such b; € U is characterized by its
known average broadcast rate P[b;]. Without loss of generality, we assume that P[b;] < P[by] < P[bs]....
Increasing the number of broadcasters disproportionately does not invalidate the algorithm, yet, without
taking measures (proposed in Section 10.2), may lead to performance degradation. For presentation,
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Figure 1: Overview of apbcast

we henceforth only more consider a single, large, group of processes, each of which can fail by halting
prematurely only.

2.2 Atomic Probabilistic Broadcast

The problem of Atomic Probabilistic Broadcast (apbcast) within a group of processes is defined through
two primitives APBCAST and APDELIVER as follows:

Integrity For any message m, every correct process APDELIVERS m at most once, and only if m was
previously APBCAST by sender(m).

Validity If a correct process p APBCASTs a message m then p eventually APDELIVERS m.

Probabilistic Agreement Let p and g be two correct processes. If p APDELIVERS a message m, then
with probability o, ¢ APDELIVERS m.

Global Total Order There exists a unique ordering {m;}; of all APDELIVERed messages such that if
any process APDELIVERs m; before m; then i < j.

In other terms, the only probabilistic property is Agreement. We refer to a as the expected reliability
degree. Obviously, any algorithm with simply delivers a broadcast to the broadcaster itself and then
stalls implements this specification. The main challenge is hence to achieve a high value for a. Note
that this probabilistic notion of agreement also captures a weakly consistent membership, typical for
large scale settings.

By associating a probability with the Agreement property, different messages are potentially delivered
by different sets of processes. For that reason, the Total Order property known from Atomic Broadcast
has been strengthened to the Global Total Order property from Global Atomic Multicast (cf. [19]).

3 Overview of apbcast

This section presents the recursive group subdivision underlying our apbcast algorithm, and an overview
of the different algorithm parts.



3.1 Group Subdivision

With apbcast, a process group is subdivided recursively into subgroups. This subdivision is defined by
the addresses of processes. With this respect, apbcast follows a similar approch as [14], but not an
identical one (the motivation is slightly different, see Section 10.1).

Definition 1 (Addresses) Every process p € II has a unique address, of the form p; -...-p; (big endian).
L > 2 is constant for the entire group, and every address component is bound, i.e., 3 ax, k € [1..L], such
that Vp € II, 0 <p, < ag_1.

Hence, addresses are ordered, and the maximum number of addresses, and therethrough processes, in
the system is given by Hé:l ag. Ideally (but not necessarily), addresses are determined such that they
reflect the network topology. This can be achieved by explicitly assigning such addresses to processes,
or by approximating topology through some computational method (e.g., [23]).

A process p only knows all of its “immediate” group neighbors, i.e., every process ¢ in the group whose
address only diverges in the last position (g; # p;), but coincides in the other positions (g, = p,Vk €
[2..L]). This is illustrated by Figure 1, where the bottom oval represents such a set of immediate
neighbors.

Definition 2 (Subgroups) All processes of a group whose addresses diverge in the last &k positions, i.e.,
which share a prefix of length L — £, form a subgroup of level k. With respect to a process p, such a
subgroup contains all processes which share py, - ... p;, ;. Consequently, there is only one (sub)group of
level L. The top-level subgroups are however those of level L — 1.

Numbering the subgroup levels inversely to the number of subdivisions applied enables the entire struc-
ture to be viewed as “hierarchy”, when focusing on the representatives of these subgroups (see Figure
1).

Definition 3 (Representatives) For all levels £ € [2..L], a process p knows only a subset of processes
in its corresponding subgroup, namely at most R (= 3 in Figure 1) for every subgroup of level £ — 1
within p's subgroup of level k. These representatives of level k are chosen deterministically, recursively,
out of the representatives of the level k — 1 subgroups within that respective subgroup of level k, e.g.,
by picking those ¢ with smallest g;_;.

A process which is representative at level k remains representative at every level ¥ € [2..k—1] to preserve
links between levels.

Definition 4 (Ranks) The rank of a process denotes the highest level k at which that process appears
(as representative).

Definition 5 (Root processes) Processes with a rank of L are called root processes, or simply roots.
Roots which represent the same subdivision, i.e., whose addresses coincide in the first position, form a
700t group.

Every process however knows all root processes. This is illustrated by Figure 1, where the processes in
the bottom subgroup only know the excerpt of the system represented by the processes visible in that
figure.

Similar hierarchies have been described in literature informally, e.g., [14, 17, 28].

3.2 Algorithm Breakdown

Our apbcast algorithm can be subdivided into the following three algorithm parts (cf. Figure 1):

Membership algorithm: This first algorithm is responsible for the L-recursive group subdivision, and
provides every process p with a weakly consistent view of its respective subgroup of every level [14].



These views, which for a given process p consist in the representatives of the respective subgroups of
p. are maintained through periodic gossip-baed membership knowledge exchanges between processes.

Ordering algorithm: This second algorithm is executed between broadcasters and roots. Messages from
broadcasters are received by these roots, which order them deterministically based on the timestamps
of these messages (and previous messages) and the identifiers of broadcasters. Every broadcast mes-
sage is thereby associated a message sequence number. To ensure Global Total Order, this ordering
algorithm requires a stronger consistency with respect to the membership of root groups than the one
underlying the recursive group subdivision.

Dissemination algorithm: This third algorithm is performed by all processes in a group. It consists in
proactively propagating messages to be delivered, along with their respective sequence numbers com-
puted by the ordering algorithm. This dissemination procedure takes place by periodically gossiping
recursively, i.e., following the recursive subgroup division, about messages to be delivered. Due to
the probabilistic nature of this dissemination procedure, certain processes may miss certain messages,
especially since received messages may be dropped if subsequent (according to the computed order)
messages have been received and APDELIVERed already. Thanks to the consistency of the computed
order however, a process can easily detect missed messages, and can hence undertake more heroic
effort to recover such messages (see Section 10.2).

These three parts are detailed in the next three sections respectively.

4 Membership Algorithm

In this section, we present our weakly consistent membership algorithm related to the recursive group
subdivision in more details.

4.1 Weakly Consistent Views

Every process p has an approximate view of its respective subgroup of level k (1 < k < L), represented
by wiew[k] (Figure 2). Every process ¢ part of a process p’s view[k] is characterized by ¢q; = pj,
csQpr1 = Py1 (see Definition 2).

More precisely, every p’s view[k] is itself a set of elements (infiz, suffizes, t), where Vsuff € suffizes,
|sufff = k— 1, and py, - ... - ppyq - infiz- suffy ;| - ... - suff; denotes a process in the group. ¢ denotes the
last time the corresponding entry was updated. Note that V(infiz, suffizes, t) € view[l], suffizes = 0
(Line 2, Figure 2).

4.2 TUpdate Propagation

Periodically, every process p gossips about its view of the group (UPDATE). To that end, p picks a
representative for each level k. For each such representative g, p sends g those parts of p's view which
are also relevant for g. (Since a representative of level k is a representative at every level ¥ € [2..k — 1],
this is not simply p’s view[k..L].)

Upon receiving such an update a process ¢ compares the received view with its own, and updates
those parts where the timestamps reflect more recent information. Once this has been done, ¢’s view
is traversed (ORCHESTRATE), and representatives are chosen deterministically (ELECT), such that local
information is merged with the information obtained. Note that clocks need not be synchronized, but
of course the smaller clock drifts are, the better the algorithm performs.



For every process p 26: when RECEIVE(VIEW, view [comm..L])

1: INIT 27:  for all k € [comm..L] do
2 wview[2..L] < 0, view[1] < (p,, @, current time) 28: for all (infir', suffizes’, t') € view'[k] do
3: task UPDATE {every P milliseconds} 29: if A (infid, , t) € view[k]| t> ' then
4:  view[l] « view[1] \ {(p1, , )} 30: view[k] < view[k] \ {(infir/, , )}
5. wview[l]  view[l] U {(p;,0, current time) 31: view[k] < view[k] U {(infir', suffizes’; t)}
6: for all k€ [1..L] do 32:  ORCHESTRATE
7 dest <~ RANDOM(py, - ... - Dppy, view[k], 0) 33: procedure ORCHESTRATE
8 comm | p;, = destr, ..., Deomme1 = G€Stcommi+1, 34: for all k€ [2..L] do

Deomm 7= B€Steomm, .. 35: view[k] < view[k] \ {(ps, , )}
9: SEND(VIEW, view[comm..L]) to dest 36: suffizes «ELECT (view[k — 1])
10: task MONITOR {remove obsolete entries} 3T: view|k] <— view[k] U {(py, suffizes, current time)}
11:  for all k€ [1..L] do 38: function ELECT(horizon) {|horizon| > R}
12: for all (infiz, , t) € view[k] | 39:  sel« 0, sub<+ 0, suff« 0

current time — t> timeout do 40:  while |sell < R do
13: view[k] < view[k] \ {(infiz, , 1)} 41: sub < (infiz, suffizes, ) € horizon |
14:  ORCHESTRATE (|sell mod |horizon| + 1)th smallest infiz
15: function RANDOM(pref, horizon, except) 42: suff < (|sel] div |horizon|+1)th smallest € suffizes
16:  return pref ,..q - ... pref; - infiz - suff ;- - suffy 43: sel « sel U {suff}

¢ except| (infir, {, suff, }, ) € horizon 44:  return sel

17: JOIN(help) occurs as follows: {possibly several instances} 45: LEAVE occurs as follows:
18:  while |view[1l]] < 1 do 46:  for all (infiz, , ) € view[1l] do
19: SEND(JOIN) to help 47 SEND(LEAVE) t0 p;, + ... - Dy * infiz
20: wait until RECEIVE(JREP, wview'[comm..L]) from 48: when RECEIVE(JOIN) from ¢

help 49 comml qL =PpL, , qcommon+1 = pcommon+17
21: view[comm..L] <+ view'[comm..L] Qeommon 7 Peommons
22: if comm > 1 then 50:  SEND(JREP, view[comm..L]) to ¢
23: help <~ RANDOM(Dy, - ..." D pmmy1> View[comm], B) 51:  if comm = 1 then
24: when RECEIVE(LEAVE) from ¢ 52: view[1] < view[l] U {g,, 0, current time}

25:  wiew[l] « view[1] \ {g¢, , }

Figure 2: Weakly consistent membership algorithm for recursive group subdivision

4.3 Suspicion and Failure Propagation

The same procedure is performed when nothing has been recently received from an immediate neighbor,
and that process is suspected to have crashed after some time. A process p namely updates the t value
for each (infiz,0,t) in its view[l] every time it receives a membership update from the process with
address py - ...: py-infiz. Once p has not received any update for timeout milliseconds from an immediate
neighbor, it suspects that process and removes it from its view[1l]. By re-arranging processes (MONITOR,
Line 13) any appearances of that suspected process as representative are removed.

4.4 Joining and Leaving

A joining process p must contact an arbitrary process p in the group until it receives a reply (JOIN).
That reply consists of those parts of p’s view that are “shared” with p. From there, p can extract
information about a representative for a subgroup of lower level. This can be repeated (successively,
and also in parallel), until immediate neighbours are reached.

Leaving processes (LEAVE) attempt to contact their immediate neighbours with simple, unreliable,
communication. If this communication fails, processes may terminate anyway, as they will be handled
just like failed processes.

Observation 1 For every process p and every k, p never appears in any ¢’s view[k] unless g = py VK €
[k+1..L)].



Hence, by the absence of byzantine failures, no two processes ever appear as roots for a same process
while being from distinct subgroups of level L — 1.

5 Ordering Algorithm

This section presents the algorithm guiding the interaction between broadcasters and roots performing
the message ordering.

5.1 Deterministic Merge

Our ordering algorithm is inspired by the Bias algorithm of Aguilera and Strom [1], but extends it
to tolerate failures of roots or broadcasters for increasing its reliability, (i.e., availability, vs message
logging in [1], see Section 11.1). In the Bias algorithm, a root decides from which broadcaster to take
the next message by weighting the average production rates of broadcasters with the timestamps of the
last messages chosen from them. Ties between two broadcasters are broken by chosing the broadcaster
with smaller identifier. Broadcaster clocks need not be synchronized, but of course the performance of
the algorithm becomes the better the closer clocks are synchronized. The strength of the Bias algorithm
is its proven minimal delaying of messages produced by broadcasters according to memory-less random
processes [1], and hence its minimal space required for buffering messages prior to ordering and delivering
them.

5.2 Root Group Consistency

Though [1] presents many variants of the Bias algorithm (e.g., with bound delaying), root groups always
consist of single roots. In apbcast, a root group consists of replicated roots.

Reliable Broadcast. Messages are broadcast from broadcasters to individual root groups by making

use of a virtual synchrony Reliable Broadcast algorithm (cf. [8]):

Validity If a correct process executes BCAST"**Y(m), then it eventually DELIVERs m (in view wvseq or a
subsequent view).

Termination If a correct process executes BCAST'**Y(m), then eventually (1) every process in the view
vseq executes DELIVER"®(m) or (2) every correct process in vseq INSTALLS a new view.

View Synchrony If process p belongs to two consecutive views wseq and wseq + 1, and executes
DELIVER"®(m), then every process ¢ in wseq N vseq + 1 that INSTALLs wvseq + 1, also executes DE-
LIVER vseq(m).

Sending View Delivery A message BCAST in view wvseq, if DELIVERed, has to be DELIVERed in view
vseq.

Integrity For any message m, every correct process DELIVERs m at most once, and only if m was
previously BCAST.

By relying on group membership, such a primitive incurs certain “costs” regarding its implementation

but also its use (e.g., program forced crash). These have been largely discussed in literature (e.g.,

[26, 7]), and will hence not be repeated here. The main consequence to keep in mind in the present

context is that an indeed correct process can be excluded from a group at some wseq, and can fail to

DELIVER all messages BCAST in vseq — 1.

The resulting membership views complement the weakly consistent view information (infiz, suffizes)

of the membership algorithm outlined in the previous section (cf. Lines 13 and 16 in Figures 4 and 5

resp.).



Being employed to broadcast to individual root groups, information on the targeted root group will
be added, where relevant, to primitives, through the L-th address component common to roots of the
corresponding root group (e.g., i"ﬁ”). In the following, “broadcast”, as well as “deliver”, will hence refer
to the use of this primitive (vs APBCAST and APDELIVER respectively). The term “broadcaster” still
refers to processes APBCASTing, as those are the only ones to BCAST.

Views. Without loss of validity we assume that a view wvseq for a root group infiz contains a set of
roots, as well as a set of broadcasters. Furthermore, latter processes are clearly distinguishable from the
roots. Their identifiers are chosen such as to convey information on (1) their respective broadcast rates,
and (2) the respective timestamps of their first broadcast messages to the root group infiz. Hence, a
root group infiz is joined by a broadcaster b through JOIN™®(P[b], f[b]infi). Any root in a root group
infiz, can access this knowledge then through P[b] and f[b] (accessing f[b]infs, in latter case).

5.3 Broadcast Message Subsequences

The use of virtual synchrony Reliable Broadcast cuts the sequence of broadcast messages into subsets
delivered in between subsequent view changes. The messages delivered in a view wseq will be said to
belong to that view wseq. Similarly, these views cut the sequence of messages into those ordered in
between subsequent views. However, not necessarily all messages delivered up to view vseq (including
those delivered in wseq) can be effectively ordered up to wvseq.

For a process which acts as root in a given view vseq to be able to order deterministically the messages
delivered in that view, it has certain knowledge prerequisites. Being inspired by the Bias algorithm, our
ordering algorithm relies on similar information to achieve deterministic ordering:

Definition 6 (Ordering configuration) For a given root, the (1) timestamps of messages of each broad-
caster last ordered by that root, and (2) the rates of these broadcasters form its ordering configuration,
or simply configuration.

These are stored as tuples of the form (b, freg, last) by each broadcaster b at each root (Figure 4). At
the beginning of a view wvseq, the initial ordering configuration refers to the values of the configuration
after ordering by considering all messages delivered up to vseq, but without those of subsequent views.
To this specific configuration, we also count (cf. Section 10.2: the messages, and) the timestamps of
messages delivered up to vseg but not ordered (buf), as well as the messsage sequence counter mseq.
Figure 3 illustrates these principles. mg o is for instance delivered in view vseq = 1, but only ordered
in view 2, e.g., because the next broadcaster from which a message is to be taken is different from
bo. A new root joining at view 1, must be passed the configurations of the other root processes after
ordering in view 1, i.e., O;. This will include message mg 2, or at least the timestamp information of
that message. In contrast, if message my o was not ordered in view 1, it could be dropped when ordering
in view 2, since broadcaster b4 is not within that view anymore.

5.4 Asynchronous Replicated Deterministic Merge

A root acting in a given view wseg, though already delivering broadcast messages for that view, can
still lack information pertaining to the initial configuration for that view (or even for the view vseq — 1
before that, etc.). This can occur if that root was not in the previous view but just joined (possibly
after an erroneous removal following a false suspicion), or a new broadcaster has been added. Hence, the
algorithm given in Figure 4 can proceed asynchronously, which manifests in that both configurations
(bcers) as well as the sets of roots are indexed by view sequence numbers. Though not possible in the
simplified algorithm of Figure 4, a root can in the extreme case simultaneously order messages pertaining
to different views vsegs (see Section 10.2).



O, D, O, D, (O D,
b1 m1.2 } m1.3 } } rn1.4 }
b, } My, } } m,, } @ @
by Mg | My, | | M3 |
b, m my, m,;
O,: messages ordered up to view x D,: messages delivered up to view y

Figure 3: Ordering and delivering of messages

The algorithm in Figure 4 proceeds as follows: procedure MERGE orders the available messages. To
ensure that messages coming from the same broadcaster are taken in the same order by all roots, a FIFO
order is imposed on these (Line 35), reflecting in that messages delivered from broadcasters carry also
the timestamps of the previous messages from the respective broadcaster (Line 30). After successfully
ordering all messages delivered up to a given view vseq, TRANSIT computes the initial configuration for
the following view wvseq + 1. Once that new view is installed (Line 13), the initial configuration can be
computed based on (1) the terminal configuration of the previous view, and (2) the broadcast rates and
first messages of new broadcasters. This information is sent to all new roots of that view (Line 55).
Since the ordering of messages of a view vseq can be delayed by lacking information on the initial
configuration for that view (and possibly all views up to a wsed << wvseq), MERGE can be triggered
either when such information is received (Line 12), when new broadcast messages are delivered in that
view vseq (Line 32), or after a TRANSITion to that view after successful termination of the previous one
(Line 56). Such a TRANSITion itself can be triggered by the installation of a new view (Line 20) or
successful ordering of all messages pertaining to the previous view (Line 44), if that task was delayed
until after the view change.

5.5 Broadcasting

As conveyed by the algorithm in Figure 5, a broadcaster stores various data structures indexed by the
infiz of the root groups. These data structures represent the composition of all root groups, i.e., (1) the
roots, and (2) the broadcasters (bcers). Furthermore, (3) the respective view sequence numbers (vsegs),
and (4) the timestamps of the last messages broadcast.

A process willing to broadcast must first join the root groups (START, Figure 5). This procedure is
also repeated whenever a broadcaster is falsely suspected to have crashed by a given root group infix
(INSTALL), and hence is removed from that root group. For presentation simplicitly, the time indicated
for the first broadcast (Line 30) is supposed to be sufficiently far away in the future for the joining to
succeed. This means that for any root group infiz joined at some vseq by a broadcaster b;, there must
be at least one message from a broadcaster b; that was broadcasting already in wseq — 1 within that
root group infiz to be ordered before the first one of b; through the Bias comparison at Line 35. For
presentation simplicity, this is not integrated in the algorithm in Figure 4.

Note that a broadcaster may only APBCAST if it is member of its own root group. This is required for
Validity (see Section 7).



For every root process r 30: when DELIVER:%.(BCAST, b, m, curr, prev)

1: INIT 31:  buf < buf U {(b, m, curr, prev)}
2:  roots < {root processes} 32: MERGE(vseq)
3 beers < O {broadcasters and production rates} 33: procedure MERGE(vseq)
4 mseq < 0 {message sequence number} 34: if A(b, L, L) € beers[vseq] and roots[useq] # @ then
5:  msgs<+ 0 {ordered messages} 35: while 3 (b, m, curr, prev) € buf and
6:  buf<+ 0 {unordered messages} 3 (b, freq, prev) € beers|prev + BIAS(freq, vseq) =
7: when RRECEIVE(WELCOM, bcers', buf, vseq, mseq) min g, freg;, lastj)ebcm[meq](lastj+BIAS(freq]-, vseq)) do
8: if bcers[vseq] # bcers then 36: buf < buf\ {(b, m, curr, prev)} {smallest such b}
9: beers[vseq] < beers' 37: gossips|[L—1] < gossips[L—1] U {(m, mseg, 0)}
10: buf < buf 38: if b, = 77 then
11: mseq < mseq 39: RSEND(ACK, m, mseq) to b
12: MERGE(vseq) 40: mseq < mseq + 1
13: when INSTALLyLeq({71, .oy Tay b1, -y by}) 41: beers <« beers \ {(b, freq, prev)}
14: if r € {r, ..., 7.} then 42: beers < beers U {(b, freq, curr)}
15: roots[vseq] < {ri, ..., Tz} 43: if roots|vseq +1] # @ then
16: for allb € {b1, .., b,} do 44: TRANSIT(vseq + 1)
17: if A(b, , ) € bcers[vseq] then 45: procedure TRANSIT(vseq)
18: beers[vseq] < beers[vseq] U {(b, L, 1)} 46: for all (b, L, 1) € bcers[vseq] do
19: if r € roots[vseq — 1] and 47: beers[useq] <« bcers[vseq] \ {(b, L, L)}
A(b, L, L) € bcers[vseq — 1] then 48: if 3(b, freq, last) € bcers[vseq— 1] then

20: TRANSIT(vseq) 49: beers[vseq] < beers[useq] U {(b, freq, last)}
21:  elseif 3ry 1-....11 € suffizes|(rz, suffizes) € view[L] 50: else

then 51: beers[vseq] < beers[vseq] U {(b, P[b], f[b])}
22: buf < 0 52: for all (b, m, , ) € buf| A(b, , ) € beersjvseq] do
23: JOIN™E 53: buf < buf\ {(b, m, , )}
24: when (rz, suffizes) € view[L] changes to (rz, suffites’) 54: for all roots[vseq] \ roots|vseq — 1] do
25:  if rp_1 ... 71 € suffizes’ then 55: RSEND(WELCOM, bcers[vseq], buf, vseq, mseq)to 7y
26: if ro—1-...-n & suffizes then 56: MERGE(vseq)
27: JOIN"Z 57: function BIAS(freq, vseq)
28: elseif ri_1 ... 11 € suffizes then 58:  ref <= MAX(b,, freq;, ) € beersvseq (fTEQ;)
29: LEAVE 59:  return log(freq) / log(1 — ref)

Figure 4: Ordering: root process algorithm

6 Dissemination Algorithm

This section presents the gossip-based propagation of broadcast messages and their sequence numbers
computed by the ordering algorithm.

6.1 Recursive Subgroup Gossiping

When disseminating a broadcast message, apbcast gossips recursively, i.e., following the underlying
recursive group subdivision (GOSSIP&DELIVER and REPOSITION in Figure 6). To ensure that a gossip
message passes from one level to the next, it is crucial that a process at level ¢ gossips about received
broadcast messages in any level j < i, and thus also remains in the view of any of these lower levels.
Processes have a gossip buffer for each level, and each gossiped message is attached, besides the sequence
number determined by the ordering algorithm presented in the previous section, the level at which the
message is currently being gossiped about, as well as the number of times it has been forwarded at that
level already.

Note that a broadcaster participates in the dissemination of any message it issues at any level £ € [1..L—1]
within its own top-level subgroup, regardless of its own rank.



For every broadcaster b 16: when INSTALLYS({r1, ..., 74, b1, .oy by})

1: INIT 17:  if b € {b1, ..., by} then
2:  for all root group infiz do 18: if b € beers[vseq — 1] then
3: roots[infiz] < 0 {root processes} 19: lastlinfiz] < last{vseq — 1]
4: beers[infiz] < 0 {broadcasters} 20: else
5: vsegs[infiz] + L {view sequence numbers} 21: last|infiz] < f[blinfiz
6: last[infiz] + L {last messages} 22: beers[infiz] « {b1, ..., by}
7: APBCAST(m) at time ¢ occurs as follows: 23: rootslinfiz] < {r1, ..., Tz}
{iff vsegs[br] # L and last[br] < t} 24: vsegs[infiz] < vseq
8 for all infiz | lastinfir] < tand vsegs[infir] # L do 25: else
9: BCAST™®(BCAST, b, m, t, last]infiz]) {br first} 26: vsegs[infiz] + L
10: lastlinfiz] «+ t 27: START
11: sTOP occurs as follows: 28: START occurs as follows:
12:  for all infiz do 29:  for all infiz | vsegs|infiz] = L do
13: LEAVE"™" 30: f[b)infiz < estimated time of first
14: vseqs[infiz] <« L 31: JOIN"(P[b], f[binfiz)

15: when RRECEIVE(ACK, m, mseq) for first time
16:  gossips[L — 1] « gossips[L — 1] U {(m, mseq, 0)}

Figure 5: Ordering: broadcaster algorithm

For every process p 11: task GOSSIP&DELIVER {repeat periodically}
1: INIT 12: for all ke [L—1..1] do {from top to down}
2: last «+ L {sequence nb of last msg} 13: for all (m, mseq, rnd) € gossips[k] by increas. mseq do
3: procedure REPOSITION(m, mseq, rnd, k) 14: gossips[k] < gossips[k] \ {(m, mseq, rnd)}

4: if k> 1 then 15: if rnd < ¢ In |view[k]| then {limit rounds}
5 gossips|k— 1] < gossips[k—1] U {(m, mseq, 0)} 16: gossips[k] < gossips[k] U {(m, mseq, rnd + 1)}
6 else if mseq > last and 17: SEND(GOSSIP, m, mseq, rnd, k) to F random

A (m/, msed, ) € gossips | mseq > mseq then processes € view|k|
7 last < mseq 18: else
8: APDELIVER(m) 19: REPOSITION(m, mseq, rnd, k)
9: else 20: when RECEIVE(GOSSIP, m, mseq, rnd, k)
10: gossips[1] < gossips[1] U {(m, mseq, rnd)} 21:  if mseq > last and A (m, mseq, ) € gossips then

22: gossips[k] < gossips[k] U {(m, mseq, rnd)}

Figure 6: Dissemination algorithm

6.2 Bound Gossiping

At each level, the expected number of rounds necessary to propagate a gossip among the processes in
the considered process p’s subgroup of that level is approximated, based on the size of the respective
subgroups (Line 15 in Figure 6). This enables the limiting of the number of messages involved in the
dissemination of a broadcast messages.

Ways of improving reliability by adding to this simple scheme will be discussed in Section 10.2.

6.3 Message Delivery

According to the above scheme, broadcast messages are namely mainly buffered for the duration of
the time they are being gossiped about. After that, a broadcast message is only further stored/its
delivery delayed (Line 10), if a message with a smaller sequence number (i.e., to be delivered earlier)
has been received meanwhile and is still being gossiped about (Line 6). Through the absence of ex-
plicit synchronization on gossip rounds between processses, this might indeed occur, albeit with small
probability.



To respect total order, a message RECEIVEd with a sequence number smaller than that of the last
APDELIVERed message however can not be delivered. This is reflected in Figure 6, by dropping such
messages immediately when they are RECEIVEd. Alternatively, such a message could be delivered to the
application by indicating that it is out of order. It is however more likely that the application would
want to undertake explicit efforts to acquire a relevant message when detecting the absence of that
message (see Section 10.2).

7 Correctness

In this section, we prove the correctness of our apbcast algorithm with respect to the specification given
in Section 2.2.

Lemma 1 (Merge Completion) If all correct roots of a root group infiz in view wvseq achieve the
same initial configuration for vseg, they all associate the same sequence numbers to messages in vseg,
i.e., in MERGE(vseq).

Proof. Suppose all roots achieve identical, non-empty, buf, beers[vseq|, roots[vseq], and mseq, before
starting to MERGE for vseq. Hence, no matter how triggered, the procedure MERGE can only choose the
same messages and the same msegs, as each decision is made deterministically based only on bcers[vseq],
which reflects previous choices. Since all roots in a root group DELIVER the same messages in vseq
itself, and all had the same messages DELIVER in previous views and not ordered stored in buf, they
either all eventually can assign a sequence number to a given m in vseq or none can. That they all
effectively do so is ensured by the fact that every DELIVER trigger a new MERGE (Line 32 in Figure 4),
and by the assumption that they all at some point reach the initial configuration for vseg: either (1) a
root was in wseq — 1 already, and hence must have executed TRANSIT(vseq — 1), leading to a subsequent
MERGE (Line 56) to deal with pending messages already DELIVERed in wseq, or (2) the root joined in
vseq, meaning that it RRECEIVEd its initial configuration at Lines 9-11, after which MERGE is similarly
performed.

Lemma 2 (Transit Completion) A correct root of a root group infiz in views vseq and vseq+ 1 which
can order messages in vseq eventually achieves the initial configuration for vseq+ 1.

Proof. When view vseq+ 1 is installed, a correct root in vseq and vseq+ 1 executes TRANSIT at Line 20
in Figure 4. In case the root had reached the initial configuration for vseq, it has ordered all messages
up to wseq, as by that time no more messages can be DELIVERed in vseq. In TRANSIT, every broadcaster
for vseq+ 1 is initialized. More precisely, for every entry (b, freg, last) in bcers[vseq|, broadcaster b will
only more broadcast messages with a timestamp larger than last in vseq + 1. Hence, this timestamp
can be taken as initial value for vseq + 1 (Line 49). Any other broadcaster is new in vseq + 1, and its
timestamp is hence initialized to the first expected broadcast (Line 51).

Lemma 3 (Local Root Ordering) All correct roots in a root group assign the same sequence numbers
to messages.

Proof. Suppose this is true for all messages up to a given wseq (i.e., in MERGE(vseq < wseq)). By
Lemma 2, all correct roots reach the initial configuration for vseq 4+ 1. As these roots in all cases
assign the same sequence numbers to messages in vseq, their ordering configurations at vseq + 1 must
be identical. Since to reach this configuration, they must execute TRANSIT, they execute Line 55 in
Figure 4, meaning that all new roots in vseg+ 1 reach this configuration as well. By Lemma 1, all roots
in vseq + 1 then MERGE the same messages, and hence assign the same sequence numbers to these, in
vseq+ 1. Showing that the algorithm bootstraps correctly is trivial as long as no broadcaster is the first
member of a root group.



Lemma 4 (Global Root Ordering) There exists a unique ordering {m;}; on all broadcast messages
such that if any root APDELIVERs m; before m;, then i < j.

Proof. In the case where all root groups DELIVER the same broadcast messages, i.e., from the same
set of broadcasters, the FIFO order with respect to broadcasters imposed at Line 35 in Figure 4 and
Lemma 3 leads to the same situation as in the original Bias algorithm (see [1]). Global Total Order is
also ensured by the sequence numbers assigned to messages when roots receive messages from (only)
overlapping sets of broadcasters, due to the use of timestamps. The only delicate case, i.e., the joining
of new broadcasters in one or several root groups has been discussed in Section 5.5.

Theorem 1 apbcast ensures Global Total Order.

Proof. By Lemmas 3 and 4. Global Total Order is ensured by the sequence numbers associated by
correct roots to messages. Since any process only APDELIVERS messages with larger sequence number
than the last APDELIVERed one (Line 6 in Figure 6), that sequence number is retained (Line 7), no
antecedent message (according to the sequence numbers) can be APDELIVERed.

Lemma 5 (Eventual Ordering) A message broadcast to a root group by a correct broadcaster is
eventually ordered and APDELIVERed by every correct root in that group.

Proof. A message m broadcast by b to a root group infiz at time ¢ in vseq is DELIVERed by all correct
roots of infiz in vseq. Hence an entry (b, m, t, prev) is added to the respective buf at Line 31 in Figure 4,
where prev is the timestamp of the last message APDELIVERed from b (or the planned initial message).
As long as the corresponding broadcaster b remains correct, i.e., remains in the root group infiz, every
correct root in infiz will have an entry (b, freq, prev) in bcers, since it is passed along from any wvseq to
its followup vseq+ 1 at Line 49 by any correct root, and is passed to any new root at Line 55. Similarly,
m will remain in buf. By Lemma 1 the roots keep executing MERGE. Since broadcasters which LEAVE or
crash are not kept in configurations after the view at which they are excluded (Line 16), new messages
are continuously DELIVERed from correct broadcasters broadcasting continuously. Thus, there is a time
and a view vseq at which the condition at Line 35 is satisfied, and m is APDELIVERed.

Theorem 2 apbcast ensures Validity.

Proof. By Lemma 5, a message broadcast by a correct broadcaster b is eventually assigned a sequence
number by all correct roots in the root group of that broadcaster. b is sent the corresponding sequence
number at Line 39 in Figure 4 by each of these root processes. When received by b at Line 16 in
Figure 5, the message is inserted into gossips. Eventually, Line 6 in Figure 6 is reached, and the
message APDELIVERed by b.

Theorem 3 apbcast ensures Integrity.

Proof. By the absence of Byzantine failures (see Section 2.1), and the specification of virtual synchronous
Reliable Broadcast, no spurious message is ever DELIVERed. A message m BCAST by a broadcaster (which
happens at most once) to a root group is DELIVERed at most once by any root in that group, and hence
added once to the buffer for incoming messages buf at Line 31 in Figure 4. Since messages are only
assigned sequence numbers after being removed from buf at Line 36, no message can be APDELIVERed
twice by a root. The case of the broadcaster of is trivial by Theorem 2.

Theorem 4 apbcast ensures Probabilistic Agreement with @« = 1 whenever ¢ is a root and p is a root
as well, or a broadcaster.

Proof. When a correct broadcaster broadcasts to all root groups, Lemma 5 is satisfied for all those
groups, and hence a message is eventually ordered by all root groups, and hence inserted into gossips
at each correct root. The case of the broadcaster is covered by Theorem 2.



The next section provides (among other things) a global, analytical, evaluation of Probabilistic Agree-
ment, i.e., the expected reliability degree a when including the gossip-based propagation of messages
with their sequence numbers also to non-root/broadcasting processes.

8 Analysis

In this section, we analyze the ordering and broadcasting procedures, and provide bounds on the com-
plexity of our apbcast algorithm. We are interested in the (1) memory overhead of the membership, the
(2) “time”- and and (3) message overhead of a broadcast, the (4) resulting reliability of the algorithm,
and last but not least, (5) the fault tolerance of our algorithm.

8.1 Model

We consider a snapshot of an apbcast group composed of n processes, arranged according to a regular
group subdivision of constant depth L: every subgroup of level k € [1..L] contains the same number
A = nT of subgroups of level k (Vk € [1..L], A < aj). We consider a stable phase, i.e., all memberships
views are initialized. We similarly assume for analysis only that processes gossip in synchronous rounds
(cf. [12, 3, 27, 15]), and that there is an upper bound on the network latency which is smaller than a
gossip period P. P is constant and identical for each process, just like the fanout F' < A. Failures
are stochastically independent. The probability of a network message loss does not exceed a predefined
€ > 0, and the probability of a process (neither broadcaster nor root) crash during a run is 7.

The overhead of root-broadcaster algorithm is not reported below when its complexity with respect to
the considered measures is smaller than that of the gossiping as long as L > 2.

8.2 Membership Memory Overhead

Theorem 5 For a fixed A, the number of processes a process knows in an apbcast group is O (n%)

Proof. For each level, every process must know the representatives of its subgroup at that level (all
processes in its lowest level subgroup), without those already known from the lower level (if any). For
any level i €]1..L] in a regular subdivision, it is easy to see that M; = R (A — 1), and M; = A.

M; = R(A-1) (L—-1)+A = R (nt —1) (L—1) +nt

L
=1

This is asymptotically valid for very large groups, i.e., assuming that the growth of the group is “dis-
tributed” over the entire subdivision (but L is constant).

8.3 Broadcast Time Overhead

Theorem 6 The number of gossip rounds required for disseminating a messsage with apbcast is around
O(ln n).

Proof. In terms of gossip rounds, a broadcast message has an overhead of T; = ¢ In(A R) rounds at
each level 7 €]1..L — 1] and simply 77 = c¢ In A at the lowest level (see Line 15 in Figure 6). This yields
the following total number of gossip rounds for disseminating a message with apbcast:

L-1

1
Z T, = (L-=2)cln(AR)+clnA = (L-2) ¢ (Z lnn+lnR>+%lnn
i=1



8.4 Broadcast Message Overhead

Theorem 7 The dissemination of a broadcast message with apbcast requires O(n In n) messages.

Proof. The message overhead due to BCAST incurs an overhead of O ((B + R)Q) messages in each of the
A root groups. Considering ¥ at a given moment, the total overhead to the ordering algorithm is of

@) (n%) The number of processes which gossip at a given level ¢ € ]1..L[ on the other hand is given

by D; = R AL while D; = AL. Hence, the expected total number of gossip messages for a given
broadcast message is given by (pessimistic)

L—1 L—1
F Z D; T, =F Z RA ¢clnf(RA) +F Al cln A
=1 =2

1—-2 1
=FRc (lnR—i—l n-n f_nL_‘_l lnn) —I—Fcnllnn
L n — 1 L
This message complexity hence largely prevails over that of the ordering algorithm (which involves
0] (A (B+ R)Q) messages for APBCASTing a message). Both broadcast time and message overhead
achieve hence orders typical for (unordered) gossip-based broadcast (in a non-hierarchical group), cf.
[20] (just like in the case of the message overhead, the time overhead of the ordering has a lower
complexity than that of the gossiping).

8.5 Expected Reliability Degree

Lemma 6 1 — aisof © (n*%) in stable phases.

Proof. Considering stable phases means that every broadcaster is in all root groups, and that when a
message m is APDELIVERed by a process, any message with a smaller sequence number that will ever
be received by that process has been received until then. The opposite leads to simply ignoring such
messages, and can occur in practice, albeit with a very small probability.
The most common model for approximating the spreading of a disease in a heterogenous population of
size n without considering births, depths, or immunity [13], uses the following differential equation

dl b n

— = —I(n—1I), and hence [ = ———

dt n ( ) 1+ ne—bt
where I denotes the number of infected entities at time ¢, and b is the number of “contacts” of each
infected entity per time unit. In our case, b = F(1 — 7)(1 —€). With this, the probability that an entity

) R
1+RAe T ) for
Since T is given by ¢ In AR Vi €]1..1]

at level i is infected after gossiping at that level for T; rounds, is given by g; =1 — (1 —

a level i € ]1..L[ (at least one of R roots), while g; = m.
and 77 is ¢ In A, the expected reliability degree is given by:

-1 1 1 R\ L2

R e T ~ (1 Al-be (7 _ R(1=b ¢)
o= e (1 (o (RA)l_bc)> (1= 417 9) (1 (5 D)(R )"0 9)
1 L—-2

bc—1 R(b c—1)
n L n L

Zl—Al_bc—(L—Q)(RA)R(l_b c) —1-

Theorem 8 In stable phases, the expected reliability degree achieved by apbcast comes close to 1, and
increases as n increases.

Proof. Follows immediately from Lemma 6.



8.6 Fault Tolerance

Through the use of a virtually synchronous Reliable Broadcast for communication between broadcasters
and roots our apbcast algorithm inherits the “majority-requirement” of that primitive, and can hence
tolerate at least L%J root /broadcaster failures, since broadcasters become part of root groups. By
considering broadcasters and roots separately, our algorithm can tolerate [%J broadcaster failures,
and | 251 | root failures within each root group at least (since |£51 |+ | Z51] < [ £48=1]). Increasing R
might be hence tempting, but care must be taken as this also increases the overhead of root-broadcaster
communication, which involves O (A (B+ R)2) messages for APBCASTing a message.

With respect to failures of processes not belonging to those two categories, the performance of apbcast
degrades as gracefully as any gossip algorithm (based on recursive subdivision, cf. [14]).

9 Simulation Results

This section presents simulation results obtained with apbcast.

9.1 Setting

Simulation results were computed by simulating up to 100 processes on each of 107 Sun Ultra 10 machines
(Solaris 2.7, 256 Mb RAM, 9 Gb harddisk). The individual stations, which were communicating via
Fast Ethernet (100 Mbit/s), were arranged according to a L = 3-subdivison.

Crash failures were simulated by stopping a process with probability 7 = 0.1 at the beginning of
the simulation, and message sends were omitted with a probability ¢ = 0.1 to simulate unreliable
communication. Through the use of UDP for communication between remote processes, further losses
were incurred. A message was broadcast at every gossip period by a random process. Default values
(i.e., unless varied) for the simulations were R =3, F = 3, A = 20.

9.2 Reliability

Various parameters have an impact on the reliability of our apbcast algorithm.

Redundancy. Figure 7(a) confirms that the reliability degree increases also when increasing the
number of representatives for each subgroup R. This makes intuitively sense, as this increases the
number of processes gossiping at each level, and also the probability that at each such level at least
one process receives a broadcast message. This in turn strongly decreases the probability that an entire
subgroup of any level is isolated. The figure also illustrates that this improvement stagnates when R
further increases. The expected downside of increasing R, i.e., an increased latency of ordering, could
not be directly measured. This effect is probably masked by the asynchrony of the system within the
considered range of values.

Fanout. Figure 7(b) shows that the reliability degree can obviously be pushed further than visible in
the previous figures by increasing the fanout . However, also here, after a given value, only little more
is gained. This stems from the fact that the number of gossip rounds is computed at each level based
also on this fanout (c € O(%) in Figure 6).
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Figure 7: Simulation results

9.3 Scalability

Reliability. Figure 7(c) illustrates that, according to analysis, the reliability degree, i.e., the probabil-
ity of delivery achieved with apbcast, increases slightly with an increasing system size (see Section 8.5).
A is varied from 11 to 22, meaning that the group size increases by a factor of 8. In a realistic setting, it
would hence make sense to decrease the fanout F in function of the size for a given subgroup, in order
to keep « closely constant. The effect of increasing A on the latency of ordering, according to analysis
even smaller than that of increasing R, could indeed not be observed in our setting.

Message complexity. Figure 7(d) confirms analysis by showing how the number of messages required
for propagating a message with apbcast increases slightly sur-linearly. However, this traffic is greatly
dispersed, thanks to the recursive subgrouping of proceses. With a smart scheme for determining
addresses reflecting network topology [23], this benefit can be strongly exploited.

10 Discussion

This section discusses various issues, including possible ways of tuning our apbcast algorithm.



10.1 Atomic Multicast

Besides reducing membership knowledge stored at each process in a group, and naturally embracing
the deterministic ordering of messagess, the recursive subdivision advocated by our approach can also
be easily used to perform selective gossiping and hence to implement Atomic (Probabilistic) Multicast
by reducing the amount of messages sent to processes without them being interested in those messages
(cf. [14]).

By associating with each process p; an interest predicate <, : m — [true, false] (with corresponding
entries in views) evaluated against multicast messages to determine which messages that a process is
interested in, the (potential) set of destinations for a given multicast message is implicitly given. A
representative for a set of processes {p;, Pj» ....} then manifests interest in any message m such that
9p,(m) V 9p(m) V ... = true. At each level then, gossiping takes place selectively, i.e., only among
“interested” processes.

[1] presents an ordering algorithm for solving (Global) Atomic Multicast, which could be adapted to
be used by root processes in apbcast instead of the one presented in Section 5. Given the emphasis on
large scale of our approach, practical settings have however manifested a very high likelihood that for
each multicast message m, at least one process in every subgroup of level L — 1 is interested in m. In
such scenarios, the ordering algorithm in Figures 5 and 4 can be retained. Messages are then broadcast
to all root groups, and selective propagation takes place only at subsequent levels.

10.2 Tuning apbcast

Various tuning mechanisms have been considered in apbcast, but have not been reported so far for
presentation simplicity.

Digest forwarding. Quite obviously, the forwarding of buf to new roots joining a root group at a
given wvseq at Line 55 in Figure 4 can incur a considerable overhead if buf contains many messages
DELIVERed but not APDELIVERed up to wseq. This can be easily alleviated by transferring only the
timestamp information corresponding to the messages in buf, i.e., by replacing the effective messages by
1. Any process of course refrains from APDELIVERing such a message. Through the the redundancy of
gossips, it is however very likely that processes receive such messages (indirectly) from any of the other
roots already in vseq — 1.

Increasing asynchrony in message ordering. To similarly avoid transferring messages to roots
joining at some vseq which have been erroneosly excluded at some vseq < wseq, roots can keep track of the
view during which messages are DELIVERed, and only transfer relevant messages to joining roots. Latter
processes would when then also refrain from purging their buf when being excluded. If this happens
repeatedly to a same root, it can occur that that process first orders messages from some wvseg,, and
only after that those for some vseq; < vseg,. Through the subsequent asynchronous gossiping, processes
in the subgroups of such roots can nevertheless receive the ordered messages from wvsegq; (possibly also
from another root) early enough to APDELIVER them before those of vsegs.

Broadcasters. To deal with a larger number of broadcasters without overloading roots, one can use
processes at level L—1 for performing a primary ordering, and “feeding” level- L processes which compute
the final order. The number of levels involved in the ordering can be even further increased to cope with
a growing number of broadcasters. This however tends to increase the complexity in terms of message
overhead.



Buffering. To increase the average probability of delivery «, broadcast messages gossiped about can
be stored longer before delivery, in case broadcast messages with smaller sequence numbers have still
not been received. This however comes at the expense of memory overhead.

Logging. As outlined previously, the problem of Atomic Broadcast has the nice property that it
introduces a continuum, i.e., it produces an ongoing stream of messages, where missed messages can be
immediately detected by observing sequence numbers associated with delivered messages. By logging
messages a-la [1, 2], e.g., at roots, processes could then easily retrieve corresponding messages at these
loggers. This implicitly introduces a feedback loop (cf. [25]), as high message loss rates (e.g., due
to congestioned paths along the abstract hierarchy) lead to an increasing number of retransmission
requests converging at roots, which can be turned into a positive effect by slowing these processes down
unintentionally (they must handle these requests), and even intentionally (as high rates of retransmission
requests can motivate them to take further actions, e.g., by alerting broadcasters).

Gossiping. Considering proven bounds on complexities of various gossip interaction styles [20], the
dissemination algorithm presented in Section 6 might appear to be non-optimal. It could be improved
by mixing the current push transmission with a pull scheme (gossip receivers query gossip senders for
missed messages based on digests piggybacked by gossip messages) [20]. We have however refrained from
modifying our prototype accordingly, as such a scheme does not marry well with selective gossiping (i.e.,
multicast, see Section 10.1).

For the same reason, the approach consisting in making use of a lightweight spanning-tree dissemination
of messages and limiting gossiping to the propagation of message digests (as advocated by pbcast [3])
— indeed interesting in a broadcast setting — has not been adopted.

11 Related Work

We overview closest related work. Thereby, we distinguish between deterministic algorithms for atomic
broadcast, and probabilistic ones.

11.1 Deterministic Algorithms

As a fundamental problem in distributed computing, much effort has been invested in solving atomic
broadcast. Early work such as [9, 4, 22, 5] mostly focuses on stronger notions of Agreement (and also
membership) than the one discussed in this paper. A good overview is given by [11].

As mentioned, our ordering algorithm is inspired by the one devised by Aguilera and Strom [1] in the
context of the Gryphon publish/subscribe system. Merger nodes (similarly to our root processes) in an
overlay graph deterministically merge broadcast message streams from concurrent broadcasters. The
main difference between the pioneering work of Aguilera and Strom and ours, is that their work focuses
on the deterministic merging itself, and such merging algorithms which are economical (no control
messages sent from consumers to producers) and message-oblivious (the effective content of messages is
not used for order determination). With assumptions such as FIFO reliable channels between parents
and children, logging of messages, correct broadcasters/mergers, and recovery of crashed processes in
the overlay graph, these properties are easily achieved, just like Agreeement and Total Order.

Our approach is also message-oblivious, but requires control messages to be sent to processes joining
root groups. This occurs however rather seldom, and we have presented techniques to reduce the amount
of this control information.



11.2 Probabilistic Algorithms

Our Atomic Probablistic Broadcast has been also strongly inspired by the many recent groundbreaking
work on gossip-based broadcast algorithms.

Probabilistic Broadcast. The first probabilistic scheme for providing total order delivery is pre-
sented in the context of the almost legendary pbcast [3]. The algorithm assumes that processes can
determine the number of gossip rounds needed for messages to reach all correct processes and the time
it takes to execute such a round. To achieve total order, processes assign timestamps to the messages
they broadcast and delay message delivery until any earlier messages have been received and delivered.
Once a process determines that a round has terminated, it delivers all messages broadcast in the round
in timestamp order.

Another mention of the use of pbcast in implementing ordered broadcast is made in [16], which presents
a virtual synchronous (atomic) broadcast built on top of pbcast (pbeast is used to replace Reliable
Broadcast). Unfortunately, both [3] and [16] lack precise definition of the guarantees achieved, and the
scalability of the membership overhead is not addressed (by relying on a, though weakly consistent,
complete membership).

The Reliable Probabilistic Broadcast (rpbcast) [27] algorithm has been devised, based on pbcast, in the
context of the Gryphon project. rpbcast roughly adds message logging to pbcast to improve reliability,
but, as its name suggests, does not consider ordering guarantees.

Probabilisitic Atomic Broadcast. Probabilistic Atomic Broadcast (pabcast [15]) is a more recent
approach, which inherently aims at ordered delivery. In pabcast processes proceed in fully asynchronous
rounds, during which each of them can cast a vote for a single received broadcast messsage. Once n— f
votes have been cast for a given message (f being the number of faulty processes tolerated), that message
can be delivered. The basic algorithm described in [15] relies on a full membership, the assumption
that processes broadcast at most one message per round, and on protocol messages piggybacking all
previously delivered messages. Ways to circumvent the latter two restrictive assumptions are discussed,
yet not included in the analysis. Furthermore, no buffer purging is described, meaning that broadcast
messages which do not receive enough votes accumulate.

The specification of Probabilistic Atomic Broadcast associates individual probabilities ¢4, ¢, and ¢,
with the Agreement, Validity, and Total Order properties of Atomic Broadcast respectively. This is
useful whenever one wants to know with what probability any single probability is fulfilled. However,
no information is for instance given on the probability that Validity and Agreement are both fulfilled.
Neither the probability of a perfect run (i.e., the satisfaction of all properties), nor that of an average
run (i.e., the average fraction of processes in a group which behave as in a perfect run) is specified.
These are inherently hard to specify, as a run does not define the behavior for a single message, since
(the) Total Order (property) introduces dependencies between messages. This awakes serious doubts as
to the usefulness of the specification of pabcast. This is somewhat confirmed by the fact that Validity
and Agreement are both analytically captured in [15], but the probability associated with the Total
Order property is only quantified through simulation results.

12 Concluding Remarks

In this paper, we have presented Atomic Probabilistic Broadcast (apbcast), a novel gossip-based algo-
rithm for total order delivery of broadcast messages to processes in large groups, which is hybrid: it



combines the benefits of probabilistic, gossip-based, message propagation for achieving scalability and
a high degree of reliability despite high rates of process failures, with those of deterministic ordering
of messages for ensuring consistency with respect to the (total) delivery order of messages. This order
is computed in a way offering awvailability, which can be balanced against overhead. These assets are
mainly a consequence of the recursive group subdivision underlying apbcast, which also helps reducing
the membership knowledge stored at individual processes.

We have presented evidence of the scalability and reliability of our apbcast algorithm through both
analysis and simulation, which can also be used to adapt parameters of the algorithm. Last but not
least, we have suggested several ways of tuning our basic algorithm for special application needs.

We are currently investigating the achievement of further guarantees (e.g., causal order) commonly
associated with broadcast. Ultimately, our goal is to come up with a broadcast framework which is first
of all modular, and in which algorithms, as illustrated by apbcast, provide only probabilistic guarantees
where these are both necessary and useful.
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