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Abstract

This paper presents general methods for obtaining power spectra of a large class of signals and
random fields driven by an underlying point processes, in particular spatial shot noises with random
impulse response and arbitrary basic stationary point processes described by their Bartlett spectrum, and
signals or fields sampled at random times or points, where again the sampling point process is quite general.
The formulas obtained clearly show the interaction between the underlying counting process, the sampled
process or the impulse response. We also obtain the Bartlett spectrum for the general linear Hawkes spatial
branching point process with random fertility rate and general immigrant process described by its Bartlett
spectrum. Finally we obtain the Cramér spectrum of general spatial birth and death processes.

Index Terms

Shot noises, ultra-wide band communication, random sampling, power spectrum, point processes,
filtered point processes, Cramér spectral measure, Bartlett spectral measure, pulse-interval modulation,
pulse position modulation, Hawkes processes, random fields.

I. INTRODUCTION

This article is concerned with the second-order properties of signals related to random spike
fields, also called random Dirac brushes. In mathematical terms, the latter are best described as
point processes. More specifically, we shall consider three types of signals:
(a) the random spike fields themselves;
(b) the filtered random spike fields;
(c) the modulated random spike fields.

These types of signals are depicted in Figure 1 in the unidimensional case (spike fields are
then called spike trains or Dirac combs). The second category of signals is also known under the
name of shot noises, and the third category arises in particular in random sampling. As for the
first category, that is point processes, they form the basic element on which are constructed the
other signals in this study.

In this article, we derive formulas for the power spectrum (sometimes in a generalized sense)
for the above three categories of signals. We do this in very general cases, in particular, concerning
shot noises, when the basic point process is not a homogeneous Poisson process.
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Fig. 1. Random spike train and related processes

Shot noises

Shot noises have received much attention in the applied literature, whether in physics or
in electrical engineering. They owe their name to the fact that they model, at the fine level,
thermoionic noise in conductors (Campbell [1], Schottky [2]), and they have been studied by
Rice [3] who contributed to their popularity (see also the references in Bondesson [4] and
Gubner [5]).

The article of Lowen and Teich [6] gives a number of application in physics (for instance,
Cherenkov radiation) of the so-called power–law shot noise.

Shot noise also arises in queuing and teletraffic theory, for instance under the form of M/GI/∞
pure delay system, which is a Poisson shot noise with random impulse function. For the use of
M/GI/∞ model in traffic theory, we refer to Parulekar and Makowski [7] and the references
therein.

Shot noise is also of interest in insurance risk theory, where they represent delayed claims;
see Klüppelberg and Mikosch [8], Samorodnitsky [9]. The signals arising in neurophysiology are
typically non-Poisson shot noises and the interference field in a mobile communication system is
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aptly modeled as a spatial shot noise (Baccelli and Blaszczyszyn [10]).
Shot noises also arise naturally in wavelet signal analysis when the analyzed signal is a point

process, since the wavelet coefficients are in this case samples of shot noises. Wavelet statistical
analysis has been proposed to detect and compute the Hurst parameter in classical signals (Abry
and Veitch [11]) and the method applies equally well to random Dirac combs with long-range
dependence properties. The accuracy of the statistical analysis depends very much on the second
order properties of the shot noises resulting from the wavelet decomposition.

The first result of this article is the formula giving the power spectrum of a spatial shot noise
with random impulse function (see equation (21) below), when the underlying point process is
stationary and its Bartlett spectrum is known. First we consider the case when the random impulses
are independent and equally distributed and independent of the basic point process. Section IV is
devoted to shot noises (filtered spike fields) and the main result given in this section (formula (21))
does not appear in the literature in this general form where the basic spike train is not a standard
point process (Poisson, or renewal, or Cox). Note that these results are of special interest not only
to biology, but also to ultra-wide band communications (UWB) where the models are of the shot
noise type with random impulses, and a basic point process which is a renewal process; see [12]
for an example of this type, where the authors derive exact formulas for a family of digital pulse
interval modulated (DPIM) signals.

Modulated random spike fields

A modulated Dirac comb is a Dirac comb with pulses of varying height. In random sampling,
the height of a pulse is equal to the value of the signal sampled at this time. Random sampling
has been extensively studied in view of spectral analysis, the object being to recover the power
spectrum of the signal from the modulated sample comb, or even from the sample sequence
(without timing information); a specific domain of application is laser velocimetry (see Gaster
and Roberts [13]), where the samples are collected only at the passage of a reflecting particle
through the laser beam.

Two theoretical questions arise. The first one is related to spectral analysis, the second one to
signal reconstruction.
1. What is the relation between the spectrum of the modulated Dirac comb (or the sample sequence)

to that of the signal?
2. To what extent can we recover the signal from the modulated Dirac comb (or the sample

sequence)?
Several works have contributed with answers to such questions. Early investigation on random

sampling (Shapiro and Silverman [14], Beutler [15]) was mostly motivated by the search for alias-
free sampling schemes, that is, sampling schemes leading to a one-to-one relation between the
spectrum of the sample comb to that of the sampled signal.

The first detailed analyses of randomly sampled signals were based on the modeling of the
sample comb using the Dirac (pseudo) process δ. Beutler and Leneman [16], [17], [18] obtained
formulas for the moments of the sample comb that lead to the expression of the correlation of
the sample comb as a function of the correlation of the sampled signal. Leneman and Lewis [19]
investigated the reconstruction error for several interpolators of the random samples. Such results
depend on the sampling scheme through statistics related to the intervals between successive points
of the sampler.

The spectrum of randomly sampled signals has been obtained by Masry [20], [21], using a
point process approach. The spectrum of the sample sequence was expressed as a function of
the spectrum of the sampled signal and of the second order quantities of the point process, and
then, by reformulating the alias-free concept, alias-free sampling schemes werere proved to lead
to a consistent spectral estimator. This work is closest to ours, and our method of proof is the
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same as in [22], our contribution being to give more details for the proof in [22], and to extend
these formulas to the spatial case. Also, we give the power spectra of modulated spike fields
when the sampler is possibly dependent from the signal. In the independent case, we also give
the expression of the error when the signal is approximated by a filtered version of the samples,
that is, the reconstruction error.

Modulated random spike fields are studied in Section VI.

Random spike fields

As for the spike trains themselves, we recall the basic theory of Bartlett spectra in terms that
clearly show their link to the usual power spectral measure of bona fide wide-sense stationary
processes. The basic definitions, including that of a Bartlett spectrum, are given in Sections II
and III.

A particular class of spike fields, the Hawkes branching point processes, are studied in Section V.
Hawkes processes were introduced, under the name of self-exciting point processes, by Hawkes
[23], and further studied in Hawkes and Oakes [24]; see also Daley and Vere-Jones [22, page
367].

Such branching point processes are of interest in epidemics, and also in seismology, where they
are known as ETAS models (see Ogata [25]). As we shall see, Hawkes processes are the stochastic
equivalent of Hopfield networks. They are also used to model neuronal activity in the brain (see
Johnson [26]).

A very important class of processes, the generalized birth and death process (not necessarily
Markovian), are shot noises where the basic point process is a Hawkes process and the sequence of
pulses is not independent of the basic point process. We obtain the power spectrum of such signals.
We include in our generalization a non-Poisson “ancestor process”, random impulse train, and our
general method of proof applies to spatial Hawkes processes. Earlier results in this direction are in
Brémaud and Massoulié [27], where however the study is restricted to the line, and the generalized
birth and death is not considered. See also Brémaud and Massoulié [28], where the critical case,
leading to long-range dependence, was considered.

II. RANDOM SPIKE FIELDS AND THEIR TRANSFORMATIONS

We now give the formal description of random spike fields (spatial point processes). We begin
with the more familiar unidimensional case.

Let {Tn}n∈
� be a non-decreasing sequence of random times in

�
=

�
∪ {±∞} such that if

we define for all measurable sets C of the real line

N(C) =
∑

n∈
� 1C(Tn) (1)

then
• (simplicity) P(N({a}) ≤ 1, ∀a ∈

�
) = 1.

• (local finiteness) P(N(C) <∞) = 1, for all bounded measurable set C.
The family N = {N(C)} indexed by the measurable sets of the line and the sequence {Tn} then
contain the same information and are called a (simple and boundedly finite) point process on
the real line. It will be convenient to represent this point process by a random Dirac comb, or a
random spike train

∆N (t) :=
∑

n∈
� δ(t− Tn)

where δ is the Dirac pseudo-function. In all sums involving the Tn’s, it will be assumed that the
sum extends to only those n ∈ � such that |Tn| <∞. The three expressions below

∑

n∈
� ϕ(Tn),

∫
� ϕ(t)N(dt),

∫
� ϕ(t)∆N(t)dt
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represent the same object. The second expression is an integral with respect to the measure N ;
the last one is symbolic, and uses the symbolic rule ϕ(0) =

∫ � ϕ(t)δ(t)dt. These quantities are
well-defined only under certain circumstances, for instance when ϕ ≥ 0 (in which case it may be
infinite). Let h be a function, called the impulse response (of some convolutional filter). Passing
a Dirac comb ∆N(t) through this filter yields the output

X(t) =
∑

n∈
� h(t− Tn)

This is called a shot noise, also denoted

X(t) = (h ∗N) (t) =

∫
� h(t− s)N(ds). (2)

EXAMPLE 2.1: Let N be any point process and consider the exponential impulse response

h(t) = γe−αt1{t≥0},

where γ, α are positive real numbers. The corresponding shot noise is

X(t) = γ

∫ t

−∞

e−α(t−s)N(ds)

and verifies the differential system

dX(t) = −αX(t)dt+ γdN(t)

(where dN(t) = N(dt)).

Let now {Zn}n∈
� be a sequence of random variables with values in the measurable space

(E, E), and let h :
�
× E →

�
be some measurable function. The process

X(t) =
∑

n∈
� h(t− Tn, Zn), (3)

when it is properly defined, is called a shot noise with random excitation.

EXAMPLE 2.2: Let N is a homogeneous Poisson process with intensity λ, independent of
{Zn}n∈

� , the latter being an i.i.d. sequence of non-negative random variables. With

h(t, z) =

{
1 if 0 ≤ t ≤ z,
0 otherwise,

(4)

the process defined by (3) is called M/GI/∞ process, and has the following interpretation.
Customer n enters a “system” at time Tn, and departs at time Tn +Zn, in which case X(t) is the
number of customers in the system at time t.

The above notions are now extended to the case where N is a spatial point process. Let (K,K)
be some measurable space, and let N = {(t, z) ∈

� m ×K} be a random set in
� m × K such

that the random set in
� m, N =

{
t ∈

� m; ∃ z ∈ K s.t. (t, z) ∈ N
}

is a locally finite and simple
point process. N is called the basic point process of N , and the latter is called a point process on� m ×K with locally finite and simple basic point process.

Define a measure on
� m ×K, also denoted by N , as follows

N(C × L) =
∑

(t,z)∈N

1C(t)1L(z), (5)
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with a similar definition for the random measure N :

N(C) =
∑

t∈N

1C(t) = N(C ×K).

We have for all measurable function ϕ :
� m ×K →

�
,

∫

�
m×K

ϕ(t, z)N(dt× dz) =
∑

(t,z)∈N

ϕ(t, z)

provided the sum in the right-hand side is well-defined.
In order to define the spatial shot noise with random excitation, we introduce the marked point

process with i.i.i.d. marks (note the triple i).
Definition 2.1: Let N be a simple locally finite point process on

� m and let {Z (t)}, t ∈
� m, be

an i.i.d. family of K-valued random variables, that are independent of N . Let

N = {(t, Z (t)) ; t ∈ N}

or
N(C × L) =

∑

t∈N

1C (t) 1L (Z (t)) .

Then N is called a (simple, locally finite) marked point process, with i.i.d. marks in K independent
of N . For short, we shall say that N is a marked point process on

� m with i.i.i.d. marks in K.
For brevity, we shall omit to mention that it is simple and locally finite. We call {Z (t)}, t ∈

� m

its mark process. �
In particular, in the situation considered at the beginning of the section (

� m =
�

), we have

N(C × L) =
∑

n∈
� 1C(Tn)1L(Zn),

∫

�
×E

ϕ(t, z)N(dt× dz) =
∑

n∈
� ϕ(Tn, Zn).

Let now h :
� m ×K →

�
be a measurable function. The process {X(t)}t∈

�
m defined (when

possible) by

X(t) =

∫

�
m×K

h(t− s, z)N(ds× dz)

=
∑

(s,z)∈N

h(t− s, z)

is called a spatial shot noise with random excitation.
In general, the mark process and the basic counting process are not defined independently. One

may start with a point process N on
� m ×K with locally finite and simple basic point process,

and define the mark process {Z (t)}t∈
�

m , K-valued as follows:

∀ t ∈
� m, Z(t) =

{
z if (t, z) ∈ N,

0 otherwise.

The process {Z(t)}t∈
�

m is the mark process associated with N . Of course
∑

(t,z)∈N

ϕ(t, z) =
∑

t∈N

ϕ(t, Z(t)). (6)
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EXAMPLE 2.3: This is an immediate generalisation to
� 2 of the M/GI/∞ process Example 2.2

to spatial situation. Take for instance
� m =

� 2, N a simple locally finite point process on
� 2

with intensity λ, and a K-valued element is a random set of
� 2 (to avoid formal definitions, think

of simple shapes, for example disks of random radius centered at 0). With

h(t, z) =

{
1 if t ∈ z,
0 otherwise,

(recall that z ∈ K is a subset of
� 2), then

X(t) =
∑

(s,z)∈N

h(t− s, z) =
∑

s∈N

1{t∈(s+Z(s))}

represents the number of “shapes” s + Z(s) centered at s ∈ N that cover t.

III. BARTLETT SPECTRA OF RANDOM SPIKE FIELDS

We shall need a convenient definition of the spectrum of a random Dirac comb, which is
not a bona fide wide-sense stationary process, and for which therefore we cannot use the usual
Cramér power spectral measure. The natural extension of the latter is the Bartlett power spectrum
(Bartlett [29], Daley and Vere-Jones [22, chap. 11.2]).

Let N be a simple locally bounded point process on
� m of first order, that is such that for all

bounded Borel sets C ⊂
� m,

E [N(C)] <∞. (7)

In that case,
ν(C) = E [N(C)] (8)

defines a locally finite measure ν on
� m, called the mean measure of N . If ϕ :

� m →
�

is a
measurable function such that ϕ ∈ L1(ν), that is

∫
�

m

|ϕ(t)|ν(dt) <∞,

then the sum
∑

t∈N ϕ(t) =
∫ �

m ϕ(t)N(dt) is well-defined and

E

[∫
�

m

ϕ(t)N(dt)

]
=

∫
�

m

ϕ(t)ν(dt).

If N is stationary, then
ν (C) = λ` (C)

for some λ ∈
�

+, called the intensity, where ` is the Lebesgue measure. Suppose in addition that
for all bounded sets C

E
[
N (C)2] <∞ (9)

Consider the second moment measure M2 on
� m ×

� m defined by

M2 (A× B) = E [N (A)N (B)]

Under condition (9), it is a σ-finite measure, and it can be readily checked that for any measurable
function ϕ :

�
→ � such that ϕ ∈ L1 and

∫
�

m

∫
�

m

|ϕ (t)| |ϕ (s)|M2 (dt× ds) <∞, (10)
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(for instance ϕ continuous with compact support) we have that
∫ �

m ϕ (t)N (dt) ∈ L2 (P) and

E

[∣∣∣∣
∫

�
m

ϕ (t)N (dt)

∣∣∣∣
2
]

=

∫
�

m

∫
�

m

ϕ (t)ϕ∗ (s)M2 (dt× ds) .

If N is stationary, then M2 is diagonal-shift invariant, that is for all Borel sets A, B ⊂
� m, all

t ∈
� m

M2 ((A+ t) × (B + t)) = M2 (A× B) .

It then follows from the moment measure factorization lemma of Daley and Vere-Jones [22]
(Lemma 10.4.III, page 356), that for all ϕ, ψ ∈ L1 (ν) verifying (10), then

∫
�

m

∫
�

m

ϕ (t)ψ∗ (s)M2 (dt× ds) =

∫
�

m

(∫
�

m

ϕ (t)ψ∗ (s+ t) dt

)
Γ (ds)

for some σ-finite measure Γ. Since

E
[∫ �

m ϕ (t)N (dt)
]
E
[∫ �

m ψ
∗ (s)N (ds)

]
=

(∫ �
m ϕ (t) ν (dt)

) (∫ �
m ψ

∗ (s) ν (dy)
)

= λ2
∫ �

m

(∫ �
m ϕ (t)ψ∗ (t+ s) dt

)
ds,

therefore if ϕ, ψ ∈ L1 (ν) and verify condition (10),

cov

(∫
�

m

ϕ (t)N (dt) ,

∫
�

m

ψ (s)N (ds)

)
=

∫
�

m

(∫
�

m

ϕ (t)ψ∗ (t + s) dt

)
C (ds)

where
C := Γ − λ2`

is called the covariance measure. The link with the classical notion of covariance function of a
bona fide wide-sense stationary (w.s.s.) signal {X (t)}t∈

�
m is the following. Let CX (τ) be the

covariance function of such signal. Then for all ϕ, ψ ∈ L1,

cov

(∫
�

m

ϕ (t)X (t) dt,

∫
�

m

ψ (s)X (s) ds

)

=

∫
�

m

∫
�

m

ϕ (t)ψ∗ (s)CX (t− s) dtds

=

∫
�

m

(∫
�

m

ϕ (t)ψ∗ (t + s) dt

)
CX (s) ds

=

∫
�

m

ϕ̂ (ν) ψ̂∗ (ν)

(∫
�

m

e−i2π〈s,ν〉CX (s) ds

)
dν. (11)

The power spectral measure µX associated with {X (t)}t∈
�

m can be defined by the condition:
For all ϕ, ψ ∈ L1

cov

(∫
�

m

ϕ (t)X (t) dt,

∫
�

m

ψ (s)X (s) ds

)
=

∫
�

m

ϕ̂ (ν) ψ̂∗ (ν)µX (dν) ,

or (equivalently): For all ϕ ∈ L1

Var

(∫
�

m

ϕ (t)X (t) dt

)
=

∫
�

m

|ϕ̂ (ν)|2 µX (dν) .

Similarly
Definition 3.1: Let N be a simple locally bounded point process on

� m, stationary, with intensity
λ and such that E

[
N (C)2] <∞ for all compact set C ⊂

� m. The measure µN on
� m is called

the Bartlett spectral measure of N if

Var

(∫
�

m

ϕ (t)N (dt)

)
=

∫
�

m

|ϕ̂ (ν)|2 µN (dν) (12)
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for all ϕ ∈ L1 such that (10) holds. �
If (12) holds true for all ϕ ∈ L1∩L2, then, since E

[∫ �
m ϕ (t)N (dt)

]
= λ

∫ �
m ϕ (t) dt = λϕ̂ (0)

E

[∣∣∣∣
∫

�
m

ϕ (t)N (dt)

∣∣∣∣
2
]

=

∫
�

m

|ϕ̂ (ν)|2
(
µN (dν) + λ2δ0 (dν)

)

and by polarization

E

[∫
�

m

ϕ (t)N (dt)

∫
�

m

ψ∗ (s)N (ds)

]
=

∫
�

m

ϕ̂ (ν) ψ̂∗ (ν)
(
µN (dν) + λ2δ0 (dν)

)

for all ϕ, ψ ∈ L1 ∩ L2, for which it follows also that

cov

(∫
�

m

ϕ (x)N (dx) ,

∫
�

m

ψ (x)N (dx)

)
=

∫
�

m

ϕ̂(ν)ψ̂∗(ν)µN(dν).

Therefore (in the case m = 1 for definiteness), for any h ∈ L1 ∩ L2, taking

ϕ(t) = h(u− t), ψ(t) = h(v − t),

yields

cov

(∫
� h(u− t)N(dt),

∫
� h(v − t)N(dt)

)
=

∫
� |T (ν)|2 e2iπν(v−u)µN(dν),

where T (ν) =
∫ � h(t)e−2iπνtdt. Since

X(t) =

∫
� h(t− s)N(ds)

is the signal obtained by passing the Dirac comb
∑

n δ(t − Tn) through the filter of impulse
response h and transmittance T (ν), the Cramér spectral measure of {X(t)} is

µX(dν) = |T (ν)|2 µN(dν) (13)

which indeed corresponds to the filtering formula for bona fide w.s.s. signals if we assimilate
the Dirac comb

∑
δ(t− Tn) to a bona fide w.s.s. signal with spectral measure µN . The spectral

measure µN is however not a finite measure as it would be for ordinary w.s.s. signals.
It is not necessarily true that under the conditions of Definition 3.1, equality (12) holds for all

ϕ ∈ L1 ∩ L2. However it holds for all continuous ϕ with bounded support (since E [N(C)2] <∞
for all compact C, and in this case,

E

[∣∣∣∣
∫

�
m

ϕ (t)N (dt)

∣∣∣∣
2
]

=

∫
�

m

|ϕ̂ (ν)|2
(
µN (dν) + λ2δ0 (dν)

)
.

In some situations of interest, ϕ ∈ L2(
� m) implies that ϕ ∈ L2(µN), and then the above equality

as well as (12) hold for all ϕ ∈ L1(
� m) ∩ L2(

� m).

EXAMPLE 3.1: Consider the point process on
� 2 whose points form a regular (T1, T2)-grid on� 2 with random origin, that is

N =
{
(n1T1 + U1, n2T2 + U2) , (n1, n2) ∈ � 2

}

where T1 > 0, T2 > 0, and U1, U2 are independent uniform random variables on [0, T1], [0, T2]
respectively. The point process is obviously stationary with intensity λ = 1/(T1T2). Let ϕ ∈
L1(ν) ∩ L2(ν) = L1(

� 2) ∩ L2(
� 2).
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The Bartlett spectrum of N has the “pseudo-density” fN (ν1, ν2) given by

1

T 2
1 T

2
2

∑

(n1,n2)6=(0,0)

δ

(
ν1 −

n1

T1

)
δ

(
ν2 −

n2

T2

)
. (14)

Proof: We have by Poisson’s summation formula
∫

�
2

ϕ (t)N (dt) =
∑

n1,n2∈
� ϕ (U1 + n1T1, U2 + n2T2) =

1

T1T2

∑

n1,n2∈
� ϕ̂
(
n1

T1

,
n2

T2

)
e
2iπ � n1

T1
U1+

n2

T2
U2 �

and therefore

E

[∣∣∣∣
∫

�
2

ϕ (t)N (dt)

∣∣∣∣
2
]

=
1

T 2
1 T

2
2

E

[
∑

n1,n2∈
�
∑

k1,k2∈
� ϕ̂
(
n1

T1
,
n2

T2

)
ϕ̂∗

(
k1

T1
,
k2

T2

)
e
2iπ � n1−k1

T1
U1+

n2−k2

T2
U2 �
]

=
1

T 2
1 T

2
2

∑

n1,n2∈
�
∣∣∣∣ϕ̂
(
n1

T1
,
n2

T2

)∣∣∣∣
2

.

Also

E

[∫
�

2

ϕ (t)N (dt)

]
=

∑

n1,n2∈
� E [ϕ (U1 + n1T1, U2 + n2T2)]

=
1

T1T2

∫ T1

0

∫ T2

0

ϕ (u1 + n1T1, u2 + n2T2) du

=
1

T1T2

∫
�

2

ϕ (t) dt =
1

T1T2
ϕ̂ (0, 0) .

Therefore

Var

(∫
�

2

ϕ (t)N (dt)

)
=

1

T 2
1 T

2
2

∑

n1,n2∈
�
∣∣∣∣ϕ̂
(
n1

T1
,
n2

T2

)∣∣∣∣
2

−
1

T 2
1 T

2
2

|ϕ̂ (0, 0)|2

=
1

T 2
1 T

2
2

∑

(n1,n2)6=(0,0)

∣∣∣∣ϕ̂
(
n1

T1

n2

T2

)∣∣∣∣
2

=

∫
�
∫

� |ϕ̂ (ν1, ν2)|
2


 1

T 2
1 T

2
2

∑

(n1,n2)6=(0,0)

δn1

T1

(dν1) δn2

T2

(dν2)


 .

The Bartlett spectrum of N is therefore

µN (dν) =
1

T 2
1 T

2
2

∑

(n1,n2)6=(0,0)

δn1

T1

(dν1) δn2

T2

(dν2) (15)

and, in terms of pseudo spectral density and Dirac pseudo function, we have (14).

EXAMPLE 3.2: Suppose that N is obtained by i.i.d. thinning (losses) of the points of the point
process Ñ with Bartlett spectrum µ �N (and intensity λ̃). Let p the probability of losing a sample,
and q = 1 − p. Then,

µN (dν) = q2µ �N (dν) + λ̃pqdν. (16)

Proof: We can write the original point process as

Ñ (A) =
∑

s∈ �N
1A (s) , ∀ A ⊆ B (

� m) .
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Then, the thinned point process can be defined as follows

N (A) =
∑

s∈ �N
1A (s)Z (s) , for all A ⊆ B (

� m) (17)

where, given N ,
{
Z (s) , s ∈ Ñ

}
is a sequence of i.i.d. random variables with values in {0, 1},

with common probability

P (Z (s) = 0) = p, P (Z (s) = 1) = q = 1 − p, ∀ s ∈ Ñ .

In order to compute its Bartlett spectrum we need to evaluate

Var

(∫
�

m

ϕ (t)N (dt)

)
. (18)

We remark that the thinned point process (17) can be seen as a marked point process with i.i.i.d.
marks

N (A× {1}) =
∑

s∈ �N
1A (s) 1{1} (Z (s)) , for all A ⊆ B (

� m)

where the mark process {Z (x)}x∈
�

m is such that, given N , we have the sequence of random

variables
{
Z (s) , s ∈ Ñ

}
described above. Therefore, expression (18) can be computed as a

particular case of Theorem 4.1 (fundamental isometry formula), with K = {0, 1}, ϕ(x, z) =
ψ(x, z) = ϕ(x)1{1}(z). Then, the result (16) directly follows from equation (20).

EXAMPLE 3.3: Let N be a Cox point process on
� m with stochastic intensity {λ(t)}t∈

�
m . By

this, the following is meant. First {λ(t)}t∈
�

m is a non-negative a.s. locally integrable process (that
is P(

∫
C
λ(t)dt <∞) = 1, for all bounded Borel set C) and conditionally on this process, N is a

Poisson process with intensity λ(x). We suppose that {λ(t)}t∈
�

m is a w.s.s. process with mean λ
and Cramér spectral measure µλ. Then

µN(dν) = µλ(dν) + λdν. (19)

Proof: By the conditional variance formula,

Var

(∫
�

m

ϕ(x)N(dx)

)
= E

[
Var

(∫
�

m

ϕ(x)N(dx)

∣∣∣∣λ(·)

)]
+ Var

(
E

[∫
�

m

ϕ(x)N(dx)

∣∣∣∣ λ(·)

])

= E

[∫
�

m

ϕ(x)2λ(x)dx

]
+ Var

(∫
�

m

ϕ(x)λ(x)dx

)

= λ

∫
�

m

ϕ(x)2dx+ Var

(∫
�

m

ϕ(x)λ(x)dx

)
,

where the second equality follows from well-known properties of Poisson processes with a not
necessarily constant intensity. By definition of the Cramér spectrum

Var

(∫
�

m

ϕ(x)λ(x)dx

)
=

∫
�

m

|ϕ̂(ν)|2 µλ(dν),

and by the Plancherel-Parseval formula∫
�

m

ϕ2(x)dx =

∫
�

m

|ϕ̂(ν)|2 dν.

Therefore

Var

(∫
�

m

ϕ(x)N(dx)

)
=

∫
�

m

|ϕ̂(ν)|2 (µλ(dν) + λdν),

that is (19).
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IV. FILTERED SPIKE FIELDS

Let N be a marked point process on
� m with marks in K, let N be the basic point process

on
� m, assumed locally finite and simple, and let {Z(t)}t∈

�
m be its mark process. Assume that

given N , the family of random variables (Z(t), t ∈ N) is i.i.d. with common distribution Q, and
also assume that N is a second order stationary point process with Bartlett spectral measure µN .

Let ϕ :
� m ×K →

�
be a function in L1(`×Q) ∩ L2(`×Q), and define

ϕ(t) =

∫

K

ϕ(t, z)Q(dz),

ϕ̂(ν, z) =

∫
�

m

e−2iπ<ν,t>ϕ(t, z)dt,

ϕ̂(ν) =

∫
�

m

ϕ(t)e−2iπ<ν,t>dt =

∫

K

ϕ̂(ν, z)Q(dz)

=ϕ̂(ν).

(thus, “bar” denotes expectation with respect to the distribution Q).
Theorem 4.1 (Fundamental isometry formula): Let N be as above, and ϕ, ψ :

� m × K →
�

be functions in L1(`×Q) ∩ L2(`×Q). Then

cov

( ∫

�
m×K

ϕ(t, z)N(dt×dz),

∫

�
m×K

ψ(t, z)N(dt×dz)

)

=

∫

�
m

ϕ̂(ν)ψ̂
∗

(ν)µN(dν) + λ

∫

�
m

cov
(
ϕ̂(ν, Z), ψ̂∗(ν, Z)

)
dν, (20)

where Z is a K-valued random variable with distribution Q.
Proof:

E




 ∑

(x,z)∈N

ϕ(x, z)




 ∑

(x,z)∈N

ψ∗(x, z)






= E


 ∑

(x,z),(x′,z′)∈N,x6=x′

ϕ(x, z)ψ∗(x′, z′)


 + E


 ∑

(x,z)∈N

ϕ(x, z)ψ∗(x, z)




= E

[
∑

x,x′∈N,x6=x′

ϕ(x)ψ
∗
(x′)

]
+ E

[
∑

x∈N

ϕ(x, Z)ψ∗(x, Z)

]

= E

[(
∑

x∈N

ϕ(x)

)(
∑

x′∈N

ψ
∗
(x′)

)]
− E

[
∑

x∈N

ϕ(x)ψ
∗
(x)

]
+ E

[
∑

x∈N

ϕ(x, Z)ψ∗(x, Z)

]
.

Since E
[∑

(x,z)∈N ϕ(x, z)
]

= E
[∑

x∈N ϕ(x)
]
,

cov

(∫
�

m×E

ϕ(x, z)N(dx× dz),

∫
�

m×E

ψ(x, z)N(dx× dz)

)
=

cov

(∫
�

m

ϕ(x)N(dx),

∫
�

m

ψ(x)N(dx)

)
− E

[
∑

x∈N

ϕ(x)ψ
∗
(x)

]
+ E

[
∑

x∈N

ϕ(x, Z)ψ∗(x, Z)

]
.
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Denote by A, B and C the three terms in the right-hand side of the above equation, which then
reads A− B + C. By definition of the Bartlett spectrum,

A =

∫
�

m

ϕ̂(ν)ψ̂
∗

(ν)µN (dν).

By definition of the intensity λ,

B = λ

∫
�

m

ϕ(x)ψ(x)∗dx, C = λ

∫
�

m

E [ϕ(x, Z)ψ(x, Z)∗]dx.

By Plancherel-Parseval’s identity,

B = λ

∫
�

m

ϕ̂(ν)ψ̂(ν)∗dν = λ

∫
�

m

ϕ̂(ν)ψ̂(ν)∗dν = λ

∫
�

m

E [ϕ̂(ν, Z)]E
[
ψ̂(ν, Z)∗

]
dν,

and

C = λE

[∫
�

m

ϕ̂(ν, Z)ψ̂(ν, Z)∗dν

]
,

and the result (20) follows.
Corollary 4.1: We can now compute the power spectrum of a shot noise. Let N be as above

and let h :
� m ×K →

�
, h ∈ L1(`×Q) ∩ L2(`×Q). Define the shot noise {X(t)}t∈

�
m by

X(t) =

∫
�

m×K

h(t− s, z)N(ds× dz).

then
E [X(t)] = λ

∫
�

m

h(t)dt,

and
cov (X(u), X(v)) =

∫
�

m

e2iπ<ν,u−v>µX(dν),

where
µX(dν) = |E [T (ν, Z)]|2 µN(dν) + λVar (T (ν, Z))dν, (21)

with
T (ν, Z) = ĥ(ν, Z) =

∫
�

m

h(t, Z)e−2iπ<ν,t>dt.

Proof: It suffices to apply the fundamental isometry formula to ϕ(t, z) = h(u−t, z), ψ(t, z) =
h(v − t, z) to obtain

cov (X(u), X(v)) =

∫
�

m

∣∣T (ν)
∣∣2 e−2iπ<ν,u−v>µN(dν) + λ

∫
�

m

Var (T (ν, Z))e−2iπ<ν,u−v>dν.

Knowing the Bartlett spectrum µN of a w.s.s. point process N , what is the Bartlett spectrum
µ �N of the point process obtained by independent and identically distributed displacements of the
points of N? The setting is the following.

Corollary 4.2: Let N be as in Theorem 4.1, with K =
� m. The point process Ñ is defined by

Ñ = {t+ z, (t, z) ∈ N}.

Then, calling λ the intensity of N , and µN its Bartlett spectrum,

µ �N(dν) = |ψZ(ν)|2 µN(dν) + λ
(
1 − |ψZ(ν)|2

)
dν, (22)



14

where
ψZ(ν) =

∫
�

m

e2iπ<ν,z>Q(dz). (23)

is the characteristic function of the random displacements distributed as Q. This formula is known;
see for instance Exercise 11.2.4, p.426 in Daley and Vere-Jones [22].

Proof: Let ϕ̃ ∈ L1(
� m) ∩ L2(

� m).

Var

(∫
�

m

ϕ̃(t)Ñ(dt)

)
= Var

(∫
�

m

∫
�

m

ϕ̃(t+ z)N(dt× dz)

)
.

Letting ϕ(t, z) = ϕ̃(t + z), we have

ϕ̂(ν, z) = e2iπ<ν,z> ̂̃ϕ(ν),

ϕ̂(ν) = ϕ̂(ν) = ψZ(ν)̂̃ϕ(ν),

cov (ϕ̂(ν, Z), ϕ̂(ν, Z)∗) =
(
1 − |ψZ(ν)|2

) ∣∣∣̂̃ϕ(ν)
∣∣∣
2

.

Therefore, applying formula (20),

Var

(∫
�

m

ϕ̃(t)Ñ(dt)

)
=

∫
�

m

∣∣∣̂̃ϕ(ν)
∣∣∣
2

µ �N(dν),

where µ �N is as in (22).

EXAMPLE 4.1: In UWB communication systems [30], [31], [32], the information is carried by a
stream of spikes, more precisely, by the relative position of such spikes with respect to a regular
grid (see Figure 2(a)). Then, after filtering in the transmission channel, the signal at the receiver
is a shot noise, as depicted in Figure 2(b). In particular, such a stream of spikes can be seen as a
regularly spaced point process Ñ with (positive) i.i.d. jitters, where the jitters encode the symbols
to be transmitted. Hence, the computation of the power spectral measure of the stream of spikes
is a particular case of (22).

For instance, if we consider the transmission of M independent symbols, each with equal proba-
bility 1/M , the spikes take, with equal probability, the relative positions {0, T/M, . . . , T (M − 1)/M}.
Therefore, the characteristic function (23) of the “jitters” is given by

ψZ(ν) =
1

M
eiπνT M−1

M

sin (πνT )

sin (πνT/M)
.

Recalling that a uniform spike train N has the pseudo power spectral density

fN (ν) =
1

T 2

∑

n6=0

δ
(
ν −

n

T

)

and using formula (22), we obtain the Bartlett pseudo power spectral density of the spike train
corresponding to an ultra-wide band transmission

f �N (ν) =
1

T 2

∑

k 6=0

δ

(
ν −

kM

T

)
+

1

T

(
1 −

1

M2

(
sin (πνT )

sin (πνT/M)

)2
)
.

As an example, we consider a “frame time” T equal to 10ns and the transmission of M = 5
symbols: Figure 3 depicts f �N (ν) (in decibels) for a normalized frequency ν̃ = νT ranging over
[0, 10].
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nT (n + 1)T (n + 2)T

(a) transmitted spikes

nT (n + 1)T (n + 2)T

(b) received pulses

Fig. 2. Ultra-wide band communication.
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Fig. 3. Power spectra f 	
N

(ν) (in decibels) of a spike train corresponding to an ultra-wide band communication with T = 10ns
and M = 5, plotted for a normalized frequency 
ν ranging over [0, 10].

V. SPATIAL HAWKES PROCESSES AND BIRTH AND DEATH PROCESSES

Hawkes processes correspond to the diagram in Figure 4 where the box labeled L.F. represents
a linear filter with impulse response h (t). Therefore

X (t) =

∫ t−

−∞

h (t− s)N (ds) ,

λ (t) = α +

∫ t−

−∞

h (t− s)N (ds) .

The stochastic process λ (t) drives the random generator (R.G.) yielding the output a point process
with stochastic intensity λ (t). This means that P (N (dt) = 1 | Ft) = λ (t) dt, where Ft records
the information available at time t. This information is assumed to increase with t (for details
concerning stochastic intensity, see Brémaud [33] or Last and Brandt [34]). For instance, the
random generator can in principle construct N by projecting on

�
all the points of a homogeneous

Poisson process on
�

+ ×
�

+ of intensity 1 that lie below the curve t→ λ (t) (see Figure 5).
A generalization of Hawkes processes gives the stochastic analogue of Hopfield networks. The

N
h

L.F.

+

α
R.G.X(t) λ(t)

Fig. 4. Diagram of Hawkes processes: L.F. is a linear filter; R.G. is a random generator.
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t

Fig. 5. Intensity λ (t).

dynamics of a Hopfield network are described by a system of non-linear differential equations

ẏi (t) = ϕi

(
K∑

j=1

∫ t

−∞

hji (t− s) yj (s) ds

)

that is 



ẏi (t) = ϕi (xi(t))

xi (t) =
K∑

j=1

∫ t

−∞

hji (t− s) yj (s) ds

Here ϕi :
�

→
�

is a function called the non linearity (N.L.), which often is a sigmoid (a
smoothed Heavyside step), and the hij are impulse responses of filters. In the non linear version
of Hawkes processes, we have K nodes, at which we find the spike comb Ni with the stochastic
intensity

λi (t) = ϕi

(
N∑

j=1

Xij (t)

)

with

Xij (t) = (hji ∗Nj) (t) :=

∫ t−

−∞

hji (t− s)Nj (ds) =
∑

n∈
� hji

(
t− T (j)

n

)

where {T
(j)
n }n∈

� is the sequence of points of Nj. The corresponding diagram is shown in Figure 6.

Nj
hij

L.F.

+

1
2

j

K − 1
K

ϕi

N.L. R.G.
Ni

Xji(t) λi(t)

Fig. 6. Diagram of Hopfield networks: L.F. is a linear filter; N.L. is a non linearity; R.G. is a random generator.

In this article, we are concerned with Hawkes branching point processes on
� m. Such processes

are constructed as follows
N =

∑

n≥0

Nn,

where each Nn is the basic point process on
� m of a marked point process Nn on

� m × K
with i.i.d. marks. All the mark processes {Zn (t)}, n ≥ 0, t ∈

� m, are i.i.d., and in particular the
distribution Q of Zn (t) is independent of n and t, and independent of N0. N0 is a simple locally
finite stationary point process with a Bartlett spectrum µ0. It is called the “ancestor process”.
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The Nn’s, n ≥ 1, are constructed recursively as follows. First we are given a rate function
h :

� m ×K →
� + such that ∫

�
m

E [h(t, Z)]dt <∞,

where Z is a K-valued random variable with distribution Q (the general mark distribution). We
denote by Fn the σ-field recording all the events relative to N0, . . . , Nn. Then Nn is, conditionally
on Fn−1, a Poisson process on

� m with the intensity

λn(t) =

∫

�
m×K

h(t− s, z)Nn−1(ds× dz). (24)

Nn is called the n-th generation point process. The interpretation is the following: each point
a ∈ Nn−1 of generation n− 1 creates descendants in the next generation according to a Poisson
process of intensity

h(t− a, Zn−1 (a)).

On average this point a creates

E

[∫
�

m

h(t− a, Zn−1 (a))dt

]
,

that is
ρ :=

∫
�

m

E [h(t, Z)]dt

descendants. A sufficient condition for the process N to be a locally finite point process is that
ρ < 1, as follows from the branching process interpretation, each ancestor (point of N0) being the
ancestor of an eventually extinguishing branching process of average progeny ρ < 1.

Denote
N ′ =

∑

n≥1

Nn.

From (24) and the Campbell formula [27] we see that, denoting λn = E [λn(t)],

λn = λn−1

∫
�

m

E [h(t, Z)]dt

and therefore the average intensity λ′ of N ′ verifies

λ′ = λ0 + ρλ′.

Therefore, if λ0 > 0, in order for N ′ to have a finite intensity, we must impose

E

[∫
�

m

h (t, Z) dt

]
< 1. (25)

In this sense ρ < 1 is “almost” necessary and sufficient (for the case ρ = 1, see [28]).
Lemma 5.1: For ϕ ∈ L1(`×Q) ∩ L2(`×Q),

Var



∫

�
m×K

ϕ(t, z)M
′
(dt× dz)


 = λ′

∫
�

m

E
[
|ϕ(t, Z)|2

]
dt. (26)

where

M
′
(dt× dz) = N

′
(dt× dz) − λ′ (t) dtQ (dz) ,

λ′ (t) =

∫
�

m

h (t− s, z′)N0 (dt× dz′) +

∫
�

m

h (t− s, z′)N
′
(dt× dz) .
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Proof: We shall use simplified notation of the kind
∫ ∫

ϕ(t, z)M
′
(dt× dz) =

∫
ϕdM

′
. We

have ∫
ϕdM

′
=
∑

n≥1

∫
ϕdMn,

where Mn(dt× dz) = Nn(dt× dz) − λn(t)dtQ(dz). Given Fn−1, Nn is a Poisson process with
mean measure

λn−1(t)Q(dz)dt

and therefore

Var

(∫
ϕdMn

∣∣∣∣Fn−1

)
=

∫
�

m×K

ϕ2(t, z)λn−1(t)Q(dz)dt

=

∫
�

m

E
[
ϕ2(t, Z)

]
λn−1(t)dt,

and

E

[∫
ϕdMn

∣∣∣∣Fn−1

]
= 0.

Therefore

Var

(∫
ϕdMn

)
= E

[
Var

(∫
ϕdMn

∣∣∣∣Fn−1

)]
+ Var

(
E

[∫
ϕdMn

∣∣∣∣Fn−1

])

= λn−1

∫
�

m×K

E
[
ϕ2(t, Z)

]
dt.

Also for j, k ≥ 1,

E

[(∫
ϕdM j

)(∫
ϕdM j+k

)]
= E

[(∫
ϕdM j

)
E

[∫
ϕdM j+k

∣∣∣∣Fj+k−1

]]
= 0.

Therefore

Var

(∫
ϕdM

′
)

=
∑

n≥1

Var

(∫
ϕdMn

)

=

(
∑

n≥1

λn−1

)∫
�

m

E
[
ϕ2(t, Z)

]
dt

= λ′
∫

�
m

E
[
ϕ2(t, Z)

]
dt.

Lemma 5.2: A. Suppose that

E

[∣∣∣∣
∫

�
m

h (t, Z) dt

∣∣∣∣
2
]
<∞. (27)

There exists, for given F :
� m ×K →

�
such that F (t, z) ∈ L1 (`×Q) ∩ L2 (`×Q), that is

∫

�
m×K

|F (t, z)| dtQ(dz) <∞, (28)

∫

�
m×K

|F (t, z)|2 dtQ(dz) <∞, (29)
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a unique function ϕ :
� m ×K →

�
∈ L1 (`×Q) ∩ L2 (`×Q), such that

ϕ(t, z) −

∫
�

m

h(s− t, z)E [ϕ(s, Z)]ds = F (t, z). (30)

B. For given f :
� m →

�
such that f ∈ L1 ∩ L2, there exists a unique ϕ :

� m ×K →
�

with
the same properties as F above and such that

ϕ(t, z) −

∫
�

m

h(s− t, z)E [ϕ(s, Z)]ds = f(t). (31)

Proof: A. For a function v (t, z), denote E [v (t, Z)] by v (t) and v (−t, z) by v̌ (t, z). Let h
and f be as in the statement of the lemma, and consider the renewal equation

g = F + ȟ ∗ g. (32)

Since F ∈ L1 ∩ L2, and since condition (25) holds, there exists a unique solution g ∈ L1 ∩ L2

given by
g =

∑

n≥0

F ∗ ȟ
∗n

(33)

(the convergence of the series in L1 and in L2 is guaranteed by the inequalities ‖a ∗ b‖L1 ≤

‖a‖L1 ‖b‖L1 and ‖a ∗ b‖L2 ≤ ‖a‖L1 ‖b‖L2; uniqueness follows from the equality g−g ′ = ȟ∗(g − g′),
where g′ is another candidate solution, which implies ‖g − g ′‖L1 ≤

∥∥h
∥∥

L1
‖g − g′‖L1 , and hence

under condition (25), necessarily ‖g − g ′‖L1 = 0). The Fourier transform of g is therefore

ĝ (ν) =
E
[
F̂ (ν, Z)

]

1 − E [T (ν, Z)∗]
. (34)

Define now ϕ (t, z) by

ϕ (t, z) =

∫
�

m

h (s− t, z) g (s) ds+ F (t, z) . (35)

We have

E

[∫
�

m

|ϕ (t, Z)| dt

]
≤ E

[∫
�

m

|F (t, Z)| dt

]
+ E

[∫
�

m

|h (t, Z)| dt

]∫
�

m

|g (t)| dt < ∞

since g ∈ L1, and F, h ∈ L1 (`×Q). Therefore ϕ ∈ L1 (`×Q). We now show that ϕ ∈ L2 (`×Q).
For this we take for z fixed the Fourier transform of both sides of (35)

ϕ̂ (ν, z) = T (ν, z)∗ ĝ (ν) + F̂ (ν, z) ,

which gives in view of (34)

ϕ̂ (ν, z) = F̂ (ν, z) +
T (ν, z)∗ E

[
F̂ (ν, Z)

]

1 − E [T (ν, Z)∗]
· (36)

We show that ϕ̂ (ν, z) ∈ L2 (`×Q). Since F̂ (ν, z) ∈ L2 (`×Q) by hypothesis (29), it remains to
show that

T (ν, z)∗ E
[
F̂ (ν, Z)

]

1 − E [T (ν, Z)∗]
∈ L2 (`×Q) . (37)

First, we observe that |1 − E [T (ν, Z)∗]| is bounded from 0 uniformly in ν. Indeed

|1 − E [T (ν, Z)∗]| ≥ 1 − |E [T (ν, Z)∗]| ,
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and

|E [T (ν, Z)]| =

∣∣∣∣E
[∫

�
m

h (t, Z) e2iπνtdt

]∣∣∣∣ ≤
∫

�
m

|E [h (t, Z)]| dt < 1.

Therefore, to prove (37) it suffices to show that

T (ν, z)∗ E
[
F̂ (ν, Z)

]
∈ L2 (`×Q) .

This follows from the fact that ĝ ∈ L2 and

E
[
|T (ν, Z)|2

]
= E

[∣∣∣∣
∫

�
m

h (t, Z) e2iπνtdt

∣∣∣∣
2
]
≤ E

[∣∣∣∣
∫

�
m

h (t, Z) dt

∣∣∣∣
2
]

(by hypothesis (27)). Therefore, ϕ̂ (ν, z) ∈ L2 (`×Q) and hence, using the Plancherel-Parseval
equality

E

[∫
�

m

|ϕ (t, Z)|2 dt

]
= E

[∫
�

m

|ϕ̂ (ν, Z)|2 dν

]
<∞.

B. This is clearly a particular case of A. Indeed, we have

ϕ̂(ν, z) = f̂(ν)


1 +

ĥ∗(ν, z)

1 − E
[
ĥ∗(ν, Z)

]


 · (38)

Theorem 5.1: Let h (t, z) verify (25) and (27). The Bartlett spectrum of N defined above is

µN(dν) = 1
|1−E[T (ν,Z)]|2

[µ0(dν) + λ′dν + λVar (T (ν, Z)dν)] . (39)

Proof:
∫

�
m×K

ϕ(t, z)M
′
(dt× dz) =

∫

�
m×K

ϕ(t, z)
(
N

′
(dt× dz) − λ′(t)Q(dz)dt

)

=

∫

�
m×K

ϕ(t, z)N
′
(dt× dz) −

∫

�
m×K

ϕ(t, z)λ′(t)Q(dz)dt.

Also,

∫

�
m×K

ϕ(t, z)λ′(t)Q(dz)dt =

∫

�
m×K

ϕ(t, z)



∫

�
m×K

h(t− s, z′)N(ds× dz′)


Q(dz)dt

=

∫
�

m×
�

m×K

h(t− s, z′)E [ϕ(t, Z)]dtN(ds× dz′)

=

∫

�
m×K

(
ȟ(s− ·, z′) ∗ E [ϕ(·, Z)]

)
(s)N(ds× dz′).

Therefore, since N = N
′
+N0,

∫

�
m×K

ϕ(t, z)M
′
(dt× dz) =

∫

�
m×K

(
ϕ(t, z) −

(
ȟ(t− ·, z) ∗ E [ϕ(·, Z)]

)
(t)
)
N(dt× dz)

−

∫

�
m×K

ϕ(t, z)N 0(dt× dz).
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Take f ∈ L1 ∩ L2, and let ϕ(t, z) be the solution of (31). We have therefore
∫

�
m×K

ϕ(t, z)M
′
(dt× dz) +

∫

�
m×K

ϕ(t, z)N 0(dt× dz) =

∫
�

m

f(t)N(dt).

Also, by the isometry lemma,

Var



∫

�
m×K

ϕ(t, z)M
′
(dt× dz)


 = λ′

∫
�

m

E
[
|ϕ(t, Z)|2

]
dt = λ′

∫
�

m

E
[
|ϕ̂(ν, Z)|2

]
dν.

Now,

E



∫

�
m×K

ϕ(t, z)M
′
(dt× dz)

∫

�
m×K

ϕ(t, z)N 0(dt× dz)




= E


E



∫

�
m×K

ϕ(t, z)M
′
(dt× dz)

∣∣∣∣∣∣
F0



∫

�
m×K

ϕ(t, z)N 0(dt× dz)


 = 0.

Therefore,

Var



∫

�
m×K

ϕ(t, z)M
′
(dt× dz) +

∫

�
m×K

ϕ(t, z)N 0(dt× dz)


 =

Var



∫

�
m×K

ϕ(t, z)M
′
(dt× dz)


 + Var



∫

�
m×K

ϕ(t, z)N 0(dt× dz)


 =

λ′
∫

�
m

E
[
|ϕ(t, Z)|2

]
dt+ Var



∫

�
m×K

ϕ(t, z)N 0(dt× dz)


.

On the other hand, by Theorem 4.1,

Var



∫

�
m×K

ϕ(t, z)N 0(dt× dz)


 =

∫
�

m

|E [ϕ̂(ν, Z)]|2 µ0(dν) + λ0

∫
�

m

Var (ϕ̂(ν, Z))dν.

Combining the above, we have

Var

(∫
�

m

f(t)N(dt)

)
= λ′

∫
�

m

E
[
|ϕ(ν, Z)|2

]
dν +

∫
�

m

|E [ϕ̂(ν, Z)]|2µ0(dν)

+ λ0

∫
�

m

Var (ϕ̂(ν, Z))dν

= A +B + C.

By Formula (38),

A = λ′
∫

�
m

|f̂(ν)|2
1 + Var (T (ν, Z))

|1 − E [T (ν, Z)]|2
dν,

B =

∫
�

m

|f̂(ν)|2
1

|1 − E [T (ν, Z)]|2
µ0(dν),

C =

∫
�

m

|f̂(ν)|2λ0
Var (T (ν, Z))

|1 − E [T (ν, Z)]|2
dν.
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Recalling that λ′ = λ0/(1 − ρ), we obtain finally that for all f ∈ L1 ∩ L2,

Var

(∫
�

m

f(t)N(dt)

)
=

∫
�

m

|f̂(ν)|2
(

1

|1 − E [T (ν, Z)]|2

)
(µ0(dν) + λ′dν + λVar (T (ν, Z))dν) ,

and this allows us to identify µN as (39).
In the particular case

h(t, Z) = h(t),

T (ν, Z) = T (ν), and we have

µN(dν) =
1

|1 − T (ν)|2
[µ0(dν) + λ′dν] .

If in addition N0 is a Poisson process with average intensity α, since α + λ′ = λ, we have the
original formula of Hawkes [35]

µN(dν) =
λdν

|1 − T (ν)|2
.

We now consider a shot noise based on the Hawkes branching point process N of the previous
section,

X(t) =

∫
�

m×K

α(t− s, z)N(ds× dz). (40)

EXAMPLE 5.1: In the univariate case
� m =

�
,

X(t) =
∑

n∈
� α(t− Tn, Zn).

We observe that this situation is not covered by the results presented in Section IV, because the
sequence {Zn}n∈

� of marks is not independent of {Tn}n∈
� . To further specialize this example,

take

h(t, z) = β1[0,Z](t),

λ(t) = α+

∫

�
×K

h(t− s, z)N(ds× dz),

and
α(t, z) = 1[0,z](t).

Therefore interpreting Tn as the birth time of individual n in colony, and Zn as its lifetime,

X(t) =
∑

n∈
� 1(−∞,t](Tn)1(t,+∞)(Tn + Zn)

is the number of individuals in the colony, and

λ(t) = α + βX(t).

If moreover we assume that Zn is exponentially distributed with parameter γ, the process {X (t)}
is a Markov birth and death process with infinitesimal generator Q given by its non-null terms
qi,i+1 = α+ βi, qi,i−1 = γi.

Theorem 5.2: For the process {X (t)} defined by (40), under the conditions stated in Theo-
rem 5.1, to which we add

E

[∣∣∣∣
∫

�
m

|α (t, Z)| dt

∣∣∣∣
2
]
<∞
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the Cramér spectral measure µX is given by the expression

|1 − E [T (ν, Z)]|2 µX(dν) = |E [α̂ (ν, Z)]|2
(
µ0 (dν) +

λ0

1 − ρ
dν

)

+
λ0ρ

1 − ρ
Var {α̂ (ν, Z) (1 − E [T (ν, Z)]) + T (ν, Z) E [α̂ (ν, Z)]} dν. (41)

Proof: We seek to find a measure µX such that for all f ∈ L1 ∩ L2

Var

(∫
�

m

f (t)X (t) dt

)
=

∫
�

m

∣∣∣f̂ (ν)
∣∣∣
2

µX (dν) . (42)

But
∫

�
m

f (t)X (t) dt =

∫
�

m

f (t)



∫

�
m×K

α(t− s, z)N(ds× dz)


 dt

=

∫

�
m×K

F (s, z)N(ds× dz),

where

F (s, z) =

∫
�

m

α(t− s, z)f (t) dt

= (α̌ (·, z) ∗ f) (s)

is a function in L1 (`×Q)∩L2 (`×Q) (use the hypothesis α ∈ L1 (`×Q), E
[∫ � |α (t, Z)|2 dt

]
<

∞ and f ∈ L1 ∩ L2). Therefore we seek µX such that

Var



∫

�
m×K

F (s, z)N(ds× dz)


 =

∫
�

m

∣∣∣f̂ (ν)
∣∣∣
2

µX (dν) .

Following the same calculations as in the proof of Theorem 5.1 up to the 3rd displayed equation
thereof, and letting ϕ be the unique solution in L1 (`×Q) ∩ L2 (`×Q) of equation (30) of
Lemma 5.2, we have

∫

�
m×K

F (s, z)N (ds× dz) =

∫

�
m×K

ϕ (t, z)M
′
(dt× dz) +

∫

�
m×K

ϕ (t, z)N0 (dt× dz) .

Resuming the proof of Theorem 5.1 after the 4th displayed equation thereof, we obtain

Var

(∫
�

m

f (t)X (t) dt

)
= λ′

∫
�

m

E
[
|ϕ̂ (ν, Z)|2

]
dν +

∫
�

m

|E [ϕ̂ (ν, Z)]|2 µ0 (ν)

+ λ0

∫
�

m

Var (ϕ̂ (ν, Z))dν

= A +B + C

where, using the expression for ϕ̂ (ν, z)

ϕ̂ (ν, z) = F̂ (ν, z) +
T (ν, z)∗ E

[
F̂ (ν, Z)

]

1 − E [T (ν, Z)∗]

= f̂ (ν)

[
α̂ (ν, z)∗ +

T (ν, z)∗ E [α̂ (ν, Z)∗]

1 − E [T (ν, Z)∗]

]
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we find that

A = λ′
∫

�
m

∣∣∣f̂ (ν)
∣∣∣
2 E
[
|α̂ (ν, Z) (1 − E [T (ν, Z)]) + T (ν, Z) E [α̂ (ν, Z)]|2

]

|1 − E [T (ν, Z)]|2
dν,

B =

∫
�

m

∣∣∣f̂ (ν)
∣∣∣
2 |E [α̂ (ν, Z)]|2

|1 − E [T (ν, Z)]|2
µ0 (dν) ,

C = λ0

∫
�

m

∣∣∣f̂ (ν)
∣∣∣
2 Var (α̂ (ν, Z) (1 − E [T (ν, Z)]) + T (ν, Z) E [α̂ (ν, Z)])

|1 − E [T (ν, Z)]|2
dν.

Therefore, using the expression λ′ = λ0/1 − ρ, we find after rearrangement (42) with µX (dν)
given by (41).

VI. MODULATED RANDOM SPIKE FIELDS

Random sampling of a continuous time random signal X (t), t ∈
�

, yields a sequence of
samples

X (Tn) , n ∈ � (43)

where Tn, n ∈ � , is the sequence of points (times of events) of a point process.
At the extremities of the spectrum of randomness, we find the completely random sampling,

or Poisson sampling, where Tn, n ∈ � , is a homogeneous Poisson process [22], and the regular
sampling, where Tn = nT , T−1 being the sampling frequency.

Random sampling is in most cases not deliberate. For instance: In regular sampling, some
samples may be lost. If the probability of loss of a sample is p, and the losses are independent,
then the times between samples form an i.i.d. sequence with geometric distribution

P (Tn+1 − Tn = rT ) = pr−1 (1 − p) , r ≥ 1;

Regular sampling can become random due to jitter (lack of synchronization).

Tn = nT + ∆n;

Random sampling may be inherent to the sampling procedure. For instance, in laser velocimetry,
a sample is collected only at the passage of a “grain” of matter through the laser beam [13].

The signal X (t), t ∈
�

, is called the sampled signal, the point process Tn, n ∈ � , the sampler,
the sequence (43) is the sample sequence, and the process

Y (t) =
∑

n∈
� X (Tn) δ (t− Tn) (44)

where δ (t) is the Dirac pulse, is called the sample comb.
The sampled signal and the sampler are assumed independent, and stationary (or at least wide-

sense stationary for the sampled process). However, we shall also consider in this article dependent
sampling.

The average intensity λ of the sampler is, by definition, the average number of sampling time
per unit time, and the sampling frequency is then

νs = λ.

Two well know results concern regular sampling and Poisson sampling, the two extremal cases.

EXAMPLE 6.1: In regular sampling, the spectrum of the sample comb is an aliased version of that
of the sampled signal. For instance, in the case of a power spectral density

fY (ν) =
∑

n∈
� fX

(
ν −

n

T

)
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and the sampled signal can be entirely recovered from the sample comb provided the former is
band limited, with band width 2B < νs = 1

T
. It suffices to filter the sample comb with a low-pass

of cutoff frequency B ([36]).

EXAMPLE 6.2: In Poisson sampling, the spectrum of the sample comb is (density case)

fY (ν) = λ2fX (ν) + λσ2
X

where σ2
X = Var (X (t)) is the power of the sampled signal. Therefore, whatever the sampling

frequency νs = λ, there is no aliasing, and the spectrum of the sampled signal can be recovered
from that of the sample comb. However, if we apply the sample comb to a low-pass of cutoff
frequency νs = λ, the output signal, Z (t), t ∈

�
, is the worse reconstruction of the sampled

signal, assumed band-limited with bandwidth 2B, in the sense that

E
[
|Z (t) −X (t)|2

]
= σ2

X

2B

λ
·

We formulate random sampling in the general spatial case. Here the sampled signal is a wide-
sense stationary process

X (t) , t = (t1, . . . , tm) ∈
� m

with mean mX , autocovariance function CX (τ) (and therefore RX (τ) = E [X (t + τ)X (t)∗] =
CX (τ) + |mX |2), and power spectral measure µX , where

CX (τ) =

∫
�

m

e2iπ〈ν,τ〉µX (dν)

with ν = (ν1, . . . , νm) and < ν, τ >= ν1τ1 + . . . + νmτm. Moreover, {X (t)}t∈
�

m admits the
Cramér-Khinchin’s decomposition {ZX (A)}, A ⊆ B (

� m) (see Dacunha and Duflo [37]). Recall
that the latter is a complex-valued stochastic process, with centered and orthogonal increments

E [ZX (C)] = 0

E [ZX (C)ZX (D)∗] = 0

for all C,D ⊆ B (
� m) that are disjoint. Moreover

E
[
|ZX (C)|2

]
= µX (C) ,

where µX is the Cramér spectral measure of {X (t)}t∈
�

m .
Finally, we have the Cramér-Khinchin decomposition

X (t) =

∫
�

m

e2iπ〈ν,t〉ZX (dν) +mX (45)

where the integral thereof is a Wiener integral. Note that for all functions g ∈ L2� (µX), the Wiener
integral

∫ �
m g (ν)ZX (dν) is well defined, and it is in L2� (P); moreover

E

[∣∣∣∣
∫

�
m

g (ν)ZX (dν)

∣∣∣∣
2
]

=

∫
�

m

|g (ν)|2 µX (dν) . (46)

The sample “brush” is
Y (t) =

∑

s∈N

X (s) δ (t− s) (47)

and can be identified with the measure
∑

s∈N

X (s) δs (·) .
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For the sample brush we consider the generalized Cramér-Khinchin spectrum ([37]), that is, a
measure µX (dν) such that, for any ϕ (t) ∈ L1 ∩ L2,

Var
(∫ �

m ϕ (t)X (t) dt
)

=
∫ �

m |ϕ̂ (ν)|2 µX (dν) (48)

A first result concerns the spectrum when the sampler is independent from the signal. Let N be
a wide-sense stationary simple point process on

� m with intensity λ <∞, and Bartlett spectrum
µN .

Theorem 6.1: Suppose that {X (t)} and N are independent. Then, the generalized process

Y (t) =
∑

s∈N

X (s) δ (t− s)

admits the extended Cramér-Khinchin power spectral measure

µY = µN ∗ µX + λ2µX + |mX |2 µN . (49)
Proof: Let us consider the definition of the generalized Cramér-Khinchin spectrum (48))

with ϕ ∈ L1� (
� m) ∩ L2� (

� m). Here
∫

�
m

ϕ (t)Y (t) dt =

∫
�

m

ϕ (t)

(
∑

s∈N

X (s) δ (t− s)

)
dt

=
∑

s∈N

ϕ (s)X (s)

=

∫
�

m

ϕ (t)X (t)N (dt) .

Recall from (45) that X (t) =

∫
�

m

e2iπ〈ν,t〉ZX (dν) +mX and therefore

∫
�

m

ϕ (t)X (t)N (dt) =

∫
�

m

ϕ (t)

(∫
�

m

e2iπ〈ν,t〉ZX (dν) +mX

)
N (dt)

=

∫
�

m

(∫
�

m

ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν)

+mX

∫
�

m

ϕ (t)N (dt) ,

where we have formally exchanged the order of integration. Since the integrals with respect to
N (dt) and with respect to ZX (dν) are of a different nature (one is a usual infinite sum, the other
is a Wiener integral), this exchange must be formally justified, which we do in Appendix A.

Using the conditional variance formula, we have

Var

(∫
�

m

ϕ (t)X (t)N (dt)

)

= E

[
Var

(∫
�

m

(∫
�

m

ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν) +mX

∫
�

m

ϕ (t)N (dt)

∣∣∣∣F
N
∞

)]

+ Var

(
E

[∫
�

m

(∫
�

m

ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν) +mX

∫
�

m

ϕ (t)N (dt)

∣∣∣∣F
N
∞

])
= α + β.
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Using the fact that, when N is fixed, mX

∫ �
m ϕ (t)N (dt) is deterministic,

α = E

[
Var

(∫
�

m

(∫
�

m

ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν)

∣∣∣∣F
N
∞

)]

= E

[∫
�

m

∣∣∣∣
∫

�
m

ϕ (t) e2iπ〈ν,t〉N (dt)

∣∣∣∣
2

µX (dν)

]
(by eq. (46))

=

∫
�

m

E

[∣∣∣∣
∫

�
m

ϕ (t) e2iπ〈ν,t〉N (dt)

∣∣∣∣
2
]
µX (dν)

=

∫
�

m

(
Var

∫
�

m

ϕ (t) e2iπ〈ν,t〉N (dt) +

∣∣∣∣E
∫

�
m

ϕ (t) e2iπ〈ν,t〉N (dt)

∣∣∣∣
2
)
µX (dν)

=

∫
�

m

(∫
�

m

|ϕ̂ (x− ν)|2 µN (dx) +

∣∣∣∣
∫

�
m

ϕ (t) e2iπ〈ν,t〉λdt

∣∣∣∣
2
)
µX (dν)

=

∫
�

m

(∫
�

m

|ϕ̂ (x− ν)|2 µN (dx)

)
µX (dν) + λ2

∫
�

m

|ϕ̂ (−ν)|2 µX (dν)

=

∫
�

m

|ϕ̂ (ν)|2 (µN ∗ µX) (dν) + λ2

∫
�

m

|ϕ̂ (−ν)|2 µX (dν)

and, since E
[∫ �

m

(∫ �
m ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν)

∣∣FN
∞

]
= 0,

β = Var

(
mX

∫
�

m

ϕ (t)N (dt)

)
= |mX |2

∫
�

m

|ϕ̂ (ν)|2 µN (dν) .

Finally,

Var

(∫
�

m

ϕ (t)Y (t) dt

)
=

∫
�

m

|ϕ̂ (ν)|2
(
µN ∗ µX + λ2µX + |mX |

2 µN

)
(dν) ,

that is, {Y (t)}t∈
�

m admits an extended Cramér spectral measure given by equation (49).
Here are some examples of the power spectral measure for some of the spike fields N with

spectrum µN presented in Section III.

EXAMPLE 6.3: Let N be a Cox process with a wide-sense stationary intensity {λ (t)}t∈
�

m with
Cramér spectrum µλ, then µN (dν) = µλ (dν) + λdν and

µY = µλ ∗ µX + λ2µX + |mX |
2 µλ + λRX (0) `m (50)

where `m is the Lebesgue measure and we have used (`m ∗ µX) = µX (
� m) `m; indeed

(`m ∗ µX) (C) =

∫
�

m

`m (C − x)µX (dx)

=

∫
�

m

`m (C)µX (dx) = µX (
� m) `m (C) .

The spectrum when the spike field is a homogeneous Poisson process is obtained as a particular
case with µλ ≡ 0:

µY = λ2µX + λRX (0) `m. (51)

EXAMPLE 6.4: Let µ �Y denote the spectrum of the sample comb obtained by sampling the signal
with the sampler Ñ . When the former is “randomly thinned” (as described in Example 3.2), an
application of Formula (49) shows that the spectrum of the resulting sample comb is

µY (dν) = q2µ �Y (dν) + λ̃pqRX (0) dν. (52)
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EXAMPLE 6.5: Let N correspond to uniform sampling (regular grid). For simplicity of nota-
tion, we develop the computations in the univariate case. However, similar formulas, with more
complicated notation, hold in the multivariate case. Then, µX is a particular case of the Bartlett
spectrum of the regular grid (15) and from (49) we have

µY (dν) =
1

T 2

∑

n∈
� µX

(
dν −

n

T

)
+

|mX |2

T 2

∑

n6=0

δn/T (dν) (53)

where here λ = 1/T . In particular, if mX = 0, we obtain the aliased spectrum

µY (dν) =
1

T 2

∑

n∈
� µX

(
dν −

n

T

)
. (54)

If now we consider random displacements (jitter) of the points of the uniform spike train, the
spectrum of the uniformly sampled signal becomes

µY (dν) =
1

T 2

∑

n∈
�
∣∣∣ψZ

(n
T

)∣∣∣
2

µX

(
dν −

n

T

)
+

1

T

(
1 − |ψZ (·)|2

)
∗ µX (dν) (55)

where ψZ(ν) is the characteristic function of the random displacements: this is a consequence of
Corollary 4.2.

Concerning the effect of thinning on the spectrum, assuming for simplicity that mX = 0, as a
particular case of Example 6.4, using (52) we obtain

µY (dν) =
1

T 2
q2
∑

n∈
� µX

(
dν −

n

T

)
+

1

T
pqRX (0) dν (56)

The second result is relative to the spectrum when the sampling rate depends on the process.
The model for the sampler is now a Cox process [22] on

� m with the conditional (w.r.t. X)
intensity of the form

λ (t) = λ (t, X) .

For instance, in the univariate case, λ (t) = |X (t)|2, λ (t) =
∣∣∣Ẋ (t)

∣∣∣
2

where Ẋ is the derivative at

t of t→ X (t). More complicated functionals can be considered.
Theorem 6.2: Assume that E

[
X (t)2 λ (t, X)2

]
<∞, ∀t ∈

� m, and that {λ (t)}t∈
�

m is a locally
integrable process, that is ∫

C

λ (t) <∞, a.s.

for all bounded Borel sets C. Let µZ be the power spectrum of the stationary process

Z (t) = X (t)λ (t) .

Then,
µY (dν) = µZ (dν) +X2λdν (57)

where we have denoted X2λ = E
[
X (t)2 λ (t)

]
(independent of t).

Proof: In order to compute the Bartlett spectrum of Y (t), we have, as in the independent
case, to evaluate the variance of

∫
�

m

ϕ (t)Y (t) dt =

∫
�

m

ϕ (t)X (t)N (dt)

for all ϕ ∈ L1 ∩ L2.
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It holds that

Var

(∫
�

m

ϕ (t)X (t)N (dt)

)
=

E

[
Var

(∫
�

m

ϕ (t)X (t)N (dt) |X

)]
+ Var

(
E

[∫
�

m

ϕ (t)X (t)N (dt) |X

])

= E

[∫
�

m

|ϕ (t)|2 |X (t)|2 λ (t, X) dt

]
+ Var

(∫
�

m

ϕ (t)X (t)λ (t, X) dt

)
.

By the definition of µZ , we have

Var

(∫
�

m

ϕ (u)X (u)λ (u) du

)
=

∫
�

m

|ϕ̂ (ν)|2 µZ (dν) .

Therefore, recalling the notation E
[
X (t)2 λ (t)

]
= X2λ (independent of t), we have

Var

(∫
�

m

ϕ (t)X (t)N (dt)

)
= Var

(∫
�

m

ϕ (u)X (u)λ (u) du

)
+X2λ

∫
�

m

|ϕ (t)|2 dt

=

∫
�

m

|ϕ̂ (ν)|2 µZ (dν) +X2λ

∫
�

m

|ϕ̂ (ν)|2 dν

=

∫
�

m

ϕ̂ (ν)
(
µZ (dν) +X2λdν

)

and the result (57) follows.
As particular cases of the above result, for X (t) ≡ 1, we recover the formula

µN (dν) = µλ (dν) + λdν

of the Bartlett spectrum of the Cox process, and for X (t) = λ (t), we have

µY (dν) = µλ2 (dν) + E
[
λ3 (0)

]
dν.

The third result concerns the problem of approximating X (t) by a filtered version of {Y (t)}∫
�

m

ϕ (t− s)Y (s) ds

where ϕ ∈ L1∩L2. The difference between X (t) and its approximation, that is, the reconstruction
error, is measured by

ε = E

[∣∣∣∣
∫

�
m

ϕ (t− u)Y (u) du−X (t)

∣∣∣∣
2
]
.

Then, we have the following expression for the reconstruction error.
Theorem 6.3: Reconstructing the signal {X (t)}t∈

� by filtering the sample comb {Y (t)}t∈
�

with a filter ϕ ∈ L1 ∩ L2 gives the following error

ε =

∫
�

m

|ϕ̂ (ν)|2 µY (dν) +

∫
�

m

µX (dν) − λ

∫
�

m

(ϕ̂ (ν) + ϕ̂∗ (ν))µX (dν) + |mX |2 |1 − λϕ̂(0)|2 .

(58)

Proof: We have

ε = E

[∣∣∣∣
∫

�
m

ϕ (t− u)X (u)N (du) −X (t)

∣∣∣∣
2
]

= E

[∣∣∣∣
∫

�
m

ϕ (t− u)X (u)N (du)

∣∣∣∣
2
]
− 2<

{
E

[∫
� ϕ (t− u)X (t)X (u)N (du)

]}
+ E

[
|X (t)|2

]

= A− 2<{B} + C.
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In this expression,

A =

∫
�

m

|ϕ̂ (ν)|2 µY (dν) + λ2 |mX |2
∣∣∣∣
∫

�
m

ϕ (t) dt

∣∣∣∣
2

=

∫
�

m

|ϕ̂ (ν)|2 µY (dν) + λ2 |mX |2 |ϕ̂ (0)|2 ,

B = E

[∫
�

m

ϕ (t− u)X (t)X (u)N (du)

]
= λ

∫
�

m

ϕ (t− u)RX (t− u) du

= λ

∫
�

m

ϕ (t)RX (t) dt

= λ

∫
�

m

ϕ (t)CX (t) dt+ λ |mX |2
∫

�
m

ϕ (t) dt

= λ

∫
�

m

ϕ̂ (ν)µX (dν) + λ |mX |2 ϕ̂ (0) ,

and
C =

∫
�

m

µX (dν) + |mX |2 .

Therefore

E

[∣∣∣∣
∫

�
m

ϕ (t− u)X (u)N (du) −X (t)

∣∣∣∣
2
]

=

∫
�

m

|ϕ̂ (ν)|2 µY (dν)

− λ

∫
�

m

(ϕ̂ (ν) + ϕ̂ (ν)∗)µX (dν)

+ |mX |
2 (1 − λ (ϕ̂ (0) + ϕ̂ (0)∗) + λ2 |ϕ̂ (0)|2

)
+

∫
�

m

µX (dν)

In particular, in the case mX = 0 the error is

ε =

∫
�

m

|ϕ̂ (ν)|2 µY (dν) − 2λ<

{∫
�

m

ϕ̂ (ν)µX (dν)

}
+ µX (

� m) . (59)

We now give some examples of reconstruction error for different sampling schemes. For notation
ease, we consider that the signal is centered, that is, mX = 0, so as to apply the simpler form
of the error formula (59). Moreover, some parts of the examples are developed in the univariate
case. However, similar formulas, with more complicated notation, hold in the multivariate case.
We develop the computations in the “classical” situation of a band-limited signal X (t), filtered
with a band-limited (low-pass) filter ϕ (ν). More precisely, let S be the support of µX , with length
2B = ` (S), then, we consider

ϕ̂ (ν) =

{
1
λ

on S

0 otherwise

where λ is the intensity of the spike comb.

EXAMPLE 6.6: When N is a homogeneous Poisson process with intensity λ, µY is given by (51)
and then the error is

ε =

∫
�

m

|λϕ̂ (ν) − 1|2 µX (dν) + λCX (0)

∫
�

m

|ϕ̂ (ν)|2 (dν) . (60)
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In the “classical” band-limited case described above, we have

ε = λCX (0)

∫
� |ϕ̂ (ν)|2 (dν)

= λCX (0)

∫
�

1

λ2
1S (ν) dν,

that is
ε = CX (0)

2B

λ
·

Therefore, sampling at the Nyquist rate λ = 2B gives very poor performances, not better than the
estimate based on no observation at all.

This does not mean, however, that below the rate λ = 2B, there is no information (or in a
sense as the result suggests “negative information”) concerning the process itself contained in
its samples. A better choice of a filter would indeed give a linear estimate with error less than
σ2 = CX (0). For instance, if we let ϕ̂ be real, we find for the error

ε =

∫
�
[
(λϕ̂ (ν) − 1)2 fX (ν) + λσ2ϕ̂ (ν)2] dν,

where it is assumed that {X (t)}t∈
� has the power spectral density fX (ν). The minimum occurs

for

ϕ̂ (ν) =
λfX (ν)

λ2fX (ν) + λσ2

and then

ε = σ2

(
1 −

∫
�

λf̃X (ν)

1 + λf̃X (ν)
f̃X (ν) dν

)
·

where f̃X (ν) is the normalized power spectral density

f̃X (ν) =
fX (ν)∫ � fX (ν ′) dν ′

=
fX (ν)

σ2
·

Therefore
ε = σ2 (1 − ρ)

where ρ =
∫ � λ �fX(ν)

1+λ �fX(ν)
f̃X (ν) dν can be interpreted as the correlation coefficient between X (t)

and N for fixed t.

EXAMPLE 6.7: When the sampled comb is derived by T -uniform sampling, with an extended
Cramér-Khinchin spectral measure given by (53), the reconstruction error (59) reads

ε =
1

T 2

∫
� |ϕ̂ (ν)|2 µX (dν) −

2

T
<

(∫
� ϕ̂ (ν)µX (dν)

)
+

∫
� µX (dν) (61)

=

∫
�
∣∣∣∣
1

T
ϕ̂ (ν) − 1

∣∣∣∣
2

µX (dν) .

In the band-limited case, if we consider T = 1/2B, that is, λ = 2B, equation (61) gives an
error equal to zero. Therefore, the signal is perfectly reconstructed by

X (t) =

∫
� ϕ (t− s)X (s)N (ds)

=
∑

n∈
� X (Tn) sinc (t− Tn) ,
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where sinc (t) = sin (2πBt) /(2πBt), which is the usual reconstruction formula ([36]).

EXAMPLE 6.8: The reconstruction error from uniform samples in the presence of jitter is obtained
plugging µY given by (55) into the error formula (59). The previous example showed that within
the “classical” sampling framework the signal may be perfectly reconstructed. Now, in the presence
of jitter this is not possible and the reconstruction error is given by

ε =
1

2B

(∫ B

−B

σ2
(
1 −

(
|ψZ |

2 ∗ f̃X

)
(ν)
)
dν

)
(62)

where f̃X is the normalized power spectral density of the signal X (t).

EXAMPLE 6.9: Let ε̃ be the reconstruction error when the sample brush is characterized by
µ �Y and the sampler by µ �N . Suppose now that the sampler is randomly thinned (as described
by (16)). From the effect of thinning on the sampler (16) and, then, on the sample brush (52), the
reconstruction error is now

ε = q2ε̃+
(
1 − q2

)
µX (

� m)−qλ̃ (1 − q)

∫
�

m

(ϕ̂ (ν) + ϕ̂ (ν)∗)µX (dν)+λ̃pqCX (0)

∫
�

m

|ϕ̂ (ν)|2 dν.

Remark that when there the probability of a loss is zero, that is, q = 1, we have ε = ε̃.
When we are in the “classical” sampling framework, that is, uniform sampling of band-limited

signal, due to the loss of samples the reconstruction is not perfect and the error is

ε = pCX (0) .

VII. CONCLUSION

This article is devoted to the derivation of the power spectra, sometimes in a generalized sense,
of a large class of signals and random fields connected with point processes and of interest
to communications, biology, seismology, and wavelet spectral analysis, among other domain of
applications. It unifies the results scattered in the litterature and provides a rigorous and at the
same time systematic method, based on the theory of point processes, for obtaining them. It gives
extensions of the previous results for time–indexed signals to spatial random fields.

Concerning shot noise processes, the main contribution is to take for the the underlying spike
field a general stationary point process described by its Bartlett spectrum. The formulas obtained
are a prerequisite for the spectral analysis of many signals where the classical Poisson model is
not realistic as is certainly the case for the biological signals in neurophysiology.

Concerning random sampling, the results presented in the present paper extend to random fields
the previous studies mentioned in the introduction. Some related results are given, in particular
concerning signal–dependent sampling rates.

The result giving the power spectrum of Hawkes branching random fields with random impulse
function and general stationary immigration processes is also new, as well as the result concern-
ing the generalized linear spatial birth and death process. Hawkes processes provide the most
important source of models in seismology, and the results in the present paper are a prerequisite
to identification methods based on second-order properties.

Theoretical research in progress concerns other classes of signals related to point process, in
particular semi-Markov point processes, of interest to pulse interval modulation as arising for
instance in ultra-wide band communications, and space–time point process models of interest to
mobile communications.
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APPENDIX A
EXCHANGE OF INTEGRALS

Lemma 1.1: Let N be a simple locally bounded stationary point process defined on
� m and

admitting a Bartlett spectrum µN . Let M2 be its second moment measure. Let {X(t)}t∈
�

m be a
WSS random field with Cramér decomposition ZX and power spectral measure µX . Then, for all
ϕ ∈ L1 such that (10) holds

∫
�

m

ϕ (t)X (t)N (dt) =

∫
�

m

(∫
�

m

ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν) . (63)

Proof: We do the proof in the univariate case. The multivariate case follows the same lines,
with more notation. The left-hand side of (63) is

A =
∑

n∈
� ϕ (Tn)X (Tn) = lim

c↑∞

∑

n∈
� ϕ (Tn)X (Tn) 1[−c,+c] (Tn) = lim

c↑∞
A (c)

where the limit is in L1 ( � ). Indeed

E [|A− A (c)|] ≤ E

[∫

[−c,+c]

|ϕ (t)X (t)|N (dt)

]

=

∫

[−c,+c]

|ϕ (t)|E [|X (t)|]λdt ≤ λK

∫

[−c,+c]

|ϕ (t)| dt

where K = supt E [|X (t)|] <∞ (by Schwarz’s inequality, E [|X (t)|] ≤ E
[
|X (t)|2

] 1

2 = E
[
|X (0)|2

] 1

2 ).
Therefore, since ϕ ∈ L1, limc↑∞ E [|A− A (c)|] = 0.

The right-hand side is

B = lim
c↑∞

∫
�
(∫

[−c,+c]

ϕ (t) e2iπ〈ν,t〉N (dt)

)
ZX (dν) = lim

c↑∞
B (c)

where the limit is in L2 ( � ). Indeed

E
[
|B −B (c)|2

]
= E

[∣∣∣∣
∫

�
(∫

[−c,+c]

ϕ (t) e2iπνtN (dt)

)
ZX (dν)

∣∣∣∣
2
]

= E

[
E

[∣∣∣∣
∫

�
(∫

[−c,+c]

ϕ (t) e2iπνtN (dt)

)
ZX (dν)

∣∣∣∣
2
∣∣∣∣∣F

N
∞

]]

= E

[∫
�
∣∣∣∣
∫

[−c,+c]

ϕ (t) e2iπνtN (dt)

∣∣∣∣
2

µX (dν)

]
.

Denote ϕc (t) = ϕ (t) 1[−c,c] (t). Then

E

[∫
�
∣∣∣∣
∫

� ϕc (t) e2iπνtN (dt)

∣∣∣∣
2

µX (dν)

]
=

∫
� E

[∣∣∣∣
∫

� ϕc (t) e2iπνtN (dt)

∣∣∣∣
2
]
µX (dν) .

But

E

[∣∣∣∣
∫

� ϕc (t) e2iπνtN (dt)

∣∣∣∣
2
]

=

∫
�
×

� ϕc (t)ϕ∗
c (s) e2iπν(t−s)M2 (dt× ds)

≤

∫
�
×

� |ϕc (t)| |ϕc (s)|M2 (dt× ds) ,

a quantity that tends to 0 as c ↑ ∞, by Lebesgue dominated convergence theorem, which is
applicable to the measure M in view of (10). Lebesgue dominated convergence applied to the
finite measure µX then yields the desired L2 convergence.
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But

A (c) =
∑

n∈
� ϕ (Tn)X (Tn) 1[−c,+c]

=
∑

n∈
� ϕ (Tn)

(∫
� e2iπνTnZX (dν)

)
1[−c,+c] (Tn)

=

∫
�
(
∑

n∈
� ϕ (Tn) e2iπνTn1[−c,+c] (Tn)

)
ZX (dν)

= B (c) ,

where we have used the fact that the sums involved are finite. Thus

lim
c↑∞

A (c) =

{
A in L1

B in L2

from which it follows that A = B, a.s. (use the fact that if a sequence of random variables
converges in L1 or L2 to some r.v., one can extract a subsequence that converges a.s. to the same
r.v.).
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