Fast Indulgent Consensus with Zero Degradation®

Partha Dutta Rachid Guerraoui
Distributed Programming Laboratory
Swiss Federal Institute of Technology in Lausanne

Abstract

This paper describes a new consensus algorithm for the asynchronous message passing
system model augmented with an unreliable failure detector abstraction: channels are re-
liable, processes can fail by crashing, and the detection of crashes are not reliable. Our
algorithm (a) matches all known consensus lower bounds on (1) failure detection, i.e., Q, (2)
resilience, i.e., a majority of correct processes, and (3) latency, i.e., two communication steps
for a global decision in nice runs (when no process crashes and the failure detection is reli-
able), and (b) has the following zero degradation flavor: in every stable run of the algorithm
(when all failures are initial crashes, and failure detection is reliable), two communication
steps are sufficient to reach a global decision.

The zero degradation flavor is particularly important when consensus is used in a repeated
form: failures in one consensus instance do not impact performance of future consensus
instances.

We describe our algorithm informally as well as in a detailed way, and then we give
two additional variants of our algorithm, both preserving the zero degradation flavor: (1) a
variant that reaches a global decision in one communication step in stable runs if all correct
processes propose the same privileged value, and (2) a variant that uses a S failure detector
(instead of). Roughly speaking, these variants convey the very fact that our technique to
obtain zero degradation can be applied in various contexts.

1 Introduction

1.1 The Motivation

In practice, most runs of a distributed system are nice: failures are rare and failure detectors
do not usually suspect correct processes to have crashed. Hence, it is important to optimize the
performance of distributed algorithms in nice runs. We are interested here in also minimizing the
performance degradation of the algorithms in the presence of failures, especially initial failures.
To see why this is also important, consider a long-running application using a series of instances
of a given distributed algorithm (e.g., an atomic broadcast service using a series of consensus
instances [Lam89, CT96]). Even if failures are rare, they might occur and one expects a failure
to impact the performance of the instance of the algorithm during which the failure occurs.
However, it is desirable to minimize the impact of that failure on all subsequent instances of the
algorithm. If this impact is nil, then we say that the algorithm has a “zero degradation” flavor.!

*This work is supported by the Swiss National Science Foundation (NSF).

"When considering this flavor, we focus on the time complexity of an algorithm, and more precisely on its
latency, i.e., the number of communication steps needed for all correct processes to decide (a global decision).
Aspects like message or memory complexity are outside the scope of this paper.

Our motivation here is to devise a consensus algorithm that, on the one hand, matches all
known consensus lower bounds on (1) failure detection, i.e., Q [CHT96], (2) resilience, i.e., a
majority of correct processes [CT96], and (3) latency, i.e., two communication steps for a global
decision in nice runs [KRO1], and on the other hand, provides the zero degradation flavor.

1.2 The Background

The consensus problem consists for a set of processes to decide a common value, among one of the
values proposed by the processes. Each process proposes a value v through procedure propose(v).
If propose(*) returns v’ at a process, the process is said to have decided v'. Consensus is solved
if the following three conditions are ensured: (1) (walidity) if a process decides v then some
process has proposed v, (2) (uniform agreement) no two processes decide differently,? and (3)
(termination) every correct process eventually decides.

We consider consensus in a message-passing distributed system model consisting of a set of n
processes: II = {p1, pa, ..., pn}. Processes can fail by crashing and never recover from a crash.®> A
correct process is a process that never crashes and executes the deterministic algorithm assigned
to it. A process that crashes is said to be faulty. Any pair of processes can communicate
through send and receive primitives, which emulate a reliable communication channel in the
following sense [HT93|: (1) any message sent to a correct process is eventually received, (2) no
message is received more than once, and (3) the channel does not create or alter messages. To
solve consensus in this model [FLP85, DDS87]|, one needs to consider additional assumptions
such as a majority of the processes is correct and the system is “eventually synchronous”. The
latter assumption can be captured in a modular manner through the abstraction of a failure
detector oracle that provides the processes with some (possibly unreliable) information about
which process has crashed and which process has not [CT96].

In this paper, we consider consensus algorithms based on two interesting failure detectors: 2
and OS. The failure detector 2 outputs at each process, a (leader) process denoted).trusted
such that, eventually, at all correct processes the output is the same correct process. The failure
detector &S outputs, at each process, a list of suspected processes denoted <S.suspected such
that: (1) (strong completeness) eventually, every crashed process is permanently suspected by
every correct process, and (2) (eventual weak accuracy) there is a time after which some correct
process is never suspected by any correct process.

In [CT96], Chandra and Toueg presented a consensus algorithm (which we denote by CT)
assuming a majority of correct processes and the abstraction of &S. Independently, Lamport
presented in [Lam89]| the Paxos consensus algorithm (which we denote by PC) assuming a ma-
jority of correct processes and the abstraction of . Both failure detectors were shown to be
equivalent in a precise sense and represent the amount of knowledge needed to solve consensus
[CHTY6], i.e., a failure detection lower bound. An inherent characteristic of 2 and ¢S is the
indulgence of the actual consensus algorithms using them [Gue00]. Roughly speaking, the al-
gorithm is indulgent towards its failure detector: even if this failure detector turns out to be
completely unreliable and does never provide any useful knowledge about failures (i.e., the sys-

2Note that we consider the uniform consensus problem. In the system model we consider, uniform consensus
and consensus are similar [Gue00].

3 Applying our ideas to the crash-recovery model of [ACT00] is certainly feasible but might distract from the
main ideas we are addressing here: achieving zero degradation while matching consensus lower bounds.

“In fact, PC was devised for a system model where channels might lose messages and processes can crash and
recover. For the sake of presentation simplicity, we consider a variant of the algorithm in the simpler system
model of [CT96]. In this model, the eventual synchrony assumption of Paxos Consensus can be captured through
the failure detector €.

tem does never provide any synchrony guarantee), the safety properties of consensus (validity
and agreement) are preserved. It is shown in [CT96, Gue(00] that a majority of correct processes
is a lower bound for this form of indulgence, i.e., a resilience lower bound.

1.3 The Question

Precisely because of the indulgence of algorithms using §2 and <&, one cannot bound the number
of communication steps needed to reach a global decision (latency). Fortunately, it is possible
to bound this latency when the failure detector does not make mistakes, in particular in stable
runs. Intuitively, we say that a run is stable if failures are initial (i.e., all failures occurred before
the run started) and the failure detector output does not change during the run. More precisely,
we say that a run of an 2-based algorithm is stable iff all failures in the run are initial failures
and the failure detector outputs same correct process, at all processes, from the very beginning.
Similarly, we say that a run of a ¢S-based consensus algorithm is stable iff all failures in the run
are initial failures, and at all processes, ©S.suspected is always identical to the set of initially
crashed processes. A nice run is simply a stable run with no failures.

In nice runs of CT, four communication steps are needed before a consensus decision is
reached by all correct processes (global decision). One can easily obtain an optimization of CT
that alleviates the need for the first step in a nice run. In every stable run of CT, the same
number of communication steps (four) are still needed for a global decision. Similarly, in nice
runs of PC, five communication steps are needed for a global decision, and a simple optimization
of PC alleviates the need for the first two steps in a nice run. In every stable run, still the same
number of communication steps (five) are needed. In other words, though the latency in stable
runs is relatively high, it does not depend on the identity or the number of the initially failed
processes.

Several authors suggested variants of CT where two communication steps are sufficient for a
global decision in nice runs [Sch97, HR99|: a latency lower bound for these runs [KRO01]. Unlike
CT, these algorithms degrade in the presence of (initial) failures; the degradation being more or
less graceful depending on algorithm specifics [HR99]. More recently, [MRO01] presented two -
based consensus algorithms that do not degrade in stable runs. In the first algorithm of [MRO01],
three communication steps are required for a global decision in stable runs, thus clearly not
optimum in latency. The second algorithm enforces global decision in two communication steps
in stable runs but assumes two-third of the processes to be correct: thus clearly not optimum in
resilience.

We say that a consensus algorithm is zero degrading iff the same number of communication
steps are required for achieving a global decision in every stable run (irrespective of the identity
or the number of the initially crashed processes). To our knowledge, previous indulgent consensus
algorithms that have an optimal latency in nice runs, either are not zero degrading, or are not
optimal in terms of resilience. It is legitimate to ask whether we can have the cake and eat it
too. This paper shows that the answer is yes: we can indeed match (1) the lower bounds on
resilience, failure detection, and latency, and (2) yet provide the zero degradation flavor.

1.4 The Contribution

We describe a consensus algorithm based on the assumptions of failure detector €2 and a majority
of correct processes. In every stable run (whether nice or not), two communication steps are
sufficient to reach a global decision. Our algorithm is decentralized: processes exchange consensus
decisions and estimates of the decisions directly, just like in [Sch97, HR99, MR01]. What makes

at process p;
01: propose(v;)
02: start Task 1; start Task 2

03: Task 1

04: r; «— 0; estimate; «— v;; newEstimate; < L; leader; «— L

05: while(true)

06: leader; « Q.trusted; newEstimate; «— L

07: send(ESTIMATE, 7;, estimate;, leader;) to II

08: wait until ((received(esTIMATE, r;, *, *) from leader; and [”T“W — 1 other processes) or
(leader; # Q.trusted))

09: if ((received(ESTIMATE, 7, *, leader;) from leader;) and
(received(ESTIMATE, 7, *, leader;) from {"T"'l—l — 1 other processes)) then

10: newEstimate; «— (estimate received from leader;)

11: send(NEWESTIMATE, r;, newEstimate;) to II

12: wait until received(NEWESTIMATE, 7, *) from PLTH—I processes

13: if (received(NEWESTIMATE, 7;, newEstimate) s.t. newEstimate # L from PLTH—I processes) then

14: estimate; < (newEstimate of any received NEWESTIMATE message)

15: send(DECIDE, estimate;) to IT\p;; return(estimate;) {Decision}

16: else if (received any (NEWESTIMATE, r;, newEstimate’) s.t. newEstimate’ # 1) then

17: estimate; «— newEstimate’

18: ri«—r;+1

19: Task 2

20: upon receiving (DECIDE, x)

21: send(DECIDE, z) to IT\p;

22: return(x) {Decision}

Figure 1: The consensus algorithm DGq

our algorithm particularly effective is the very fact that processes also exchange their perception
about the current leader. Intuitively, they can expedite the decision when they realize that they
have the same leader, e.g., in a stable run.

Section 2 gives an overview and then a detailed description of the algorithm with an infor-
mal argument for its correctness. For space limitation, the detailed correctness proofs of our
algorithms are given in the optional appendix. We then briefly describe in Section 3 and in
Section 4 two additional variants of our algorithm: (1) an -based consensus algorithm such
that, given a privileged value PV, one communication step is sufficient to reach consensus in
every stable run where all processes propose Pv, and (2) a zero degrading <S-based consensus
algorithm. Roughly speaking, these variants convey the very fact that our technique to obtain
zero degradation can be applied in various indulgent consensus context.

As a side effect of our work, we introduce in Section 5 a performance metric for consensus
algorithms which captures the best-case latency of an algorithm (i.e., latency in a nice run) as
well as reveals the performance degradation (if any) of the algorithm in the presence of failures.
We use this metric to compare our algorithms with previous indulgent consensus algorithms. We
point out, finally, the performance gain obtained by our algorithm when consensus is used in a
repeated form, with respect to traditional consensus algorithms.

2 The Algorithm

We denote our algorithm by DGq and present it in Figure 1. We give here a description of the
algorithm along with an informal argument of its correctness. Detailed correctness proofs are
given in the appendix.

2.1 Overview

Our DGg algorithm is round based: every process p; moves incrementally from one round to
the other. Every round consists of two phases; each phase involves exchanging a set of messages.
Unless p; decides (returns from propose(x)), p; moves to the next higher round after completing
the two phases.

At each round r, every process queries its {2 failure detector module about the current leader.
We say that a process p; is a majority-leader at a round r iff p; is the current leader at a majority of
processes at that round. For a given round r, there can obviously be at most one majority-leader.
If the failure detector makes mistakes, then it is possible that there is no majority-leader at a
round. In the first phase of a round, processes exchange current leader values; i.e., they exchange
the perception about who is the leader. If a process perceives that a majority-leader exists for
round 7, it adopts the estimate of that leader, say value x, as its intermediate estimate value,
newFEstimate; otherwise newFEstimate remains 1. Since there is at most one majority-leader
in a round, newFEstimate at every process is either x or L.

Due to the unreliability of the failure detector and process failures, some processes may per-
ceive that a majority-leader exists at round r, whereas some processes may not. Therefore, in the
second phase of a round, processes exchange newFEstimate values. On receiving newFEstimate
values from a majority of processes, if a process receives newFEstimate = x from all processes
in that majority, then the process decides z. If a process receives both newFstimate = x and
newFEstimate = 1, then it sets its estimate to x. If all received values are 1, then a process does
not update its estimate. If any process decides = (by receiving a majority of newEstimate = x),
then clearly every process receives at least one message with newEstimate = x and hence,
updates estimate to x. We now give a detailed description of the algorithm.

2.2 Description

The algorithm consists of two parallel tasks: Task 1 and Task 2. When a process proposes a
value, it starts both tasks. The execution terminates when the propose function returns a value
(from Task 1 or from Task 2). We now describe the two tasks.

Task 1: This task proceeds in asynchronous rounds with processes incrementally moving from
one round to the other. Each round has two phases: (phase 1) exchanging ESTIMATE messages,
and (phase 2) exchanging NEWESTIMATE messages. Consider any process p;: p; maintains (1)
the current round number r;, initialized to 0, (2) an estimate of the possible decision value
estimate;, which is initialized to the input value of p;, and (3) an intermediate newEstimate;
value (a possible new value for estimate;), initialized to L at the beginning of each round.
Further, at the beginning of each round, p; queries 2 about the current leader and stores the
identity of that leader in leader;. Once leader; is set at the beginning of a round, it does not
change inside the round (even if Q.trusted changes).

At the beginning of a round, p; sends ESTIMATE messages to all processes containing estimate;
and leader;. Process p; waits till it receives ESTIMATE messages from leader; and [241] — 1 other
processes. It simultaneously keeps on querying). The value of newFEstimate; depends on the
output of Q2 and the ESTIMATE messages received:

1. If leader; # Q.trusted before ESTIMATE message from leader; is received by p;, or any
of the [%H] PROPOSAL messages received by p; has leader # leader;, then newFEstimate;
remains L.

2. If p; received ESTIMATE messages from leader; and [%$1] — 1 other processes, and every
received message has leader = leader;, then newEstimate; is set to the estimate received from
leader;.

In the second phase of the round, p; sends a NEWESTIMATE message, containing new FEstimate;,
to all processes. Process p; waits till it receives NEWESTIMATE messages from [Z2$1] processes
and then takes one of the following three steps depending on the received messages:

1. If every NEWESTIMATE message received by p; has newFEstimate # L, then p; adopts any
received newFE stimate as estimate;. Afterwards, p; sends a DECIDE message with estimate; as
the decision value to all processes different from p;, and returns estimate; (i.e., decides estimate;).

2. If any NEWESTIMATE message received by p; has newFEstimate # L, then p; adopts that
newEstimate as estimate;. Afterwards, p; proceeds to the next round.

3. If every NEWESTIMATE message received by p; has newFEstimate = L, then p; proceeds
to the next round (without updating estimate;).

Task 2: Upon receiving a DECIDE message with value x, p; sends a DECIDE message with x as
the decision value to all processes different from p;, and returns x (i.e., decides z).

2.3 Correctness

We now informally argue about the correctness of the algorithm. (The complete proof is given
in the appendix.) Validity is straightforward and termination is guaranteed by the presence of
an) failure detector and a majority of correct processes. The heart of the algorithm deals with
agreement.

If some process decides (i.e., returns from propose(x)) then some process must have sent a
decision value at line 15. Consider the smallest round, say r, in which some decision value is
sent at line 15. Assume process p; sends decision value v at line 15 of round r. Notice that if
some process sends v as the decision value, then it must have received a NEWESTIMATE message
with newFEstimate = v from some process, say p;. Let p; be the leader at p; at round r. By the
algorithm, all [2] ESTIMATE messages received by p; must have leader = p;. Therefore, every
process which receives a majority of ESTIMATE messages must have received at least one message
with leader = p;. So, at processes where leader # p;, newFE stimate remained 1, and at processes
where leader = py, either v was adopted as newEstimate or newEstimate remained L (line 9).
Therefore, every process which exchanged ESTIMATE messages has newEstimate € {v, L} before
it sends a NEWESTIMATE message.

Further, before sending decision value v at line 15, p; must have received newFEstimate = v
from [%1] processes. Therefore, every process which completes round r must have received
newEstimate = v from at least one process (since completion of round r requires receiving
NEWESTIMATE messages from a majority). Since, newEstimate values sent at round r are re-
stricted to {v, L}, no NEWESTIMATE message is received with newEstimate ¢ {v, L }. Therefore,
every process which completes round r adopts v as its estimate (line 17). Similarly, we can show
that every decision value sent at round r is v.

Clearly, there are no estimate values different from v after round r. Thus, no decision value
sent at line 15 of a round higher than r can be different from v. Since r is the smallest round in
which some decision value is sent at line 15, then every decision message has the same value, v.

2.4 Zero degradation

Consider any stable run of DGg, i.e., any run where (1) all faulty processes crash before the
consensus run starts, and (2) there is a correct process p. such that, at every correct process,
Q.trusted is always p.. Let v be the value proposed by process p.. Every correct process sends a
(ESTIMATE, 0, *, p.) message to all processes. Correct processes receive (ESTIMATE, 0, x, p.) from
[2+1] processes, including a (ESTIMATE, 0, v, p.) message from p.. Thus, correct processes adopt
v as newEstimate. Then, every correct process sends (NEWESTIMATE, 0, v) to all processes. On
receiving (NEWESTIMATE, 0, v) from [2f] processes, correct processes send (DECIDE, v) and
decide v. Thus, in every stable run of A, all decide events occur in two communication steps.
Note that, every nice run is a stable run, and hence, in every nice run of A, all decide events
occur in two communication step.

3 One-step Consensus with Zero Degradation

In a stable period, every run of our consensus algorithm terminates in two communication steps.
Can we do better? The answer is “sometimes, yes” . The Q-consensus lower bound [KRO1]
actually means that every (2-based consensus algorithm has a nice run where at least one correct
process needs at least two steps to decide. In fact the lower bound does not preclude the existence
of an 2-based consensus algorithm where, from any starting configuration in a specific non-empty
subset of initial configurations, all correct processes need only one step to decide in every nice
run.

We briefly describe below a simple variant of our DGq consensus algorithm, denoted DG,
and given in Figure 2. In addition to the assumptions of DGgq, we assume for DGY, that all
processes have an a priori knowledge of a privileged wvalue, Pv. Just like for DGq, in every
stable run of DGY,, two communication steps are sufficient for all correct processes to decide.
Moreover, in all stable runs of DGY, where all correct processes propose PV, one communication
step is actually sufficient.

To obtain DGY,, we apply to DG, an idea borrowed from [BGMRO01]. Only the first round of
DGq (r; = 0) is modified. In this first round, if a process p; receives (ESTIMATE, 0, PV, leader;)
messages from leader; as well as [2+] — 1 other processes, p; sends PV as the decision value
to all and decides PV . Otherwise, p; waits till it receives [241| ESTIMATE messages, and if p;
received any ESTIMATE message with estimate = PV then p; adopts PV as its estimate. This
idea is conveyed in lines 11-17 of Figure 2 (the main difference with Figure 1). In a stable run, if
all correct processes propose PV, then every process receives estimate = PV from its leader and
[2+1] — 1 other processes in round 0. Thus, all correct processes send (DECIDE, PV) and decide
in one communication step. In any stable run, even if all processes do not propose PV, processes
decides in two communication steps. Thus, DGy, retains the zero degradation flavor of DGq,.

Similar to DGq, the heart of DGY, deals with preserving agreement. The algorithm ensures
that if any process sends (DECIDE, v) in round 0, then (i) any process which starts round 1 has
estimate = v, and (ii) any (DECIDE, v’) message at round 0 has v" = v. This is sufficient to
ensure agreement, since in all subsequent rounds, DG, is identical to DGgq. A sketch of the
correctness proofs is given in the appendix.

at process p;

01: propose(v;)

02: start Task 1; start Task 2
03: Task 1
04: r; < 0; estimate; «— v;; newEstimate; — L; leader; «— L
05: while(true)
06: leader; «— Q.trusted; new Estimate; «— L
07: send(ESTIMATE, 7;, estimate;, leader;) to II
08: wait until ((received(ESTIMATE, 7;, *, *) from leader; and [”T'H—I — 1 other processes) or
(leader; # Q.trusted))
09: if ((received(ESTIMATE, r;, *, leader;) from leader;) and
(received(ESTIMATE, 7, *, leader;) from PLTH—I — 1 other processes)) then
10: newEstimate; «— (estimate received from leader;)
11%: if (r; =0) then
12%: if (received(esTimatE, 0, Pv, leader;) from (leader; and {"THW — 1 other processes)) then
13*: send(DECIDE, PV) to IT\p;; return(pv) {Decision}
14%: if (number of (ESTIMATE, 0, *, %) received < "TH) then
15%: wait until (received(EsTiMATE, 0, *, %) from PLTH—I processes)
{Including the messages received at line 8}
16%*: if (received a (ESTIMATE, 0, PV, %)) then
17*: estimate; «— pPv
18: send(NEWESTIMATE, r;, newEstimate;) to II
19: wait until received(NEWESTIMATE, 7, *) from ["THW processes
20: if (received(NEWESTIMATE, 7;, new Estimate) s.t. newFEstimate # 1 from {"T‘HW processes) then
21: estimate; < (newEstimate of any received NEWESTIMATE message)
22: send(DECIDE, estimate;) to II\p;; return(estimate;) {Decision}
23: else if (received any (NEWESTIMATE, r;, newEstimate’) s.t. newEstimate’ # 1) then
24: estimate; «— newEstimate’
25: T — T + 1
26: Task 2
2T: upon receiving (DECIDE, x)
28: send(DECIDE, z) to II\p;
29: return(z) {Decision}

Figure 2: The consensus algorithm DGy,

at process p;
01: propose(v;)
02: start Task 1; start Task 2

03: Task 1
04: r; «— 0; estimate; «— v;; newEstimate; < L; leader; «— L
05%*: leader; < process with the lowest index in {II - ©S.suspected}; newEstimate; — L
06: send(ESTIMATE, 7;, estimate;, leader;) to II
07*: wait until ((received(ESTIMATE, 7;, *, %) from leader; and ["TH—I — 1 other processes) or
(leader; € ©S.suspected))
08: if ((received(ESTIMATE, r;, *, leader;) from leader;) and
(received(ESTIMATE, 75, *, leader;) from PLTHW — 1 other processes)) then
09: newEstimate; «— (estimate received from leader;)
10: send(NEWESTIMATE, 7, newEstimate;) to II
11: wait until received(NEWESTIMATE, 7, *) from [”T'Hw processes
12: if (received(NEWESTIMATE, i, newEstimate) s.t. newEstimate # L from {"T‘HW processes) then
13: estimate; «— (newEstimate of any received NEWESTIMATE message)
14: send(DECIDE, estimate;) to II\p;; return(estimate;) {Decision}
15: else if (received any (NEWESTIMATE, r;, newEstimate’) s.t. newEstimate’ # 1) then
16: estimate; +— newEstimate’
17*: return(proposec (estimate;)) {Decision}
18: Task 2
19: upon receiving (DECIDE, x)
20: send(DECIDE, z) to II\p;
21: return(x) {Decision}

Figure 3: The consensus algorithm DGos

4 A OS-based Zero Degrading Algorithm

We now discuss how DGgq can be transformed to a OS-based algorithm DGos which retains the
zero degradation flavor; i.e., in every stable run, DG s achieves a global decision in two commu-
nication steps. The algorithm is given in Figure 3. For simplicity of presentation, we assume an
independent <&S-based consensus algorithm C' accessed through procedure proposec(*) which
returns the decision value (e.g., the ¢S-based consensus algorithm of [CT96]). Irrespective of
the time complexity of C, DG¢s achieves a global decision in two communication steps in every
stable run.

The first round of DGos follows nearly the same pattern as that of DGq. If a process is
unable to decide in the first round then it invokes proposec(*) to obtain the decision value (line
17). The primary difference between the first round of DGos and that of DGg is in the selection
of the current leader. In DGos, the current leader at a process is the process with the lowest
index in IT - ©S.suspected (line 5). In any stable run, the set IT - OS.suspected is precisely the
set of correct processes, and hence, the current leader is the same correct process at all correct
processes.” Using arguments similar to Section 2.4 for DGq, one can easily show that every
stable run of DG s reaches a global decision in two communication steps.

SObviously, ¢S does not guarantee that “the process with the lowest index in IT - OS.suspected is the same
correct process at all correct processes”. The claim is true only for stable runs.

5 Performance

5.1 Time complexity metric

To measure the time complexity of our algorithms and compare it with other consensus algo-
rithms, we introduce a metric denoted csr 4, which captures the number of communication steps
of a consensus algorithm A in a given failure pattern F. The metric was informally introduced
in [HR99]. We define it more precisely using a variant of Lamport’s logical clock:

o Modified logical clock: Consider Lamport’s logical clock ([Lam?78]), as modified in [Sch97]:
(1) send and local events at a process do not change the logical clock, and (2) the time-
stamp of a receive(m) event at p; is: maximum{(time-stamp of send(m) at sender(m) + 1),
(time-stamp of the event preceding receive(m) at p;)}.

We then introduce the following notations:

e csp: The number of communication steps of a consensus run R is the largest time-stamp
of all decide events in that run.

e csc,r,A: The number of communication steps of a consensus algorithm A in a failure
pattern F and an initial configuration C,% is the smallest csp of all runs of A with initial
configuration C' and failure pattern F.

e csp 4: The number of communication steps of a consensus algorithm A in a failure pattern
F, is the largest csc p 4 of all possible initial configurations of A with failure pattern F.

The csp 4 metric captures the performance of an algorithm in nice runs, as well as the degradation
of performance in the presence of failures. By selecting the fastest run among all possible
runs with the same initial configuration C and failure pattern F', we eliminate the effect of
unreliable failure detection. Further, by choosing the maximum among all cs¢ r 4 with the same
F, the metric does not advantage algorithms that are particularly efficient for specific initial
configurations (e.g., our algorithm DGY,).

5.2 Performance

Consider algorithms DG and DGos. As we show in Section 2.4, there exists runs of each
algorithms with initially crashed processes in which all decide events occur within two communi-
cation steps, irrespective of the initial configuration. Thus for any failure pattern F' in which all
faulty processes crash at ¢ = 0 (i.e., before the consensus run starts), csp pG, = CSF.DGos = 2-

In case of DGY,, notice that for every initial configuration C' in which no process proposes
pv, every run of DG{, which starts from C requires at least two communication steps for global
decision. Thus, even though DG, reaches a global decision in one communication step for some
initial configuration, for any failure pattern F', csp, DGl = 2. (Obviously, for any failure pattern
F in which all faulty processes crash at ¢t = 0, csp, DGl = 2.)

5.3 Comparisons

Table 1 compares the performance of DGq and DGos with alternative indulgent consensus
algorithms that tolerate a minority of failures. We consider a system of at least 7 processes

5The initial configuration of a distributed system is defined by the initial state of each process and empty
communication channels [FLP85]. Here, we are specifically interested in the list of proposed values.

10

&S-based consensus algorithms

CT 3 4 4 4
SC 2 4 6 8
HR 2 3 4 5
DGos 2 2 2 2
()-based consensus algorithms

PC 3 5 5 5
DPC 2 4 4 4
MR 3 3 3 3
DGq 2 2 2 2

Table 1: csg 4 values

(n > 7), and the following failure patterns: (i) F0: all processes are correct; (ii) F'1: Process p;
crashes at ¢ = 0 and all other processes are correct; (iii) F'2: Processes p; and po crash at t =0
and all other processes are correct; and (iii) F'8: Processes p1, p2 and p3 crash at ¢ = 0 and all
other processes are correct.

We consider three ©S-based algorithms, C'T: Chandra-Toueg’s original ¢S consensus algo-
rithm [CT96], SC: early consensus [Sch97], and HR: fast consensus [HR99|, and compare them
in Table 1 with with our ¢S-based algorithm, DGos. The csy 4 values are achieved in any stable
run; i.e., when all process crashes are initial and, throughout the run, at every correct process,
the suspicion list of the failure detector is identical to the set of initially crashed processes.

Besides our algorithm (DGq), we also consider three Q-based algorithms; PC: Lamport’s
Paxos Consensus [Lam89], M R: the first algorithm in [MRO1] (we do not consider here the
second algorithm of [MRO1] because it assumes at least two-thirds of the processes are correct,
and is hence incomparable with other algorithms), and DPC: a decentralized version of PC
[Lam89], pointed out in [KRO01]. The csp 4 values are achieved in any stable run, i.e., when all
process crashes are initial and, throughout the run, the same correct process remains the leader
at every correct process.7

The csg 4 values are summarized in Table 1, which clearly conveys the efficiency of DG and
DGos. In short, apart from achieving the failure-free performance of SC' and MR (FO0 failure
pattern, i.e., nice runs), DG and DG¢s are immune to the presence of crashed processes in
stable runs (zero degradation). It is important to notice here that, similar to the algorithms of
[Sch97, HR99, MRO1], the message complexity of DGq and DGos are O(n?) when the processes
are connected by a point-to-point network, and O(n) in a broadcast network. The original CT

"A round in the Paxos consensus algorithm (PC) can be divided into three phases: (i) read phase: the leader
(elected by some leader election service; e.g., 2) reads whether any estimate value might already be locked at
a majority of processes, (ii) write phase: the leader tries to lock an estimate value at majority of processes,
and (iii) decide phase: the leader disseminates the successfully locked estimate as the decision value. The read
and the write phase each requires two communication steps (messages sent by the leader to all processes and
the processes sending acknowledgments to the leader), and the decide phase requires one communication step.
Optimizations can be made along the lines proposed by [KR01]. In a crash-stop model, the read phase of the
algorithm is required only when the leader changes, and hence can be skipped when p; is the leader. Further,
consider the last two steps in a round: processes sending acknowledgment to the leader (in reply to the write)
and the subsequent decision message sent by the leader. These two steps can be merged into a single step in
a decentralized scheme: processes send the acknowledgment to all processes; on receiving acknowledgment from
a majority, a process decides immediately. These two optimizations result in the csr ppc values presented in
Table 1.

11

pl crashes

HR

(AN (5 N 3 (a4 (5
S N N N
2 2 4 3 3
G 2 2 4 2 2

Figure 4: Repeated consensus performance

and PC' algorithms are centralized and have a message complexity of O(n) no matter how the
processes are connected.

5.4 Repeated consensus and zero degradation

In practice, the zero degradation property of a consensus algorithm is important in case of
repeated consensus based applications. Consider the [CT96| atomic broadcast algorithm, imple-
mented as a sequence of consensus instances. Further, consider a nice run of the algorithm. If the
HR consensus algorithm is used as an underlying consensus module (which is the most efficient
OS-based consensus algorithm we knew of), then each consensus instance takes two communi-
cation steps. If DG¢s consensus algorithm is used instead, still each consensus instance requires
two communication steps.

Now, consider a slightly different run, depicted in Figure 4: process p; crashes during the
third consensus instance (there are no other failures and the failure detector at all processes
suspects p; after the third consensus instance). The performance of both consensus algorithms
(HR and DGog) are the same for the first three consensus instances.® In the DGos consensus
algorithm, even though the crash of process p; slows the third consensus instance, other consensus
instances are not affected: all subsequent consensus instances still take two communication steps
(zero degradation). On the other hand, even in the absence of further failures or false suspicions,
every subsequent HR consensus instance takes three communication steps. In long runs of atomic
broadcast, this is a significant performance overhead. Similar performance overheads are incurred
whenever atomic broadcast uses consensus algorithms which are not zero degrading.

References

[ACT00] M.K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery
model. Distributed Computing, 13(2):99-125, May 2000.

[BGMRO1] F. Brasileiro, F. Greve, A. Mostefaoui, and M. Raynal. Consensus in one communication
step. In Proceedings of the 6th International Conference on Parallel Computing Technology,
pages 42-50, Novosibirsk, Russia, September 2001.

[CHT96] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving con-
sensus. Journal of the ACM, 43(4):685-722, July 1996.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225-267, 1996.

8The performance of the third instance may be different: HR may require only 3 steps depending on when
exactly p1 crashes.

12

[DDS87]
[FLP85]
[Gue00]
[HR99]

[HT93]

[KRO1]
[Lam78]

[Lam89|

[MROL]

[Sch97]

D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchrony needed for distributed
consensus. Journal of the ACM, 34(1):77-97, January 1987.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374-382, April 1985.

R. Guerraoui. Indulgent algorithms. In Proceedings of the 19th ACM Symposium on Princi-
ples of Distributed Computing (PODC-19), pages 289298, Portland, OR, July 2000.

M. Hurfin and M. Raynal. A simple and fast asynchronous consensus protocol based on a
weak failure detector. Distributed Computing, 12(4):209-223, 1999.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullender,
editor, Distributed Systems, ACM Press Books, chapter 5, pages 97-146. Addison-Wesley,
second edition, 1993.

I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are no faults
- a tutorial. Technical Report MIT-LCS-TR-821, MIT, May 2001.

L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

L. Lamport. The part-time parliament. Technical Report 49, Systems Research Center,
Digital Equipment Corp, Palo Alto, September 1989. A revised version of the paper also
appeared in ACM Transaction on Computer Systems, 16(2):133-169, May 1998.

A. Mostefaoui and M. Raynal. Leader-based consensus. Parallel Processing Letters, 11(1):95—
107, March 2001.

A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Dis-
tributed Computing, 10(3):149-157, 1997.

13

Appendix: Correctness Proofs

Correctness of DG (Figure 1)

Lemma 1: If a process decides v then some process has sent (DECIDE, v) at line 15 of some
round.

Proof: Suppose by contradiction that some process p; decides v and no process has sent (DECIDE,
v) at line 15. Process p; decides either at line 15 or at line 22 of a round. If p; decides at line
15 then by the algorithm, p; must have send (DECIDE, v) at line 15, a contradiction. Therefore,
p; must have decided at line 22. So, every (DECIDE, v) message which is sent until p; decides,
is sent at line 21, and there is at least one such message. This is a contradiction because every
(DECIDE, v) message which is sent at line 21 requires that a distinct (DECIDE, v) message has
been sent before it (line 20).]

Proposition 2. (Validity): If a process decides v, then some process has proposed v.

Proof: If a process decides v, then some process has sent (DECIDE, v) at line 15 of some round
(Lemma 1). Assume that (DECIDE, v) was sent at line 15 of round r. Any decision value sent
in round r must be the newEstimate value of some process at round r (line 14). Further, any
newFEstimate (# L) value at round r must be the estimate of some process at the beginning of
round 7. Thus, v must be the estimate of some process at the beginning of round r. To prove
validity, we show: for any round r, if v is the estimate at some process at the beginning of round
r, then v was proposed by some process. We prove the above statement by induction on round
numbers.

e Base Step: In round 0, every process sets its estimate to its own proposed value at line 4.

e Induction Hypothesis: At the beginning of round k, if v is the estimate of some process,
then v was proposed by some process.

e Induction Step: Consider round £+ 1. Every process which executes round k4 1 must have
completed round k. The estimate of a process at the beginning of round & + 1 is the same
as its estimate at the end of round k. The estimate of a process at the end of round k
must be the newFEstimate of some process at round k, and any newEstimate (# L) value
must be the estimate of some process at the beginning of round k. Thus, any estimate
value at the beginning of round k + 1 was an estiémate value in the beginning of round k.
Applying the induction hypothesis, any estimate value at the beginning of round k 4 1 is
a proposed value. O

Proposition 3 (Termination): Every correct process eventually decides. (Every correct process
eventually returns from the propose(*) invocation.)

Proof: We prove the proposition by contradiction. Assume that some correct process never
decides. If any correct process decides then it has sent a DECIDE message to all (at line 15
or at line 21) and so every correct processes eventually receives a DECIDE message and decides
(recall that messages sent to a correct process is eventually delivered), contradicting our original
assumption. Thus, if some correct process never decides then no correct process ever decides.
Therefore, by our original assumption, no correct process decides.

14

If some correct process p; never decides, then either p; is blocked forever in a round or is
executing an infinite number of rounds. We show both cases to be impossible.

Case 1: Some correct process blocks forever in a round. Let r be the smallest round in which
some correct process, say p;, blocks forever. This can only be possible at some wait statement
in round r. There are two wait statements in a round, at line 8 and at line 12.

Case 1.1: Assume that p; blocks forever at the wait statement of line 8. Since no correct
process blocks in any lower round (by definition of r), then every correct process sends an
ESTIMATE message in round r. If leader; is correct then p; eventually receives an ESTIMATE
message from leader;. If leader; is faulty then eventually leader; # Q.trusted. Further, p; receive
at least [%+1] —1 other PROPOSAL messages since there are at least [241] correct processes. Thus,
p; cannot block forever at line 8.

Case 1.2: Assume that p; blocks forever at the wait statement of line 12. Since no correct
process blocks forever at line 8 in round r, then every correct process sends a NEWESTIMATE
message. As there are at least ["TH] correct processes, p; receives NEWESTIMATE message from
[2+1] processes. Thus, p; cannot block forever at line 12.

Case 2: Assume that all correct processes execute an infinite number of rounds. Consider
the smallest time ¢ such that, (i) before ¢, every faulty process has crashed, and (ii) after ¢, Q
at every correct process always outputs the same correct process, p..? By the impossibility of
case 1 and the assumption that every correct process executes an infinite number of rounds, there
must exist a round r such that, all correct processes start round r after time ¢. Every correct
process sends an ESTIMATE message with leader = p. and receives ESTIMATE messages from p,
and [2H] —1 correct processes. Correct processes adopt the estimate of p. as its newEstimate.
Every correct process sends an NEWESTIMATE message with the same newE'stimate (# L) value.
After receiving non- | newFEstimate values from a majority of processes, every correct process
sends a DECIDE message and decides at line 15. O

Lemma 4: For any round, if a process sends a NEWESTIMATE message with newEstimate =
x # L, then all NEWESTIMATE messages are sent with newEstimate € {x, L}.

Proof: Suppose by contradiction that in some round r, p; sends a NEWESTIMATE message
with newFEstimate = x # L and another process p; sends a NEWESTIMATE message with
newFEstimate = y ¢ {x, L}. Process p; must have received (ESTIMATE, r, x, leader;) message
from leader; and (ESTIMATE, r, %, leader;) messages from [241] — 1 other processes. Similarly,
process p; must have received (ESTIMATE, 7, y, leader;) message from leader; and (ESTIMATE,
r, %, leader;) messages from [21] — 1 other processes. Thus, processes p; and p; each received
ESTIMATE messages from [2El] processes. Since x # y, leader; # leader;. As two majori-
ties always overlap, some process must have sent two different ESTIMATE messages in round r;

(ESTIMATE, 7, *, leader;) and (ESTIMATE, r, *, leader;): a contradiction. O

Lemma 5 (Elimination): If r is the smallest round in which some DECIDE message was sent at
line 15, and v is the decision value sent by some process in round r, then (1) every process which
completes round r has estimate = v at the end of round r, and (2) every DECIDE message sent
in round r has the decision value v.

9Time ¢ exists due to the definition of faulty processes and the property of Q.

15

Proof: Assume that in round r process p; sends a DECIDE message with value v at line 15.
Process p; must have received (NEWESTIMATE, r, v) messages from |[2f1] processes. From
Lemma 4, all NEWESTIMATE messages are sent with newEstimate € {v, L}. We now prove (1)
by contradiction.

(1) Assume process p; completes round r with estimate # v. Process p; must have received
NEWESTIMATE messages from [] processes and hence received at least one (NEWESTIMATE, T,
v) message. Since p; did not adopt v in line 14 or line 17, p; must have received a NEWESTIMATE
message with newFEstimate ¢ {v, L}: a contradiction.

(2) Follows directly from (1).]

Proposition 6 (Agreement): No two processes decide differently.

Proof: If no process decides, then the proposition is trivially true. If a process decides then
some process has sent a DECIDE message at line 15 of some round (Lemma 1). Let r be the
smallest round in which some DECIDE message was sent at line 15 and let process p; sends a
decision value v in round 7.

Assume that some process decides a value z. Some process must have sent a (DECIDE, z)
message at line 15 of some round k (Lemma 1). By definition of r, & > r. If k = r then by
Lemma 5, z = v (every DECIDE message sent at round r has the decision value v). If &k > r
then, every process which executes round k£ must have completed round r. From Lemma 5, every
process which completes round r has estimate = v at the end round r. Therefore, no other value
can be decided in any subsequent round. Thus, z = v. O

Proposition 7: DGq (Figure 1) solves consensus.

Proof: Immediate from propositions 2, 3, and 6. O

Correctness of DGY, (Figure 2)

Lemma 8: If a process sends a (DECIDE, v) message in round 0 of Task 1, then (i) any process
which starts round 1, has estimate = v, and (ii) any (DECIDE, v') message sent in round 0 has
v = .

Proof (Sketch): Assume that process p; sends a (DECIDE, v) message in round 0 of task 1.
There are two cases to consider, depending on the line at which p; sends the decision value.

Case 1: Process p; sends (DECIDE, v) at line 13. Process p; must have received message
(ESTIMATE, 0, PV, leader;) from [25L] processes (including the process leader;) and v = PV. In
a given round, a process can change its estimate at line 17, line 21 or line 24.

Case 1.1: If a process sets its estimate at line 17 then it must have received [2+l| PROPOSAL
messages (line 15). Since, two majorities always overlap, the process must have received at
least one (PROPOSAL, 0, PV, leader;) message. Thus, it adopts PV as its estimate (line 16). In
addition, if any process sends (DECIDE, x) at line 13, then = = PV (since, it must have received
at least one (PROPOSAL, 0, PV, leader;) message).

Case 1.2: If a process adopts some value x as its estimate at line 21 or line 24, then some
process p; must send an NEWESTIMATE message with newEstimate = x (# L). Process p; must

have received (ESTIMATE, 0, *, leader;) from [241] processes (including the process leader;).

16

Further, as two majorities always overlap, at least one of these messages must be (ESTIMATE, 0,
PV, leader;). Thus, leader; = leader; and x = pv. In addition, if any process sends (DECIDE,
estimate) at line 22, then estimate = PV (since, its estimate set to PV at line 21).

Case 2: Process p; sends (DECIDE, v) at line 22. Process p; must have received [2%!]
NEWESTIMATE messages with newEstimate # L (including at least one NEWESTIMATE message
with newEstimate = v). Since line 11 to line 17 do not change the newFEstimate value at a
process, we can use Lemma 4 to show that every newFEstimate value is either v or L. So, at
least [%] processes must have sent newFEstimate = v. Thus, every process which proceeds
to round 1 must have received at least one (NEWESTIMATE, 0, v) message at line 23 and sets
estimate = v. It follows that any other process which sends a DECIDE message at line 22 has
decision value v. Further, from the proof of Case 1.2, it is obvious that if any process sends
(DECIDE, PV) in line 13, then v = pv. O

Proposition 9: DGy, (Figure 2) solves consensus.
Proof (sketch): The DGy, algorithm differs from DG only in round 0. Validity and termination

of DGy, follows from the validity and termination property of DGg. Agreement of DGY, follows
from Lemma 8 and the agreement property of DGq. O

17

