An Efficient Universal Construction for Message-Passing Systems
(Preliminary Version)*

Partha Dutta? Svend Frglund!

Rachid Guerraoui

2 Bastian Pochon?

1 Hewlett-Packard Laboratories, Palo Alto, CA 94304
2 Distributed Programming Laboratory, Swiss Federal Institute of Technology, Lausanne, CH 1015

Abstract

A universal construction is an algorithm that trans-
forms any object with a sequential specification into a
wait-free and linearizable implementation of that ob-
ject.

This paper presents a novel universal construction
algorithm for a message-passing system with process
crash failures. Our algorithm relies on two fine-grained
underlying abstractions: a weak form of leader elec-
tion, and a one-shot form of register.

Our algorithm is indulgent, efficient and generic.
Being indulgent intuitively means that the algorithm
preserves consistency even if the underlying system is
asynchronous for arbitrary periods of time. Compared
to other indulgent universal constructions, our algo-
rithm uses fewer messages and gives rise to less work in
steady-state. Our algorithm is generic in two senses:
(1) it is initially devised for a crash-stop model and
can be easily ported to various crash-recovery models,
and (2) it is initially optimized for the steady-state pe-
riod but can easily be extended to trade-off between
steady-state performance and fail-over time.

1 Introduction

A universal construction is an algorithm that
provides a wait-free and linearizable implemen-
tation of any object that has a sequential spec-
ification [13]. In short, being wait-free requires
the implemented object to be highly available—
any invocation of the object must complete in a
finite number of steps, even in the presence of
failures. Being linearizable intuitively means that
the implemented object must remain consistent—

*Technical Report EPFL/IC/2002/28

the object must appear to be accessed in a sequen-
tial manner [15].

It is very appealing to use the notion of uni-
versal construction as the theoretical underpin-
ning of highly-available distributed systems. The
notion of universal construction clearly and pre-
cisely defines the contractual obligations and
guarantees of the various players, such as the ob-
jects, the algorithm, and the clients. The ob-
ject can be implemented in any way that com-
plies with its sequential specification. In particu-
lar, objects can be non-deterministic. Clients are
given precise safety and liveness guarantees. The
universal construction algorithm can be based on
any implementation that provides clients with
wait-free, linearizable access to the object. From
a practical point of view, the object represents
an online service. A universal construction algo-
rithm can be viewed as middleware that imple-
ments highly-available access to the service from
a number of clients.

To be practical as the foundation for high-
availability middleware, a universal construction
algorithm should have a number of desirable
properties:

e It should tolerate arbitrary asynchrony pe-
riods of the underlying system (we refer
to this property as indulgence [12]). In-
dulgence is important because the service
may be subject to unpredictable workloads,
and it may share resources, such as network
bandwidth, with other online services.

e The steady-state behavior should be effi-
cient. Steady-state is a period where no

process fails or is suspected to have failed.
In most systems, this is the common case,
and thus the case for which we want to op-
timize.

e The algorithm should minimize the commu-
nication between clients and the service. It
is indeed common for online services to be
accessed via the Internet, and such access
typically involves communication over wide-
area network links.

Universal construction algorithms are typically
based on atomic registers, consensus-like primi-
tives, or strong forms of leader election abstrac-
tions. As we explain in the following, these
pose several problems in the context of high-
availability middleware where practical services
communicate through message passing.

Traditional universal construction algorithms
were devised in a shared memory (e.g., [13]) where
processes communicate through shared registers.
One can indeed emulate a register abstraction us-
ing message-passing (e.g., assuming a majority of
correct processes [3]), but such a solution is not
efficient in practice, because it does not take full
advantage of the message-passing model. Emu-
lating atomic registers leads to a universal con-
struction that requires (n?) messages (instead of
(n) in our algorithm), and emulating more pow-
erful abstractions, such as compare&swap, load-
linked and store-conditional [14]), is inherently
inefficient with message-passing.

Primary-backup algorithms, such as [2, 4,
6], are universal constructions devised with a
message-passing model in mind. These algo-
rithms rely on a strong form of leader election
that make them however non-indulgent. More
precisely, they rely on the assumption of a sin-
gle primary, and asynchrony in the underlying
system may violate this assumption. The semi-
passive replication algorithm [9] can be viewed as
an indulgent primary-backup universal construc-
tion. Nevertheless, because it relies on an under-
lying consensus-like abstraction, it increases the
number of messages exchanged between clients
and a replicated service, with respect to tradi-
tional primary-backup algorithms. With these

algorithms, the client sends its request to the
primary; with semi-passive replication, the client
must send its request to all replicas. As we
pointed out, this is clearly undesirable when the
replicated service is accessed through the Inter-
net.

This paper presents an indulgent an univer-
sal construction algorithm for a message-passing
model with process crash failures', using two fine-
grained underlying abstractions: a weak form of
leader election, GLeader (denoted in [7]), and a
new one-shot form of register, ARegister. Neither
of these can, in isolation, implements consensus,
but their combined power is equivalent to consen-
sus.?

Our algorithm follows the primary-backup
replication pattern, and is more efficient than
other indulgent primary-backup algorithms: our
algorithm uses fewer messages and gives rise to
less work by the backups. The latency of our
algorithm matches the lower bound established
in [6] (for a non-indulgent solution). The mes-
sage complexity (number of messages exchanged
to process a request) is 2n+2 in our case, just like
traditional primary-backup. The message com-
plexity of semi-passive replication is for instance
on.

In our algorithm, only primaries update their
state, backups only witness the updates per-
formed by primaries. Thus, only a primary has
the current state of the replicated object. A
backup “constructs” the current state only if
and when it becomes primary. Because back-
ups do not update their state, they play an even
more passive role in our algorithm than in tra-
ditional primary-backup algorithms that seek to
keep backups up-to-date. Because a client only
needs to send the request to the primary, we com-
bine at the same time the low message-complexity

'In our context of message-passing, we say that an ob-
ject is wait-free if any client always returns from the invo-
cation of an operation on this object within a finite number
of its own steps independently of the crash of other clients,
despite of the failure of a minority of replicas.

20ur weak leader election encapsulates the synchrony
assumption needed to implement consensus, whereas our
register encapsulates the assumption of a majority of cor-
rect processes needed for indulgent consensus.

of the primary-backup approach with a low time-
complexity of a lazy replication algorithm.

Using our abstractions leads to a surprisingly
simple and comprehensive universal construc-
tion algorithm. Furthermore, our modularization
makes it easy to extend and adapt the algorithm.
Indeed, the main idea behind our algorithm is to
move work from steady-state periods to transition
periods. Thus, the trade-off of our algorithm is to
optimize the performance in steady state at the
expense of making fail-over more costly. If failures
are rare and the fail-over time not that critical,
this is likely to be a good trade-off. However, in
certain environments, it is very important to re-
act quickly to failures. The good news is that our
algorithm allows us to trade-off between steady-
state performance and fail-over time in a modu-
lar manner, i.e., by extending the algorithm, not
changing it. Moreover, we build our ARegister
abstraction on top of a more basic notion of reg-
ister, a round-based register, denoted Rregister,
for which we give a precise specification. Inter-
estingly, only the Rregister needs to be changed
for the ARegister implementation (and the uni-
versal construction) to fit in various computa-
tion models. In fact, we first present our univer-
sal construction in a crash-stop model (assuming
that processes that crash do never recover), and
we show how to easily port it on various crash-
recovery models.

To summarise, this paper helps bridge the
gap between universal constructions and high-
availability middleware, by introducing a univer-
sal construction algorithm for message-passing
systems with three nice flavors: indulgence, ef-
ficiency and genericity. The key to these flavors
is the use of two fine-grained abstractions: a weak
form of leader election, ¢Leader, and a new form
of register, ARegister.

The rest of the paper is organized as follows. In
Section 2, we define the underlying system model.
For presentation simplicity, we assume that pro-
cesses that crash do not recover and we consider
reliable channels. We introduce our abstractions
in Section 3, and we give our universal construc-
tion algorithm based on these abstractions in Sec-
tion 4. We analyze some execution scenarios in

Section 5. Section 6 considers the genericity of
our universal construction. In Section 7, we dis-
cuss our abstractions and our algorithm, and dis-
cuss how easily it can be extended to shorten the
fail-over time or deal with process recovery. Op-
tional Appendix A presents different aspects of
register abstractions. We prove the correctness
of ARegister in optional Appendix B and our im-
plementation of consensus using ARegister in op-
tional Appendix C. The correctness of our univer-
sal construction algorithm is presented in optional
Appendix D.

2 Model

2.1 Processes, Communication, and
Time

We represent a distributed system as a finite
set of processes II. Processes fail by crashing—
we do not deal with Byzantine failures, nor do we
assume that processes recover after a crash. A
process is correct if it does not fail.

Processes communicate by message passing. A
message can be sent by the primitive send and re-
ceived by the primitive receive. Message passing
is reliable in the following sense: (walidity) if a
correct process sends a message to a correct pro-
cess, the message is eventually received, (no du-
plication) each message is received at most once,
and (integrity) the network does not create nor
corrupt messages.

We assume an asynchronous distributed sys-
tem. There is no bound on the time it takes for a
message to reach its destination, nor do we make
any assumptions about the time it takes for a pro-
cess to execute a step in its algorithm. We indi-
rectly introduce synchrony assumptions through
the properties of our CLeader abstraction (Sec-
tion 3), and we use a notion of time to specify
the properties of our abstractions. To this end,
we assume the presence of a discrete global clock
with the set of natural numbers as tick range. The
purpose of the clock is to simplify the presenta-
tion: processes cannot access this global clock.

We sub-divide the set II of processes into two
disjoint subsets: Client and Server. Processes in

Server (servers) collectively implement a wait-
free linearizable object that processes in Client
(clients) can access.

2.2 Objects

An object has an internal state and a number of
actions to manipulate this state. An action takes
an input value and produces an output value. As
a side-effect of producing the output value, the ac-
tion may also update the internal state. Actions
may be non-deterministic. That is, the side-effect
and output value of a specific action may not be
the same each time we execute it, even if we ex-
ecute it in the same initial state and the same
input value.

The goal of our algorithm is to implement wait-
free and linearizable access to any given object.
Each server has its own copy of the given object.
The algorithm uses two primitive and generic ac-
tions in dealing with objects:

e The execute primitive action takes a re-
quest (action name and input value) and re-
turns an output value and an update value.
The execute primitive executes the action
on the given input. The returned update
value captures the state update performed
by executing the action. The primitive does
not change the internal state of the object.

e The update primitive takes an update
value, and performs the state update cap-
tured by the update value.

These two primitives separate the purely func-
tional aspect of an object (mapping input to out-
put) and the state-update aspect (using an input
value to update the internal state).

3 Abstractions

Our universal construction is based on two fun-
damental abstractions: an eventual leader elec-
tion, denoted CLeader and a one-shot form of
register, denoted ARegister. <OLeader encapsu-
lates the synchrony assumptions needed to ensure

wait-freedom. It is in this sense a liveness abstrac-
tion. ARegister encapsulates a convenient form
of storage to ensure linearizability. It is in this
sense a safety abstraction.

3.1 <Leader

OLeader eventually elects a unique and cor-
rect leader. The abstraction has one operation,
called elect(). This operation does not take any
input parameters. It returns an output parame-
ter, which is the identity of a process. When p;
invokes elect() and gets p; as an output at some
time ¢, we say that p; elects p; at t. (We also say
that p; is leader (for p;) at time ¢.) We define
the semantics of CLeader through the following
properties.

Agreement: There is a time after which no two
correct processes elect two different leaders.

Validity: There is a time after which every
leader is correct.

Termination: After a process invokes elect(), ei-
ther the process crashes or it eventually re-
turns from the invocation (wait-free).

Notice that our specification does not preclude
the existence of concurrent leaders for arbitrary
periods of time: hence the notion of eventual
leader. In the following, we assume the existence
of the OLeader abstraction® and refer to [7] for
its implementation.

3.2 ARegister

Roughly speaking, our ARegister is a one-shot
register, in the sense that (1) once a value is suc-
cessfully written, it remains forever in the regis-
ter, and (2) a write operation is guaranteed to
succeed, however, only if a single process is writ-
ing. Our ARegister is different from Lamport’s
notion of regqular register, because if two invoca-
tions that are not concurrent return a value, these
values are necessarily the same. It is also different

3As already pointed out, ©Leader corresponds to the
failure detector €2 of [7]. In the terminology of [7], this is
the weakest failure detector to solve consensus.

from an atomic register, because an access to a
ARegister can abort in some cases.

Formally, ARegister has a single primitive, pro-
pose(). When a process p invokes propose() with
a single argument v € Values such that abort ¢
Values, we say that p proposes v. The propose()
primitive returns a value in Values U {abort}. If
p returns from propose() with v/ # abort, we say
that p decides v' and that the value v' returned is
a decision. Otherwise, if propose() returns abort,
we say that p aborts. If p proposes v and decides
v, we say that p commits v. We now give the
properties of ARegister:

Validity: If a process decides a value v, then v
was proposed by some process.

Agreement: No two processes decide differently.

Termination: If a process proposes, it either
crashes or returns (wait-free). If only a
single process proposes an infinite number
of times without crashing, it eventually de-
cides.

In the case where two or more processes con-
currently invoke the propose() primitive an infi-
nite number of times (i.e. the invocation of pro-
pose() at a process happens before the invocation
of propose() at another process returns), the re-
sult returned by ARegister is only restricted by
validity and agreement.

Notice that the validity and agreement prop-
erties of ARegister are similar to the tradi-
tional consensus abstraction [13]. Our termina-
tion property is strictly weaker than in the tradi-
tional consensus object (i.e., if a process proposes,
it either crashes or decides).

3.3 Implementing ARegister

Figure 2 gives an implementation of ARegister
using the Rregister abstraction. The implementa-
tion of ARegister encapsulates the round number
at which the Rregister is accessed. We give the
specification of the Rregister in the next section.

A process p; owns rounds i, ¢ +n, i + 2n, ...,
and only uses these round numbers within the
propose() primitive. It first writes using round 4,

and increments the round number by n on each
subsequent call to the propose() primitive. Round
number uniqueness is not necessary and is made
here only to accelerate the convergence towards
agreement.

3.3.1 TRregister

Roughly speaking, our Rregister is a round-based
register, where processes read and write the con-
tent using a single operation. As long as a process
does not return a consistent value from the regis-
ter, it may keep trying to update the content. If
a process returns a value from the register, then
no process can ever return a different value from
the register.

More formally, the interface of our Rregister
consists in a single primitive, readWrite(). When
a process p invokes readWrite() with two argu-
ments, respectively ¥ € ZT and v € Values,
such that abort ¢ Values, we say that p writes
v. The readWrite() primitive returns a value in
Values U {abort}. If p returns from readWrite()
with v’ # abort, we say that p reads v'. We now
give the specification of our Rregister:

Decide-validity: If a readWrite(k,v) returns
v' ¢ {v,abort}, then there is at least one
readWrite(k',v") invocation such that &' < k.

Abort-validity: If a readWrite(k,*) invocation
returns abort, then there is a distinct read-
Write(k',*) invocation such that (i) k' > k,
and (ii) readWrite(k',x) is invoked before
readWrite(k,v) returns.

Agreement: If a readWrite(k,x) returns v #
abort, then if any readWrite(k',*) with &' >
k returns, the invocation returns either v or
abort.

Termination: If a process invokes read-
Write(x,%), then it either crashes or the
invocation returns (wait-free).

Note that we do not preclude that two pro-
cesses use the same round number at the same

time.* As we will see for ARegister, agreement
will be reached faster though, if processes use dif-
ferent round number.

3.3.2 Implementing Rregister

Figure 1 presents an implementation of our
Rregister, assuming a majority of correct pro-
cesses. The key idea behind our implementation
is that a process can “lock” a value if it suc-
cessfully stores it among a majority of processes
(these processes are called witnesses thereafter).
Once a value is locked, no other value can be
agreed upon. The idea follows that of [3]: each
process keeps its own copy of the current value,
and accesses the value by emulating round-based
read-like or write-like operations out of message
passing.

The readWrite() primitive essentially consists
in reading the value from a majority of witnesses,
and writing (“locking”) this value among a ma-
jority. If the value read by a process corresponds
to L, then the process writes its own value.

A round number is associated with every mes-
sage and permits a witness that receives a mes-
sage to abort if the round number carried by the
message is below its own round number. The
readWrite() primitive aborts as soon as it aborts
at a witness. In order to lock a value, the round
number maintained at a witness is updated to the
round number of the message upon processing.

We sketch a correctness proof of our implemen-
tation of the Rregister in Appendix A. For pre-
sentation clarity, we have tried to keep the al-
gorithm in Figure 1 as simple as possible. Sev-
eral optimizations are possible. In particular, fol-
lowing an idea in [16], it is possible to eliminate
the read phase in steady-state. In Appendix A,
we discuss this optimized version of the Rregister
that allows a process to skip the read phase if it
is safe to do so. One round-trip communication
is enough for a process to propose and decide in
this case (steady-state).

“In Appendix A, we consider the crash-recovery model,
where a process that crashes and recovers might invoke
readWrite() with an old round number. Hence our specifi-
cation of Rregister.

1: type Decision is Values U {abort} {abort ¢ Values}

2: At process p;:
3: object Rregister

4: method Rregister {Constructor at p;}

5: decision <« abort {decision € Decision}

6: v L {v* € Values}

7 read; < 0 {Highest READ round handled by p;}

8: write; < 0 {Highest WRITE round handled by p;}

9: value; L {p:’s value for the register}

10: method readWrite(Integer k, Values v)

11: send [READ,k] to all processes

12: wait until received [ackREAD,v;,ts;,k] or
[nackREAD, k] from ["T‘H] processes

13: if received at least one [nackREAD, k] then

14: decision < abort

15: else

16: select the [ackREAD, v;, ts;, k] with the highest ts;

17: v* —vj

18: if v* = 1L then

19: v* v

20: send [WRITE, v*, k] to all processes

21: wait until received [ackWRITE,k] or

[nackWRITE, k] from (”T'H] processes

22: if received at least one [nackWRITE, k] then

23: decision < abort

24: else

25: decision + v*

26: return decision

27: upon receive [READ, k] from p; do

28: if write; > k or read; > k then

29: send [nackREAD, k] to p;

30: else

31: read; < k

32: send [ackREAD, value;, write;, k] to p;
33: upon receive [WRITE, v;, k] from p; do
34: if write; > k or read; > k then

35: send [nackWRITE, k] to p;

36: else

37: write; < k

38: value; <+ vj

39: send [ackWRITE, k] to p;

Figure 1: Rregister Implementation

1: At process p;:

2: object ARegister

3: method ARegister {Constructor at p;}
4: register < new Rregister {Instance of register}
5: k+i—n {Initial round number}
6: method propose(v) {When p; proposes a value v}
7 k< k+n

8: return(register.readWrite(k,v))

Figure 2: ARegister Implementation

We sketch a correctness proof of our implemen-
tation of ARegister in Appendix B.

4 TUniversal Construction

We present here our universal construction, i.e.
an algorithm that transforms any local and se-
quential implementation of an object into a wait-
free linearizable shared object. Like any repli-
cation algorithm that guarantees some form of
strong counsistency, a key principle behind our al-
gorithm is to implement a total order among the
requests, and to ensure that a request only ap-
pears once in the total order. Because objects
may be non-deterministic, the replicas have to
agree not only on the total order of requests but
also on the state update and reply associated with
a given request. In our algorithm, they do that
at the same time.

In this section, we describe the algorithm; we
prove the algorithm correct in Appendix D.

4.1 Description of the Algorithm

We start by describing the client-side of the al-
gorithm, given in Figure 3. The client accesses
the replicated object using the submit function®
and sends the request to its leader. The client
then awaits the reply from the leader before re-
turning. If the client does not receive a reply
within a certain time, it re-transmits its request
(maybe to a different leader). Note that we use
a local timer to make this retransmission possi-
ble. The purpose of the timer is only to ensure
progress (wait-freedom property), impacting only
the blocking time (defined in Section 5) the client
is willing to tolerate; safety is guaranteed by the
abstractions themselves, not by the timer.%

We describe now the server-side of the algo-
rithm. Each replica p; executes the algorithm
presented in Figure 4, and has its own copy of the
shared object O. Each copy of the object is in the
same initial state A. A replica also maintains a
variable num reflecting its opinion about the first
free position in the total order. This variable is
hence initialized to 1 for each replica.

% Actually, this submit function would be implemented
as a client stub.

6As said before, we ignore possible optimizations, e.g.
having an adaptive timer, for the sake of simplicity.

When a replica receives a request, it verifies
(line 14) that it did not already execute the same
request up to its current position num. This ver-
ification is done locally, without involving any
communication step. It is legal because, by the
algorithm, the local state of each replica is guar-
anteed to be coherent with the total order (a com-
plete proof is given in optional Appendix D).

1. If the replica detects that it already decided
this request, it simply returns the reply that
was committed together with the request.

2. If the replica does not find the request in
its local state, it introduces it in the total
order.

To insert a new request in the total order,
a replica optimistically assumes that its vari-
able num reflects the first free position in the total
order. It executes the request on its local object,
but without performing any update on its inter-
nal state. It then constructs an outcome based
on the request, the reply and update values re-
turned from the execution of the request. The
constructed outcome is proposed at position num
using a new instance of ARegister.

Roughly speaking, an instance of ARegister
corresponds to a single position in the total order
of requests in our universal construction. Dis-
tinct instances are indexed with their respective
position in the total order.” The messages sent on
behalf of an instance are labeled with its index, to
differentiate them from the messages of another
instance.

There are three possibilities, whether (1) the
replica stops electing itself, (2) ARegister returns
abort, or (3) the replica decides some outcome.

The replica exits in case (1), because only lead-
ers are allowed to propose. In case (2) the replica
proposes its request again. By the properties of
ARegister, a replica might need to propose sev-
eral times before committing. If the replica is
eventually single to propose and does not crash,

"For the sake of clarity, the algorithm in Figure 4 uses
a single instance of ARegister and the index appears as a
subscript of the propose() primitive. This is equivalent to
using several instances of ARegister.

1: OLeader leader < new {OLeader
2: Reply res < nil

3: procedure submit(Request req)

4 while true do

5: set timer

6: send [Request, req] to leader.elect()

7 wait until received [Reply, res] or timer expires
8 if received [Reply, res] then

9 return(res)

Figure 3: Client Behavior

: type Outcome is [Request,Reply, Update]
: type Decision is Outcome U {abort}

N —

: Object O < new Object

: OLeader leader + new <Leader

: ARegister register «— new ARegister
OutcomeStore store < new QutcomeStore
Integer num « 1

Outcome prop < nil

: Decision decision < abort

: Reply res < nil

: Update upd < nil

FOOXNDU AW

12: upon receive [Request,req] from ¢ do
13: while true do

14: if store.isCommitted(req,num)=[true,decision] then
15: send [Reply,decision.res] to c

16: break

17: [res,upd] « O.execute(req)

18: prop <« [req,res,upd]

19: decision <+ abort

20: while decision=abort and leader.elect()=p; do
21: decision < register.proposenym (prop)

22: if decision=abort then break

23: store.setCommitted(num,decision)

24: num < num + 1

25: O.update(decision.upd)

26: if decision=prop then

27: send [Reply,decision.res] to ¢

28: break

Figure 4: Replica Behavior for Process p;

it will eventually decide. By the properties of
ARegister, there will eventually be a single pro-
cess which proposes. In case (3), the replica stores
the decided outcome in its local state, increments
its variable num to the next position, and up-
dates its object using the update value returned
with the decision (line 25).

From case (3), two different sequels are possi-
ble, whether (a) the replica committed its out-
come, or (b) the replica decided an outcome that
it did not propose.

In situation (a), the reply is sent to the client

1: object OutcomeStore

2 method OutcomeStore
3: Integer ¢ < 0

4 Outcome outcomes| | < {nil,...,nil}

{Constructor at process p;}

5 method isCommitted(Request req, Integer index)
6 for i from 1 to inder — 1 do

T if outcomes[i].req = req then

8: return(¢rue,outcomes|[z])

9 return(false,nil)

10: method setCommitted(Outcome out, Integer index)
11: outcomes[index] < out

Figure 5: Uniqueness Verification for Process p;

(the test at line 26 evaluates to true), the replica
exits and waits for the next request. In situation
(b), the replica cannot send the reply belonging
to the decided outcome to the client (because the
client is awaiting a reply for another request), nor
can it send the reply that it locally computed,
even though this is the reply awaited (because
the reply has not been committed). Hence, the
replica restarts the algorithm.

A replica stores a decided outcome within its
local state (line 23). This is used to accelerate
the verification of whether a request is new when
it comes in (line 14). The algorithm used for this
verification is shown in Figure 5. It is possible
(though very costly) not to verify whether a re-
ceived request is new, and to systematically pro-
pose this request starting from position 1 in the
total order.

Finally, consider a replica that decides an out-
come that it does not propose. Following the al-
gorithm, the replica restarts the algorithm, and
verifies whether the request is actually a new one.
As it already executed this verification once, it is
sufficient to verify that the request is new among
the outcomes committed since the last verifica-
tion. In Figure 5, we ignore this obvious opti-
mization to make the algorithm simpler.

5 Performance Analysis

We analyze the performance of our universal
construction through the following metrics:

e Message complexity: The number of mes-

sages it takes to process a request end-to-
end.

e Response time: The end-to-end latency ob-
served by clients.

To quantify latency, we assume that message
transmission times are bound by some known 4.

5.1 Steady-state

To analyze the steady-state behavior of our al-
gorithm, we consider a nice run in which no pro-
cess crashes and in which OLeader returns the
same leader to all processes at every invocation.?
Moreover, we assume that this leader uses the op-
timized implementation of the Rregister given in
Appendix A.

In a nice run, our algorithm has the following
communication pattern. A client submits a new
request to the leader, who handles the request.
When the leader has processed a request, it com-
mits the result among the other replicas (using
ARegister) and updates its local object accord-
ingly. The leader finally returns the correspond-
ing reply to the client.

When a client submits a new request, the mes-
sage complexity is 2n + 2 and the response time
is bounded by 44. Following the algorithm, the
leader r proposes the request with num set to
one more than the previous request. Because we
consider a nice run, r is perpetual leader, and no
other replica has been leader in the meantime.
This means that r will commit the request the
first time it proposes it. Committing a request
in the optimized version of ARegister has mes-
sage complexity 2n and latency 26 (in the opti-
mized implementation, the leader skips the read
phase). The communication between client and
leader involves a single round-trip message, and
has complexity 2 and latency 24. In total, we
get a message complexity of 2n 4+ 2, and a total
latency of 44.

8Steady-state performance can be achieved in runs that
are not so nice, but where the leader does not crash and
does not change (no matter what happens to the other
replicas).

5.2 Transitions

Consider the case where a client sends a request
to its current leader and this leader crashes before
updating any replica. If a replica r; is then elected
leader for the first time, its object is in state A
and its variables are initialized to their respective
initial values. In particular, the variable num,; is
set to 1. The client sends the same request to ;.
To commit this request, r; successively proposes
the request from num; = 1 up to the position of
that request in the total order (if the request is
an old one) or to the first unused position in the
total order. As it increments its variable num,,
77 updates its object with the update values com-
mitted in the total order.

The message complexity and response time in
a fail-over scenario depends on many factors, such
as the number of concurrent leaders that try
to take over from the failed leader. If multiple
leaders try to take over, it may require multiple
rounds inside of ARegister to commit requests.
Furthermore, a leader that takes over has to both
read and write inside of ARegister. In general,
this means that each round initiated by a new
leader inside of ARegister requires 4n messages
and involves a latency of 44. If a new leader has
to commit k requests to construct its state dur-
ing take-over, the leader has to at least initiate k
rounds—one for each request.

In Section 6.1, we show how to extend our al-
gorithm to reduce the communication during fail-
over at the expense of increased communication
during steady-state.

6 Genericity

6.1 Trade-offs

In our algorithm, backups play a very passive
role: a backup postpones all work until the last
possible moment, and “catches up” if and when
it becomes a leader. This scheme is clearly effi-
cient during steady-state periods but not during
transition periods (i.e., fail-over time). Here, we
show how one could easily extend our algorithm
(without modifying it) to move work from transi-

1: upon p; commits decision do
2: send [Eager,decision] to all except p;

upon receive [Eager,decision] where decision.pos = num do
O.update(decision.upd)
store.setCommitted(decision.pos,decision)
num < num + 1

Figure 6: An extension at process p; that shifts
work from transition periods to steady-state

tion periods to steady-state periods, and thereby
achieve a faster fail-over time.

In Figure 6, we illustrate such an extension.
The two upon clauses extend the behavior of Fig-
ure 4. In Figure 6, a leader sends each commit-
ted update value to all other replicas. The other
replicas then process the received update values
in order. Notice that the dissemination of update
values does not have to be reliable: the basic al-
gorithm ensures consistency and progress, even if
a leader fails while sending an update value. We
show the different steady-state interaction pat-
terns in Figure 7.

These patterns capture two extremes of a spec-
trum. We can think of various trade-offs in be-
tween these two extremes.

Our scheme also allows for work compression.
For example, the leader may gather a number of
update messages and send them as a single mes-
sage. Moreover, some of the “old” updates may
become obsolete after “new” updates have been
computed. For example if an update message as-
signs a value to a variable, and if a subsequent
update message also assigns a value to the same
variable, we only have to apply the most recent
update message. Detecting obsolete update val-
ues, requires knowledge about the semantics of
the state machine, and cannot be performed in a
generic manner in the replication algorithm.

6.2 Dealing with Recovery

We have defined our universal construction for
a crash-stop model: a process only fails by crash-
ing, and does not recover after a crash. We made
this assumption to simplify the presentation. One
of the complications of dealing with process recov-
ery is the use of stable storage. To recover con-

10

1 p2 p3

p1 p2 p3

request request

reply

Original algorithm Extended algorithm

Figure 7: Steady-state behavior for the original
and extended scheme

sistently, a process has to store parts of its state
in stable storage. When recovering, a process can
then access its own stable storage to determine
its pre-crash state. Stable storage is however ex-
pensive and should be minimized.

It turns out that we can encapsulate the ma-
nipulation of stable storage within our Rregister.
That is, neither our universal construction nor
our ARegister have to manipulate stable storage.
In fact, it would work as is in a crash-stop model.
A recovering process would start out as a backup,
and if it becomes leader, it would construct its
state from scratch, just as if it were a backup
that had never failed and never been leader.

In optional Appendix A.3, we give implemen-
tations for Rregister in different crash-recovery
models.

7 Discussion

The key to the indulgence, efficiency, and
genericity of our algorithm is the use of two fine-
grained underlying abstractions: <Leader and
ARegister. Separately, each of these abstractions
are strictly weaker than consensus. Together,
they can implement consensus, as we show in Fig-
ure 8.

9Throughout this section, we consider the uniform vari-
ant of the consensus problem (i.e. we do not restrict agree-
ment to correct processes only).

1: At process p;:
2: object Consensus

3: method Consensus {Constructor at process p;}
4: register < new ARegister

5: leader «+ new OLeader

6: decision « abort {decision € Decision}
7: method Propose(Values init;)

8: while decision=abort do

9: if leader.elect()=p; then

10: decision <« register.propose(init;)

11: send [decision] to all processes

12: return decision

13: upon receive [value] from p; for the first time do

14: decision <« value

Figure 8: A Simple Consensus Algorithm

Consensus defines a single primitive, Propose().
We say that a process proposes a value v when it
invokes Propose() with v. A process decides a
value v if it returns from Propose() with v. Only
the termination property of consensus (every cor-
rect process eventually decides) actually differs
from ARegister.

We sketch the correctness proofs in optional
Appendix C.

Interestingly, our consensus algorithm in Fig-
ure 8 can be viewed as a modular variant of the
Synod consensus scheme underlying the Paxos
replication algorithm [16]. In fact, our OLeader
abstraction is identical to the notion of “sloppy”
leader in [17], and ARegister precisely crystal-
lizes Lampson’s intuition [17] about the safety of
the agreement part of the Synod consensus algo-
rithm [16]: we capture both safety and liveness
aspects of that intuition through our ARegister
specification. 1 To our knowledge, Paxos pio-
neered the idea of combining a notion of leader
election and some form of register, although not
explicitely identified (more recent variants of the
algorithm, e.g. [8, 11], make more explicit use of
register-like abstractions).

There are two major differences between the
use of OLeader and ARegister in our universal
construction and in Paxos. First, Paxos is not a
universal construction since it relies on objects
to be deterministic. To implement the agree-

10 ARegister is also close to the k-converge primitive,
(with £ = 1) of [18].

11

ment on total order and on state in a single in-
stance of eventual consensus, our algorithm in-
vokes ARegister a posteriori, after processing a
request. This is in contrast to Paxos because, be-
ing deterministic, the replicas only need to agree
on the total order of requests, and this agree-
ment can be reached a priori before a request
is processed. One could extend [16] to non-
deterministic replicas using an agreement phase
after processing the request, but this would re-
sult in two agreements per request (as in [13]).
Our algorithm only requires a single agreement
phase per request in steady-state. Second, we
make use of our two fine-grained abstractions as
first class citizens in our universal construction.
As we observe in [5], two variants of Paxos are
actually given in [16]: a modular algorithm based
on a consensus primitive itself built using a sloopy
leader and a register-like abstraction, and then
an ad-hoc algorithm that opens these abstrac-
tions for the sake of performance. By promoting
our CLeader and ARegister as first class citizens
of the algorithm, we obtain a modular and effi-
cient scheme. Although the combination of these
two is as strong as consensus, their use separately
leads to a more efficient replication scheme. This
is exactly what makes our universal construction
more efficient than [9]. Indeed, where a consen-
sus object requires all replicas to propose and
decide, ARegister allows a single replica to pro-
pose and decide by itself. With a consensus, it
is not possible for backups to play a passive role
where they just witness the actions taken by a pri-
mary. Moreover, consensus encapsulates ¢Leader
whereas ARegister does not. If we used con-
sensus, and if we had another notion of leader
in the replication algorithm (e.g., the primary),
these leaders may not coincide (the same process
may not be leader at both levels). Having differ-
ent leaders at different levels would likely result
in an additional leader-to-leader communication
that is absent in our single-leader scheme. This
saves messages between client and replicas.
Indirectly, we argue through this paper that
OLeader and ARegister are natural abstractions
to build universal constructions in a message-
passing model, pretty much like consensus and

atomic register do in a shared-memory model.

References

[1]

[5]

[6]

(8]

[9]

[10]

[11]

[12]

M. Aguilera, W. Chen, and S. Toueg. Failure
detection and consensus in the crash-recovery
model. In Proceedings of the International Work-

shop on Distributed Algorithms, Springer-Verlag
(LNCS), April 1998.

P. A. Alsberg and J. D. Day. A principle for
resilient sharing of distributed resources. In Pro-
ceedings of the Second IEEE International Con-
ference on Software Engineering (ICSE), 1976.

H. Attiya, A. Bar-Noy, and D. Dolev. Shar-
ing memory robustly in message-passing systems.
Journal of the ACM, 42(1):124-142, 1995.

J. F. Bartlett. A nonstop kernel. In Proceedings
of the 8" ACM Symposium on Operating System
Principles (SOSP), 1981.

R. Boichat, P. Dutta, S. Frolund, and R. Guer-
raoui. Deconstructing Paxos. Technical Report
EPFL-2001, Swiss Federal Institute of Technol-
ogy, January 2001.

N. Budhiraja, K. Marzullo, F. B. Schneider,
and S. Toueg. The primary-backup approach.
In S. Mullender, editor, Distributed Systems.
Addison-Wesley, 1993.

T. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector to solve consensus. Jour-
nal of the ACM, 43(4):685-722, 1996.

G. Chockler and D. Malkhi. Active disk paxos
with infinitely many processes. In Proceedings of
the 215t ACM Symposium on Principles of Dis-
tributed Computing (to appear), July 2002.

X. Défago and A. Schiper. Semi-passive repli-
cation and lazy consensus. Technical Report
DSC/2000/012, Swiss Federal Institute of Tech-
nology, February 2000.

S. Frglund and R. Guerraoui. X-ability: A theory
of replication. In Proceedings of the 19" ACM
Symposium on Principles of Distributed Comput-
ing, 2000.

Eli Gafni and Leslie Lamport. Disk paxos. In In-
ternational Symposium on Distributed Comput-
ing, pages 330-344, 2000.

R. Guerraoui. Indulgent algorithms. In Proceed-
ings of the 19" ACM Symposium on Principles
of Distributed Computing, 2000.

12

[13]

[14]

[15]

[16]

[17]

[18]

M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):123-149, January 1991.

M. Herlihy. A methodology for implementing
highly concurrent data objects. ACM Transac-
tions on Programming Languages and Systems,
15(5):745-770, November 1993.

M. Herlihy and J. Wing. Linearizability: a cor-
rectness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463-492, July 1990.

L. Lamport. The part-time parliament. Tech-
nical Report 49, DEC Systems Research Center,
1989. Also published in ACM Transactions on
Computer Systems (TOCS), Vol. 16, No. 2, 1998.

B. Lampson. How to build a highly avail-
able system using consensus. In Proceedings
of the International Workshop on Distributed
Algorithms, Springer-Verlag, LNCS (WDAG),
September 1996.

Jiong Yang, Gil Neiger, and Eli Gafni. Structured
derivations of consensus algorithms for failure de-
tectors. In Proceedings of the 17" ACM Sym-
posium on Principles of Distributed Computing,
pages 297-306, 1998.

A Aspects of the Rregister (Section 3.3.1)
A.1 Correctness of the Rregister

We sketch the proof of correctness for the algorithm in Figure 1.

Decide-Validity: From the algorithm in Figure 1, it is clear that value value; at a witness p; can only
contains some proposed value or L. When a process p; returns a decision value, this value is read
from a witness. If the value read turns out to be L, process p; decides its own value.

Abort-Validity: To abort, a process that invokes readWrite(k,*) must receive either a nackREAD or a
nackWRITE. To generate a nackREAD, a witness must have processed a message with k¥’ > k. To
generate a nackWRITE, a witness must have processed a message with &’ > k. In both cases, there
has been an operation readWrite(k',*) with k' > k which started before readWrite(k,*) returns.

Agreement: If no process returns from readWrite() or if all invocations of readWrite() return abort,
the property is trivially satisfied. So, let k be the smallest round number in which a process p
invokes readWrite(k,*) and returns v # abort. We claim that for all rounds k' > k, a process ¢
that invokes readWrite(k',*) returns either v or abort.

The proof is by induction on the round number. For k¥’ = k, g necessarily aborts, because it
receives a nackREAD from at least one witness.!! Assume that the claim is true for all ¥ < &’ < 7,
and consider process ¢ that invokes readWrite(r,*). We show that the claim holds for k¥’ = r at
process gq.

Consider that process ¢ reads from a majority of witnesses and does not receive any [nackREAD, x]
message (otherwise, the claim is trivially satisfied), there exists a witness w such that (i) w sends
a message [ackWRITE, k] to p during round %k and (i) w sends a message [ackREAD, v, tsy, 7] to
q during round r. Because w updated value,, in round k, ts,, > k. Clearly, we also have ts,, <,
otherwise, ¢ would receive a nackREAD from w. Now let ¢ be the largest ts,, that is received in
some message [ackREAD, %, t, k] by ¢, at round r, from some witness w. From the remarks above,
we have k <t <r.

Thus, there exists a process s which invoked readWrite(¢,x), and witness w updated both its value
value,, to some value v’ and its variable write,, to t. Because t < r, by the induction hypothesis,
process s reads value v and writes v to a majority of witnesses. Consequently, v = v for w and
process ¢ reads value v from witness w in round 7. Then, if g does not receive any [nack WRITE, 7]
message, it decides v. In both cases, the claim is satisfied. We conclude that agreement is satisfied.

Termination: From the assumption of a majority of correct processes, no operation can block. Thus,
if a process does not crash, it returns from the readWrite() primitive.

A.2 TFastRregister

The FastRregister is an optimized implementation of the Rregister used in our universal construction.
It is inspired from [16] and is used in [5]. Figure 9 gives the implementation of FastRregister, and
Figure 10 gives a modified version of ARegister that uses the FastRregister.

Compared with Rregister, the readWrite() primitive of the FastRregister avoids one round-trip of
messages between the leader and a majority of witnesses in steady-state: the leader ignores what has
been previously written and immediately tries to “lock” the value among a majority.

11n our universal construction, processes use different round numbers, which often accelerate the convergence of the
algorithm. Nevertheless, our Rregister implementation is correct even if we do not assume round number uniqueness.

13

The FastRregister satisfies the following property:

Fast-Write-Uniqueness: In every execution where there is at most one invocation of readWrite(k,*)
such that k < n, the Decide-Validity, Abort-Validity, Agreement and Termination properties of
the Rregister apply to the FastRregister.

The readWrite() primitive of our FastRregister implementation also returns an additional boolean
variable, which indicates to a process whether it is allowed to invoke the readWrite(k,*) primitive with
k < n on the next instance of FastRregister in the total order.

A.2.1 Description of the Implementation

To allow a process to skip the first read operation, a necessary condition is to guarantee that a process
will not overwrite the current value if it directly writes. There are two situations for which such a
condition holds:

1. No value has been written. A process can write its value without reading first, as there is no
previous value.

2. The value locked is associated with a high round number. If a process directly writes, but with a
low round number, its write operation will abort—as a read operation would have done.

We change the implementation of the message handling to automatically increment the associated
round number to n + (1/2) whenever it successfully executes an operation carrying a round number
< n. If we allow a process to skip the read operation only if its round number is < n, the two previous
statements holds. Thus, a process can skip the read operation only if it proposes for the first time, i.e.
when its round number is < n.

In fact, it is necessary and sufficient to guarantee that the read operation is skipped exactly once per
instance of FastRregister. Imagine the scenario where two processes write two different values without
first reading; the first reaches [%}!] processes whereas the second reaches |25t]. If some processes of
the first group crash, a process consulting the value written might encounter a situation where it cannot
distinguish a majority among the two groups. Hence the following condition: a process is allowed to
skip the read operation for FastRregister instance n if it was the first process to propose for instance
n — 1, and no processes had proposed for instance n by that time.

In the implemention of the readWrite() primitive, the algorithm uses a boolean variable nextFast that
is true whenever a process is allowed to skip the read operation on the next instance of FastRregister.
When a process proposes and receives only [ackWRITE, k, true] messages after its write operation, it
sets the variable nextFast to true, and to false otherwise. Because this variable must be accessed by
all instances of the FastRregister, we make it as a global variable. In Figure 9, Uczluez7L1 designates the
variable value; of the next instance of FastRregister in the total order. If such instance does not exist
(because it has not been created yet), this variable trivially equals to L.

A.2.2 Correctness

We consider the case where there is indeed exactly one invocation of readWrite(k,+) with & < n. (The
case where there is none eactly corresponds to the implemenetation of Rregister in Figure 1 and the
proof of the previous section applies.)

The proofs of the Abort-Validity, Decide-Validity and Termination properties are similar to those for
Rregister. We sketch here the proof for agreement:

14

Agreement: Assume by contradiction that process p invokes readWrite(k,*) with & < n and returns v,
and process g invokes readWrite(k',x) with k' > n+ 1 and returns v'. They both decide differently.

Consider the state of the witnesses after process ¢ successfully returns from its readWrite() invo-
cation. A majority of them now have write; > n + 1. Upon p’s readWrite() invocation, it uses a
round number < n, and thus aborts. The next times it proposes, it cannot use a round number
< n by assumption, and thus, executes the same operations as in the readWrite() primitive in
Figure 1. Thus, the agreement property of Rregister applies: a contradiction.

Consider now that process p successfully returns value v from its invocation of readWrite. A
majority of witnesses must have value; = v. Because g invokes readWrite(k',x) with ¥' > n + 1,
the Agreement property of Rregister applies and g reads v from some witness w, and decides v or
aborts: a contradiction.

A.3 Crash-Recovery Model (Section 6.2)

We consider our universal construction in the crash-recovery model. First note that the our universal
construction adapts very smoothly to this model. Indeed, we only need to slightly modify the implemen-
tation of the Rregister abstraction. Neither the ARegister abstraction nor the universal construction
need to be modified for this model.

In the crash-recovery model, we consider the following four classes of processes:

Always up: Processes that never crash.
Eventually always up: Processes that crash at least once, but that are always up after a certain time.
Eventually always down: Processes that are permanently down after a certain time.

Unstable: Processes that crash and recover infinitely many times.

The processes of the first two classes are the correct processes, whereas the processes of the last two
classes are the faulty processes.

A.3.1 Retransmission Module

In the crash-stop model, we assumed reliable channels. Here, because we do not consider the same
notion of correctness for a process, the validity property (e.g. if a correct process sends a message to a
correct process, then the message is eventually received) of the channel does not hold any more.

We use the s-send and s-receive primitives defined in [1, 5]. The implementation is given in
Figure 11. In the implementation of Rregister, we replace the invocations to the send and receive
primitives with invocations to the s-send and s-receive primitives respectively. Clearly, the following
property is satisfied:

Validity: If any process p; s-sends a message m to a correct process p;, then if p; does not crash p;
eventually s-receives m.

Because messages can now be duplicated and because we do not assume FIFO channels, we assume
that every message includes an identifier which is unique among the messages from the same process
(e.g. an absolute timestamp). Whenever a witness positively acknowledges a message, it stores the

15

1: At process p;:
2: object FastRregister

method FastRregister {Constructor at p;}
decision < abort {decision € Decision}
vt L {v* € Values}
read; < 0 {Highest READ round handled by p;}
write; < 0 {Highest WRITE round handled by p;}
value; < L {pi’s estimate value for this instance}

method readWrite(Integer k, Values v)
if £ > n then
send [READ, k] to all processes
wait until received [ackREAD,vj,ts;, k] or [nackREAD, k] from ["T""l} processes
if received at least one [nackREAD, k] then
return [false,abort]
else
select the [ackREAD, v;,rs;, k] with the highest ts;
v v
if v* = 1 then v* + v endif
else
v* — v
send [WRITE, v*, k] to all processes
wait until s-received [ackWRITE, k, permission;] or [nackWRITE, k] from ["T“] processes
if received at least one [nackWRITE, k] then
decision < abort
nextFast « false
else
decision < v*
if received only [ackWRITE, k, true] then
nextFast < true
else
nextFast « false
return [nextFast,decision]

upon receive [READ, k] from p; do
if write; > | or read; > k then
send [nackREAD, k] to p;
else
read; < k
send [ackREAD, value;, write;, k] to p;

upon receive [WRITE, v;, k] from p; do
permission « false {permission € Boolean}
if write; > k or read; > k then
send [nackWRITE, k] to p;

else
if kK <n then {Has readWrite() already been called?}
write; < n + (1/2) {No}
else
write; < k {Yes}
permission < ((value; = L) A (valuejl =1)) {value?‘l refers to value; of next instance of FastRregister}

value; < vj
send [ackWRITE, k, permission]

Figure 9: FastRregister Implementation

identifier of the message to avoid sending a negative acknowledgement to this process if it receives the
same message several times (this is possible because we use the s-send primitive).

Because a process can crash, recover, and then re-use an old round number, it is possible that an
ACK generated upon a previous invocation to readWrite() by this process is received instead of a NACK.
Because the round number is the same, the process does not detect it and commits, violating agreement.
To avoid this possibility, we assume that every ACK (resp. NACK) message also includes the unique

16

1: At process p;:

2: object ARegister

method ARegister {Constructor at p;}
reg < new FastRregister {Instance of register}
k< i {Initial round number}

method propose(v) {When p; proposes a value v}
if ((-nextFast) V (k > n)) then
k<—k+n
[nextFast,decision] < reg.readWrite(k,v)
return(decision)

VXIS

Figure 10: Optimized ARegister Implementation

procedure Initialization
zmitmsg[] < 0; start task{retransmit}
procedure s-send(m) to process p; {To s-send m to p;}
if m ¢ xmitmsg then
zmitmsg < xmitmsg U {[p;, m]}
send(m) to p;
upon receive(m) from p; do
s-receive(m) from p;
task retransmit {Retransmit all messages sent}
10: while true do
11: for all [p;, m] € xmitmsg do
12: send(m) to p;

Figure 11: Retransmission Module at Process p;

identifier of the message that generates it. A process that receives an ACK (resp. NACK) message
validates it, or rejects if it was in fact a reply for an old invocation. For the sake of clarity, we ommit
the represention of this identifier in the algorithms.

In the following, we distinguish the cases when stable storage is available and when it is not.

A.3.2 Stable storage is not available

When stable storage is not available, and if the number of processes that are always up, say n,, represents
a majority of processes, i.e. mg > n/2, then the model is very similar to the model where crashes are
permanent and a majority of processes do not crash. In the algorithm, we simply exclude processes that
recover from subsequent operations (they do not witness any operation, but may nevertheless receive a
decision). For example, a process that recovers may execute a special recovery procedure where it keeps
broadcasting to all a special recovery message. Whenever a process receives such a message, it excludes
the sender from subsequent operations.

If we call ny the number of faulty processes, it has been shown [1] that if n, > ny, stable storage
is not needed to achieve agreement. However, the CLeader abstraction has to be changed to take into
account the fact that an unstable process might always elect itself as the leader, and thus prevent any
progress to be ever accomplished. We refer to [5, 1] for the specific implementation.

The implementation of the Rregister has to be slightly modified, as a process cannot wait for the
answers from a majority anymore. More specifically, a process now awaits maz(ny +1,n — ny — |R|)
acknowledgments (instead of a majority) after either a read or a write operation (R is the set of processes
known to have recovered). This corresponds to the maximum number of answers a process might expect
to receive without blocking. When a process discovers a new process that recovers, it restarts to send
messages from the beginning (this is exactly as described in [1]). The modification of lines 11 and 12 in

17

PR« 0 {Set of processes known as having recovered}
: precR <« 0

N

. repeat

s-send [READ, k] to all processes

precR +— R

: until (R = precR) A (s-received [ackREAD,vj,ts;,k] or [nackREAD, k] from max(ny¢ + 1,n — ny — |R|) processes)

Figure 12: Modifications of Rregister in the Crash-Recovery Model

Figure 1 is shown in Figure 12, and would be similar for lines 20 and 21 of Figure 1.

We refer to [1] for a formal proof, and we give here an intuition of why the Rregister implementation
works in this case. Intuitively, our Rregister preserves agreement because (i) upon reading among
witnesses, a process always waits until at least a process that is always up answers, and (i7) upon
writing among witnesses, a process always waits until at least all processes that are potentially always
up (not known to have recovered) positively acknowledge the operation. Thus, a process reads always
the value associated with the latest round, and from this point, the correctness proofs are the same as
in the crash-stop model.

A.3.3 Stable storage is available

It has also be demonstrated in [1] that if the number of correct processes n. is a majority of processes
(note that this is strictly weaker than saying n, > ns) and ng < ny, then agreement needs stable
storage (we refer to [1] for a formal proof of this result). Stable storage is used to maintain consistency
at correct processes. Hence, we change the message handling implementation to exploit stable storage.
The modification is shown in Figure 13 for Rregister, but would be similar for the FastRregister.

To give an intuitive idea of why Rregister is correct in the crash-recovery model using the imple-
mentation given in Figure 13, note that witnesses store their copy of the value in stable storage, and
retrieve the latest state upon recovery. As we assume a majority of correct processes, at least one
witness always knows the value written with the latest round. The correctness proofs are similar to the
crash-stop model from this point.

As shown in Figure 14, our universal construction can be further optimized if the replicas are allowed
to use stable storage at the level of the universal construction itself. Indeed, a replica can store in stable
storage its local state. Upon recovery, a replica loads its local state from stable storage. Consider now
that this replica is elected leader. Whenever a request comes in, it does not have to propose it from
position 1 in the total order, but it can use the local state retrieved from the stable storage to verify
that the request is unique among the requests committed before the replica crashes.

B Correctness of our ARegister Implementation (Section 3.2)

We sketch the proof of correctness for the algorithm in Figure 2.

Validity: Obvious from the Decide-Validity property of Rregister.

Agreement: Let k be the smallest round for which a process invokes the readWrite(k,v) primitive and
decides a value. The decision value is v, otherwise there exists a round k' < k where readWrite(k',v")
is invoked with v’ # v, and k is not the smallest round number (if another process writes and
decides a value at round k, by the Agreement property of Rregister, this value is necessarily v).

18

: upon s-receive [READ, k] from p; do

if write; > k or read; > k then
s-send [nackREAD, k] to p;
else
read; < k
store(read;) {Added from Figure 1}
s-send [ackREAD, value;,write;, k] to p;

: upon s-receive [WRITE, v;, k] from p; do

if write; > k or read; > k then

10: s-send [nackWRITE, k] to p;
11: else
12: write; < k
13: value; « vj
14: store(write;, value;) {Added from Figure 1}
15: s-send [ackWRITE, k] to p;
16: upon recovery do {Added from Figure 1}
17: Initialization {Initialize all local variables}
18: load(write;,read;,value;)
Figure 13: Rregister Implementation in the Crash-Recovery Model
1: At process p;:
2: object OutcomeStore
3: method OutcomeStore {Constructor at process p;}
4: Outcome outcomes| | < {nil,...,nil}
5: method isCommitted(Request req, Integer index)
6: for 2 from 1 to index — 1 do
T if outcomes[i].req = req then
8: return(¢rue,outcomes|s])
9: return(false,nil)
10: method setCommitted(Outcome out, Integer index)
11: store(outcomes[index],index)
12: outcomes[index] + out
13: upon recovery do
14: load(outcomes| |,index)
15: num < index

Figure 14: Uniqueness Verification in the Crash-Recovery Model

By the Agreement property of Rregister, any process that proposes thereafter either aborts or
decides the same value v.

Termination: From the Termination property of Rregister, the readWrite() primitive cannot block.

Thus, a process that invokes the propose() primitive either returns or crashes. Assume that a
single process invokes readWrite(k,*) once and does not crash thereafter. There are two cases
to consider: (1) It reads a value, or (2) it reads abort. For (1), by the Agreement property of
Rregister, this value can be decided. In case (2), by the Abort-Validity property of Rregister,
there exists a readWrite(k',*) invocation with k¥’ > k. If the process proposes an infinite number
of times and does not crash, it increases its round number for each subsequent call to readWrite().
It will eventually reach round k' to propose a value. As it is single to propose, no other process
propose in the meantime, and when it uses round number k', it reads a value from the round
number higher that this round, it will be able to lock the value among a majority and thus decides
this value.

19

C Correctness of our Consensus Algorithm (Section 7)

We sketch the correctness proofs of the algorithm presented in Figure 8 implementing Consensus with
ARegister and CLeader:

Lemma 1 Validity: If a process decides v, v was proposed by some process.

PROOF: A process decides a value when it returns from the Propose() at line 12. Its variable decision is
assigned at line 10 or when it receives a value from another process, at line 13. In both cases, the value
is returned by ARegister. By the validity property of ARegister, this value must have been Proposed
by some process. From the algorithm, processes only use their input values as an input for ARegister.
O

Lemma 2 Agreement: No two processes decide differently.

PROOF: Assume by contradiction that two processes decide differently. By the agreement property of
ARegister, only a single value v can be committed at line 10, so a correct process that subsequently
proposes necessarily decides v (by the agreement property of ARegister). The only possibility left is
that one process received a wrong decision value v’ at line 13. This means that another process sent
the decision value v’ at line 11. This process must have successfully exited the loop. By the agreement
property of ARegister, it must have decided v: a contradiction. O

Lemma 3 Termination: Fvery correct process eventually decides.

Proor: Compared to ARegister, we make the additional assumption that a majority of correct
processes (and among them, the perpetual leader) eventually invoke the Propose() primitive.

Assume by contradiction that a correct process proposes and never decides. Because the perpetual
leader eventually invokes the Propose() primitive, some value is eventually committed (because of the
properties of CLeader, eventually only the perpetual leader proposes; and it eventually decides as it
proposes an infinite number of times and never crashes). Any correct process that decides, and at least
the leader, sends the decision to all. By the reliability assumption of the channels, every correct process
receives the message, and decides thereafter: a contradiction. O

D Correctness of our Universal Construction (Section 4)
D.1 Specification

We define a notion of linearizability that allows us to reason about replicated objects. Because it
is defined for a shared-memory model, the original definition of linearizability [13] does not have to
deal with replication: there is only a single copy of the shared object, and this copy resides in shared
memory. To define linearizability for replicated objects, we use elements of x-ability [10].12

We define correctness in terms of how the clients view the shared object. Roughly speaking, clients
should be given wait-free access to the shared object, and the invocation history observed by clients
should be linearizable. Clients submit requests and receive replies. It should appear to each client as if

2Defining complementary notions of linearizability and x-ability, where linearizability deals with concurrency only, and
x-ability deals with replication only, is a topic for future work.

20

object actions (triggered by submitted requests) happen atomically in some total order that is consistent
with the real time order seen by clients. To formalize this requirement, we introduce a function, called
possibleReply, that captures the request-reply relationship for a given object. The possibleReply function
takes a sequence of requests and returns a set of reply sequences. The returned set contains all the
sequences that the object may return when presented with the given requests one at a time. In our
definition of correctness, we assume that requests and replies are uniquely identified. We capture the
relationship between the requests and the states of the object with the function PossibleStates. The
PossibleStates function takes two sequences, one of requests and another one of replies, and returns a
set of states in which the object can be if, starting from the initial state A, we apply to it the requests
of the first sequence and receive the replies of the second sequence.

We consider a system with a replicated service and n clients. These n clients each submit a number
of requests and receive a number of replies. We use 7 to denote the 7’th request made by client j, and
we use repg to denote the corresponding reply. We say that the service is linearizable if there exists two
sequences, seq, and seq,,, such that seq, contains the requests rzj and seq,,, contains the replies repg ,
and the following conditions are satisfied:

J
i

L. seqye,(k) = repg if and only if seq, (k) =r

2. If a client receives the reply repg = s€q,,,(k) before a client submits the request rg,’ = seq,(h),
then h > k.

3. seqye, € possibleReplyg(seq,)

The first property requires the two sequences to collectively define a total order for the request-reply
interaction. For a given request-reply pair, the request and reply should be at the same position in their
respective sequences. The second property ensures that the total order defined by the sequences satisfy
the real-time order seen by clients. The third property reflects the requirement that the totally ordered
request-reply interaction should obey the sequential, single-copy specification of the object.

Notice that to formalize the real-time requirement of linearizability, we use the notion of a global
clock. As in Section 2, the global clock is a purely hypothetical device that we introduce for presentation
simplicity.

D.2 Proofs

The proofs are organized as follows. First, we show that the replication algorithm is correct because it
implements a total order of requests among the replicas, and because each request appears only once in
the total order. Wait-freedom and linearizability of the replicated service are demonstrated thereafter.

D.2.1 Total Ordering and Uniqueness of Outcomes

To show that there exists a total ordering of the outcomes, we show that two outcomes decided at
the same position by distinct replicas are indeed identical. Uniqueness is proved by showing that two
identical outcomes must be decided at the same position in the total order.

Lemma 4 An outcome stored locally has been previously decided.

PROOF: Assume not and that a process caches an outcome that has not been decided. By the algorithm,
we assign an outcome locally at a process only at line 23. For a process to execute this line, it must
have exited successfully the loop at line 20, meaning that ARegister indeed returned a decision value:
a contradiction. |

21

Lemma 5 If two replicas decide an outcome at the same position, the outcomes are the same.

PROOF: Let p (resp. ¢) decide an outcome o, (resp. o4) at position num. By the agreement property
of ARegister, o, = oy. O

In the following, let H; be the local state of p;, corresponding to the sequence of length num; of
outcomes locally stored at p; and H;(k) the k' outcome of H; (outcome at position k). Let H! be a
sequence of outcomes of length num' < num. If (Vk < num')(H;(k) = H.(k)), we say that H'i is a
prefix of H; and we write H, = prefiz(H;).

Lemma 6 For the local states of any two replicas, at least one is a prefix of the other.

ProOOF: Let p and g be two replicas with respective local states H), of length num,;, and H; of length
H,. We consider the cases num, = numg, and num, < numg. The third one is found by symmetry. In
the former case, if num, = numg, = 0, then Hj is a trivial prefix of H),. So, consider num, = numg > 0.
For each position k < numy, p and ¢ must have decided an outcome by Lemma 4, and this outcome
must be the same for both, by Lemma 5, so H, = H, and each one is a prefix of the other. In the
second case, H, must equal H, up to num, for the same reasons, so H; can be written as Hj - H ('1 where
- represents the concatenation of sequences. By construction, Hj, is a prefix of H,. O

Proposition 7 Total ordering of outcomes is ensured among replicas’ local state.

PROOF: Let p and g be two replicas with their respective local state Hj, of length num, and H, of
length numg,. Lemma 6 ensures that no matter num, and numg, one of H, or Hy is a prefix of the
other. In turn, this implies that a replica uses a total ordering of outcomes consistent with the total
order of another replica. By transitivity, this propagates to all the replicas. O

Lemma 8 If a replica decides an outcome at some position num, this outcome is unique among the
num — 1 outcomes previously decided.

ProOOF: Let r be a replica that commits an outcome o at position num. We reason by induction on
the position num of the outcome.

For num = 1, the outcome o0; is obviously unique, as it is the first outcome to be committed in the
total order.

By the induction hypothesis, we now assume that the first num — 1 outcomes are unique, and that r
commits an outcome 0y, at position num. Assume by contradiction that outcome 0y, is not unique
and consider ¢ the position in the total order of the similar outcome. For such a situation to be possible,
r decides outcome 0y, but does not propose it at position num (otherwise, it would detect that the
outcome is not unique at line 14). This means that another replica ' proposed outcome o; for the
position num. Proposition 7 implies that of' = 0} = 0;. Thus r’ cannot propose outcome o; at position
num. A contradiction. O

Proposition 9 If two replicas decide the same outcome at positions num and num' respectively, then
num = num'.

PrOOF: Let p and ¢ be two replicas that decide the same outcome o at position num = num,
and num’ = num, respectively. Assume towards a contradiction, and without loss of generality, that

22

num, < numg. Because a replica increments its variable num by one every time it decides an outcome,
¢ must already have decided an outcome o' for the position num,. As ¢ decides o for position num,(#
numyp), Lemma 8 implies that o # o'. Because of the agreement property of eventual consensus, p
cannot decide o at num,: a contradiction. For a symmetric reason, we conclude that num, = num,.
O

Total order of outcomes and consistency among replicas’ local state follow, from Proposition 7.
Uniqueness of committed outcomes follow from Proposition 9.

D.2.2 Wait-Freedom and Linearizability

Proposition 10 The submit action is wait free.

PROOF: Assume that the corresponding request is (eventually) sent to the perpetual leader. We have
two cases to consider: (i) the request is an old one, or (ii) the request is a new one. For (i), the
replica immediately returns (at line 15). For (i), as the process is the eventual perpetual leader, it will
eventually be the only process to propose. By the termination property of eventual consensus, we know
that if eventually a single process proposes, it decides. The replica returns the reply to the client after
deciding. O

Lemma 11 An outcome stored at a position has been decided at this position.

PrROOF: By Lemma 4, an outcome is stored if and only if it has been decided. From line 23 and the
algorithm in Figure 5, an outcome decided at a position is stored for this position. O

Lemma 12 Given a run R with n successful submitted unique requests and n corresponding replies.
Then R contains exactly n committed outcomes and outcome i has position 1.

PRrOOF: For a request to have a corresponding reply, either (i) the reply has been cached and is imme-
diately found (ii) the outcome is committed, cached, and then returned by the replica. By Lemma 4,
this means that R will contain at least n outcomes. Moreover, a replica cannot propose an outcome
that already appears among the committed outcomes (by Lemma 8), and thus, R will contain at most
n outcomes. We conclude that R contains exactly n committed outcomes.

To show that outcome 7 will appear at position num = %, we reason by induction on the outcome
number. For outcome o1, as the position num is initialized to one and is incremented after the replica
proposes, we know that num > 1. Assume now by contradiction that num > 1. As we have only a single
request so far, it means that another replica must have committed the request at position num — 1. The
fact that the cache contains the same request at position num — 1 and num contradicts Lemma, 8.

For an outcome n > 1, we assume that there is a sequence of outcomes successfully committed, and
we let numy, be the position of the outcome committed for request n. We need to show that num, = n.
First, assume by contradiction that num, < m. As any previous outcome k has been successfully
committed at position numy = k, this would mean that requests are not unique: a contradiction. If we
now assume that num, > n, as we only increments num when a request is proposed (and, by assumption,
decided), it means that some outcome would have been committed several times, contradicting Lemma 8.
We conclude that num, = n. O

Axiom 13 Given a state machine S. If o € PossibleStatesg(ri,...,rn,7€p1,...,7epy) and if
executeg(r, o) = (rep,upd), then the following holds:

23

e updateg(o, upd) € PossibleStatesg(r1, ..., 7,7, T€PL, ..., TPy, TEP).

e [repi,...,repy,rep| € possibleReplyg(ri,...,rn, 7).

We want now to relate the notion of committed outcome (exposed in Lemma 12) and the update of
the state of the replica.

Lemma 14 Given a run R with n committed outcomes out; = [reqi,l,repi,updi],...,out, =
[regn, n, repn, updy], then the following holds:

1. [rep1,...,Tepy] € possibleReplyg(r1,...,75)

2. If a replica updates its copy of the object with parameter upd,, and if o is the resulting state, then
o € PossibleStatesg(r1,...,mn, 7€P1, ..., TEPR).

PROOF: We reason by induction on the outcome number n.

For n =1, a replica p decides outcome 1. This means that a replica ¢ (maybe p itself) proposed this
outcome. For ¢ to propose outcome 1, it must be at position num, = 1 (by Lemma 12). Thus, S, (¢’s
state machine) is in its initial state A (because num, is initialized at 1 and because a replica updates
its state (if and) only if it increments its variable num). When g executes request r1, it produces rep;
and upd;. By definition, rep; € possibleReplyg(r1) and o = update(A, upd;) € PossibleStatesg(r1, rep1).
By Lemma 11, we know that a process p that decides outcome 1 does so for position 1. So p is in initial
state and call update with upd;, and thus o € PossibleStatesg(r1, rep1).

For n = k > 1, let p be some replica. Replica p must have committed outcome n — 1: for p to
propose a new outcome with num, = n, p must increment its variable num, from n — 1 to n, and call
updates(updy,_1). This means that the induction hypothesis holds, namely:

e [repi,...,rep,_1] € possibleReplyg(ri, ..., rp—1)
e If p calls update with wupd,_1, then the resulting state o €
PossibleStatesg(r1,...,mn—1,7€P1,...,T€Pr_1).

When p executes 7y, its variable num,, equals n. This happens in state o (p does not change state
because num,, does not change and because a replica updates its state only if it increments its variable
num). This means that p’s state machine is still in state o. The call to execute produces the rep,
value and the update upd,,. By Axiom 13, we thus have [rep,...,rep,]| € possibleReplyg(ri,...,7p)
and update(o,upd,,) € PossibleStatesg(r1, ..., n,rep1,...,T€P,). O

As said previously, we say that a replicated service is linearizable if there exist two sequences, seq,
(requests) and segrep (replies), where seq, contains the requests and segrep contains the replies, such
that the following conditions are satisfied:

o If seq. (k) = rzj and seq,(h) = sz+1’ then h > k.

J
i

o seqrep(k) = rep{ if and only if seq, (k) = r
® Seqrep € possibleReplyg(seq,)

We start by showing a lemma to demonstrate the first condition.

24

Lemma 15 Consider two requests reqy and reqs that do not appear in the total order yet. If a client
C1 successfully submits req; before a client Co submits reqs, and if there are two committed outcomes
outy = [r1, —, —] and outy = [re, —, —| respectively at position i and j in the total order, then i < j.

PRrOOF: First, note that 1 = j contradicts Proposition 7. Now, assume by contradiction that ¢ > j, and
C1 sucessfully submits a request req; to replica r. r commits req; and returns the reply to C;. Consider
i be the position at which r committed req;. From Lemma 12, r commits a request at position ¢, if and
only if it already committed ¢ — 1 requests, in particular a request at position j. When Cy successfully
submits its request to replica 7', ' commits regs at position j. But this contradicts Proposition 7. We
conclude that ¢ < j. O

We can now prove the linearizability of the replicated service.

Proposition 16 A replicated service using the algorithm presented in Figure 4 is linearizable.

ProOOF: From Lemma 12, consider a run R with n committed outcomes. Take this run and construct
the two sequences seq, and seq,.p as follows: for a committed outcome o; at position 4 (that is, the
i outcome from Lemma 11), let seq, (i) be the request contained in o; and let segep(i) be the reply
contained in o;.

The first condition is verified from Lemma 15. By construction, it is obvious that segrep(k) =
repf = o;.res if and only if seq,(k) = r{ = 0;.req. Lemma 14 also applies by construction and so,
segrep € possibleReplys(seq;). O

25

