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Abstract

We consider a problem of designing low-complexity digital receivers for CDMA systems operating over
channels with either one or multiple propagation paths. We specifically exploit a finite rate of innovation
property of CDMA signals and develop a method that leads to an efficient solution to a combined problem
of multipath channel estimation and signal detection from a low-dimensional subspace of a received signal.
Unlike existing schemes that typically resort to chip rate sampling and manipulate with large correlation
matrices, our framework allows for digital CDMA receivers to operate at a significantly lower sampling rate,
chosen to be close to a rate of innovation of a received signal. Our approach, therefore, can considerably

reduce computational requirements compared to existing solutions while providing similar performances.
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I. INTRODUCTION

Code-division multiple access (CDMA) has recently gained much attention as an access
protocol well suited for voice and data transmission, particularly over wireless communica-
tion networks. CDMA possesses many inherent advantages over earlier access techniques,
such as TDMA and FDMA, which are a direct consequence of a coded signal format and
an expanded bandwidth as a result. In particular, selective addressing capability, low-
density power spectra and interference rejection are among properties that have prompted
increased interest in CDMA as a flexible and spectrally efficient access strategy.

Bandwidth expansion in CDMA systems is accomplished by means of a spreading code,
often called a signature sequence, which is independent of information data to be sent. A
communication channel is then accessed by all users simultaneously, while different users
are distinguished at a receiver by a unique signature sequence assigned to each user. A
conventional CDMA receiver is a bank of matched filters, each matched to a specific user’s
code. Although the spreading codes are designed to have a low crosscorrelation, in the
case when users have widely varying power levels, code design alone may be insufficient to
suppress multiple-access-interference and the standard detector becomes almost useless.
This is known as the near-far problem that had been considered for a long time as an

inherent drawback of CDMA systems.



Conventional CDMA systems either ignore the near-far problem or try to alleviate it
by employing power control schemes, yet a full benefit of power control can be exploited
only in stationary or slowly varying environments. Multiuser detection schemes alleviate
the near-far problem, however, all of them deal only with signal detection and assume
that timings of users’ signals are known. On the other hand, many wireless communi-
cation channels are characterized by multiple propagation paths, so that even the strict
autocorrelation properties of spreading waveforms are inadequate to suppress multipath
interference. This problem is rather severe in urban and indoor environments that are of
great interest to cellular mobile radio applications and wireless local area networks. RAKE
receivers and adaptive antenna arrays provide different means to cope with the multipath
interference. While adaptive antenna arrays improve the performance of CDMA systems
in spatial domain by steering beams toward desired users and thus decreasing an interfer-
ence power level, the RAKE receiver attempts the same goal through temporal operations
by coherently combining® multipath signals from a desired user. Recently, there has been
an increasing interest in the use of 2-D RAKE receivers for wireless CDMA systems, which
simultaneously exploit space and time diversity, and that by combining adaptive antennas
with RAKE receivers.

While all these schemes result in significant improvement of performances compared to
those of the conventional receiver, they typically involve sophisticated signal processing
techniques and require exact knowledge of one or several parameters of a channel, such
as relative delays of different user’s signals, propagation coefficients, direction-of-arrivals,
etc. [1] [3] [12], which makes them computationally complex and sometimes unaffordable
in a real-time equipment.

In mobile radio applications, as already mentioned, channel estimation represents a
major problem due to multipath fading. Most of the early work on channel estimation
had focused only on timing acquisition [10] [16]. While those methods yield very good
results, they are usually computationally intense since time delays of all users are estimated
jointly and thus they involve a multidimensional optimization problem for a large number

of parameters. Subspace-based techniques [1] [14], as well as maximum-likelihood methods

! An input signal is correlated with delayed replicas of the same desired code, and correlator outputs are subse-

quently combined to yield a signal estimate



[2] [19] that emerged recently, somewhat reduce computational complexity by decomposing
a multiuser optimization problem into a series of single user problems. However, their
computational requirements are still rather high since they resort to chip rate sampling
(or even fractional sampling) at the receiver and deal with large correlation matrices.
This is even more evident in the case of joint delay and angle estimation [7] [11] (required
for implementation of 2-D RAKE receivers) and the applicability of those algorithms to
real-time systems is often questionable.

We present a new approach to the problem of designing low-complexity digital receivers
for CDMA systems which avoids chip rate sampling, that is, all necessary steps are carried
out on a sampled lowpass version of a received signal. We extend some of our recent sam-
pling results for signals of a finite rate of innovation [5] [18] to the problem of multiuser
channel estimation and present a subspace-based method that estimates channel param-
eters of all users simultaneously from a low-dimensional subspace of a received signal. In
particular, we exploit a finite rate of innovation property? of a received signal and show
that by choosing a sampling rate to be close to its rate of innovation it is possible to extract
the relevant channel parameters, such as time delays, direction-of-arrivals and propagation
coefficients. Once a channel-impulse response of each user has been estimated, it is directly
used in a detection process, also carried out on a sampled lowpass version of a received
signal. In essence, we present a new method that allows for both channel estimation and
signal detection from a lowpass version of a received signal, thus resulting in significantly

reduced computational complexity compared to existing techniques.

II. SAMPLING AT THE RATE OF INNOVATION

In a recent work [5] [18], it was shown that it is possible to develop sampling schemes
for a large class of non-bandlimited signals, that is, certain signals of a finite rate of
innovation. A notion of the finite rate of innovation proved to be crucial in developing
those new sampling methods that lead to perfect reconstruction from a finite number of

samples.

%j.e. a finite number of degrees of freedom



For example, consider a set of known functions ¢ (t)x=1,. x and signals of the form

o(t) = 300 won(C ) (1)

nezZ k=1

Since the functions ¢y (t) are known, it is obvious that the only degrees of freedom in the
signal z(t) are time instants ¢, and coefficients c,;. If we introduce a function Cy(t1, )
which counts the number of degrees of freedom of x(t) over an interval [t1, t5], the rate of

innovaion p can be defined as

p=lim ~Cy(-1. 1) (2)

T—00 T 2°92

A signal of a finite rate of innovation is a signal having parametric representation given
by (1) and with a finite p as defined in (2).

Although it seems intuitive that any signal of a finite rate of innovation can be repre-
sented with a finite number of samples, it is often difficult to propose sampling schemes
that would allow for practical reconstruction algorithms. However, for some classes of
such signals it is possible to come up with exact sampling theorems that lead to standard
computational procedures.

In order to illustrate how the finite rate of innovation property can be exploited for
solving some sampling problems, consider the case of a periodic stream of M Diracs:

Let z(t) be a periodic signal of period 7 = 27 /wy,

z(t) =) Z_ ckd(t — qr — ty) (3)

q

Denote by ¢(t) a sinc sampling kernel of bandwidth [—Mwg, Mwy|, and choose a sampling
period T such that Ny = 7/T > 2M + 1, where N; € N. Then the samples

zs[p] = < z(t), p(t = pT) >, p€[0,N;—1]

are a sufficient representation of z(?).
Namely, the key is to observe that the Fourier series coefficients of the signal z(t) are

given by
M-1

ckefjmouot;c (4)
k=0

X[m] =

S e
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that is, a linear combination of M complex exponentials. Therefore, the parameters
{ck, te ! can be found from the set of 2M contiguous coefficients X [m], using either
subspace methods for harmonic retrieval [4] [6] or the annihilating filter method [18].
When noise is present, which is the case of our main interest, subspace techniques generally
perform better. In order to illustrate a subspace-based solution to this problem, we present
an outline of a sampling algorithm that uses the State Space method [4] to estimate the

parameters {cg, t }21,' from the set of coefficients X[m)].

Sampling Algorithm for a Stream of M Pulses

« Find the Fourier series coefficients X [m] m € [—M, M], from the set of samples
xs[p]:<x(t)ﬂ0(t_pT) >, pE [OaT/T_l] (5)

e Define a P x () matix J as

X[0] X[1] XI[L]
X1 X|2 X|L+1

| X X L+1] ©
X[P] X[P+1] ... X[P+L+1]

where both L and P are greater or equal to M.

« Compute the singular value decomposition of J
J=USVE+USV'H (7)

where the first term consists of the M principal components, and the second term consists
of the remaining nonprincipals®.

« Estimate the signal poles z; = e /0% as the eigenvalues of a matrix Z

Z=V"V (8)

where (%) and (%) denote the operations of omitting the first and the last row of ()

respectively, while (%)™ denotes the pseudoinverse of ().

3In the noiseless case we have only the first term



« Find the weighting coefficients ¢; from a Vandermonde system

X[1] B g Jwoto . e Jwotar—1 1 o)
XM —-1] e J(M—Lwoto  o=d(M—L)wolar—1 Cr—1

III. APPLICATION TO CDMA SYSTEMS

In this section we consider one possible application these sampling results to a combined
problem of multipath channel estimation and signal detection in CDMA systems. We
first analyze a problem of channel estimation in multipath fading channels and develop a
method that estimates parameters of all users from a set of samples of a received signal
taken below the chip rate after smoothing.

Once the channel parameters of all users have been estimated, they are directly used in
detection algorithms. We present several detection methods that run on a reduced set of
samples as well, and discuss a tradeoff between the sampling rate and the detection per-
formance. We also show how existing multiuser detection schemes, such as a decorrelating
detector and an MMSE linear detector, can be implemented on a sampled lowpass version

of a received signal, and that without degrading their good performances.

A. Channel Estimation

Channel estimation is crucial in all spread spectrum systems, but at the same time is
the most difficult part in the system design. We present a new channel estimation method
where channel parameters of all users are estimated simultaneously by considering a series
of 1-D or 2-D estimation problems?®, yet the main advantage of our approach is that
the estimation of the channel parameters is obtained from a significantly reduced set of
samples of a received signal compared to existing schemes. Specifically, our method solves
the complex multiuser estimation problem by considering only a low-dimensional subspace
of a received signal, obtained by sampling a lowpass approximation of a received signal

at a rate determined by its rate of innovation. Besides, our algorithm can be equally

“In the case of joint angle and delay estimation, the problem is reduced to a series of 2-D equivalents



well applied to both non-fading and multipath fading channels. In the following, we will
first focus on a simpler problem of estimating users’ delays and propagation coefficients in
multipath fading channels. Later, we will extend our results to the case of joint angle and

delay estimation.

A.1 System Model

Consider the general case of a CDMA system with K users operating over a multipath
fading channel with at most L propagation paths for each user. We assume that the
channel varies slowly, i.e. it is considered constant over a channel estimation window. A
received baseband signal y,(¢) can be therefore represented as a sum of multiple copies of

attenuated and delayed signals of K users and noise

u() =D ben > aPsp(t — 1) — mTy) +n(t) (10)

n k=1

where s(t) is a signature sequence assigned to user k, T,El) denotes a delay of user k’s
signal along the [th path®, ag) is a complex amplitude that includes a channel attenuation
and a phase offset along the [th path, by, denotes the nth bit sent by user &, 7(t) is the
additive white Gaussian noise, and T denotes a symbol duration.

Assume that y,(¢) is sampled with the sinc kernel of bandwidth [—Mwgy, Mwy|®, where
wo = 27 /Ts. If the sampling period Ty, is chosen such that T /Ty, > 2M +1, then from

the set of samples we can find the Fourier series coefficients Y, ,[m], m € [-M, M| [18]

K L
Vol =3 b >l Sylmle ™0 4 Ny [m], wo = 21/, (11)

k=1 =1
where Si[m] and N,[m| denote the Fourier series coefficients of signature sequences and

noise respectively. From (11) it is clear that the relative delays 75, appear in phase delays

of the Fourier series coefficients, while the complex amplitudes ag) appear as weighting

coefficients. We can write (11) in a more compact form as

K
Y;",n[m] = E bk,ncmk + Nn[m] (12)
k=1
5With respect to a reference at the receiver
6We will show later that the required bandwidth is related to the number of different propagation paths L



where ¢, are given by

L
Cmie = Sylm] Y (af) 7m0 (13)
=1
or written in a matrix form
11 Ci2 ... CQk bl,n Yr,n[l]
Ca1 Cy ... Ok b2,n Yr,n[Q]
. +N, = ] =C-b,+N,=Y,, (14
cm1 Cm2 .- CMK bK,n Yr,n [M ]

Since the matrix C is of a size M x K, we need at least K such equations to estimate

C (given b,, and Y, ,). That is, each user k has to send a training sequence by

b = bk bikz - - - buk,x] (15)

In the absence of noise, system (14) can be written as

C11 Ci2 ... CK btl,l bt1,2 ---btl,K le[l] ---Yr, [1]

) K
C21 Ca ... Ok bt2,1 bt2,2 .- -bt2,K Y;~,1[2] .- -Yr,K[Q]
- = (16)
Cm1 Cm2 .- CMK b1 bk - bik i Y7~,1[M] . -Yr,K[M]
ie.
C-B,=Y, (17)
The matrix C is then given by
C=Y, B! (18)

Therefore, in the noiseless case, from (18) it is possible to find C exactly, provided By is a
full rank matrix. On the other hand, B, is the matrix made up of users training sequences,
and as long as these sequences are linearly independent, B; will be a full rank matrix.
Clearly, the unknown parameters of user k appear only in the kth column of the matrix
C. However, in order to find those parameters from the estimated values c,,;, we will first

define a new matrix D as



011/51[1] 612/52[].] Ce ClK/SK[]-]

_ 021/:511[2] 022/82[2] Ce CQK/SK[2] (19)
CMl/Sl[M] CMQ/SQ[M] CMK/SK[M]
that is, the elements of D are given by
- ; 0
Ak = Cmr/Sk[m] = Z(a,(cl)e_jmwk ) (20)

=1
Since Si[m] are assumed to be known coefficients’, once the matrix C has been estimated
we can compute all the elements d,,,;. On the other hand, each column k& of D defines a

new matrix equation

ewory”  gmjwor? L gjwory” al di
—j2wortM) —j2wor?) —j2wort™ (2)
eI ewoTy, e JewoTy ce. eIy a doy, 21)
= 21
e—jMon,gl) e—jMon,gz) o e—jMon,gL) ach) de

If M is chosen such that M > 2L, then the kth column of D provides a sufficient
information to solve uniquely for the parameters T,gl) and ag) of user k.

From the above analysis it becomes clear that we have decomposed the problem of
multiuser channel estimation into a series of single user estimation problems that can be
efficiently solved using 1-D subspace methods for harmonic retrieval [6] [13]. However,
unlike other subspace-based channel estimation techniques [1] [14], we estimate the un-
known parameters from a lowpass version of the received signal, which obviously leads to
a considerably reduced computational complexity of the estimator.

The number of samples M we need to take per symbol depends only on the number
of multipaths L, while the number of symbols in each training sequence depends on the
number of active users. In the noiseless case, our method leads to a perfect estimation
of the channel parameters a,(cl) and T]gl) by taking only M = 2L samples per symbol. As
already mentioned, existing algorithms typically require sampling at the chip rate.

At this point, it is important to relate the minimum sampling rate more explicitly to the

rate of innovation of the received signal. During the training phase, unknown parameters

"We assume that the receiver has the information on signature sequences of all users
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are the delays T,gl) and the propagation coefficients ag). For a system with K users, the total

number of unknown parameters is 2K L. Since the channel parameters are constant over
the entire (KT long) training phase, the rate of innovation p of the received signal is thus
p = 2L/T;. According to our above analysis, the required sampling rate is f; > 2L/Tj,
that is, we have demonstrated that the sampling rate must be greater or equal to the rate
of innovation p.

In the noisy case, however, in order to obtain more accurate estimates of the channel
parameters, the sampling rate must be increased above the critical rate p, while the length
of the training sequence can remain the same. A choice of the sampling rate clearly
depends on a signal-to-noise ratio (SNR), yet we will show that in most cases encountered
in practice a required sampling rate is still far below the chip rate. A block scheme of the

proposed channel estimator is sketched in Figure 1.

25(t-4T,,)
/]
(1) y (1) Y [m] o g
> $(1) — C/D FFT Channel estimation
Detection

sjm ! s.tm1
FFT FFT
/D /D
2 5(i-nT, ) Q% 2 6(t—nT\m1)%>
o(1) o(1)
sl(l) R s (1)

Fig. 1. Channel Estimator

Note that the presented algorithm is rather general and can be applied to asynchronous

systems as well, where the receiver has an arbitrary timing reference that is not aligned

11



to transmitted bit boundaries. In the general case, however, the sample values will in fact
incorporate the information about two consecutive bits in the training sequence. As a
result, the estimated Fourier series coefficients may not correspond to their actual values,
specifically in the case when adjacent bits have different signs. It is thus desirable to
repeat every beat in the training sequence twice, provided that a maximum delay spread

of each user is within the symbol duration.

A.2 Joint angle and delay estimation

Recently, there has been an increasing interest in the use of 2-D RAKE receivers for
wireless CDMA systems, which simultaneously exploit space and time domain structure of
received multipath signals. Although theoretically sound, implementation of 2-D RAKE
receivers in not trivial in practice. Most of the existing solutions resort to complicated
spatial and temporal processing involving large correlation matrices, which makes them
inefficient or sometimes even inapplicable, particularly in fast varying environments. In
particular, estimation of direction-of-arrival (DOA) and relative time delays of multipath
signals, required by many of the existing schemes, still presents a bottleneck in the system
design due to high computational complexity of such schemes.

In the following, we will further extend our sampling results to a problem of joint delay
and angle estimation in multipath fading CDMA channels using antenna arrays. We will
show that by applying the developed channel estimation algorithm at each antenna, it is
possible to estimate all the channel parameters without modifying the receiver structure.
However, in order to estimate direction-of-arrivals of users’ signals, we exploit spatial
diversity by combining outputs of different antennas.

Consider a uniform linear antenna array system consisting of omnidirectional elements
with equal interelement spacing D. We will assume that a carrier frequency if relatively
high compared to a bandwidth of the transmitted signal and that a channel is slowly
varying. A direction-of-arrival 0,(;) of user £’s signal propagating along the [th path, is
assumed to be the same for all antennas in the array. However, there will be a fixed phase
difference b(gtween signals received at each two consecutive elements of the array, given
by R ej‘pg), where w, denotes an angular frequency of the carrier. Therefore,

. . N0 . . . .
there will be a phase difference of e/%" between corresponding Fourier series coefficients

12



of signals received at each two consecutive sensors.
Consider next a set of matrices D, given by (19) and (20), estimated separately at
each antenna, and denote them as D;, D,,... Dg. The elements d; , of matrices D,

s=1,2,... 5, are thus given by

mk

L
te= 3 e imeaon 4 e-ine (22)
=1

that is, a linear combination of two-dimensional complex exponentials, where A, denotes
an antenna gain which is the same for all antennas. Note that the previous equation can

be also written in the form

L
- Q) (0
e = Y A eI I (23)
=1

where AV = gl 4 ¢34

In order to estimate the unknown parameters T]gl) and 0,(;) of user k, consider a matrix

F} obtained by stacking the kth columns of matrices Dy, s =1,2,... S,

Fk = [Dl(i,k) DQ(:,k) DS(:,k)]MxS (24)
or more explicitly,
d, d ... &,
d; 2, ... dj
F, = 2k 2k 2% (25)
dy A - dig

Therefore, the elements f*  of the matrix F}, are given by

L
. O )
o = g = Y5 Aokl (26)
=1

In the case when the time delays T]gl) of each user k are different, we need only two
columns of the matrix Fj in order to solve for all the unknown parameters of user k. In
other words, it suffices to have only two antennas in the array system. By considering
only the first column we can estimate the parameters T,gl) and A,(cl), while from the second

column of Fj,, we can solve for Ag)e_jq’g), and thus uniquely specify 9,(!). This result is also
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in agreement with our previous analysis on the relation between the minimum required
sampling rate and a rate of innovation of the received signal. Namely, since the unknown
channel parameters are T,ﬁl), 0,(;) and a,(cl), the total number of parameters is 3K L, which are
constant over the entire training phase. If we choose the sampling rate to be f, = 2L/T},
we require at least two antennas in the system?®.

In the noisy case, however, this method is not desirable. While with 1-D subspace meth-
ods we can estimate delays T,gl) quite accurately, estimation of the weighting coefficients
A,(Cl) and Ag)e_jq’g) is much more sensitive to noise, which in turn results in imprecise
estimation of the angles 9,(!) as well. One possible way to overcome this problem is to
use 2-D subspace algorithms for harmonic retrieval (such as ACMP, 2-D ESPRIT etc.)
since the elements of the matrix Fj have the form of a linear combination of 2-D complex
exponentials. Therefore, similar to the approach discussed in the previous section, we
can decompose a multiuser parameter estimation problem into a series of 2-D single user
problems where the parameters of each user are estimated separately. It is important to
note, however, that in order to apply 2-D subspace algorithms successfully, the number of
antennas S in the array cannot be chosen arbitrarily. The minimum number of sensors
Spmin Tequired for a unique solution? is S,,;, = 2L, that is, it depends only on the number
of multipaths and not on the number of users. In the noisy case, as the number of antennas
increases the angles can be estimated more precisely. On the other hand, as the number
of samples per symbol M increases, estimates of time delays become more accurate, as we

will show in the sequel.

B. Signal Detection

The developed channel estimation algorithm is rather general and allows for imple-
mentation of different detection strategies, such as multiuser detection schemes, RAKE
receivers or 2-D RAKE. In the following, we will focus on multiuser detection schemes and
show how they can be efficiently implemented in digital receivers where the sampling rate
is determined by a rate of innovation of a received signal.

Multiuser detection has been studied extensively over the past fifteen years, due to

8Note that the sampling rate could be lower, but in that case we wouldn’t have a practical algorithmic solution
%i.e. required by most 2-D spectral estimation methods
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the fact that it outperforms the conventional receiver in the near-far scenario. Optimum
multiuser detector, developed by Verdu [17], was the first such scheme that exploited a
structure of multiuser interference in order to improve the receiver performances. His work
was followed by many suboptimal detection schemes of lower computational complexity,
such as decorrelating detectors or maximum-likelihood (ML) detectors. In order to take
a full advantage of multiuser detection in digital receivers, it is typically assumed that a
received signal must be sampled at the chip rate. We will show, however, that with some
of these multiuser schemes it is possible to carry out detection on the lowpass version of

the received signal, while retaining their good performances.

B.1 Decorrelating Detector

Consider the case of a synchronous channel with only one propagation path for each
user. A received baseband signal can then be modeled as a superposition of K active

users’ signals and noise
K
yr(t) = Zakbksk(t) + ﬂ(t) (27)
k=1

where 7)(t) is a zero mean white Gaussian noise of variance o2. After passing y,(t) through

a bank of K matched filters, the output vector becomes

y =RAb+7 (28)

where

A = diag(ay as, ..., ax)
b = (by by, ..., bk)

while R is the normalized cross-correlation matrix whose elements are given by

oy = [ s (29)

If the output of the matched filter is multiplied by R !, then in the absence of noise
the following relation holds

R 'y = Ab (30)

15



Therefore, in order to recover transmitted bits, we can simply take the sign of each com-
ponents in (30), i.e.

be = sgn(R 1y), = sgn(Ab);, = by (31)

If one wants to implement the decorrelating detection scheme in digital receivers, a
common approach is to sample the received signal y,.(¢) at the chip rate, pass the sampled
signal through a bank of chip-matched filters and multiply the output of such a filter bank
by a digital version of the cross-correlation matrix (29), whose elements are a discrete
correlation coefficients between chip-sampled signature sequences. However, if we want to
avoid the chip rate sampling and yet obtain the same or at least comparable performances,
one possible approach would be to carry out all the above steps on signals sampled below
the chip rate with a sinc sampling kernel. As we will show later, in order to obtain
performances essentially equivalent to those of chip-rate sampling schemes, a required
sampling rate is typically close to the rate of innovation.

Note that the sampling kernel doesn’t necessarily have to be the sinc kernel, and we
can use a Gaussian sampling kernel as well. Namely, in order to simplify our analysis
we have ignored a potential problem of intersymbol interference due to a tail of the sinc
function. By using the Gaussian kernel, which has an exponential decay, this problem can

be avoided.

B.2 Minimum Mean-Square Error Linear Detector

Minimum Mean Square Error (MMSE) linear detector is aimed at improving the per-
formances of the decorrelating detector by incorporating information about a received
signal-to-noise ratio. In particular, the MMSE linear detector replaces the transformation

R~ of the decorrelating detector by

R+ 02A*2]*1
where
2 2
2 A —2 — o
A " =d — e,

Similar to the previous case, we will run the MMSE detection algorithm on samples of
signals taken after smoothing. As we will see later, the MMSE detector has better perfor-

mances compared to the decorrelating detector for low sampling rates.
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B.3 “Direct” Detection

(or a better term for this...)

It is interesting to note that in the case of quasi-synchronous CDMA systems, where a
maximum delay spread of each user is relatively small compared to the symbol duration
Ty, it is possible to use equation (14) directly to solve for bits sent by each user, without
even knowing specific users’ codes. In this case the receiver only needs to estimate the
matrix C in the training phase. In the detection phase, bits sent by users 1,2, ... K are
then given by

b,=C"'-Y,, (32)

It is clear from our analysis that the receiver doesn’t require a knowledge of user’s signa-
@

ture sequences, nor it has to estimate propagating coefficient a;’. However, (32) can be
successfully applied to systems where approximate timing of users is a priori known to the

receiver.

IV. NUMERICAL RESULTS

We present some simulation examples that demonstrate the performance of the devel-
oped algorithms. In all our simulations we used pseudo-random sequences of length 1023.
Figure 2(a) shows an average estimation error of a relative time delay (normalized to a
chip duration T,) for the first user in a multiuser scenario versus the number of samples
N; taken per symbol, and that for different values of a signal-to-noise ratio (SNR). We
assumed a non-fading channel and considered only the effect of a sampling rate on the
estimation error of user’s timing!?. Obviously, as the sampling rate increases we can es-
timate the time delays more accurately, however, since the error exhibits an exponential
decay it is unnecessary to resort to very high sampling rates. For example, by taking
only 100 samples the average estimation error is less than one tenth of the chip duration
(for SNR > 8dB), and the performance of the estimator doesn’t considerably improve by
further increasing the sampling rate. Figure 2(b) illustrates average estimation errors for
systems with 5 and 10 users versus SNR, for different values of N,. The error depends both

on a sampling rate and a value of SNR, however, it doesn’t depend on the number of active

10with respect to the reference in the receiver
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users in the system. This is a somewhat expected result, since our method for channel
estimation decomposes the multiuser estimation problem into a series of 1-D problems,
where the unknown parameters of only one user need to be estimated. A similar result
holds for multipath fading channels as well. This is illustrated in Figure 2(c), where we
considered systems with 5 and 10 users and 3 propagation paths for each user. However,
for very low sampling rates (e.g. less than 15 samples per symbol) the estimation error is
slightly higher in the case of a fading channel, since in this case there are more parame-
ters that need to be estimated simultaneously. In Figure 2(d) we illustrate the near-far
performance of our estimator for a system with 5 users. In particular, we show average
estimation errors for the first user versus SNR, and that for different values of r = P,/ Py,
1=2,...,5, where P; denotes a received power of user ¢. Clearly, the error doesn’t depend
on r since the parameters of different users are estimated separately.

We next consider the performance of our scheme in the case of a joint angle and delay
estimation. Figures 3(a) and 3(b) show an average angle estimation error (normalized
to 27) and a delay estimation error (normalized to the chip duration T,) for user 1 in a
system with 10 users. In order to estimate time delays and angles of all the signals, we used
a 2-D subspace based algorithm for harmonic retrieval, the so-called ACMP (Algebraic
Coupling of Matrix Pencils) algorithm. The error is plotted as a function of the number
of antennas S in the array, for two different values of the signal-to-noise ratio (SNR=8dB
and SNR=10dB) as well as for two different sampling rates (N; = 40 and N; = 60), and
that for both non-fading channels (Figure 3(a), (b)) as well as for fading channels with
3 propagating paths for each user (Figure 3(c),(d)). Similar to the previous case, the
estimation error decays exponentially as the number of sensors increases. However, this
does not significantly affect a delay estimation error, since by increasing the number of
antennas we add in more information only about a structure of a received signal in spatial
domain. On the other hand, as a sampling rate increases, we can better estimate timings
of different users, while the angle estimation error is much less affected in this case. The
same conclusions hold for multipath channels, yet all the estimation errors are somewhat
higher compared to the case of non-fading channels.

We next consider several detection schemes where detection is carried out on a sampled
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lowpass version of a received signal. In particular, we analyze the effect of a sampling
rate on the performance of the decorrelating detector, the MMSE detector and the direct
detection sheme (32) in synchronous systems, while a similar analysis can be done for
other detection schemes as well. Figures 4(a) and 4(b) illustrate the performance of the
decorrelating detector, specifically an average bit-error-rate (BER) for systems with 5 and
10 users respectively versus the number of samples, while Figures 4(c) and 4(d) illustrate
the performance of the MMSE linear detector. We assumed that timings of all users
are perfectly estimated, and that both schemes are implemented on samples taken with
the sinc kernel. Obviously, as we increase the sampling rate the performance of both
detectors improves. The two schemes have basically the same performance, except for low
sampling rates when the MMSE linear detector performs better. Figure 4(e) illustrates
the effect of a delay estimation error (i.e. synchronization error) on the performance of a
system with 10 users and the MMSE detector, where we assumed that timings of all users
are estimated with an error of 0.17,!'. Our results indicate that the synchronization error
somewhat degrades detection performances, however, the BER increases by approximately
2dB compared to the case with perfect synchronization.

However, a more interesting result is illustrated in Figure 5, which shows average bit-
error-rates for a synchronous CDMA system with 5 and 10 users, versus the number of
samples (Figures 5(a)-(d)), as well as versus SNR (Figures 5(e) and 5(f)). We present the
results for the decorrelating and subspace detectors, although a similar analysis can be
done for other detection schemes as well. Obviously, in order to achieve the good detection
performance it is unnecessary to resort to chip rate sampling, that is, almost the same
error rate is obtained when all the detection steps are carried out on the set of signal
samples taken far below the chip rate. For example, from Figures 5(a) and 5(c) it is clear
that in the case of a system with five users, it suffices to take only 40 samples in order to
achieve nearly the same BER as with 1023 samples (which corresponds to the chip-rate
sampling). For a system with ten users that number is roughly 80, etc. It is interesting
to note that in the case when a sampling rate is very low, the direct detection scheme

outperforms decorrelating detector. As the sampling rate increases both schemes have

1This is a more realistic assumption than the one of a perfect synchronization
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nearly the same performance.
In order to explain an exponential decay of the detection error, consider a bit-error-rate

of user k£, given by
Qg

0\/R12161

where R is a normalized cross-correlation matrix, while @) is the error function given by

Qz) = /Oo \/%—We_ﬁmdt

A detailed discussion on the performances of multiuser detection schemes is already pre-

Pi(o) = Q( ) (33)

sented in [17], however, note that in our case all the necessary steps'? are implemented on
the samples of a signal lowpass version. Specifically, in (33) the matrix R is the normalized
cross-correlation matrix whose elements are correlation coefficients of sampled signature
sequences, etc. Although (33) doesn’t provide an explicit dependence of a bit-error-rate
on a sampling rate, that dependence is included implicitly in the term R,;kl. For example,
if the signal is sampled at the chip rate, the kth user is orthogonal to other users'® and
R,;kl = 1. On the other hand, when the sampling rate is very low, the matrix R is close
to singular and the system becomes ill-conditioned, which in turn results in high BER.
In practice, when computational complexity is one of the main constraints in the system
design, there obviously must be a tradeoff between the complexity of the receiver and its

performance.

V. CONCLUSION

We have presented a new approach to the problem of multiuser channel estimation and
signal detection in CDMA systems, where all the necessary steps are carried out on a
sampled lowpass version of a received signal. We extended some of the recent sampling
results for signals of a finite rate of innovation to the problem of multiuser channel esti-
mation and developed a method that estimates the unknown channel parameters of all
users simultaneously, by sampling a received signal at a rate determined by its rate of

innovation, that is, below the chip rate. Once the channel parameters of each user have

126 g. filtering, decorrelation etc.
13Provided that the signature sequences are chosen from a set of orthogonal sequences
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been estimated, they are used in the detection process, carried out on a lowpass version
of the received signal as well. For simplicity, we have considered only multiuser detection
schemes in synchronous and quasi-synchronous systems, however, the presented channel
estimation method is rather general and allows the implementation of different schemes
such as RAKE receivers, 2-D RAKE etc. Our approach leads to algorithms that have
lower computational requirements compared to existing methods, while providing similar

performances.
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Fig. 2. (a) Average timing synchronization error (normalized to T ) for user 1 in the multiuser case (10 users) vs.
number of samples N, for different values of SNR. We assumed a non-fading channel. Signature sequences of
all users are of length 1023. (b) Comparison of the synchronization errors in non-fading channels for systems
with & and 10 users (c) Average synchronization errors for 8, 5 and 10 users in multipath fading channels.
The number of samples Ny is chosen to be 40 or 60, and we assumed three propagation paths for each user

(d) Average synchronization errors for a system with 5 users in the near-far scenario.
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(a) Normalized angle estimation errors for the first user in the multiuser case (10 users) vs. number of

sensors in the antenna array S, for different values of SNR and Ns. A channel is assumed to be non-fading.

Each signature sequence is of length 1023. (b) Normalized delay estimation errors for user 1 in the multiuser

case (10 users) vs. S for non-fading channels. (c) Normalized angle estimation errors in fading channels.

We assumed 8 propagation paths for each user. (d) Normalized delay estimation errors in fading channels,

with 8 propagation paths for each user.
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Average BER for a CDMA system with 5 users (decorrelating detector)
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Fig. 4. Average BER in the case of non-fading synchronous CDMA systems with 5 and 10 users. The sampling
scheme 1is used along with the decorrelating detector (a),(b) or the MMSE linear detector (c) and (d). (a)
Average BER of the decorrelating detector in a system with 5 users (b) Average BER of the MMSE detector
in a system with 5 users (¢) Average BER of the decorrelating detector and 10 user case (d) Average BER

of the MMSE detector and 10 user case (e) The effect of timing synchronization error (assumed to be 0.1-T,
for all users) on the BER.
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Average BER for a system with 5 users, subspace detection

Average BER for a system with 10 users, subspace detection
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Fig. 5. Average bit-error-rates for a non-fading synchronous CDMA system with 5 and 10 users. All signature
sequences are of length 1023. (a), (b) BER of subspace detector vs. number of samples N, for different
values of SNR, for systems with 5 and 10 users respectively (c), (d) BER of decorrealting detector vs. Ny for
different values of SNR in systems with 5 and 10 users (e), (f) BER of decorrelating detector vs. SNR for

different sampling rates in systems with 5 and 10 users respectively.
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