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Abstract

For a general class of constant-energy trellis-coded modulation schemes

with 2� states, necessary and suÆcient conditions to guarantee that a maximum-

likelihood sequence estimator can decode each symbol with a �xed delay of

� symbols are derived. Additive white Gaussian noise is assumed. MSK is

a special case that belongs to the family of modulation schemes with � = 1.

It is shown that when these conditions are met, the minimum squared Eu-

clidean distance is upper bounded by 4Es, where Es is the signal's energy

per interval. Necessary and suÆcient conditions to achieve the upper bound

are given and it it shown that these conditions are met if and only if the

trellis-coded modulation scheme can be implemented as pulse amplitude

modulation using a pulse that extends over � + 1 symbols. Signals that

achieve this upper bound and maximize the power within a given band-

width are found. The bandwidth eÆciency of such schemes is signi�cantly

higher than that of MSK.

Key words: MSK, Viterbi decoder, modulation, coding, spectral shaping, PAM.

I Introduction

Minimum shift keying (MSK) is a coded modulation scheme that can be described as con-
sisting of an encoder followed by a memoryless modulator [1]. The encoder is a �nite state
machine which maintains the phase continuity of the transmitted signal. As a result, a
maximum-likelihood sequence estimator for MSK may be realized using the Viterbi algo-
rithm (VA) [2].

In general, the Viterbi decoder can start to produce the maximum-likelihood estimate of
the transmitted signal only after it observes the channel output corresponding to the entire
transmitted sequence, which results in a large decoding delay. The delay may be reduced
using a suboptimal modi�cation of the VA. Remarkably, for MSK the Viterbi decoder can
optimally decode the information symbol transmitted during the nth interval upon obser-
vation of the (n + 1)th interval or, equivalently, with a delay of one symbol interval [3, 1].
Among other properties of MSK is the fact that MSK and antipodal modulation have the
same minimum squared Euclidean distance, but the former has higher bandwidth eÆciency
than the latter. This paper was primarily motivated by the desire of understanding what is
behind the �nite decoding-delay property of MSK, how to construct more general schemes
that have similar properties, and the implication of �xed decoding delay on the minimum
Euclidean distance.
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We are interested in such a generalization since we consider MSK as a TCM scheme in which
the purpose of the trellis is to shape the spectrum of the transmitted signal rather than to
achieve a large minimum distance. This and the fact that it is optimally decodable with a
�xed delay, makes MSK a very special kind of TCM scheme. Unlike conventional TCM, MSK
is not the result of maximizing the minimumEuclidean distance and regarding decoding delay
and spectral shaping (resulting from the memory introduced by the trellis) as incidental.
Ultimately, one would like to understand the possible tradeo�s between minimum distance
(or more generally distance pro�le), bandwidth (or more generally spectral characteristic),
and decoding delay. While such a goal is far beyond the scope of this paper, from our
generalization of MSK we do learn that for the class of TCM schemes considered here, a �nite
decoding delay implies that the minimum squared Euclidean distance cannot exceed that of
MSK. Hence we can only trade the amount of decoding delay with bandwidth eÆciency.

The TCM schemes considered in this paper have the following characteristics: (i) the trellis
is generated by a �-length tapped delay line; (ii) transitions are associated with constant-
energy waveforms which are nonzero only over the duration of the transition. Under these
assumptions, we derive the necessary and suÆcient conditions such that optimal decoding
with a delay of � symbol intervals is possible for the AWGN channel. We show that the
requirement of a �xed decoding delay upper bounds the minimum Euclidean distance to
that of MSK or, equivalently, of antipodal modulation. Necessary and suÆcient conditions
to achieve the upper bound are found. Finally, we consider the problem of minimizing
the bandwidth among all possible choices of signals that satisfy all of the above conditions.
Numerical solutions for cases where the decoding delay is constrained to one and two symbol
intervals (� = 1; 2) are found.

The paper is organized as follows. The class of TCM schemes considered in this paper is
described in Section II. Necessary and suÆcient conditions that ensures optimal decoding
with delay (�+1)T are obtained in Section III, where T is the symbol interval. In Section IV
we show that constant-energy pulse amplitude modulation (PAM) using a pulse of duration
(� + 1)T always satis�es the conditions for decoding delay �T . We also give necessary
and suÆcient conditions to guarantee that the class of modulation schemes considered in
this paper are implementable as pulse amplitude modulation (PAM). In Section V, we study
implications on the minimum squared Euclidean distance. Finally, for schemes with � = 1; 2,
signals that maximize the power within a given bandwidth while satisfying the conditions
for �nite-delay decoding and maximum d2min are found numerically in Section VI.

II System Model

In this section, we consider all TCM schemes that can be modeled as shown in Figure 1,
and derive the necessary and suÆcient conditions the waveform set S has to ful�ll so that
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optimal decoding with a �xed delay is possible using the Viterbi algorithm.

Un � � � -s

-

Un�1

s

-

s

-

Un��

...

SELECT ONE FROM

S = fs0(�); � � � ; sM�1(�)g

where

M = 2�+1,R T
0
jsi(�)j

2d� = 1, and

si(�) = 0; � =2 [0; T ],

i = 0; 1; � � � ;M � 1

MEMORYLESS MODULATOR

- sIn(�)

Figure 1: Trellis-coded Modulation Scheme under Consideration.

The input fUng
1
n=1 to the encoder, Un 2 f0; 1g, is a sequence of independent and identically

distributed random variables referred to as the binary data sequence, and the corresponding
encoder state sequence is f�ng

1
n=1, where �n = Un�12

��1 + � � � + Un�� 2 f0; 1; � � � ; 2� � 1g
is the random variable which represents the content of the shift registers in binary-coded
decimal form. In the nth interval nT � t < (n+1)T , n = 0; 1; : : : , the memoryless modulator
outputs a signal taking value in a set S = fs0(�); � � � ; sM�1(�)g of �nite-energy complex-
valued baseband waveforms, where � = t � nT . For all i 2 f0; 1; � � � ; 2�+1 � 1g, si(�) is
assumed to be zero outside the interval [0; T ] and normalized to have unit energy, i.e.,

jjsijj
2 =< si; si >= 1 8i 2 f0; 1; � � � ; 2�+1 � 1g; (1)

where

< si; sj >=

Z T

0

si(�)s
�
j(�)d�

denotes inner product.

Without loss of generality, the index In of the transmitted signal in the nth interval is the
random variable given by the input and the state at time n in the following way,

In = Un2
� + �n: (2)

Notice that the current input bit Un is the most signi�cant digit of In. For example, in the
case where the encoder memory � = 1 (see Figure 2), the index In is related to (Un; �n)
according to Table 1. The last column of Table 1 speci�es the signals for MSK, where it is
assumed that f0T is integer and that f1T = f0T + 1=2 (see e.g., [4]).



March 26, 2001 5

Table 1: The mapping performed by the memoryless modulator for � = 1.

Un �n sIn(�) MSK

0 0 s0(�)
q

2
T
cos 2�f0t

0 1 s1(�) �
q

2
T
cos 2�f1t

1 0 s2(�)
q

2
T
cos 2�f1t

1 1 s3(�) �
q

2
T
cos 2�f0t

Throughout the paper, U , I and � represent random variables, whereas u and i represent
elements in the alphabet of U and I, respectively.

The baseband transmitted signal of the coded modulation scheme can be expressed as

1X
n=0

sIn(t� nT ); In 2 f0; 1; � � � ; 2�+1 � 1g; t > 0: (3)

The corresponding received signal is

R(t) =
1X
n=0

sIn(t� nT ) + Z(t); t > 0; (4)

where Z(t) is a zero-mean complex-valued white Gaussian process with power spectral den-
sity N0.

III Decoding Delay

For a TCM scheme, a maximum-likelihood sequence estimator (MLSE) minimizes the proba-
bility of error at the receiver. The Viterbi algorithm is an eÆcient method for implementing
the MLSE[5]. The branch metric in the nth interval is given according to1

�n(sin) = <f

Z T

0

R�(� + nT )sin(�) d�g; in 2 f0; 1; � � � ; 2�+1 � 1g; (5)

where <f:g denotes the real part of the enclosed complex number, and R�(t) is the complex
conjugate of R(t). A maximum-likelihood estimate of the transmitted sequence is a sequence

1We have used the fact that the signals have equal energy.
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through the trellis with the largest sum metric. For optimality, the Viterbi decoder in
general needs to observe the entire transmitted sequence before �nding a maximum-likelihood
estimate. As a result, the receiver experiences a large decoding delay. Suboptimal algorithms
such as the truncated Viterbi algorithm [6] can be used to alleviate the delay problem.

It has been shown that MSK can be modeled as shown in Figure 1 with � = 1, and the
receiver for MSK can decode optimally observing two symbol intervals using the VA [3, 1].
We are interested in generalizing this property of MSK to the class of TCM schemes shown
in Figure 1. Speci�cally, we are looking for a set of necessary and suÆcient conditions that
the set of waveforms fsi(�); i 2 f0; 1; � � � ; 2�+1�1gg has to ful�ll so that the Viterbi decoder
can optimally decode with a �xed delay of � symbol intervals, i.e., the decoder is able to
produce the estimate of the nth information symbol Un upon observation of the received
signal for t � (n+ � + 1)T .

Theorem 1 For any coded modulation scheme that can be modeled as shown in Figure 1
and where, without loss of generality, we assume the indexing described by (2), the necessary
and suÆcient conditions the signals fsi(�); i 2 f0; 1; � � � ; 2v+1 � 1gg have to ful�ll so that
the Viterbi decoder can make an optimal decision with a delay of � symbol intervals are

s0(�)� s2m(�) = sb(�)� sb+2m(�)
m 2 f0; 1; � � � ; � � 1g; b 2 f2m+1l : l = 1; � � � ; 2��m � 1g:

(6)

Furthermore, (6) implies that the decision rule for the nth information symbol is given by

Ûn = 0
"Pn+�

i=n �i(s0 � s2n+��i)
>
< 0:
#

Ûn = 1

(7)

Proof of Theorem 1. Let q and p be two arbitrary but �xed elements of the state alphabet
f0; 1; � � � ; 2� � 1g. There are exactly two paths which diverge at state p at time n and
merge at state q at time n + � + 1. This is true since the paths have length � + 1 and
the �nal state is in one-to-one correspondence with the last � inputs. More precisely, if
the binary representation of q is (un+�; � � � ; un+1), then these two paths correspond to input
sequences (0; un+1; � � � ; un+�) and (1; un+1; � � � ; un+�), where un+j is the input at time n+ j,
j = 1; 2; � � � ; �.

Assume �rst that a genie informs the decoder that the maximum-likelihood estimate of the
transmitted sequence passes through state p at time n and state q at time n+ � +1. Under
these conditions, the maximum likelihood estimate for Un is given by Ûn = 0 if

�n(sin) + �n+1(sin+1) + � � �+ �n+�(sin+�) > �n(si0n) + �n+1(si0n+1) + � � �+ �n+�(si0n+�); (8)
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where sin+j(�) and si0n+j (�), j = 0; 1; � � � ; � are the transmitted signals in interval in+j corre-

sponding to input sequences (0; un+1; � � � ; un+�) and (1; un+1; � � � ; un+�), respectively. Since
�n(:) is linear in its argument, the decision rule can be rewritten as: Ûn = 0 if

�n(sin � si0n) + �n+1(sin+1 � si0n+1) + � � �+ �n+�(sin+� � si0n+� ) > 0: (9)

The decoder can produce an estimate of Un upon observing the received signal up to and
including interval n+ � if and only if (9) results in the same decision regardless of q. This is
true since by varying the noise process in the intervals n+ � +1; n+ � +2; � � � , we can force
q to take on any desired value of the state alphabet. But (9) is true (or false) independently
of q if and only if 8j 2 f0; 1; � � � ; �g

sin+j (�)� si0n+j (�) is independent of the value of q: (10)

This can be seen as follows. Fix j 2 f0; 1; � � � ; �g, let e and f be two elements of the state
alphabet, and let ue(�) = sin+j(�) � si0n+j(�) when q = e and let uf(�) = sin+j(�) � si0n+j (�)

when q = f . If ue(�) 6= uf(�), then one can choose the noise in the (n+ j)th interval so that
�n+j(ue) is, say, positive whereas �n+j(uf) is negative. By choosing the noise appropriately
in each interval i = n; n + 1; : : : ; n + �, one can make the left side of (9) have a sign that
depends on the value of q.

The binary representation of in+j and i0n+j are

un+j; � � � ; un+1; 0; un�1; � � � ; un+j�� and un+j; � � � ; un+1; 1; un�1; � � � ; un+j��; (11)

respectively. Moreover, the �rst j digits in (11) are the j least signi�cant bits in the binary
representation of q, whereas the last � � j digits are the � � j most signi�cant bits in the
binary representation of p. Hence

in+j = qj + pj

i0n+j = qj + 2��j + pj;

where qj 2 f2��j+1l : l = 0; 1; � � � ; 2j � 1g is determined by q, and pj 2 f0; 1; � � � ; 2��j � 1g
is determined by p. With this notation (10) becomes

spj(�)� spj+2��j (�) = sqj+pj(�)� sqj+pj+2��j (�);

j 2 f0; 1; � � � ; �g; qj 2 f2��j+1l : l = 0; 1; � � � ; 2j � 1g; pj 2 f0; 1; � � � ; 2��j � 1g:

Notice that when qj = 0 the above set of equations is trivially satis�ed. Hence we may
remove 0 from the range of qj. We may also remove 0 from the range of j since j = 0 implies
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qj = 0. Finally, letting m = � � j and renaming the (dummy) variable qj and pj with a and
b, respectively, we obtain an equivalent set of equations:

sa(�)� sa+2m(�) = sa+b(�)� sa+b+2m(�); (12)

m 2 f0; 1; � � � ; � � 1g; a 2 f0; 1; � � � ; 2m � 1g; b 2 f2m+1l : l = 1; � � � ; 2��m � 1g:

It is useful to remember that a and b refer to the initial and �nal state, respectively.

Lemma 8 in the Appendix shows that the above system of equalities is satis�ed if and only
if it is satis�ed for a = 0. In words, it is satis�ed for all initial states if and only if it is
satis�ed for one (e.g. the zero) initial state. This proves that (6) is necessary and suÆcient
to decode with delay �T . Moreover, when (6) holds neither the initial nor the �nal state
a�ects the arguments of � in (9). Hence, in computing the left side of (9) we may assume
that p = q = 0. Thus (9) is equivalent to (7), completing the proof. 2

Example 1 For � = 1 the transmitter is shown in Figure 2. The state transition diagram
for the nth and (n+1)th intervals is shown in Figure 3, where the state �n corresponds to the
state of the encoder at time n, and the transition between states is labeled with the input
symbol and the output signal corresponding to that transition. Figure 4 shows the state
transition diagram with branches labeled with the corresponding metric. From Theorem 1,
the necessary and suÆcient condition for the signal set fsi(�); i = 0; 1; 2; 3g to ensure optimal
decoding with one symbol interval delay is

s0(�)� s1(�) = s2(�)� s3(�); (13)

and the maximum-likelihood decision rule for the nth information symbol is given by

Ûn = 0
"

�n(s0 � s2) + �n+1(s0 � s1)
>
< 0:
#

Ûn = 1

Equation (13) may be rewritten as

s0(�)� s2(�) = s1(�)� s3(�): (14)

Equation (14) says that the ordered di�erence between the signals of two transitions that
diverge from any state is the same, whereas equation (13) states that the ordered di�erence
between the signals of two transitions that merge to any state is the same. Hence, the
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necessary and suÆcient condition which ensures optimal decoding with a delay of one symbol
interval also guarantees that the Euclidean distance between any pair of paths which diverge
at time n and merge at time n+ 2 is the same. We will see that this is not a coincidence.

Using Table 1 we verify that MSK ful�lls equation (13) (hence equation (14)). Thus, as it
is well known, MSK may be decoded with 1 symbol delay (see e.g. [4]).

Un -r

-

Memoryless
Modulator

00 7! s0(�)

01 7! s1(�)

10 7! s2(�)

11 7! s3(�)

- sIn (�)

Figure 2: Transmitter of the Proposed TCM Scheme for � = 1.

�n �n+1 �n+2

0

0=s0(�) 0=s0(�)

state

1

1=s3(�) 1=s3(�)

#
#
#
#
#
#
##

#
#
#
#
#
#
##

1=s2(�) 1=s2(�)

c
c
c
c
c
c
cc

c
c
c
c
c
c
cc

0=s1(�) 0=s1(�)

Figure 3: State Transition Diagram for � = 1.

Example 2 For � = 2 the transmitter is depicted in Figure 5. The state transition diagram
for the nth, (n + 1)th, and (n + 2)th intervals is shown in Figure 6. From Theorem 1, we
have that the necessary and suÆcient conditions for the signal set fsi(�); i = 0; 1; � � � ; 7g to
ensure optimal decoding with two-symbol interval delay are

s0(�)� s1(�) = s2(�)� s3(�) = s4(�)� s5(�) = s6(�)� s7(�)
s0(�)� s2(�) = s4(�)� s6(�);

(15)
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�n �n+1 �n+2

0

�n(s0) �n+1(s0)

state

1

�n(s3) �n+1(s3)

#
#
#
#
#
#
##

#
#
#
#
#
#
##

�n(s2) �n+1(s2)

c
c
c
c
c
c
cc

c
c
c
c
c
c
cc

�n(s1) �n+1(s1)

Figure 4: State Transition Diagram Labeled with Path Metric.

and the maximum-likelihood decision rule for the nth information symbol is given by

Ûn = 0
"

�n(s0 � s4) + �n+1(s0 � s2) + �n+2(s0 � s1)
>
< 0:
#

Ûn = 1

It is straightforward to verify that (15) implies

s0(�)� s1(�) = s2(�)� s3(�) = s4(�)� s5(�) = s6(�)� s7(�)
s0(�)� s2(�) = s1(�)� s3(�) = s4(�)� s6(�) = s5(�)� s7(�)
s0(�)� s4(�) = s1(�)� s5(�) = s2(�)� s6(�) = s3(�)� s7(�):

(16)

It can be seen from Figure 6 that the above set of equations ensure that the Euclidean
distance between any pair of paths that diverge at time n and merge at time n + 3 is the
same.

Un -r

-

r

-

Memoryless Modulator

000 7! s0(�)

001 7! s1(�)

010 7! s2(�)

011 7! s3(�)

100 7! s4(�)

101 7! s5(�)

110 7! s6(�)

111 7! s7(�)

- sIn (�)

Figure 5: Transmitter of the Proposed TCM Scheme for � = 2.
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Figure 6: State Transition Diagram for � = 2.

Notice from the maximum-likelihood decision rule (7) that the required number of matched
�lters or correlators at the receiver is �+1. When no conditions are imposed on the decoding
delay, the required number of matched �lters at the receiver may be as large as 2�+1 (i.e.,
the cardinality of the signal set), even when the truncated VA is used.

We now derive some conditions implied by (6) of Theorem 1.

Lemma 1 Condition (6) of Theorem 1 holds if and only if for all I =
P�

i=0 U�i2
��i, where

U�i 2 f0; 1g,

sI � s0 =
�X

i=0

U�i(s2��i � s0): (17)

Proof First of all we rewrite condition (6) of Theorem 1 in a more suitable form. From
(i) of Lemma 8, an equivalent condition is sa+b+2m = sa+b + s2m � s0, m 2 f0; 1; � � � ; �g,
a 2 f0; 1; � � � ; 2m� 1g, b 2 f2m+1l : l = 0; 1; � � � ; 2��m� 1g. Notice that a+ b represents any
number c 2 f0; 1; : : : ; 2�+1 � 1g with the coeÆcient of 2m in the binary representation of c
equal to 0. Thus condition (6) of Theorem 1 holds if and only if for every such c,

sc+2m = sc + s2m � s0: (18)

Assume that this conditions is satis�ed. Then for any such number c,

sc+U2m = sc + U(s2m � s0);
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P �UnÆ(t� nT ) - p(t) - s(t)

Figure 7: Pulse Amplitude Modulation

is a valid identity when U = 1 and it is trivially valid when U = 0. Using this repeatedly
with decreasing values of c (starting with c =

P��1
i=0 U�i2

��i), yields

sI = s0+P��1
i=0

U�i2��i+U��20

= s0+P��1
i=0 U�i2��i

+ U��(s20 � s0)

...

= s0 +
�X

i=0

U�i(s2��i � s0):

This proves the forward part of the theorem.

To prove the converse, let c be as speci�ed above and let C = c + 2m. (Hence the binary
expansions of c and C are identical except for the coeÆcient of 2m). Then

sC � sc = s2m � s0;

where we used (17) on both, sC and sc. This shows that (18) holds. 2

IV PAM Implementation

We now show that PAM always satis�es the condition of Theorem 1, an observation that
has been reported in [7]. Consider PAM as shown in Fig. 7 where the complex pulse p(t)
extends over � + 1 symbol intervals. Without loss of generality we assume that the support
set of p(t) is [0; (� + 1)T ). The inputs are binary symbols �Ui 2 f�1g and the output during
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the nth symbol interval t 2 [nT; (n + 1)T ) is

s(t) =
1X

i=�1

�Uip(t� iT ) (19)

=
�X
i=0

�Un�ip(t� (n� i)T ) (20)

=
�X
i=0

�Un�ipi(t� nT ) (21)

(22)

where for i = 0; 1; : : : ; �,

pi(�) =

(
p(� + iT ); � 2 [0; T )

0; otherwise:
(23)

Without loss of generality, we denote by sI , I =
P�

i=0 U�i2
��i, Ui =

1� �Ui
2

, the signal set for
the interval t 2 [0; T ).

Lemma 2 For the PAM modulator shown in Fig. 7, the set of output signals satis�es both
of the following conditions:

(i) Condition (6) of Theorem 1

(ii) s2�+1�1 = �s0.

Proof To prove that the �rst condition is ful�lled it is enough to show that sI ; I = 0; 1; : : : 2�+1�
1, satis�es (17). We check this for t 2 [0; T ), but for notational convenience we do not ex-
plicitly show the time variable t.

sI � s0
(a)
=

�X
i=0

�U�ipi �
�X
i=0

pi (24)

=
�X

i=0

( �U�i � 1)pi (25)

=
�X

i=0

�2U�ipi (26)

(b)
=

�X
i=0

U�i(s2��i � s0); (27)
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where in (a) we used the fact that s0 =
P�

i=0 pi (all relevant inputs to the PAM modulator

are 1s) and in (b) that
s0�s2��i

2
= pi, as can be easily veri�ed using superposition. The

second condition is veri�ed since the relevant �U�i are 1s for s0 and �1s for s2�+1�1. 2

Notice that in order to be decodable with delay �T , in addition to condition (6) of Theorem
1, the PAM signal must satisfy the equal-energy constraint. The next Lemma says when
this is the case:

Lemma 3 The following conditions are equivalent:

(i) jj
P�

i=0
�U�ipijj

2 = 1 for all �U0; : : : �U�� 2 f�1g�+1

(ii)
P�

i=0 jjpijj
2 = 1 and < pi; pj >= 0, i 6= j.

Proof

1 = jj
�X

i=0

�U�ipijj
2 (28)

=<
�X

i=0

�U�ipi;
�X
i=0

�U�ipi > (29)

=
�X

i=0

jjpijj
2 +
X
i6=j

�U�i �U�j < pi; pj > : (30)

(31)

But the last line equals 1 regardless of �U�i and �U�j i� the conditions of the Lemma are
satis�ed. 2

The following lemma considers the reverse problem.

Lemma 4 The modulator of Fig. 1 may be implemented as a pulse amplitude modulator
as shown in Fig. 7 i�

(i) Condition (6) of Theorem 1 is satis�ed

(ii) s0 = �s2�+1�1.

Proof We already know from Lemma 2 that a PAM modulator satis�es both of the above
conditions. Hence the conditions are necessary. Now we show that they are suÆcient.



March 26, 2001 15

Suppose we are given a modulator as shown in Fig. 1 and that for this modulator the
conditions above are satis�ed. Let I =

P�
i=0 U�i2

��i. Then

sI
(a)
=

�X
i=0

U�i(s2��i � s0) + s0 (32)

=
�X

i=0

(1� 2U�i)
s0 � s2��i

2
+

�X
i=0

s2��i � s0
2

+ s0 (33)

(b)
=

�X
i=0

(1� 2U�i)
s0 � s2��i

2
+
s2�+1�1 � s0

2
+ s0 (34)

=
�X

i=0

(1� 2U�i)
s0 � s2��i

2
+
s2�+1�1 + s0

2
(35)

(c)
=

�X
i=0

(1� 2U�i)
s0 � s2��i

2
(36)

(d)
=

�X
i=0

�U�ipi (37)

(38)

Where in (a) and (b) we used Lemma 1 (which is equivalent to condition (i) above), (c)
follows from the second condition, and (d) from letting

pi =
s0 � s2��i

2
(39)

and �U�i = 1� 2U�i. 2

Comments: (1) We have already seen that the �rst condition of the above Lemma guar-
antees bounded decoding delay. We will see in the next section that the second condition
maximizes the minimum squared Euclidean distance; (2) When we change the sign of all �+1
consecutive inputs that determine an output waveform, say sI , of a PAM implementation,
the output waveform changes sign. But changing �U�i from 1 to �1 corresponds to changing
U�i from 0 to 1. This means that the signal with index I is the negative of the signal with
index 2�+1 � 1 � I. Indeed, the sum of the two indices has to be 2�+1 � 1 since it has the
all-one binary expansion.

Example 3 We know already that MSK satis�es (i) of the above Lemma. Using Table 1
we see that it also satis�es (ii). Hence, MSK may be implemented as PAM. This is also a
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known fact (see e.g. [4]). Using p(t) = p0(t) + p1(t� T ), (39), and Table 1, we obtain

p0(t) =

(q
1
2T

(cos 2�f0t + cos 2�f1t) ; t 2 [0; T )

0; otherwise;

p1(t) =

(q
1
2T

(cos 2�f0t� cos 2�f1t) ; t 2 [0; T )

0; otherwise;

p1(t� T ) =

(q
1
2T

(cos 2�f0t + cos 2�f1t) ; t 2 [T; 2T )

0; otherwise;

p(t) =

(q
1
2T

(cos 2�f0t + cos 2�f1t) ; t 2 [0; 2T )

0; otherwise:

V Bounds on the Minimum Euclidean Distance

For the AWGN channel, the probability of error of a TCM scheme is essentially determined
by the minimum squared Euclidean distance D2

min between any pair of output signals. In
this section we upper-bound D2

min and give necessary and suÆcient conditions to achieve the
upper-bound.

We begin with the following:

Lemma 5 For any modulator as in Fig. 1 that satis�es condition (6) of Theorem 1, the
squared Euclidean distance satis�es D2

min � 4, where the inequality is strict unless s0 =
�s2�+1�1, i.e., unless the modulator admits a PAM implementation.

Proof It is suÆcient to consider any two input sequences that di�er in exactly one position.
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The corresponding squared Euclidean distance is
�X

i=1

jjs0 � s2i jj
2 =

�X
i=1

< s0 � s2i ; s0 � s2i > (40)

=
�X
i=1

�
jjs0jj

2 + jjs2ijj
2 � 2<f< s0; s2i >g

	
(41)

=
�X
i=1

�
2jjs0jj

2 � 2<f< s0; s2i >g
	

(42)

= 2<f< s0; s0 � s2�+1�1 >g (43)

= 2jjs0jj
2 � 2<f< s0; s2�+1�1 >g (44)

(a)

� 4jjs0jj
2 (45)

= 4; (46)

where in (a) we used Cauchy inequality. Equality holds if and only if s0(�) = ks2�+1�1(�)
for some negative number k. Since the signals have unit energy, k must be �1. 2

Now we proceed to prove that when the modulator of Fig. 1 admits a PAM implementation,
then D2

min = 4. The following Lemma holds also when no PAM implementation exists.

Lemma 6 Whenever condition (6) of Theorem 1 holds,

sP�
i=0 a�i2

��i � sP�
i=0 b�i2

��i =
�X
i=0

(a�i � b�i)(s2��i � s0):

Proof From Lemma 1

sP�
i=0 a�i2

��i � sP�
i=0 b�i2

��i =
�X

i=0

a�i(s2��i � s0)�
�X

i=0

b�i(s2��i � s0)

=
�X

i=0

(a�i � b�i)(s2��i � s0)

2

Lemma 7 Whenever the modulator of Fig. 1 admits a PAM implementation as in Fig. 7
(i.e., the conditions of Lemma 4 are satis�ed),

jjsP�
i=0 a�i2

��i � sP�
i=0 b�i2

��i jj2 = 4
�X
i=0

(a�i � b�i)
2jjpijj

2:
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Proof It follows immediately from the previous lemma and the fact that pi and pj are
orthogonal when i 6= j (Lemma 3). 2

The above Lemma says that if I and J di�er in the ith position, then this di�erence con-
tributes to jjsI � sJ jj

2 by the amount 4jjpijj
2. Hence, we have the following immediate

consequence:

Corollary 1 Consider two in�nite input sequences to the pulse amplitude modulator of
Fig. 7. Each position in which the two sequences di�er contributes to the squared Euclidean
distances by the amount 4

P�
i=1 jjpijj

2 = 4. Hence the minimum squared Euclidean distance
is the distance between any two outputs whose input sequences di�er in exactly one position.

2

Many authors use the normalized minimum squared Euclidean distance d2min given by

d2min =
D2

min

2Eb
=

D2
min

2
; (47)

where the second equality comes from the fact that Eb = 1 for the schemes under considera-
tion. We have shown that for the modulator of Fig. 1, d2min � 2 with equality if and only if
it admits a PAM implementation. Notice that d2min = 2 for antipodal modulation. Also for
MSK d2min = 2, as it must be since MSK can be implemented as in Fig. 1 as PAM.

VI Optimization of Bandwidth EÆciency

In this section we focus on bandwidth eÆciency optimization, applied to the subset of the
modulation schemes of Fig. 1 for which d2min = 2. As we have seen in the previous section,
these are the modulation schemes that admit the PAM implementation of Fig. 7.

There are various de�nitions of bandwidth that one can use. We are interested in the
bandwidth that contains a certain percent of the total energy. We say that a modulation
scheme has 100�% bandwidth B, where 0 < � < 1, if the width of the smallest frequency
interval that contains 100�% of the signal's energy is B. Mathematically, a modulation
scheme that produces a process of power spectral density G(f) has 100�% bandwidth B if

� =
maxa2R

R a+B
2

a�B
2

G(f)dfR1
�1

G(f)df
:
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The maximization over the center frequency a is needed since it is not guaranteed that the
spectrum is symmetric with respect to f = 0. We cannot even assume that the spectrum be
symmetric with respect to some frequency f = a.

Instead of �xing � and �nding the smallest B that solves the above equation for one mod-
ulation scheme in the class of interest, it is more convenient to �x B and �nd the largest �
over the same class of modulation schemes. Either way, for each � we obtain a function that
relates � and B. Hence we de�ne

�(B) = max
maxa2R

R a+B
2

a�B
2

G(f)dfR1
�1

G(f)df
(48)

where the maximum is over the modulation schemes with a given �. We will carry out the
maximization numerically for � = 1 and � = 2.

Now we proceed to specify the power spectral density (PSD) G(f) of the process produced
by the modulation shown in Figure 7. Letting P (f) be the Fourier transform of the impulse
response p(t) and assuming that input symbols are i.i.d., we obtain

G(f) =
1

T
jP (f)j2: (49)

Furthermore, using (23) and (39) we obtain

P (f) =
�X
i=0

Pi(f)e
�j2�ifT =

1

2

�X
i=0

[S0(f)� S2��i(f)]e
�j2�ifT ;

where Si(f) is the Fourier transform of si(t). In particular, the PSD for modulation schemes
with � = 1 is given by

G(f) =
1

4T
jS0(f) + S1(f) + [S0(f)� S1(f)]e

�j2�fT j2;

and for � = 2 by

G(f) =
1

4T
jS1(f) + S2(f) + [S0(f)� S2(f)]e

�j2�fT + [S0(f)� S1(f)]e
�j4�fT j2:

Since scaling the time axis scales the frequency axis leaving BT constant, without loss of
generality we may normalize the time axis so that T = 1.

The right side of (48) is carried out numerically using the the Matlab optimization toolbox
function \fmincon"2. The optimal signals are represented by 25 uniformly spaced samples
in the interval (0,1).

2It should be noted that the solution found is not guaranteed to be global.
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Figure 8 plots the minimum fractional out-of-band power (i.e. 1 � �(B)) for modulation
schemes with � = 1 and 2. Also shown in the �gure is the fractional out-of-band power for
MSK. We see that even for � = 1 the scheme obtained form the optimization procedure is
more bandwidth eÆcient than MSK.

For � = 1 and B = 0:8, the power spectrum G(f) and the optimal signals s0(�) and s1(�)
are shown in Figure 9. The power spectrum G(f) and the optimal signals s0(�) and s1(�)
for � = 1 and B = 1:2 are shown in Figure 10. For � = 2 and B = 1:2, the power spectrum
G(f) and the optimal signals s0(�), s1(�), and s2(�) are shown in Figure 11.
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Figure 8: Fractional Out-of-band Power for Optimal Signal Sets for � = 1 and � = 2.

The bandwidth eÆciency is commonly de�ned to be R=B in bits/s/Hz, where R is the data
rate in bits/s and B is the bandwidth in Hz [8]. Since a signal of duration T is transmitted
for every information bit, the bandwidth eÆciency of the TCH scheme under consideration
is given by

R=B =
1

BT
[bits/s/Hz]: (50)



March 26, 2001 21

The minimum values of B99T and B99:9T attainable by systems with � = 1 and 2 may be
found in Figure 8.3 The maximum bandwidth eÆciency in terms of the 99% and 99:9%
bandwidths are given in Table 2. We observe that a signi�cant improvement in bandwidth
eÆciency over MSK is obtainable with the optimized signal set without loss in d2min and for a
prescribed decoding delay. It is expected that further improvement in bandwidth eÆciency
is achievable for systems with larger memory.

Table 2: Bandwidth EÆciency in terms of Normalized 99% and 99:9% Power Bandwidth.

Optimum Signals MSK
� = 2 � = 1

1=B99T [bits/s/Hz] 1.15 0.91 0.84
% gain over MSK 36.9 8.3

1=B99:9T [bits/s/Hz] 0.88 0.67 0.36
% gain over MSK 144.4 86.1

VII Conclusion

We have considered a class of trellis-coded modulation schemes that can be described as
shown in Figure 1. For any such scheme, a set of necessary and suÆcient conditions have
been found so that the Viterbi decoder can decode an information symbol upon observation
of the received signal in � + 1 consecutive symbol intervals, where � is the memory of the
modulation. It has also been found that when these conditions hold, the minimum squared
Euclidean distance is upper bounded by that of antipodal modulation or, equivalently, of
MSK. Necessary and suÆcient conditions for achieving the upper bound have been found
and it has been shown that these conditions are satis�ed if and only if the modulation
scheme is implementable as pulse amplitude modulation. Hence, if we require that the
maximum likelihood sequence estimator of a �-memory constant-energy modulation scheme
be able to decode with delay �T , then the memory may be used to shape the spectrum of
the transmitted signal but not to increase the minimum squared Euclidean distance beyond
that of antipodal modulation. Signal sets that maximize the minimum squared Euclidean
distance and minimize the transmitted signal's bandwidth have been found numerically for
� = 1 and 2. Their bandwidth eÆciency exceeds that of MSK. It is expected that further
improvements are attainable with larger �.

3It should be pointed out that the lines connecting points in Figure 8 have been drawn for convenience

only and do not guarantee the existence of signal sets with the corresponding characteristics.
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Figure 9: Optimization results for � = 1 and BT = 0:8: PSD (top); Optimal signal s0(�)
(bottom left); Optimal signal s1(�) (bottom right).
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Figure 10: Optimization results for � = 1 and BT = 1:2: PSD (top); Optimal signal s0(�)
(bottom left); Optimal signal s1(�) (bottom right).
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Figure 11: Optimization results for � = 2 and BT = 1:2: PSD (top left); Optimal signal
s0(�) (top right); Optimal signal s1(�) (bottom left); Optimal signal s2(�) (bottom right).
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A Appendix

The following lemma is used in the proof of Theorem 1.

Lemma 8 The following three conditions are equivalent:
(i) s0(�)� s2m(�) = sa+b(�)� sa+b+2m(�);

m 2 f0; 1; � � � ; �g; a 2 f0; 1; � � � ; 2m � 1g; b 2 f2m+1l : l = 0; 1; � � � ; 2��m � 1g:

(ii) s0(�)� sa+2m(�) = sa+b(�)� sa+b+2m(�);

m 2 f0; 1; � � � ; � � 1g; a 2 f0; 1; � � � ; 2m � 1g; b 2 f2m+1l : l = 0; 1; � � � ; 2��m � 1g:

(iii) s0(�)� s2m(�) = sb(�)� sb+2m(�);

m 2 f0; 1; � � � ; � � 1g; b 2 f2m+1l : l = 0; 1; � � � ; 2��m � 1g:

Proof (i) ) (ii): Assume that (i) is true. The left side of (i) does not depend on b.
Hence also the right side must be independent of b. In particular, s0+a(�) � s0+a+2m(�) =
sa+b(�)� sa+b+2m(�), proving that (ii) is also true.

(ii) ) (iii): This is true since (iii) is (ii) with a = 0.

(iii)) (i): We prove this by induction onm. Form = 0, (iii) and (ii) are identical sincem = 0
implies a = 0. Assume that (iii) holds and that (i) holds for m = 1; 2; � � � ;M � 1 � � � 1,
and we show that it also holds for m =M , i.e.,

s0(�)� s2M (�) = sa+b(�)� sa+b+2m(�); (51)

a 2 f0; 1; � � � ; 2M � 1g; b 2 f2M+1l : l = 0; 1; � � � ; 2��M � 1g:

From induction hypothesis, we have

sa+b(�)� sa+b+2m(�) = sa+b0(�)� sa+b0+2m(�);

m 2 f0; 1; � � � ;M � 1g; a 2 f0; 1; � � � ; 2m � 1g; b; b0 2 f2m+1l : l = 0; 1; � � � ; 2��m � 1g:

Let b 2 f2M+1l : l = 0; 1; � � � ; 2��M�1g � f2m+1l : l = 0; 1; � � � ; 2��m�1g, and b0 = b+2M 2
f2m+1l : l = 0; 1; � � � ; 2��m � 1g. The above equality becomes

sa+b(�)� sa+b+2m(�) = sa+b+2M (�)� sa+b+2m+2M (�):
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Rearranging terms, we get

sa+b(�)� sa+b+2M (�) = sa+b+2m(�)� sa+b+2m+2M (�): (52)

m 2 f0; 1; � � � ;M � 1g; a 2 f0; 1; � � � ; 2m � 1g; b 2 f2M+1l : l = 0; 1; � � � ; 2��M � 1g:

Now let a 2 f0; 1; � � � ; 2M�1g, b 2 f0; 1; � � � ; 2M�1g, and write a =
PM�1

n=0 an2
n, an 2 f0; 1g,

n = 1; 2; : : : ;M � 1. We use (52) M times and obtain

sb(�)� sb+2M (�) = sa020+b(�)� sa020+b+2M (�)

= sa020+a121+b(�)� sa020+a121+b+2M (�)
...

= sa020+a121+���+aM�12M�1+b(�)� sa020+a121+���+aM�12M�1+b+2M (�)

= sa+b(�)� sa+b+2M (�):

This and (iii) with m = M imply (51). 2
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