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Abstract

When is uncoded transmission optimal? This paper derives easy-to-check neces-

sary and suÆcient conditions that do not require �nding the rate-distortion and the

capacity-cost functions. We consider the symbol-by-symbol communication of discrete-

time memoryless sources across discrete-time memoryless channels, using single-letter

coding and decoding. This is an optimal communication system if and only if the chan-

nel input cost function and the distortion measure can be written in a form that we

explicitly characterize. There are two well-known examples where uncoded transmission

is optimal. The �rst example consists of a Gaussian source and a Gaussian channel.

In the second example the source and the channel are binary. But these are just two

out of in�nitely many examples that one can construct in a straightforward way from

our results. As a matter of fact, one can arbitrarily pick the source distribution, the

single-letter encoder/decoder, and the channel conditional distribution, and make the

system optimal by choosing the channel input cost function and the distortion measure

according to the given closed-form expression. The paper also discusses the advan-

tages of uncoded transmission for non-ergodic channels and multiuser communications.

Finally, some results concerning M -block-length codes are obtained.
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1 Introduction

Communications engineers have a long acquaintance with the \separation principle," i.e.,

the strategy of splitting the coding into two stages, source compression and channel coding.

This key strategy has been introduced and shown to be optimal by Shannon in 1948 [1,

Thm. 21]. The result is of surprisingly wide validity in point-to-point communication [2].

Consequently, the separation idea has split the research community into two camps, those

who examine source compression and those who investigate channel coding.

In parallel, many researchers have been aware of the central shortcomings of the sepa-

ration principle: it disregards delay and complexity issues, and it does not generally hold in

non-ergodic and multiuser communication. In fact, to prove the separation theorem, it is

necessary to allow for in�nite coding complexity and delay in general. A joint source/channel

code may reduce both delay and complexity (which is illustrated below), but to design such

a code is generally a more diÆcult optimization problem. In some cases, however, the source

and the channel are already somewhat matched to each other. The separation strategy can-

not exploit such a favorable situation to reduce complexity, but a joint source/channel code

may very well do so. In fact, source and channel may be matched so well that uncoded

transmission is already suÆcient to achieve optimal performance: The source output is ap-

plied directly to the channel input, and the channel output is the estimate of the source.

In that case, complexity and delay are reduced to their absolute minimum. One famous

example is the transmission of a Gaussian source across an additive white Gaussian noise

(AWGN) channel, another example the transmission of a binary uniform source across a bi-

nary symmetric channel. Clearly, uncoded transmission is meaningful only when the source

and channel alphabets are the same. This constraint can be removed by allowing for a

single-letter mapping, i.e., a rule that maps each source output symbol separately onto one

channel input symbol. Such single-letter joint source/channel codes are the objects of study

of the present paper.

The paper is organized as follows. After giving the de�nitions in Section 2, we develop

in Section 3 a criterion to establish the optimality of a communication scheme that employs

single-letter codes. To �nd such a criterion following standard textbook information theory,

one could determine the end-to-end distortion � incurred and the power (or, more generally,

cost) � used on the channel by the purported transmission strategy. Then, a necessary

condition for optimality is that the rate needed to encode the source at distortion � has

to be equal to the capacity of the channel at input cost �. To verify this, rate-distortion

and capacity-cost functions have to be determined. Unfortunately, this problem has explicit

solutions only in a handful of special cases. In general, numerical methods are required. In
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contrast to this, following a slightly di�erent approach, the key point of the present paper

is that it is indeed possible to give an explicit answer.

In a nutshell, suppose that a memoryless source speci�ed by the random variable S

with distribution p(s) is encoded (symbol-by-symbol) into X = f(S). The symbol X is

transmitted across a memoryless noisy channel speci�ed by a conditional distribution pY jX .

The channel output Y is decoded to yield the estimate of the source, Ŝ = g(Y ). In this

paper, we show that this is an optimal communication system if and only if the channel

input cost function �(x) and the distortion measure d(s; ŝ) are chosen (up to shifts and

scaling) as

�(x) = D
�
pY jX(�jx)jjpY (�)

�
d(s; ŝ) = � log2 p(sjŝ);

where D(�jj�) denotes the Kullback-Leibler distance, pY (�) the distribution of the channel

output Y , and p(sjŝ) the distribution of S given the estimate Ŝ. These arguments are made

precise in Theorem 7. Our solution di�ers from the classical approach (where the input cost

function and the distortion measure are the �xed quantities) in that we �x the source and

channel distributions and pick the cost function and the distortion measure such as to make

the system optimal. From the above formulae, it is clear that our criterion to establish

optimality can be used directly to construct an arbitrarily large supply of communication

systems in the spirit of the famous Gaussian example. Section 4 provides a few examples

that illustrate this.

Section 5 presents and develops some applications of the theory. In Section 5.1, we

tackle the question of the existence of single-letter codes that perform optimally: For a

given source/channel pair, is there a single-letter code that performs optimally? We present

explicit answers for some speci�c classes of source/channel pairs.

In Section 5.2, the results obtained in Section 3 are applied to longer codes. For a given

source/channel pair, suppose that there is no single-letter code that performs optimally. Will

there be a block code of length M that does? For a certain class of discrete memoryless

source/channel pairs, we �nd that the answer is negative (as long as the length remains

�nite).

The signi�cance of single-letter joint source/channel codes extends beyond the validity

of the separation principle. This is discussed in Section 5.3. In fact, such codes feature

a certain universality in that one and the same code may perform optimally for an entire

set of source/channel pairs. This is relevant for instance for non-ergodic channels and

multi-user communications. A �nal example illustrates the potential practical interest in

single-letter source/channel codes: such simple codes may actually outperform any strategy
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that is based on the (generally unjusti�ed) application of Shannon's separation theorem to

multi-user communication.

2 De�nitions

The key elements of the problem studied in this paper are the discrete-time memoryless

source and channel, and the single-letter code. In this section, we provide de�nitions of

those entities. We denote random variables by capital letters, e.g. S, and their realizations

by lower-case letters, e.g. s. The distribution of the random variable S is denoted by

pS(s). For continuous alphabets, pS(s) is a probability density function (pdf); for discrete

alphabets, a probability mass function (pmf). When the subscript is just the capitalized

version of the argument in parentheses, we will often write simply p(s).

De�nition 1 (source). A (discrete-time memoryless) source (pS ; d) is speci�ed by a pdf

(or pmf, respectively) pS(s) on an alphabet S and a nonnegative function d(s; ŝ) : S � Ŝ !
R
+ called the distortion measure. The rate-distortion function (see e.g. [3]) of the source

(pS ; d) is denoted by R(D).

De�nition 2 (channel). A (discrete-time memoryless) channel (pY jX ; �) is speci�ed by

a conditional pdf (or pmf, respectively) pY jX(yjx), where X 2 X and Y 2 Y, and a

nonnegative function �(x) : X ! R
+ called the channel input cost function. The capacity-

cost function (see e.g. [4]) of the channel (pY jX ; �) is denoted by C(P ). This function is

also called capacity-constraint function in [5].

In order to decide on the optimality of a communication system that employs single-letter

codes, the unconstrained capacity of the channel turns out to be an important quantity:

De�nition 3 (unconstrained capacity). The unconstrained capacity of the channel (pY jX ; �)

is the capacity of the channel disregarding input costs, that is

C0 = max
pX

I(X;Y ): (1)

Hence, C0 is independent of the choice of �; it is solely a property of pY jX . When

�(x) < 1;8x 2 X , an equivalent de�nition is C0 = C(P ! 1). Note also that C0 is

in�nite for some channels (e.g. the AWGN channel).

In this paper, we study communication by means of a single-letter code, de�ned as

follows:

De�nition 4 (single-letter source/channel code). A single-letter source/channel code

(f; g) is speci�ed by an encoding function f(�) : S ! X and a decoding function g(�) : Y !
Ŝ.
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Figure 1: The considered system.

Suppose the source (pS ; d) is transmitted across the channel (pY jX ; �) using the single-

letter code (f; g). The average input cost used on the channel is found to be � = E�(X) =

E�(f(S)), and the average distortion achieved by the code (f; g) is � = Ed(S; Ŝ) =

Ed(S; g(Y )). We will sometimes refer to (�;�) as the cost-distortion pair. The main goal of

this paper is to determine necessary and suÆcient conditions such that this communication

scheme performs optimally according to the following de�nition:

De�nition 5 (optimality). For the transmission of a source (pS; d) across a channel

(pY jX ; �), a single-letter source/channel code (f; g) is optimal if both

(i) the distortion � = Ed(S; Ŝ) incurred using (f; g) is the minimum distortion that can

be achieved at input cost � = E�(X) with the best possible joint source/channel code

(regardless of complexity), and

(ii) the cost � = E�(X) incurred using (f; g) is the minimum cost needed to achieve

distortion � = Ed(S; Ŝ) with the best possible joint source/channel code (regardless

of complexity). 1

The scope of the present investigations is limited to communication using single-letter

codes. Nevertheless, it is clear that longer source/channel codes are of interest, too. Such a

code would mapM source symbols onto N channel symbols. Let us point out that when all

alphabets are discrete, any longer source/channel code can be interpreted as a single-letter

code in appropriately extended alphabets. This point of view turns out to be useful in

Section 5.2.

3 Single-Letter Codes That Perform Optimally

It is well-known that there are instances of source/channel pairs for which single-letter

codes achieve the best possible performance. This result is particularly surprising since

1Note that the two conditions do not necessarily imply one another. In fact, in the literature, optimality

of a transmission scheme is sometimes de�ned by one of the two conditions only. Our results can be modi�ed

to apply to that case as well.
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such codes are extremely easy to implement and operate at zero delay. In this section, we

derive necessary and suÆcient conditions under which single-letter codes are optimal.

The �rst insight is that a point-to-point communication system is optimal essentially if

and only if R(�) = C(�), where � is the incurred distortion and � is the channel input

cost that is used. This follows straightforwardly from the separation principle, and it is also

a simple corollary to the results of [6].

Clearly, if � can be decreased without changing R(�), then the condition R(�) = C(�)

is not suÆcient for optimality. Similarly, if � can be decreased without changing C(�),

the condition R(�) = C(�) is not suÆcient for optimality, either. Thus, we can state the

following basic lemma:

Lemma 1. The transmission of the source (pS ; d) across the channel (pY jX ; �) by means

of a single-letter code (f; g) is optimal if and only if

(i) R(�) = C(�), and

(ii) neither can � be lowered without changing R(�) nor can � be lowered without changing

C(�).

Remark. � may be decreased without changing R(�) only if R(�) = 0. Likewise, � may

be decreased without changing C(�) only if C(�) = C0. This is developed in Section 3.2.

Proof. () :) To prove the necessity of Lemma 1, we need Shannon's separation theorem

[1, Thm. 21]. It states that there does not exist a communication strategy such that

R(�) > C(�), and that if R(�) < C(�), then there exists a better communication system.

Hence, if the system is optimal, R(�) = C(�).

(( :) To prove the suÆciency of Lemma 1, �rst note that by assumption, R(�) = C(�).

By the de�nition of the rate-distortion function, R(�) is the least rate needed to describe

the source at distortion �. Since by assumption, � cannot be decreased, it is the smallest

distortion achievable with C(�) bits. By the de�nition of the capacity-cost function, C(�)

is the maximum rate at which communication is feasible at input cost (\power") �. Since

by assumption, � cannot be decreased, it is the smallest cost to allow for a rate of C(�),

which completes the proof.

Lemma 1 contains two conditions that together are necessary and suÆcient to establish

the optimality of a communication system that uses single-letter codes. These conditions

will now be examined in detail. In Section 3.1, we elaborate on the �rst condition, i.e.,

R(�) = C(�). The second condition is somewhat subtler; it will be discussed in Section

3.2. In Section 3.3, the results are combined to yield a general criterion for the optimality

of single-letter codes.
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3.1 Condition (i) of Lemma 1

As a �rst step, we can reformulate the condition R(�) = C(�) more explicitly as follows:

Lemma 2. R(�) = C(�) holds if and only if the following three conditions are simultane-

ously satis�ed:

(i) the distribution pX of X = f(S) achieves capacity on the channel (pY jX ; �) at maxi-

mum input cost � = E�(X), i.e., I(X;Y ) = C(�),

(ii) the conditional distribution pŜjS of Ŝ = g(Y ) given S achieves the rate-distortion

function of the source (pS; d) at distortion � = Ed(S; Ŝ), i.e. I(S; Ŝ) = R(�), and

(iii) f(�) and g(�) are such that I(S; Ŝ) = I(X;Y ).

Proof.

R(�) = min
q
ŜjS

:Ed(S;Ŝ)��
I(S; Ŝ)

(a)

� I(S; Ŝ)
(b)

� I(X;Y )

(c)

� max
qX :E�(X)��

I(X;Y ) = C(�); (2)

with equality in (a) if and only if pŜjS achieves the rate-distortion function of the source, in

(b) if and only if I(S; Ŝ) = I(X;Y ), and in (c) if and only if pX achieves the capacity-cost

function of the channel. Thus, R(�) = C(�) is satis�ed if and only if all three conditions

in Lemma 2 are satis�ed, which completes the proof.

There are four pairs of entities involved, namely the source (pS; d), the channel (pY jX ; �),

the code (f; g) and the cost-distortion pair (�;�). These four pairs are not independent

of one another. For instance, the latter is completely determined by the �rst three. The

corresponding communication system (as shown in Fig. 1) performs optimally if and only

if these four pairs are selected in such a way as to ful�ll all the requirements of Lemma 1.

There are various ways to verify whether the requirements are satis�ed. Some of them

lead to problems that notoriously do not admit analytical solutions. For example, following

Lemma 2, we could compute the capacity-cost function C(�) of the channel (pY jX ; �) and

evaluate it at �. This is known to be a problem that does not have a closed-form solution

for all but a small set of channels. Similarly, one could compute the rate-distortion function

R(�) of the source (pS ; d) and evaluate it at �. Again, closed-form solutions are known only

for a handful of special cases. Once the rate-distortion and the capacity-cost functions are

determined, we are ready to check the conditions of Lemma 1.

One of the main diÆculties with this approach lies in the fact that for a given cost

function �, there is no general closed-form expression for the channel input distribution

7



that achieves capacity; numerical solutions can be found via the Arimoto-Blahut algorithm.

The key idea of the following theorem is to turn this game around: for any distribution qX

over the channel input alphabet X , there exists a closed-form solution for the input cost

function � such that the distribution qX achieves capacity.

Theorem 3. For �xed source distribution pS, single-letter encoder f and channel condi-

tional distribution pY jX :

(i) If I(X;Y ) < C0, the �rst condition of Lemma 2 is satis�ed if and only if the input

cost function satis�es

�(x) = c1D(pY jX(�jx)jjpY (�)) + �0; (3)

where c1 > 0 and �0 are constants, and D(�jj�) denotes the Kullback-Leibler distance

between two distributions.

(ii) If I(X;Y ) = C0, the �rst condition of Lemma 2 is satis�ed for any function �(x).

To gain insight, let qX be the channel input distribution induced by some source distri-

bution through the encoder f . For any cost function �, one �nds an expected cost and a set

of admissible input distributions leading to the same (or smaller) average cost. The input

distribution qX lies in that set, but it does not necessarily maximize mutual information.

The key is now to �nd the cost function, and thus the set of admissible input distributions,

in such a way that the input distribution qX maximizes mutual information within the set.

In the special case where the input distribution qX achieves C0, it clearly maximizes mutual

information among distributions in any set, regardless of �. Hence, in that case, the choice

of the cost function � is unrestricted.

A formal proof follows. The reader interested in not interrupting the 
ow of the expo-

sition is advised to skip to Theorem 4.

Proof. Let pY jX be �xed. For any distribution pX on X , de�ne

I 0pX (x) = D(pY jX(�jx)jjpY ); (4)

where pY (y) = EpY jX(yjX) is the marginal distribution of Y when X is distributed accord-

ing to pX .

It is quickly veri�ed that with this de�nition, IpX (X;Y ) = hpX ; I 0pX i, where hf; gi
denotes the standard inner product, i.e. for discrete alphabets, hf; gi =

P
x f(x)g(x)

and for continuous alphabets, hf; gi = R
f(x)g(x)dx. With this notation, we may write

D(pY jX(�jx)jjpY ) = hpY jX ; log2 pY jX
pY

iy, where the subscript emphasizes that the inner prod-

uct is taken in the variable y. The following auxiliary lemma is crucial for the proof:
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Lemma: For any pX and ~pX , I~pX (X;Y )� IpX (X;Y ) � h~pX � pX ; I
0
pX
i:

To see this, note �rst that since IpX (X;Y ) = hpX ; I 0pX i, we equivalently prove the

inequality h~pX ; I 0pX i � I~pX (X;Y ) � 0, for any pX ; ~pX .

h~pX ; I 0pX i � I~pX (X;Y ) = h~pX ; I 0pX i � h~pX ; I 0~pX i
= h~pX ; I 0pX � I 0~pX i
= h~pX ;D(pY jX jjpY )�D(pY jX jj~pY )i
= h~pX ; hpY jX ; log2

~pY
pY
iyix

(a)
= hh~pX ; pY jXix; log2

~pY
pY
iy

= h~pY ; log2
~pY
pY
iy

= D(~pY jjpY ) � 0; (5)

where (a) is a change of summation (or integration) order and the inequality follows from

the fact that the Kullback-Leibler distance is nonnegative. The theorem can then be proved

as follows.

((.) (SuÆciency of the formula.) Fix a distribution pX over the channel input alphabet.

Let � be arbitrary and let ~pX be any channel input distribution such that

E~pX�(X) � EpX�(X): (6)

For any � � 0,

IpX (X;Y )� I~pX (X;Y ) � hpX � ~pX ; I
0
pX
i

� hpX � ~pX ; I
0
pX � ��i; (7)

where the �rst inequality is the last lemma, and the second follows by assumption on ~pX .

If � �(x) = I 0pX (x) + c, then the last expression is zero, proving that IpX (X;Y ) indeed

maximizes mutual information.

When IpX (X;Y ) = C0, then the input distribution pX maximizes I(X;Y ) regardless of

�(x) and trivially ful�lls the expected cost constraint.

().) (Necessity of the formula.) In order to establish the necessity of formula (3), we need

the derivative of the mutual information I(X;Y ) with respect to the distribution of X. In

the �nite-dimensional case, we can argue as follows: As long as I(X;Y ) < C0, we are in

the strictly increasing region of C(P ), and therefore

pX 2 arg max
~pX :E~pX

�(X)�EpX �(X)
I~pX (X;Y ) =) pX 2 arg max

~pX :E~pX
�(X)=EpX �(X)

I~pX (X;Y ):
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But a �rst-order necessary condition for pX to be a maximizer in the latter maximization

problem is that the corresponding Lagrange functional, evaluated at pX , vanishes. That is,

d

d~pX(x)
L(�)(~pX ; �; �)

����
~pX=pX

= 0; (8)

for every x 2 X , where

L(�)(~pX ; �; �) = I~pX (X;Y )� �(
X
x

~pX(x)�(x)� �)� �(
X
x

~pX(x)� 1): (9)

By evaluating the derivatives, this indeed implies the claimed formula (3), as long as � 6= 0.

When does � = 0 occur? Writing out the formula for �,

� =
1

�(s)

�
d

dpX(x)
I(X;Y )� �

�
; (10)

we see that � = 0 if and only if d
dpX(x)I(X;Y ) = const., for all x. But this can only arise if

I(X;Y ) = C0.

This argument may be extended to in�nite dimensions by considering the Gateaux

di�erential of Ip(X;Y ) and using Thm. 2, p. 188, in Luenberger [7].

Theorem 3 gives an explicit formula to select the input cost function � for given channel

conditional and input distributions. By analogy, the next theorem gives a similar condition

for the distortion measure.

Theorem 4. For �xed source distribution pS, channel conditional distribution pY jX and

single-letter code (f; g):

(i) If 0 < I(S; Ŝ), the second condition of Lemma 2 is satis�ed if and only if the distortion

measure satis�es

d(s; ŝ) = �c2 log2 p(sjŝ) + d0(s); (11)

where c2 > 0 and d0(�) is an arbitrary function.

(ii) If I(S; Ŝ) = 0, the second condition of Lemma 2 is satis�ed for any function d(s; ŝ).

This theorem should be understood by complete analogy to Theorem 3. That is, let qŜjS

be the conditional distribution induced by some channel conditional distribution through

the encoder f and the decoder g. For any distortion measure d, an average distortion � =

Eq
ŜjS

d(S; Ŝ) can be computed, which implies a set of alternative conditional distributions

that also yield distortion �. The key is to �nd d in such a way that the chosen qŜjS

minimizes I(S; Ŝ) among all conditional distributions in the set. This argument is made

precise in the following proof.
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Proof. To simplify the notation, we will use the symbol W in place of pŜjS in the proof.

De�ne

I 0W (s; ŝ) = log2
W (ŝjs)
pŜ(ŝ)

; (12)

where pŜ is the marginal distribution of Ŝ.

In particular, note that with this de�nition, IW (S; Ŝ) = hpSW; I 0W i, where with slight

abuse of notation, we have used hpSW; I 0W i to mean
R R

pS(s)W (ŝjs)I 0W (s; ŝ)dsdŝ. In the

proof, we use the following auxiliary lemma:

Lemma: For any W and ~W , I ~W (S; Ŝ)� IW (S; Ŝ) � hpS ~W � pSW; I 0W i:
Using the fact that IW (S; Ŝ) = hpSW; I 0W i, we consider

I ~W (S; Ŝ)� hpS ~W; I 0W i = hpS ~W; log2
~W

~pŜ
i � hpS ~W; log2

W

pŜ
i

= hpS ~W; log2
~V

pS
i � hpS ~W; log2

V

pS
i

= hpŜ ~V ; log2
~V

V
i = hpŜ ; D( ~V jjV )i � 0; (13)

where we have used V to denote the conditional distribution of S given Ŝ under W , i.e.

V (sjŝ) = W (ŝjs)p(s)=p(ŝ), and correspondingly ~V to denote the same distribution, but

under ~W , i.e. ~V (sjŝ) = ~W (ŝjs)p(s)=~p(ŝ). D( ~V jjV ) denotes the Kullback-Leibler distance

between ~V and V in the variable s, hence it is a function of ŝ. The last inner product

is thus one-dimensional in the variable ŝ. The inequality follows from the fact that the

Kullback-Leibler distance is nonnegative.

With this, we are ready to prove the theorem.

((.) (SuÆciency of the formula.) Let d be arbitrary, let ~W be an arbitrary conditional

distribution such that

EpS ~Wd(S; Ŝ) � EpSWd(S; Ŝ): (14)

For any � > 0,

I ~W (S; Ŝ)� IW (S; Ŝ) � hpS ~W � pSW; I 0W (s; ŝ)i
� hpS ~W � pSW; I 0W + �di; (15)

where the �rst inequality is the last lemma, and the second follows by assumption on

~W . If �d(s; ŝ) = �I 0W (s; ŝ) + ~d0(s), then the last expression is zero, proving that IW (S; Ŝ)

indeed minimizes mutual information. Setting ~d0(s) = � log2 p(s)+�d0(s) gives the claimed

formula (11).
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When IW (S; Ŝ) = 0, then triviallyW achieves the minimum mutual information I(S; Ŝ)

over all ~W that satisfy E ~Wd(S; Ŝ) � EWd(S; Ŝ), regardless of d.

().) (Necessity of the formula.) In order to establish the necessity of formula (11), we need

the derivative of the mutual information I(S; Ŝ) with respect to the conditional distribution

of Ŝ given S. In the �nite-dimensional case, we can argue as follows: As long as I(S; Ŝ) > 0,

we are in the strictly decreasing region of R(D), and therefore

W 2 arg min
~W :Ed(S;Ŝ)�EpSW d(S;Ŝ)

I(S; Ŝ) =) W 2 arg min
~W :Ed(S;Ŝ)=EpSW d(S;Ŝ)

I(S; Ŝ):

But a �rst-order necessary condition for W to be a minimizer in the latter minimization

problem is that the corresponding Lagrange functional, evaluated at W , vanishes. That is,

d

d ~W (ŝjs)L
(d)( ~W;�; �0; �1; : : : )

����
~W=W

= 0; (16)

for every pair (s; ŝ) 2 S � Ŝ, where

L(d)( ~W;�; �0; �1; : : : ) =

= I ~W (S; Ŝ)� �(
X
r

X
z

pS(r) ~W (zjr)d(r; z) ��)�
X
r

�r(
X
t

~W (tjr)� 1): (17)

By evaluating the derivatives, this indeed implies the claimed formula (11), as long as � 6= 0.

When does � = 0 occur? Writing out the formula for �,

� =
1

d(s; ŝ)pS(s)

�
d

dW (ŝjs)I(S; Ŝ)� �s

�
; (18)

we see that � = 0 if and only if d
dW (ŝjs)I(S; Ŝ) = �s, for all ŝ. But this can only arise if

I(S; Ŝ) = 0.

Again, this argument may be extended to in�nite dimensions by considering the Gateaux

di�erential of IW (S; Ŝ) and using Thm. 2, p. 188, in Luenberger [7].

Theorems 3 and 4 correspond to the �rst and second requirement in Lemma 2. The

third requirement of that lemma is I(X;Y ) = I(S; Ŝ). This condition rules out certain codes

(f; g). Essentially, the code must be a deterministic mapping; if on the contrary, the code

adds randomness, it acts like a cascaded channel, and hence, I(X;Y ) and I(S; Ŝ) will not be

equal. The following suÆcient (but not necessary) condition ensures that I(X;Y ) = I(S; Ŝ).

Lemma 5. If the encoder is a deterministic mapping and the inverse of the decoder is also

a deterministic mapping,2 then I(X;Y ) = I(S; Ŝ), i.e., the third condition of Lemma 2 is

satis�ed.

2That is, for every ŝ with p(ŝ) > 0, there is exactly one y such that ŝ = g(y).
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Proof. For the encoder, consider

I(S;X;Y ) = I(S;Y ) + I(X;Y jS)
= I(X;Y ) + I(S;Y jX); (19)

where I(S;Y jX) = 0 since S ! X ! Y is a Markov chain, and hence I(X;Y ) = I(S;Y ) +

I(X;Y jS). If the encoder is deterministic, then H(XjS) = 0 and hence I(X;Y ) = I(S;Y ).

(Note however that in certain cases, H(XjS) = H(XjY; S) 6= 0; hence it is not in general a

necessary condition that the encoder be deterministic.)

To complete the proof, we show that I(S; Ŝ) = I(S;Y ). Consider

I(S;Y; Ŝ) = I(S; Ŝ) + I(S;Y jŜ)
= I(S;Y ) + I(S; ŜjY ); (20)

where I(S; ŜjY ) = 0 since S ! Y ! Ŝ is a Markov chain. But if the inverse of the decoder

is deterministic, then H(Y jŜ) = 0 and hence I(S;Y ) = I(S; Ŝ).

In summary, our discussion of the requirement R(�) = C(�) produced a set of explicitly

veri�able conditions that together ensure R(�) = C(�). However, to obtain an explicit

criterion that can establish the optimality of a single-letter code, it still remains to scrutinize

the second requirement of Lemma 1. This is the goal of the next section.

3.2 Condition (ii) of Lemma 1

Lemma 1 contains two simultaneous requirements to ensure the optimality of a commu-

nication system that employs single-letter codes. The �rst requirement, R(�) = C(�),

is studied and developed in detail in Section 3.1; in this section, we examine the second

condition, namely when it is impossible to lower � without changing R(�), and when it is

impossible to lower � without changing C(�). This permits to give a general criterion to

establish the optimality of any communication system that uses single-letter codes.

The crux of the problem is illustrated in Figure 2. It shows simultaneously the capacity-

cost function of the channel (left) and the rate-distortion function of the source (right).

Problematic cases may only occur if either R(�) or C(�) are horizontal, i.e. when they have

reached their asymptotic values R(D ! 1) and C(P ! 1). This only happens when

the mutual information is zero or C0. For example, both the cost-distortion pair (�1;�)

and the cost-distortion pair (�2;�) satisfy the condition R(�) = C(�); however, only the

pair (�2;�) corresponds to an optimal transmission strategy. By analogy, an example can

be given involving two di�erent distortions. A concrete example of a system where the

condition R(�) = C(�) is not suÆcient is given in Appendix A.
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Figure 2: When R(�) = C(�) is not suÆcient to guarantee optimality.

Continuing in this line of thought, we obtain the following proposition.

Proposition 6. Suppose that the transmission of the source (pS ; d) across the channel

(pY jX ; �) using the single-letter code (f; g) satis�es R(�) = C(�). Then,

(i) � cannot be lowered without changing C(�) if and only if one of the following two

conditions is satis�ed:

(a) I(X;Y ) < C0, or

(b) I(X;Y ) = C0 and among the distributions that achieve C0, pX belongs to the ones

with lowest cost. In particular, the last condition is trivially satis�ed whenever

pX is the unique channel input distribution achieving C0.

(ii) � cannot be lowered without changing R(�) if and only if one of the following two

conditions is satis�ed:

(a) I(S; Ŝ) > 0, or

(b) I(S; Ŝ) = 0 and among the conditional distributions for which I(S; Ŝ) = 0, pŜjS

belongs to the ones with lowest distortion. In particular, the last condition is

trivially satis�ed if pŜjS is the unique conditional distribution achieving I(S; Ŝ) =

0.

Proof. Part (i): To see that condition (a) is suÆcient, de�ne �max = minfP : C(P ) = C0g.
For every � < �max, the value C(�) uniquely speci�es �. This follows from the fact that

C(�) is convex and nondecreasing. From Lemma 2, R(�) = C(�) implies C(�) = I(X;Y ).

Hence, I(X;Y ) < C0 implies C(�) < C0, which in turn implies that it is not possible to

14



change � without changing C(�). To see that condition (b) is suÆcient, note that if among

the achievers of C0, pX belongs to the ones with lowest cost, then it is indeed impossible to

lower � without changing C(�). In particular, if pX is the only achiever of C0, then there

cannot be another pX that achieves the same rate, namely C0, but with smaller cost, simply

because there is no other pX that achieves C0.

It remains to show that if neither (a) nor (b) are satis�ed, then � can indeed be lowered. In

that case, I(X;Y ) = C0 (it cannot be larger than C0). Moreover, there must be multiple

achievers of C0, and pX is not the one minimizing �. In other words, � can indeed be

lowered without changing C(�) = C0.

The proof of part (ii) of the proposition goes along the same lines. To see that condition

(a) is suÆcient, de�ne �max = minfD : R(D) = 0g. For every � < �max, the value R(�)

uniquely speci�es �. This follows from the fact that R(�) is convex and non-increasing. From
Lemma 2, R(�) = C(�) implies R(�) = I(S; Ŝ). Hence, 0 < I(S; Ŝ) implies 0 < R(�),

which in turn implies that it is not possible to change � without changing R(�). For

condition (b), note that if among the achievers of zero mutual information, pŜjS belongs to

the ones with lowest distortion, then it is indeed impossible to lower � without changing

R(�). In particular, if pŜjS is the unique conditional distribution achieving zero mutual

information, then there may not be another conditional distribution achieving the same

rate (zero) but with smaller distortion, simply because by assumption, there is no other

conditional distribution achieving zero mutual information.

It remains to show that if neither (a) nor (b) are satis�ed, then � can indeed be lowered.

In that case, I(S; Ŝ) = 0 (it cannot be smaller than 0). Moreover, there must be multiple

achievers of zero mutual information, and pŜjS does not minimize the distortion among

them. In other words, � can indeed be lowered without changing R(�) = 0.

Remark. In the most general case of Proposition 6, it is necessary to specify the cost

function and the distortion measure before the conditions can be veri�ed. Let us point out,

however, that in many cases of practical interest, this is not necessary. In particular, if

I(X;Y ) < C0, or if I(X;Y ) = C0 but pX is the unique distribution that achieves C0, then

Part (i) is satis�ed irrespective of the choice of the cost function. By analogy, if 0 < I(S; Ŝ),

or if I(S; Ŝ) = 0 but pŜjS is the unique conditional distribution for which I(S; Ŝ) = 0, then

Part (ii) is satis�ed irrespective of the choice of the distortion measure.

In summary, our discussion of Condition (ii) of Lemma 1 supplied a set of explicitly

veri�able criteria. The main result of this paper is obtained by combining this with the

results of Section 3.1.
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3.3 The Main Result

The main result of this paper is a simple criterion to check whether a given single-letter code

performs optimally for a given source/channel pair. Lemma 1 showed that on the one hand,

the system has to satisfy R(�) = C(�). The choice of the cost function � as in Theorem

3 ensures that the channel input distribution achieves capacity. Similarly, the choice of the

distortion measure according to Theorem 4 ensures that the conditional distribution of Ŝ

given S achieves the rate-distortion function of the source. Together with the condition

that I(S; Ŝ) = I(X;Y ), this ensures that R(�) = C(�). But Lemma 1 required on the

other hand that � may not be lowered without changing C(�), and that � may not be

lowered without changing R(�). Recall that this is not ensured by Theorems 3 and 4.

Rather, it was discussed in Section 3.2 and led to Proposition 6. It is now a simple matter

to combine the insight gained in the latter proposition with the statements from Theorems

3 and 4. This leads to a quite simple criterion to establish the optimality of a large class of

communication systems that employ single-letter codes:

Theorem 7. Consider the transmission of the source (pS ; d) across the channel (pY jX ; �)

using the single-letter code (f; g). The following statements hold:

(o) If I(S; Ŝ) 6= I(X;Y ), then the system does not perform optimally.

(i) If 0 < I(S; Ŝ) = I(X;Y ) < C0, the system is optimal if and only if �(x) and d(s; ŝ)

are chosen according to Theorems 3 and 4, respectively.

(ii) If 0 < I(S; Ŝ) = I(X;Y ) = C0, the system is optimal if and only if d(s; ŝ) is cho-

sen according to Theorem 4, and �(x) is such that E�(X) � E~pX�(X) for all other

achievers ~pX of C0. In particular, the last condition is trivially satis�ed if pX is the

unique channel input distribution achieving C0.

(iii) If 0 = I(S; Ŝ) = I(X;Y ) < C0, the system is optimal if and only if �(x) is chosen

according to Theorem 3, and d(s; ŝ) is such that Ed(S; Ŝ) � E~p
ŜjS

d(S; Ŝ) for all other

achievers ~pŜjS of I(S; Ŝ) = 0. In particular, the last condition is trivially satis�ed if

pŜjS is the unique conditional distribution for which I(S; Ŝ) = 0.

(iv) If C0 = 0, then the system is optimal if and only if E�(X) � E~pX�(X) for all channel

input distributions ~pX , and Ed(S; Ŝ) � E~p
ŜjS

d(S; Ŝ) for all conditional distributions

~pŜjS.

Proof. Part (o). From the Data Processing Theorem (e.g. [8, Thm. 2.8.1]), I(S; Ŝ) 6=
I(X;Y ) implies I(S; Ŝ) < I(X;Y ). Moreover, I(S; Ŝ) < I(X;Y ) implies R(�) < C(�) (see
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also the proof of Lemma 2). But then, by Lemma 1, the system does not perform optimally.

Part (i). If 0 < I(S; Ŝ) and I(X;Y ) < C0, the system is optimal if and only if R(�) = C(�)

(Lemma 1 with Proposition 6). We have shown that this is equivalent to requiring the three

conditions of Lemma 2 to be satis�ed. The third of these conditions, I(S; Ŝ) = I(X;Y ),

is satis�ed by assumption. As long as 0 < I(S; Ŝ) and I(X;Y ) < C0, Theorems 3 and

4 establish that the �rst two are satis�ed if and only if � and d are chosen according to

Formulae (3) and (11), respectively.

Part (ii). If I(X;Y ) = C0, the system is optimal if and only if R(�) = C(�) and among

the achievers of C0, pX belongs to the ones with lowest cost (Lemma 1 with Proposition

6). The condition R(�) = C(�) is satis�ed if and only if the three conditions of Lemma 2

are satis�ed. The third of these conditions, I(S; Ŝ) = I(X;Y ), is satis�ed by assumption.

When 0 < I(S; Ŝ) but I(X;Y ) = C0, Theorems 3 and 4 establish that the �rst two are

satis�ed if and only if d is chosen according to Formula (11).

Part (iii). If 0 = I(S; Ŝ), the system optimal if and only if R(�) = C(�) and among the

conditional distributions for which I(S; Ŝ) = 0, pŜjS belongs to the ones with lowest distor-

tion (Lemma 1 with Proposition 6). The condition R(�) = C(�) is satis�ed if and only if

three conditions of Lemma 2 are satis�ed. The third of these conditions, I(S; Ŝ) = I(X;Y ),

is satis�ed by assumption. When I(X;Y ) < C0 but I(S; Ŝ) = 0, Theorems 3 and 4 establish

that the �rst two are satis�ed if and only if � is chosen according to Formula (3).

Part (iv) has been added for completeness only. It should be clear that if C0 = 0, then

automatically, all the mutual information conditions are satis�ed since all mutual informa-

tions must be zero, and all that has to be checked is that the cost and the distortion are

minimal. Obviously, this case is of limited practical interest.

As pointed out earlier, one attractive issue with this criterion is that it permits to

construct an arbitrarily large supply of examples. The next section illustrates this point.

4 Examples

Example 1 (Gaussian). The goal of this example is to illustrate and verify the �ndings

of Section 3 for the Gaussian example. Let the (memoryless) source be zero-mean Gaussian

of variance �2S with distortion measure d(s; ŝ) = (s� ŝ)2 (i.e. mean-square error). Let the

(memoryless) channel be an additive noise channel, where the noise process, denoted by Z,

is zero-mean Gaussian of variance �2, and the input cost function is �(x) = x2. Finally, let

the code be

f(s) =

s
P

�2S
s = �s (21)
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and

g(y) =

r
�2S
P

P

P + �2
y = �y: (22)

This setup appears in several places in the literature, e.g. in [3].

The cost-distortion pair is found to be � = P and � = �2S�
2=(P + �2). Using the

rate-distortion and the capacity-cost functions, we can directly verify that Lemma 1 is

satis�ed. For the AWGN channel, the capacity-cost function is C(P ) = 1=2 log2(1+P=�2),

and for the iid Gaussian source of variance �2S , the rate-distortion function is R(D) =

1=2 log2(�
2
S=D) (see e.g. [8]). Plugging in the cost-distortion pair (�;�) as found above,

we �nd both times 1=2 log2(1 + P=�2), con�rming that the �rst condition of Lemma 1

is satis�ed. Moreover, since 0 < I(S; Ŝ) and I(X;Y ) < C0, Proposition 6 implies that

neither � nor � can be decreased (leaving the other �xed). Therefore, we conclude that

the purported communications scheme performs optimally.

Let us apply Theorem 7 to this scenario. It is clear that I(X;Y ) = I(S; Ŝ) since both

f(�) and g(�) are bijective maps. Moreover, since C0 is in�nite for the AWGN channel, Case

(i) of Theorem 7 applies. Hence, �(�) and d(�; �) have to be selected as in the formulae of

Theorems 3 and 4, respectively. For the cost function, we �rst determine

D(pY jX(�jx)jjpY (�)) = D

�
pZ

� � � �x

�

� ����
���� pY

�

= �h
�
pZ

� � � �x

�

��
�
Z

pZ

�
y � �x

�

�
log2 pY (y)dy: (23)

Since the entropy of a Gaussian is independent of its mean, the �rst term is a constant, say

a. Hence,

D(pY jX(�jx)jjpY (�)) =

= a�
Z

1p
2��

e�
(y��x)2

2�2�2

0
@log2 1q

2��2(�2S + �2)
� y2

2�2(�2S + �2)

1
A dy

= a1 + a2

Z
1p
2��

e�
(y��x)2

2�2�2 y2dy = a1 + a2(�
2�2 + (�x)2) = b1x

2 + b2; (24)

where the ai and bi are appropriate constants. Since the formula of Theorem 3 only speci�es

�(x) up to an aÆne transform, their precise value is irrelevant. For example, by choosing

(in Theorem 3) c1 = 1=b1 and �0 = �b2=b1, Eqn. (3) reads �(x) = x2. For the distortion

measure, we have to determine p(sjŝ). Since both f and g are linear mappings, p(ŝjs) is
found to be

p(ŝjs) =
1

�
pY jX (ŝ=� j�s) =

1p
2���

e
� 1

2�2�2
(ŝ���s)2

: (25)
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The marginal of Ŝ can be determined by recalling that Y is Gaussian with variance P +�2.

Hence, Ŝ is Gaussian with variance �2(P + �2). Plugging in, we �nd

log2
p(ŝjs)
p(ŝ)

= log2
�
p
P + �2

�
e
� 1

2�2�2
(ŝ���s)2+ 1

2�2(P+�2)
ŝ2

(26)

which gives (by de�ning c2 and d0(s) in Theorem 4 appropriately)

d(s; ŝ) = c2

�
ŝ� ��(P + �2)

P
s

�2

+ d0(s): (27)

It is quickly veri�ed that plugging in the de�nitions of � and � yields the standard mean-

square error distortion. Hence, Theorem 7 allows to conclude that the suggested communi-

cations scheme performs optimally.

As a side note, suppose that the coeÆcients � and � are chosen di�erently, which means

that the single-letter code is \mismatched." Then, the above derivation shows that the

code performs optimally with respect to a \weighted" MSE distortion, with weighting as

given by the last equation.

Example 2 (binary). Let the source be binary and uniform with Hamming distortion

measure, and let the channel be binary and symmetric (with � < 1=2) without an input

cost constraint (i.e. �(x) = const:, 8x). Let f and g be the identity maps, i.e. f(s) = s and

g(y) = y. This setup is also considered in e.g. in [4] and [5].

For this channel, the capacity is C(�) = C0 = 1�Hb(�), where Hb(�) denotes the binary
entropy function. The rate-distortion function for the binary source is R(D) = 1 �Hb(D)

(see e.g. [8]). In the present example, the distortion is found to be � = Ed(S; Ŝ) = �, from

which R(�) = 1 �Hb(�). Thus, R(�) = C(�) is satis�ed. For � < 1=2, there is a unique

achiever of C0, and hence, from Proposition 6, neither � nor � can be decreased (leaving

the other �xed). Thus, by Lemma 1, the considered communications scheme performs

optimally.

Let us establish the same fact using Theorem 7. Trivially, I(X;Y ) = I(S; Ŝ), and we

�nd

pŜjS(ŝjs)
pŜ(ŝ)

=
pY jX(ŝjs)
pY (ŝ)

=
1

2
pY jX(ŝjs) =

(
1
2(1� �); if ŝ = s;

1
2�; otherwise.

(28)

Taking d0(s) =
log2(1��)=2
log2(1��)=�

and c2 = 1
log2(1��)=�

reveals that one of the distortion measures

that satisfy the requirement in Theorem 7 is indeed the Hamming distance.

Example 3 (Laplacian). This example studies the transmission of a Laplacian source

across an additive white Laplacian noise (AWLN) channel, de�ned as follows:

pS(s) =
�0
2
e��0jsj (29)

pY jX(yjx) =
�

2
e��jy�xj: (30)
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We also use Z = Y �X to denote the additive noise. Hence, Z is Laplacian with parameter

�. Assume that �0 < � (which implies ES2 > EZ2). Note that with trivial changes, the

derivations can be altered for the case �0 � �. Moreover, let the encoding and the decoding

function be simply the identity (in other words, we consider uncoded transmission). The

corresponding output distribution pY (y) is found to be

pY (y) =
�0�

2

�e��0 jyj � �0e
��jyj

�2 � �20
: (31)

Since the channel is an independent additive noise channel, the formula in Theorem 3 can

be rewritten as

�(x) = �
Z
z
pZ(z) log2 pY (x+ z)dz: (32)

A numerical approximation to this is illustrated in Fig. 3 for a particular choice of the

parameters: �0 = 3 and � = 9, hence the signal-to-noise ratio in the example is �2=�20 = 9.

Note that �(s) as in Eqn. (32) is negative for some values of s. For the �gure, we have added

a suitable constant. The �gure reveals that �(s) is similar to the magnitude function (at

least for our choice of the parameters). The next step is to compute the distortion measure

−50 −25 0 25 50
0
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20

30

40

50

s

ρ(
s)

Figure 3: Channel input cost function �(s) according to Eqn. (32).

that makes the system optimal. According to Theorem 4, we need to determine

� log2 p(sjŝ) = � log2
pY jX(ŝjs)pS(s)

pY (ŝ)
= � log2

�2 � �20
2

e��jŝ�sj��0jsj

�e��0jŝj � �0e��jŝj
: (33)

However, this function is negative for some (s; ŝ). To make it nonnegative, we add, for each

s, an appropriate constant, namely the log2 of

max
ŝ

p(sjŝ) =
�2 � �20

2
e��0jsjmax

ŝ

e��jŝ�sj

�e��0jŝj � �0e��jŝj
=

�2 � �20
2

1

�� �0e�(���0)jsj
:
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Plugging in, we obtain

d(s; ŝ) = jŝ� sj+ 1

�
log2

�e��0 jŝj � �0e
��jŝj

�e��0 jsj � �0e��jsj
: (34)

This is illustrated in Fig. 4 for the above choice of the parameters (�0 = 3 and � = 9).3

To conclude this example, let us point out that there is no straightforward answer to the

question whether this distortion measure is practically meaningful. To judge on that, the

physical objectives have to be taken into consideration.
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Figure 4: Distortion measure d(s; y) according to Eqn. (34) for �xed y.

Remark. From the last example, it should be clear that using the formulae given in Lem-

mata 3 and 4, an arbitrary supply of examples can be constructed that feature the same

optimal behavior as the well-known example of a Gaussian source over a Gaussian channel.

5 Some Applications Of The Theory

5.1 Existence Of Single-Letter Codes With Optimal Performance

In Section 3, we characterized the relationship between source, channel and code such that

the corresponding communication system performs optimally. The result can be applied

directly if the source distribution, the channel distribution and the code are �xed. In this

section, we �x the source (pS ; d) and the channel (pY jX ; �). What conditions have to satis�ed

such that there exists a single-letter code (f; g) that makes the overall system an optimal

transmission scheme? We were able to �nd partial answers to this question.

3Note that the �gure does not exactly depict Eqn. (34); rather, additive and multiplicative constants

have been selected to get a clearer picture.
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For the case S = X and Y = Ŝ, the answer can be phrased as follows: Given (pS ; d)

and (pY jX ; �), assume that the encoder and the decoder are the identity maps. Determine

~�(s) and ~d(s; y) according to the formulae of Theorems 3 and 4, respectively. Then, �nd

a function f(s) such that ~�(s) = �(f(s)). If this is feasible, then �nd a function g(y) such

that ~d(s; y) = d(s; g(y)). If this is also feasible, then the single-letter code (f; g) performs

optimally.

This constructive way of determining the existence of single-letter codes that perform

optimally does not seem to lead to a concise general answer to the question. In the sequel,

we present answers for certain particular scenarios.

Lemma 8 (binary). Let S = X = Y = Ŝ = f0; 1g, �(x) = const:, and d(s; ŝ) = 1 if

s 6= ŝ, and d(s; ŝ) = 0 otherwise (Hamming distortion). Suppose that the channel has

nonzero capacity. Then, there exists a single-letter code with optimal performance if and

only if the source pmf pS is uniform and the channel conditional pmf pY jX is symmetric.

Remark. The case C0 = 0 can be handled separately using Part(iv) of Theorem 7.

Proof. Assume that X = S and Ŝ = Y . This is without loss of generality, since the only

two alternatives are (i) that the encoder permutes the source symbols, which is equivalent

to swapping the channel transition probabilities (by the symmetry of the problem), and

(ii) that the encoder maps both source symbols onto one channel input symbol, which is

always suboptimal except when the channel has capacity zero. We will use the following

notation: � = pY jX(1j0), Æ = pY jX(0j1), pX(x = 0) = �� and pX(x = 1) = �. For the system

to be optimal, since the channel is left unconstrained, it is necessary that I(X;Y ) = C0.

Therefore, Case (ii) of Theorem 7 applies. Hence, it is necessary that d(s; ŝ) be chosen

according to Eqn. (11); i.e., we require that � log2 p(sjŝ) = � log2 p(xjy) be equivalent to the
Hamming distortion. This is the same as requiring that pXjY (0j1) = pXjY (1j0). Expressing
p(xjy) as a function of �; Æ; �� and �, the latter implies that � =

p
(�(1� �))=(Æ(1 � Æ))��.

Since moreover, � + �� = 1, we �nd

� =
1

1 +
p
(Æ(1 � Æ))=(�(1 � �))

: (35)

We show that for channel of nonzero capacity, this is the capacity-achieving distribution

if and only if � = Æ, which completes the proof. The capacity-achieving � satis�es the

following condition:

d

d�
I(X;Y ) = (�+ Æ � 1) log2

1� ((1� �)(1 � �) + �Æ)

(1� �)(1� �) + �Æ
+Hb(�)�Hb(Æ) = 0: (36)

Plugging in � from above yields

2
Hb(Æ)�Hb(�)

1�Æ�� =
(1� �)

p
Æ(1 � Æ) + Æ

p
�(1� �)

�
p
Æ(1 � Æ) + (1� Æ)

p
�(1� �)

: (37)
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Clearly, equality holds if � = Æ (and thus �� = �), but also if � = 1 � Æ. In the latter case,

the channel has zero capacity. To see that there are no more values of � and Æ for which

equality holds, �x (for instance) Æ and consider the curves de�ned by the right side and

the left side of Eqn. (37), respectively. The left side is convex and decreasing in �. For

0 � � � 1 � Æ, the right side is also convex and decreasing. Hence, at most 2 intersections

can occur in this interval, and we already know them both. By continuing in this fashion,

or by upper and lower bounds, one can establish that there are no more intersections.

Lemma 9 (L-ary uniform). Let S;X ;Y and Ŝ be L-ary, �(x) = const:, for all x, d(s; ŝ) =

1 if s 6= ŝ, and d(s; ŝ) = 0 otherwise (Hamming distortion), and pS be uniform. Moreover,

let the channel have nonzero capacity C0. Then, there exists a single-letter code with optimal

performance if and only if the channel conditional pmf is pY jX(yjx) = const:, for y 6= x (or

a permutation thereof).

Proof. Pick an arbitrary channel conditional distribution pY jX for which there exists a

single-letter code (f; g) that makes the overall system optimal. From Lemma 2, this implies

that I(X;Y ) = C(�). Since the channel is unconstrained here, C(�) = C0. Therefore,

Case (ii) of Theorem 7 applies. That is, to perform optimally, the distortion measure

must be chosen as a scaled and shifted version of � log2 p(sjŝ). But since by assumption,

the distortion measure must be the Hamming distance, we must have that � log2 p(sjŝ) =
c2(1� Æ(s� ŝ))+ d0(s), where Æ(�) denotes the Kronecker delta function (i.e. it is one if the

argument is zero, and zero otherwise). Equivalently, p(sjŝ) must satisfy

p(sjŝ) =
(

2�d0(s); s = ŝ;

2�c2�d0(s); s 6= ŝ:
(38)

The L simultaneous equations
P

s p(sjŝ) = 1 imply a full-rank linear system of equations in

the variables 2�d0(s), from which it immediately follows that d0(s) = const. But this means

that p(sjŝ) must satisfy

p(sjŝ) =
(

�; s = ŝ;

1��
L�1 ; s 6= ŝ:

(39)

By assumption, p(s) is uniform, which implies that p(ŝ) is also uniform. But since all

alphabets are of the same size, the condition that I(S; Ŝ) = I(X;Y ) implies that p(x) and

p(y) are also uniform, and that p(xjy) is a permutation of

p(xjy) =
(

�; y = x;

1��
L�1 ; y 6= x:

(40)

But this implies that the channel p(yjx) has to be symmetric with p(yjx) = � for y = x,

and p(yjx) = (1� �)=(L � 1) for y 6= x, or a permutation thereof.
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There is a nice intuition going along with the last result: Suppose that the channel is

symmetric ([8, p. 190]) and that the probabilities of erroneous transition are f�1; : : : ; �L�1g
for every channel input. The distortion achieved by uncoded transmission is simply the sum

of these probabilities. However, the distortion achieved by coded transmission depends on

the capacity of the channel. Therefore, if uncoded transmission should have a chance to be

optimal, we have to minimize the capacity of the channel subject to a �xed sum
PL�1

i=1 �i.

But this is equivalent to maximizing the entropy of the \noise" Z = Y � X subject to a

�xed probability pZ(z = 0). Clearly, this maximum occurs when all the �i are equal.

Remark. Suppose that all alphabets are the real numbers, the distortion measure is the

mean-square error and the input cost function is the square. Under these constraints, we

believe that the only discrete-time memoryless source/channel pairs for which there exists a

single-letter code that performs optimally consist of an iid Gaussian source and an AWGN

channel.

5.2 Source/Channel Codes Of Finite Block Length

A natural extension of the analysis performed in this paper is the quest for source/channel

codes of (�nite) block lengthM that perform optimally. More precisely, attention shall still

be restricted to discrete-time memoryless sources and channels as de�ned in De�nitions 1

and 2, but the code is now of (�nite) length M : it maps M source symbols onto M channel

symbols,4 using an arbitrary function. One of the interesting questions is the following:

for a given memoryless source (pS ; d) and a given memoryless channel (pY jX ; �), is there a

source/channel code of �nite block length M with optimal performance?

Suppose that all alphabets are discrete, and consider the length-M extension source

and channel. These extensions are also discrete, but for them, the M -letter code is a

single-letter code, and hence we can use Theorems 3 and 4 to give the cost function and

the distortion measure on length-M blocks that are necessary for optimal performance.

However, the underlying source and channel are memoryless. Therefore, by de�nition, it

must be possible to express the cost function on length-M blocks as a sum of M individual

terms, and the same must be true for the distortion measure. This excludes certain M -

letter codes. Our conjecture is that a �nite-length code with optimal performance exists

if and only if there exists also a single-letter code with optimal performance for the same

source/channel pair. Here, we prove this conjecture under some additional assumptions:

4Clearly, a more general extension would be to study codes that map N source symbols onto M channel

symbols. We do not have results for that case yet.
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Theorem 10. Let (pS ; d) and (pY jX ; �) be a discrete memoryless source and a discrete

memoryless channel, respectively. Suppose that all alphabets are of the same size, that p(s) >

0 for all s 2 S, that the distortion measure has the property that the matrix f2�d(s;ŝ)gs;ŝ is
invertible and that the channel transition probability matrix is invertible. Then, there exists

a source/channel code of �nite block length that performs optimally if and only if, for the

same source/channel pair, there exists also a single-letter source/channel code that performs

optimally.

Proof. See Appendix B.

Among the restrictions imposed by the last theorem, the one on the distortion measure

may seem somewhat unusual. Note however that the standard distortion measures like the

Hamming distance and the squared-error distortion satisfy that restriction. In fact, any

distortion measure under which the mapping T (s) = argminŝ d(s; ŝ) is one-to-one satis�es

the requirement.

5.3 Universality Of Single-Letter Source/Channel Codes

Optimal transmission systems designed according to the separation principle may be quite

sensitive to parameter mismatch. Suppose e.g. that the capacity of the channel turns out

to be smaller than the rate of the channel code that is used. The e�ect of this parameter

mismatch on the �nal reconstruction of the data may be catastrophic.

Single-letter source/channel codes feature a graceful degradation as a function of mis-

matched parameters. In fact, in some cases, one and the same single-letter code achieves

optimal performance for multiple source/channel pairs. In this sense, single-letter codes

have a certain universality property. The following example illustrates this.

Example 1, continued (fading). Let the source be the Gaussian source from Example

1. The channel is slightly di�erent from Example 1: It adds white Gaussian noise of

variance �2i and scales the resulting signal by P=(P +�2i ), but the value of �
2
i varies during

transmission. The channel input signal X has to satisfy EX2 � P . Take as the encoder a

scaling by
q
P=�2S and as the decoder a scaling by

q
�2S=P . From Example 1, it is clear

that this code performs optimally irrespective of the value of �2i .

In this example, the suggested code is universal for the transmission of a Gaussian source

across any one out of an entire class of channels. In the spirit of the example, we introduce

the following de�nition:

De�nition 6 (universality). The single-letter code (f; g) is called universal for the source

(pS ; d) and the class of channels given by W = f(p(0)Y jX ; �
(0)); (p

(1)
Y jX ; �

(1)); : : : g if, for all i,
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the transmission of the source (pS; d) across the channel (p
(i)
Y jX ; �

(i)) using the code (f; g) is

optimal.

Note that by complete analogy, one can de�ne the universality of a code with respect

to a class of sources and a class of channels. In order to keep notation simple, we leave

this as an exercise to the reader. Instances of universality can be characterized by direct

application of Theorem 7 to the present scenario. For example, from Theorem 7, Part (i),

we obtain the following corollary:

Corollary 11. Consider a source (pS ; d) and a class of channels W. Suppose that for all

channels in the class, 0 < I(S; Ŝ(i)) and I(X;Y (i)) < C
(i)
0 . Then, the single-letter code

(f; g) is universal for the given source (pS ; d) and the given class of channels W if and only

if for all i,

�(i)(x) = c
(i)
1 D(p

(i)
Y jX(�jx)jjpY (�)) + �

(i)
0 ; (41)

d(s; ŝ) = �c(i)2 log2 p
(i)(sjŝ) + d

(i)
0 (s); (42)

I(S; Ŝ(i)) = I(X;Y (i)); (43)

where c
(i)
1 > 0, c

(i)
2 > 0 and �

(i)
0 are constants and d

(i)
0 (s) is an arbitrary function.

Proof. Follows directly from Theorem 7.

By analogy, one can again include all the special cases of Theorem 7. This is left to the

reader. The main reason for studying this particular property of memoryless source/channel

codes lies in its practical implications. One implication is to time-varying (fading) channels,

as illustrated by the above example: The channel varies over time, but it always remains

inside the class W. For that case, it is immediate that single-letter codes achieve the

performance of the best source compression followed by the best channel code. However,

the signi�cance of single-letter codes extends beyond the validity of the separation theorem.

Two scenarios under which single-letter codes outperform any code designed according to

the separation paradigm are mentioned and illustrated explicitly in the sequel.

Implication 1 (non-ergodic channels). Let the single-letter code (f; g) be universal for

the source (pS ; d) and the class of channels W. Let the channel be in W, but not determined

at the time of code design. Then, transmission using the single-letter code (f; g) achieves

optimal performance, regardless of which particular channel is selected.

Implication 2 (single-source broadcast). Let the single-letter code (f; g) be universal

for the source (pS ; d) and the class of channels W. In the particular broadcast scenario

where the single source (pS ; d) is transmitted across multiple channels (p
(i)
Y jX ; �

(i)) 2 W,

26



transmission using the single-letter code (f; g) achieves optimal performance on each channel

individually.

Example 4 (single-source Gaussian broadcast). Let the source be i.i.d. Gaussian of

variance P . Let the broadcast channel be Gaussian with two users. More speci�cally,

the channel operation consists in adding white Gaussian noise of variance �21 and �22 , re-

spectively, and subsequent scaling by a factor of �1 = P=(P + �21) and �2 = P=P + �22),

respectively. Assume w.l.o.g. �21 < �22 . This is illustrated in Fig. 5. It is well-known (see

Source S

Z2

Z1

X1

X2

Ŝ1

Ŝ2

Y1

Y2

�1

�2

Figure 5: Single-source Gaussian broadcast.

also Example 1) that uncoded transmission is optimal on each of these channels individu-

ally, i.e. the distortion pair achieved by uncoded transmission is �u;1 = P�21=(P + �21) and

�u;2 = P�22=(P + �22).

What is the achievable performance for a strategy based on the concept of separation?

The source would have to be described by a coarse version and a re�nement thereof. This

problem has been studied in [9, 10]. For a Gaussian source, such a two-part description can

be accomplished without loss. This means that if R2 bits are used for the coarse version

and R1 bits for the re�nement, then the reconstruction based on the coarse version only

incurs a distortion of D(R2), while the reconstruction based on both the coarse version and

the re�nement incurs a distortion of D(R1 + R2). Here, D(�) denotes the distortion-rate

function of the source [3]. The rates that are available for these two descriptions are the

pairs (R1; R2) in the capacity region of the Gaussian broadcast channel at hand. Since

it is a degraded broadcast channel, the better receiver (the one at the end of the channel

with �21) can also decode the information destined to the worse receiver [8]. Therefore, for

the separation-based approach the distortion region is bounded by �c;1 = D(R1 +R2) and

�c;2 = D(R2), where R1 and R2 are on the boundary of the capacity region of the Gaussian

broadcast channel. This is illustrated in Fig. 6 for a particular choice of the parameters.

We observe that the distortion pair achieved by uncoded transmission lies strictly outside

the distortion region for the separation-based approach that was described above.
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Figure 6: The distortion achievable by uncoded transmission (circle) versus the distortion

region achievable by a transmission scheme based on the separation principle for Example

4. Parameters are P = 1, �21 = 0:1 and �22 = 0:2.

6 Concluding Remarks

To code, or not to code: that is the question. Undoubtedly, \not to code" is very appealing

since it involves the smallest possible delay and complexity, but it can also involve a loss in

transmission quality. However, for given source and channel (conditional) distributions, it

is always possible to select the channel input cost function � and the distortion measure d

such that no loss in transmission quality is incurred. In other words, under the appropriate

channel input cost function and distortion measure, uncoded transmission achieves the same

performance as the best source compression followed by the best channel code. In this paper,

we determined explicit formulae to select � and d. We showed that these formulae are also

necessary conditions in the sense that if � and d are not chosen according to them, then the

overall system performs suboptimally.

The separation principle is limited to ergodic point-to-point communication. Interest-

ingly, single-letter codes perform optimally in certain non-ergodic and multiuser commu-

nication scenarios. For example, a simple single-source broadcast situation was shown to

have this property.

A question of practical interest that we have not considered in this paper is the following.

Suppose that a source distribution pS and a channel conditional distribution pY jX are �xed.

For any single-letter code (f; g), we can determine � and d to make the overall system
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optimal, but these distortion measures and cost functions may not be meaningful for the

given source/destination pair and for the physical constraints of the channel, respectively.

Can f and g be cleverly chosen in such a way that the � and d from our formulae are

physically meaningful? Moreover, if codes of block length M are permitted, how closely

can some desired � and d be approximated?
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A R(�) = C(�) Does Not Imply Optimality

In Section 3.2, it was shown that most cases of interest satisfy Condition (ii) of Lemma 1.

Are there examples which do not? This section presents such an example: a source/channel/

code triplet that satis�es R(�) = C(�) and yet does not represent an optimal communica-

tion system.

Example 5 (noisy typewriter channel). Let all involved alphabets be S = X = Y =

Ŝ = f0; 1; : : : ; L� 1g, where L is an even integer. The channel conditional pmf is the noisy

typewriter channel as in [8, p. 185], that is, pY jX(kjk) = 1=2 and pY jX((k+1) mod Ljk) =
1=2, for all k. The unconstrained capacity of this channel is found to be C0 = log2

L
2 . Let

the encoder and decoder be the identity function. For the source pmf, de�ne podd(s) to be

the uniform pmf over the odd inputs, and peven(s) the uniform pmf over the even inputs. Let

the source pmf be a convex combination of these two, i.e. p�(s) = �podd(s)+(1��)peven(s),
where 0 � � � 1. Notice that p�(s) achieves capacity on the unconstrained noisy typewriter

channel for any �.

De�ne the following distortion measure:

d(s; ŝ) =

(
0; ŝ = s or ŝ = (s+ 1) mod L

1; otherwise.
(44)

Certainly, � = Ed(S; Ŝ) = 0. Moreover, we �nd that for any �,

R(� = 0) = log2
L

2
(45)

Let the input cost function be

�(x) =

(
1; x even;

0; x odd:
(46)
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Suppose now that the source has � = 1=2. Is the overall communication system optimal in

that case? For � = 1=2, we compute � = L
2 , and hence

C(�) = C0 = log2
L

2
: (47)

Evidently, the condition R(�) = C(�) is satis�ed. Unfortunately, however, this is not an

optimal communication system. Consider for example the source with parameter � = 1. We

compute �0 = 0 < �, but clearly, C(�) = C(�0). Hence, the second condition of Lemma 1

is violated: It is indeed possible in this case to lower � without changing C(�). Practically,

this means that for the source with parameter � = 1=2, there exists a coded communication

system that achieves the same distortion but requires lower cost.

As a last remark, let us point out that the fact that the distortion and the cost �0 are

zero is not crucial for this example.

B Proof Of Theorem 10

Proof of Theorem 10. (( :) If there is a single-letter code with optimal performance,

then trivially there is also a code of length M with optimal performance.

() :) Under the stated assumptions, the existence of a code of length M with optimal

performance implies the existence of a single-letter code with optimal performance for the

same source and channel. To prove this, we consider single-letter codes for the length-M

extension source and channel.

Notation: Let s = (s1; : : : ; sM ) be the vector of M consecutive source symbols, and

de�ne ŝ accordingly. By assumption, all alphabets are of the same size. Without (further)

loss of generality, we use the generic alphabet f1; 2; : : : ;Kg. The length-M extension source

is p(s) =
QM

m=1 pS(sm) with d(M)(s; ŝ) =
PM

m=1 d(sm; ŝm). For some of the considerations

below, it will be more convenient to map s into an extension alphabet of sizeKM according to

s =
PM

i=1K
isi. Both representations will be used interchangeably. Similarly, the extension

channel is p(yjx) = QM
m=1 pY jX(ymjxm) with �(M)(x) =

PM
m=1 �(xm). In the proof, it will

also be handy to use matrix notation. We will use PY jX for the matrix of channel transition

probabilities, where y indexes the rows and x the columns. Note that in the extension

alphabet, PYjX = PY jX 
 : : : 
 PY jX (M terms), where 
 denotes the Kronecker product

(tensor product).

Outline: The single-letter code for the length-M extension will be denoted (f (M); g(M)).

Obviously, this is an M -letter code for the original source and channel. We will now

apply the theory developed in this paper to the extension source and channel, and their

single-letter code (f (M); g(M)). Plugging pS, pYjX and the code (f (M); g(M)) into Formulae
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(3) and (11) of Theorems 3 and 4, we obtain the �(M) and d(M) that are necessary and

suÆcient for optimal performance.5 However, by assumption, they have to be averaging

(or single-letter) measures, that is, �(M)(x) =
PM

m=1 �(xm) for some cost function �(�), and
d(M)(s; ŝ) =

PM
m=1 d(sm; ŝm) for some distortion measure d(�; �). This excludes many of the

possible M -letter codes (f (M); g(M)).

From Theorem 4, the distortion measure has to be chosen as

d(M)(s; ŝ) = � log2 p(sjŝ): (48)

Clearly, for this to split additively into equal functions each of which depends only on one

of the pairs (si; ŝi), it is necessary that p(sjŝ) = pSjŜ(s1jŝ1) � : : : � pSjŜ(sM jŝM ). In terms of

transition probability matrices, this can be expressed as

P
SjŜ = PSjŜ 
 : : :
 PSjŜ : (49)

By symmetry, the second key insight follows from the fact that the cost function has to

split additively. However, the derivation is somewhat more technical. Therefore, we state

the result in the shape of the following lemma, to be proved below:

Lemma A. If �(M) is averaging and PY jX invertible, then X and Y are iid.

The third insight is that under the additional assumptions on the alphabet sizes and

p(s), the encoder and decoder have to be bijective. It is given by the following lemma (to

be proved below):

Lemma B. If all alphabets are of the same cardinality, p(s) > 0 for all s, PSjŜ and PY jX

are invertible and d(M) is averaging, then encoder f (M) and decoder g(M) are bijections.

To complete the proof, consider �rst the encoder. Suppose that for �xed distribution

of S and X, there exists indeed a bijective encoder f (M) that maps S to X. Equivalently,

this means that there exists a permutation matrix F (M) such that p
X

= F (M)p
S
, where

p
X
is a vector containing the probabilities pX(x), and p

S
the corresponding for the random

variable S. By Lemma A, X is iid, hence we can write

p
X

 : : : 
 p

X
= F (M)(p

S

 : : : 
 p

S
): (50)

But this can only be true if there exists also a permutation matrix F such that

p
X

= Fp
S
: (51)

5Suppose there exists a code (f (M); g(M)) such that I(X;Y ) =MC0. When all alphabets are of the same

cardinality and p(s) > 0 for all s, it is a simple matter to prove that there exists also a single-letter code

that achieves I(X;Y ) = C0. For this reason, the interesting case is when I(X;Y ) < MC0, in which case the

formula for � is indeed a necessary condition. A similar comment applies to the case I(S; Ŝ) = 0.
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In other words, there exists also a single-letter encoder f that maps S to X.

This argument can be applied to the matrix P
SjŜ to conclude that the decoder can

also be implemented by a single-letter mapping. First, recall that P
SjŜ = PSjXPXjYPYjŜ.

On the right hand side, PXjY can be written as an M -fold Kronecker product because the

channel is memoryless and X and Y are iid. Moreover, we have just shown that the encoder

is a permutation matrix, and that it can be written also as an M -fold Kronecker product.

Using Eqn. (49), we �nd

PSjŜ 
 : : : 
 PSjŜ = (PSjX 
 : : :
 PSjX)(PXjY 
 : : :
 PXjY )PYjŜ

= (A
 : : : 
A)P
YjŜ (52)

for some matrix A. But if there does indeed exist a permutation matrix P
YjŜ that satis�es

the above equation, then there exists also a permutation matrix PY jŜ that satis�es PSjŜ =

APY jŜ , which implies the existence of a single-letter decoder.

Remark. Let us explain at this point why the additional assumptions in Theorem 10 are

necessary: To ensure that the encoder and the decoder are bijective maps. If this is not

ensured, then the step from Eqn. (50) to Eqn. (51) seems to become surprisingly tricky.

Proof of Lemma A. From Theorem 3, the cost function �(x) has to be chosen as

�(x) = D
�
pY jX(�jx)jjpY (�)

�
=
X
y

p(yjx) log2
p(yjx)
p(y)

: (53)

By de�nition, the cost function of a memoryless channel has to split additively intoM equal

functions, each depending only on one of the xi. It is now shown that this implies that

p(y1; : : : ; yM ) = pY (y1) � : : : � pY (yM ). For the case M = 2,

�(x1; x2) = H(Y jX = x1) +H(Y jX = x2)�
X
y1;y2

p(y1jx1)p(y2jx2) log2 p(y1; y2): (54)

The last double sum has to split additively into two parts, one depending only on x1,

the other only on x2. As a �rst step, we now show that this implies that Y1 and Y2 are

independent random variables. Equivalently, we show that the matrix PY1Y2 containing the

joint pmf of Y1 and Y2 has rank at most 1.

To see why this holds, let us introduce the following shorthand: zji = p(y = jjxi), where
1 � i � K and 1 � j � K. Moreover, in this paragraph, we use p(�; �) in place of pY1Y2(�; �)
to make the formulae more readable. With this, we can rewrite the double sum on the RHS
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of Eqn. (54) as

z1z2 log2 p(1; 1) + z1z
2
2 log2 p(1; 2) + : : :+ z1z

K
2 log2 p(1;K)

+ z21z2 log2 p(2; 1) + z21z
2
2 log2 p(2; 2) + : : :+ z21z

K
2 log2 p(1;K)

+
...

+ zK1 z2 log2 p(K; 1) + zK1 z
2
2 log2 p(K; 2) + : : :+ zK1 z

K
2 log2 p(K;K); (55)

with the constraint

zi + z2i + : : :+ zKi = 1; for all i: (56)

To split the sum additively into terms that depend only on one of the xi (or, equivalently,

of the zi), it is necessary that the coeÆcients of all terms that involve more than one

of the variables zi are zero. Substitute for instance z21 = 1 � z1 � z32 � : : : � zK2 and

z22 = 1� z2 � z32 � : : :� zK2 . Then it is quickly veri�ed that the coeÆcient of z1z2 is

log2 p(1; 1) + log2 p(2; 2) � log2 p(1; 2) � log2 p(2; 1): (57)

But this is precisely the determinant of a 2 � 2 submatrix of PY1Y2 . In a similar fashion,

we �nd that the determinants of all 2 � 2 submatrices of PY1Y2 have to be zero. But this

implies that rankPY1Y2 � 1 (a well-known fact for which we did not �nd a reference, but

which has a short proof; therefore it is given below as Lemma 12), which implies that Y1

and Y2 must be independent random variables.

For M > 2, de�ne two sets of indices, I and J , such that I \ J = ;. Let Y (I) = fYi :
i 2 Ig and Y (J) = fYj : j 2 J g. But since Y are discrete random variables, Y (I) and Y (J)

can be interpreted as two discrete random variables over larger alphabets. Denote the joint

pmf matrix of Y (I) and Y (J) by PIJ . For this matrix, it can again be shown that all 2� 2

submatrices have zero determinant, and from Lemma 12, that PIJ has rank one. Hence,

the joint distribution matrix is PIJ = pY (I)p0Y (J) . Since this holds for any two index sets, it

follows that the Yi are independent random variables.

Up to now, we have established that Y1; : : : ; YM have to be independent random vari-

ables, thus we can write

�(x1; : : : ; xM ) = H(Y jX = x1)�
X
y1

p(y1jx1) log2 p(y1)

+ : : :+ H(Y jX = xM )�
X
y2

p(y2jxM ) log2 p(y2); (58)

which indeed splits additively into M functions, each of which depends only on one of the

xi. Moreover, it has to split into equal functions. That is, whenever xi = xj , we must have
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that X
yi

p(yijxi) log2 p(yi) =
X
yj

p(yjjxj) log2 p(yj); (59)

which can be rewritten (by letting x = xi = xj)X
y

p(yjx)(log2 pYi(y)� log2 pYj (y)) = 0: (60)

This must hold for every choice of x. In other words, the vector flog2 pYi(y)� log2 pYj (y)gy
must be orthogonal to all of the K vectors fp(yjx)gy . Hence, if those K vectors span the

entire K-dimensional space, then pYi = pYj , and thus Yi and Yj are identically distributed

random variables. Thus, if the channel transition probability matrix PY jX admits a right

inverse, then the channel outputs Y1; : : : ; YM must be iid random variables.

Under certain circumstances, the fact that Y1; : : : ; YM are iid implies that X1; : : : ;XM

are also iid. A suÆcient (but not necessary) condition for this is that the channel transition

probability matrix PY jX admit a left inverse. For codes of length M = 2, this can be shown

as follows. Construct matrices PY1Y2 = fp(y1; y2)gy1;y2 and PX1X2 = fp(x1; x2)gx1;x2 . Then,
we can write

PY1Y2 = PY jXPX1X2P
T
Y jX : (61)

Denote the left inverse of PY jX by PL
Y jX . Then,

PL
Y jXPY1Y2P

LT
Y jX = PX1X2 : (62)

However, since Y1 and Y2 are iid, PY1Y2 = ppT for some vector p, and thus

rankPX1X2 = rank(PL
Y jXPY1Y2P

LT
Y jX) � rankPY1Y2 = 1: (63)

Since moreover, PX1X2 = P T
X1X2

, there must exist a vector q such that PX1X2 = qqT .

To extend this argument toM > 2, we use again the sets I and J as de�ned above. The

joint distribution of Y (I) and Y (J) can thus be written in matrix form as PIJ = pY (I)p0Y (J) .

This is a rectangular matrix of dimension K jIj � K jJ j. By construction, it has only one

non-zero singular value. The transition probability matrices are Kronecker products of

multiple copies of PY jX and are therefore also left invertible. This implies (by analogy to

the argument for M = 2) that the joint pmf matrix of X(I) and X(J) has also only one non-

zero singular value, which means that it must be the outer product of two vectors, hence

X(I) and X(J) are independent. But since this holds for arbitrary sets I and J , we have

that X1; : : : ;XM must be independent. The fact that they are also identically distributed

can then be derived by considering Xi and Xj for all i 6= j, and using the same argument

as in the case M = 2.
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Proof of Lemma B. Consider the matrix P
SjŜ. It may be expressed as P

SjŜ = PSjXPXjYPYjŜ.

The distortion measure has to be averaging, which, by Eqn. (49), implies that P
SjŜ =

PSjŜ 
 : : : 
 PSjŜ (M terms). By assumption, PSjŜ is nonsingular. This is true if and only

if P
SjŜ is also nonsingular. Hence, PSjX and P

YjŜ must be full-rank matrices.

Moreover, using the requirement that I(X;Y) = I(S; Ŝ), we now infer that PSjX and

P
YjŜ have to be permutation matrices. Consider the mutual information

I(S;X;Y) = I(S;Y) + I(X;YjS)
= I(X;Y) + I(S;YjX); (64)

where I(S;YjX) = 0 since S! X! Y is a Markov chain, and hence I(X;Y) = I(S;Y)+

I(X;YjS). To satisfy I(X;Y) = I(S;Y), it is therefore necessary that I(X;YjS) =

H(XjS) � H(XjY;S) = 0. This is true if and only if X and Y are independent given

S. Hence consider the joint distribution matrix PY;XjS=s. Denoting by PXjS=s a diagonal

matrix with entries p(xjs) along the diagonal, we can write

PY;XjS=s = PYjXPXjS=s: (65)

For X and Y to be independent given S, the matrix PY;XjS=s has to have rank 1 for all s.

However, since by assumption, any set of two columns of PYjX are linearly independent, the

diagonal matrix PXjS=s can have at most one non-zero entry, hence p(xjs) = 1 for exactly

one of the x. Hence, the matrix PXjS has only ones and zeros as entries. Moreover, p(s) > 0

for all s and PSjX is invertible, which implies that PXjS is also invertible. Hence PXjS is a

permutation matrix (and so is PSjX).

By analogy, consider

I(S;Y; Ŝ) = I(S;Y) + I(S; ŜjY)

= I(S; Ŝ) + I(S;YjŜ): (66)

To satisfy I(S;Y) = I(S; Ŝ), we need that I(S;YjŜ) = H(YjŜ) �H(YjŜ;S) = 0. This is

true if and only if S and Y are independent given Ŝ. By analogy to the �rst half of the

proof, this implies that P
YjŜ can have only zero or one as entries. Since moreover, it is

invertible, it follows that P
YjŜ is a permutation matrix.

To conclude the proof, note that permutation matrices represent bijective mappings.

Lemma 12. For any matrix A 2M(n�m), rank(A) � 1 if and only if

AijAkl �AkjAil = 0; (67)

for all 1 � i; k � n and 1 � j; l � m.
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Proof. rank(A) � 1 , A = xyT for some vectors x and y. But then, the forward part is

immediate.

For the reverse, we show that any two rows of A are dependent. Pick row i and row k,

and form the 2�m submatrix A0. The rows of A0 are independent if and only if we can �nd

two columns j and l that are linearly independent. This happens if and only if the 2 � 2

submatrix A00 containing only columns j and l of A0 has full rank. However, by assumption,

this matrix has determinant zero. Hence any two rows of A are dependent, and the rank

cannot be larger than 1.
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