
Asynchronous Leasing

Partha Dutta Romain Boichat Rachid Guerraoui
Communication Systems Department

Swiss Federal Institute of Technology, CH-1015 Lausanne

Abstract

Leasing is a very effective way to improve the performance of distributed algorithms
without hampering their fault-tolerance. The notion of lease has traditionally been defined
using a global notion of time and was hence strongly tied to synchronous system models.
This paper introduces a new notion of lease devised for an asynchronous system model.

We give the precise properties of our lease abstraction, we show how it can be implemented
in an asynchronous system model, and we then illustrate its use by significantly improving
the performance of a consensus-based atomic broadcast algorithm.

1 Introduction

A lease is a contract that gives its holder specific rights over a resource for a limited period of
time [GC89]. It can be viewed as a fault-tolerant lock [Lam96]: the lock is granted only for
the term (time duration) of the lease and hence tolerates the failure of its holder. In practical
transactional systems, locks are indeed leases: if they expire, the transaction is aborted. The
notion of lease was also shown to be very powerful in the context of caching: a lease grants to
its holder control over writes to the cached resource (data) during the term of the lease. The
very notion of lease is strongly tied to a global time. Not surprisingly, lease implementations
typically use time-outs and assume synchronised clocks. More precisely, if the maximum skew
between the clocks of any two processes is ε and the lease of process p on a given resource
expires at time t, then p knows that no other process will touch the resource before time t− ε
on p’s clock [Lam96]. The motivation of this work was to figure out whether some concept of
lease could make sense in an asynchronous system model. Of course, the traditional concept
of lease is impossible to implement in such a system model because process relative speeds and
communication delays are unbounded. An interesting question follows: can we devise a useful
notion of lease that is implementable in an asynchronous system model?

We show in this paper that the answer is yes. Roughly speaking, we introduce a concept
of asynchronous lease where we replace the notion of time period with the notion of positive
integer interval, i.e., we measure the term of a lease using a positive integer interval. A process
(1) should not acquire a lease for an interval that overlaps with an interval for which a lease has
already been granted, and (2) should acquire a lease for any interval for which no lease has been
requested. While it preserves the original intuition of the synchronous lease concept, and it can
be implemented with a rather simple quorum-based algorithm in an asynchronous system model
(as we show in this paper), our concept of asynchronous lease can obviously not be used in the
same traditional manner. Indeed, holding a lease over a resource for a given interval of positive
integers does not say much about any form of exclusive access to the resource at a given point
in time. So what does an asynchronous lease buy us?

1



Not surprisingly, an asynchronous lease provides the adequate semantics when the mutual
exclusion does not need to be ensured with respect to time, but with respect to intervals of
positive integers. We illustrate the use of this notion by showing how it can significantly improve
the performance of the atomic broadcast algorithm of [CT96]. The algorithm was devised as a
sequence of consensus instances and, intuitively, we use our notion of lease to grant the holder of
the lease the right to be the first coordinator for all consensus instances within the term of the
lease. Basically, the first coordinator has the advantage that it can short-cut the first consensus
communication step and directly impose its decision. In stable periods of the system (the
most frequent periods in practice), we reduce the number of messages and communication steps
needed to reach a final decision within each of these consensus instances. Interestingly, we apply
our notion of lease to the atomic broadcast algorithm of [CT96] without actually changing the
algorithm: we plug-in a specific fast consensus algorithm obtained by incorporating our notion
of asynchronous lease into the consensus algorithm of [CT96].

The use of leasing in this manner is not new. Lampson suggested in [Lam96] the use of
leases to improve the performance of the Paxos replication algorithm of Lamport [Lam89]. Our
idea has the same flavour, except that Lampson considered the traditional notion of lease, i.e.,
relying on synchrony assumptions, whereas our notion is completely asynchronous. Our concept
of asynchronous lease could easily be adapted to the Paxos algorithm [Lam89], which is also
devised as a sequence of consensus instances. In general however, it is not clear when exactly our
notion of asynchronous lease can replace the traditional synchronous one. Studying the general
applicability of asynchronous leases is however out of the scope of this paper.

In the context of this paper, we assume the crash-stop model of [CT96]. Processes fail by
crashing and do not recover from a crash. A process which never fails is called a correct process.
Processes communicate through send and receive primitives abstracting reliable communication
channels [HT93]. As we point out in the paper, the ideas presented here could however easily
be extended to a more practical crash-recovery system model [ACT00].

To sum up, the contribution of this paper consists in introducing a notion of lease that
can be (1) implemented in an asynchronous system and (2) shown to be useful in enhancing
the performance of a distributed algorithm without hampering its fault-tolerance. Section 2
presents the specification of our lease abstraction, Section 3 gives an implementation of it and
Section 4 illustrates its use. Section 5 concludes the paper with a practical observation.

2 Lease Specification

In our context, a lease (i.e., an asynchronous lease hereafter denoted lease) is a contract granting
exclusive rights over a shared resource for a logical period. A logical period is a finite interval
of positive integers. Leases grant exclusive rights over an interval; and for a given interval, a
lease is acquired at most once. We do not require that leases are acquired for all intervals;
there can be intervals for which no process acquires the lease.1 We introduce some notations
and terminology to precisely define the properties of the lease. Let N be the set of all positive
integers, and let s, e, s′, e′ ∈ N with s ≤ e and s′ ≤ e′. Then, we define

Interval s, e: {i ∈ N | s ≤ i ≤ e}.
Overlapping intervals: Two intervals [s, e] and [s′, e′] overlap if (s ≤ s′ ≤ e) or (s ≤ e′ ≤ e).
Lease(s,e): The function lease(s, e) either returns true or false; lease(s, e) is always invoked
with s ≤ e.
Leasing terminology: We say that a process p acquires the lease for the interval [s, e] if p invokes

1Just like most real clock based lease schemes, there exist some intervals for which no process has the lease.

2



lease(s′, e′) (we say that the lease is requested) such that [s, e] ⊆ [s′, e′] and lease(s′, e′) returns
true. We say that the lease is refused if lease(s, e) returns false.

Lease Properties. A lease is a shared object exporting the operation lease() that is defined
by the two following properties:

• At most once leasing: No two leases have overlapping intervals. More precisely,
Let LI be the set of all lease() invocations (including the invocations which do not complete

due to process crashes). Let L (⊆ LI) be the set of all lease() invocations which return true,
then

∀ l1,l2 ∈ L, (l1.s ≤ l2.s ≤ l1.e) ∨ (l1.s ≤ l2.e ≤ l1.e) = false

• Mandatory leasing: A lease cannot be refused if no lease has been requested for an
overlapping interval. More precisely,

Let LIs,e = {lease(s′, e′) ∈ LI | (s ≤ s′ ≤ e) ∨ (s ≤ e′ ≤ e)} where s, e, s′, e′ ∈ N, then
((LIs,e = {lease(s, e)}) ∧ (lease(s, e) returns)) ⇒ lease(s, e) ∈ L

To illustrate the semantics of a lease object, Figure 1 gives some runs where processes invoke
the lease() function. In Figure 1(a), the properties of the lease object are trivially satisfied.
In Figure 1(b), the invocation of lease(5, 15) returns false to ensure the at most once leasing
property of the lease. This conveys the idea that, according to our semantics, even the very
same process cannot acquire the same lease twice. Figure 1(c) depicts an example where both
leases are acquired even if they are not requested with increasing order intervals. Figure 1(d)
depicts a run where lease(1, 10) must return false in order not to violate the at most once
leasing property of the lease. In Figures 1(e) and 1(f), the lease invocations are concurrent. For
Figure 1(e), both invocations return false and this example does not violate the mandatory
leasing property. Note also that due to the indeterminism of the system, the following results
could have been possible, lease(1, 10) returns false and lease(5, 15) returns true, or the opposite,
lease(1, 10) returns true and lease(5, 15) returns false. Figure 1(f) depicts a run that violates
the mandatory leasing property, i.e., both lease invocations should return true.

p1

p2

p3

 lease(1,10)

 true

 lease(11,20)

true

(a)

p1

p2

p3

 lease(1,10)

 true

 lease(5,15)

false

(b)

p1

p2

p3

 lease(1,10)

 true

 lease(11,20)

true

(c)

p1

p2

p3

 lease(1,10)

 false

 lease(5,15)

true

(d)

p1

p2

p3

 lease(1,10)

 false

 lease(5,15)

false

(e)

p1

p2

p3

 lease(1,10)

 false

 lease(11,21)

true

(f)

Figure 1: Lease examples

3



3 Lease Implementation

This section gives an implementation of the lease object in an asynchronous system model. As-
suming a majority of correct processes, the algorithm of Figure 2 implements a wait-free [Her91]
lease object. The algorithm works as follows. Each process has an array permission which is
initially empty. On invoking lease(s, e), a process p sends a lease message m to all processes.
On receiving this lease message m, a process q replies with an ack lease message if all values
from permission[s] to permission[e] are ⊥. Otherwise, q replies with a nack lease message.2

Before replying with an ack lease or a nack lease message, q sets permission[i] (s ≤ i ≤ e)
to the pid of the process requesting the lease. Thus, for all subsequent lease messages with an
interval overlapping with [s, e], q sends nack lease messages. If p (the process which invoked
lease(s, e)) receives a majority of ack lease messages, the lease(s, e) function returns true,
otherwise the function returns false.3

1: for each process p:
2: initialisation: permission[]← {⊥,⊥, . . .}; tmp← true
3: procedure lease (s,e)
4: send (m = (lease,s, e)) to all

5: wait until received (ack lease,m) or (nack lease,m) from
⌈

(n+1)
2

⌉
different processes

6: if received only (ack lease,m) then return(true) else return(false)
7: upon receive m = (lease,s, e) from q do
8: tmp← true
9: for s ≤ i ≤ e do
10: tmp← (tmp and (permission[i] =⊥)); permission[i]← q
11: if (tmp) then send (ack lease,m) to q else send (nack lease,m) to q

Figure 2: Wait-free lease implementation with reliable channels and a majority of correct pro-
cesses

Lemma 1. (At most once leasing) No two leases have overlapping intervals.

Proof. Suppose by contradiction that (i) a process p acquires the lease for the interval [s, e],
(ii) a process q acquires the lease for the interval [s′, e′], and (iii) the two intervals overlap.4

When p or q acquire a lease, both require to receive ack lease messages from a majority of
processes. Since two majorities of processes always intersect, there must be a process k which
sent an ack lease message in reply to m1 = (lease, s, e), as well as to m2 = (lease, s′, e′).
Let x be within the intervals [s, e] and [s′, e′] (such an integer exists because the two intervals
overlap). Without loss of generality, we can assume that process k received m1 before m2.
Before sending an ack lease message in reply to m1, permission[x] at k is set to p (line 10).
Since permission[x] at k is no longer ⊥, k replies with a nack lease message to all subsequent
(lease,*,*) messages whose interval contains x, e.g., m2: a contradiction. ✷

Lemma 2. (Mandatory leasing) A lease cannot be refused if no lease has been requested for an
overlapping interval.

Proof: Suppose that a process p invokes l = lease(s, e) and assume that there is no lease
2Note that p needs to consider the ack lease or nack lease messages corresponding to the current lease

request. Therefore, the replies are tagged with the original lease message m to distinguish between the replies
from two different lease invocations.

3This crash-stop implementation of lease (Figure 2) can be readily transformed to a crash-recovery model.
The send and receive primitives are replaced by the s-send and s-receive primitives of a retransmission module
([ACT00]) to accommodate fair lossy channels, and before replying with an ack lease or a nack lease message,
the permission array is stored into stable storage (in order to recover from a crash).

4Processes p and q may or may not be the same process.

4



invocation with an interval that overlaps with [s, e]. Suppose by contradiction that l returns
false. Therefore, by the algorithm of Figure 2, p has received a nack lease message from at
least one process, e.g, process q. Since q sent a nack lease message, there exists an integer
i ∈ [s, e] such that permission[i] �= ⊥ at q. As permission[i] is initially set to ⊥ at all processes,
process q must have received another (lease, s′, e′) message such that i ∈ [s′, e′]. Thus, there
is a lease invocation whose interval overlaps with [s, e]: a contradiction. ✷

Lemma 3. (Wait-free) After a process invokes lease(), either the process crashes or it eventually
returns from the invocation.

Proof. Suppose by contradiction that after invoking lease(), a process p does not crash and
remains blocked forever in the lease() method. Since p does not crash, p is a correct process. In
the lease() function, p can only block at line 5 waiting for ack lease or nack lease messages.
Since p is correct and the communication channels are reliable, the lease message is received
by all correct processes. By the properties of the reliable channels, the replies (ack lease or
nack lease) from every correct process are eventually received by p. So, p is guaranteed to
receive the replies from every correct process, i.e., a majority of correct processes. Thus, p
eventually completes line 5 and the lease() invocation returns: a contradiction. ✷

Proposition 4. The algorithm of Figure 2 implements a wait-free lease with a majority of
correct processes.

Proof: Immediate from lemmata 1, 2, and 3. ✷

4 Lease Application

This section describes an application of our asynchronous lease abstraction. We devise a new
consensus algorithm, denoted FastCT which solves consensus in an asynchronous system aug-
mented by a ✸S failure detector and the assumption of a majority of correct processes. FastCT
is a variant of the ✸S-based consensus algorithm of [CT96] that integrates our notion of lease.5

Roughly speaking, the lease helps generalise to every process the optimisation of the [CT96]
consensus algorithm that allows process p1 for round 0 to impose directly its value. If the
[CT96] atomic broadcast algorithm is based on our FastCT consensus algorithm (instead of the
[CT96] consensus algorithm, i.e., uses our lease abstraction), then fewer communication steps
are required. We first recall in this section the basics of the [CT96] consensus algorithm. We
then explain the main differences between the [CT96] consensus algorithm and our FastCT al-
gorithm. Finally, we give the correctness proofs of FastCT, and we discuss the performance of
a FastCT atomic broadcast algorithm.

4.1 Consensus Problem (reminder)

In the consensus problem, all processes are supposed to propose an initial value and eventually
decide on the same final value, among one of the proposed values. Processes propose a value by
invoking an operation propose() with their initial value as a parameter, and decide the value
returned from that invocation. The processes must satisfy the following properties:

Validity: If a process decides v, then v was proposed by some process.

Integrity: Every process decides at most once.

Agreement: No two processes decide differently.
5For subsequent discussion, we denote the later “[CT96] consensus algorithm”.

5



Termination: Every correct process eventually decides some value.

[CT96] Consensus Algorithm. We present a brief description of the [CT96] consensus al-
gorithm. The algorithm proceeds in rounds, with each round consisting of four phases. Each
process starts from round 0, and executes successive rounds with increasing round numbers until
it r-delivers6 a decide message. The coordinator of a round, process cp, is decided based on the
rotating coordinator paradigm: cp = (r mod n)+1 where r is the round number and n is the
total number of processes.

In phase 1 of a round, every process sends an estimate message to the coordinator. In
phase 2, the coordinator gathers estimate messages from a majority of processes, selects the
one with the highest timestamp7 and sends it as a newestimate message to all processes. In
phase 3, a process either receives a newestimate message from the coordinator, or the local
failure detector suspects the coordinator. In turn, the process sends an ack message (resp.
a nack message) to the coordinator if it receives a newestimate message (resp. suspects
the coordinator). In phase 4, if the coordinator receives a majority of ack messages then the
coordinator r-broadcasts a decide message. All processes then move to the next round. A
process executes one round after another until a decide message is r-delivered, upon which it
decides on that message and then terminates the algorithm.

The [CT96] consensus algorithm can be optimised for round 0 and process p1. Instead of
waiting for a majority of estimate messages, p1 can directly impose its value by sending a
newestimate message to every process. This optimisation is possible since there is no lower
round than 0 and it is useless to wait for estimate messages since no process was able to decide
before. This modification significantly speeds up the algorithm by removing one communication
step (send and receive of estimate messages). Note that the above optimisation works only
if p1 is up during round 0 and p1 is not (incorrectly) suspected by any other process. If p1
crashes, this optimisation cannot be applied to any future consensus. We use the notion of lease
to generalise this optimisation for any process.

4.2 FastCT Algorithm

Figure 4 presents our FastCT algorithm. We first describe intuitively the algorithm and then
its data structure. We delve into the differences between the [CT96] consensus algorithm and
our FastCT algorithm, and then give its correctness proofs.

4.2.1 Intuitive description

FastCT has two modes: (i) a fast mode where a process tries to directly impose its value, and
(ii) a normal mode that roughly corresponds to the [CT96] consensus algorithm. A fast mode
consists of the first round of FastCT whose round number can be any integer between 0 and
n−1. All subsequent rounds are executed in normal mode. All processes on completion of the
fast mode, moves on to a round in normal mode with round number n. Figure 3 summarises
the differences between the fast and normal modes. The fast mode has a different phase
2: the coordinator does not wait for estimate messages but directly sends a newestimate
message to all processes. Unlike the optimisation mentioned previously, p1 is not necessarily the

6The algorithm also uses a reliable broadcast abstraction with two primitives R-Broadcast and R-
Deliver [HT93].

7Informally, a timestamp is the round number in which the estimate was most recently updated.

6



coordinator of the fast mode but any process can be coordinator. The normal mode has the
same steps as a round of the [CT96] consensus algorithm.

p1

p2

p4

p5

p3

NewEstimate

N-Ack

Decide

p1

p2

p4

p5

p3

Estimate

NewEstimate

N-Ack

Decide

Figure 3: fast and normal mode

4.2.2 Detailed Description

Input parameters for FastCT. FastCT consensus exports a function propose(). A process p
invokes propose() with two parameters: cn and vp. The parameter cn is the consensus number
of the current consensus, and vp is the value proposed by p for the consensus. As we discuss
later FastCT in the context of atomic broadcast, we assume that each consensus instance is
associated with a unique consensus number (cn). This consensus number is used while acquiring
the lease. It is important to recall the difference between consensus number and round number:
a consensus instance has a unique consensus number, whereas the consensus may proceeds into
several rounds, each round with a different round number.

The Lease status variable. The variable Lease status is a static array at a process p (line 2
of Figure 4), i.e, the variable is shared by all instances of FastCT at p. The variable maintains
the lease status of p for all consensus instances. Recall that a lease is always requested on an
interval (see Section 2). The value returned for the invocation of lease(cn, cn + λ) is stored in
Lease status at all indices within [cn, cn+ λ]. Therefore, subsequent consensus instance whose
consensus numbers are within that interval can directly read from the array Lease status and
hence, do not need to invoke the lease() function, i.e., only one lease() invocation is made per
λ instances of FastCT. Note that if Lease status[cn] = ⊥ then p has not yet requested a lease
for cn. If Lease status[cn] = true then p has requested a lease for cn and has acquired the
corresponding lease. Finally, if Lease status[cn] = false then p has requested a lease for cn
and it was refused.

Function rotate(). The function rotate() evaluates the round number and the corresponding
coordinator at a process p. Remember that the fast mode consists of only one round and has
a round number between 0 and n − 1. The normal mode consists of an unlimited number of
rounds where the round number is greater than n− 1. For the fast mode, i.e., the first round
of the consensus, its round number is chosen such that eventually, at all correct processes the
round number of the fast mode is the same.8 After the first round, the rotate() function forces

8I.e., all correct processes trust the same process as the coordinator of the fast mode. To ensure the claim,
we transform the failure detector ✸S to the failure detector Ω. Task Transform maps the output of ✸S to Ω
using the Slander algorithm given by [Chu98]. The Min(countp) in the function rotate() emulates the output of
the failure detector Ω. Eventually, all processes output the same process in Min(countp).

7



p to jump to at least round number n. This jump, in fact, forces p to change from fast mode
to normal mode.

Lease in FastCT. Due to process crashes and unreliable failure detection, more than one
process may trust itself to be the coordinator of the fast mode. If more than one process tries
to directly impose its value by sending a newestimate message in fast mode, there are runs
which violate the agreement property of consensus. We use here the lease to restrict the number
of coordinators in fast mode to at most one. Before starting as a coordinator of the fast mode,
a process needs to acquire the lease corresponding to the current consensus number. Even if
more than one process tries to be the coordinator of the fast mode, by the properties of the
lease, at most one process succeeds in acquiring the lease and hence, at most one process sends
a newestimate message in fast mode.

Decision. Unlike the [CT96] consensus algorithm, the round number of the first round in
FastCT (i.e., fast mode) is not pre-determined. It is dependent on the output of the failure
detector, and hence each process can have a different value of round number (and a different
coordinator) in fast mode. Recall that, in the [CT96] consensus algorithm, a process in round r
sends and receives messages which are from round r. FastCT also uses the same scheme but this
may block a process forever in FastCT. We show with the following two cases that introducing
some extra messages avoids such deadlocks.

(1) Process p trusts itself as coordinator of the fast mode (due to incorrect suspicion) and
acquires the lease for the consensus, but only a minority of processes trust p as the coordinator
of the fast mode. Process p sends a newestimate message and keeps on waiting in phase 4
for ack/nack messages from a majority of processes. Process p keeps on waiting since at most
a minority of processes sends ack/nack messages to p. This case is avoided by sending a nack
message in reply to any newestimate message sent in fast mode if the receiving process does
not trust the sending process as the coordinator of the fast mode (line 48 of Figure 4).

(2) Process p trusts another process q as the coordinator of the fast mode (due to incorrect
suspicion), but process q does not trust itself to be the coordinator of the fast mode (or fails to
acquire the lease), and q is correct. In this case, p keeps on waiting for newestimate messages
from q and queries its failure detector (phase 3). It is possible that p never suspects q, since
q is correct. So, p waits forever in fast mode. If p is faulty, then this case does not violate
termination. However, if p is correct then q eventually receives an estimate message (phase 1)
from fast mode of p. If q does not send a newestimate message in fast mode (either because
q does not trust itself to be coordinator or q does not get the lease) q sends an abort message
to p (line 46 of Figure 4), which terminates p’s waiting in phase 3.

4.2.3 Correctness Proofs

We now prove the consensus properties for FastCT. Due to the similarity with the [CT96]
consensus algorithm, the proofs only consider the cases where FastCT is different from [CT96].
We introduce the notion of interesting round to simplify the description of the proof. A round is
said to be interesting if a newestimate message was sent in that round. If an interesting round
is executed in fast mode, then this round is denoted a f-round. All other interesting rounds
are denoted n-rounds. Note that, by the definition of fast and normal modes, a f-round has
a round number less than n and executes phase 2F, whereas a n-round has a round number
greater than or equal to n and executes phase 2N.

Lemma 5. For an interesting round with round number k, if there exists another interesting
round with round number l such that l < k then k is a n-round.

8



1: for each process p
2: static Lease status← {⊥,⊥, . . .}; trustp ← p; countp ← {0, 0, . . .}; start task Transform {Executed once at p}
3: procedure propose(cn, vp)
4: upon initialisation do
5: statep ← undecided; estimatep ← vp; rp ← 0; cp ← 0; tsp ← 0; fastp ← false; firstcp ← ⊥; λ ← default

interval
6: while state = undecided do
7: (rp, cp)← rotate()
8: if (firstcp = ⊥) then firstcp ← cp {Remember the pid of coordinator of the fast mode}
9: Phase 1:
10: send (estimate,p, rp, estimatep, tsp) to cp

11: Phase 2:
12: if (p = cp) then
13: Phase 2F: {Phase 2, fast mode}
14: if (rp < n) then
15: if (Lease status[cn] = ⊥) then
16: tmp← lease(cn, cn + λ)
17: for (cn ≤ i ≤ (cn + λ)) do
18: Lease status[i]← tmp
19: fastp ← Lease status[cn]; Lease status[cn]← false
20: if (fastp) then
21: estimatep ← vp; send (newestimate,p, rp, estimatep) to all
22: else
23: continue {Go to while state = undecided}
24: Phase 2N: {Phase 2, normal mode}
25: else
26: wait until [for

⌈
(n+1)

2

⌉
processes q : received (estimate, q, rp, estimateq , tsq) from q]

27: msgp[rp]← {(estimate,q, rp, estimateq , tsq) | (estimate,q, rp, estimateq , tsq) p received from q}
28: t← largest tsq such that (estimate,q, rp, estimateq , tsq) ∈ msgp[rp]
29: estimatep ← select one estimateq such that (estimate,q, rp, estimateq , t) ∈ msgp[rp]
30: send (newestimate,p, rp, estimatep) to all
31: Phase 3:
32: wait until [(received(newestimate,cp, rp, estimatecp ) or (abort,cp, rp) from cp) or (cp ∈ ✸S.suspected)]
33: if [received (newestimate,cp, rp, estimatecp ) from cp] then
34: estimatep ← estimatecp ; tsp ← rp; send (ack,p, rp) to cp

35: else
36: send (nack,p, rp) to cp

37: Phase 4:
38: if (p = cp) then

39: wait until [for
⌈

(n+1)
2

⌉
processes q : received (ack,q, rp) or (nack,q, rp)]

40: if [for
⌈

(n+1)
2

⌉
processes q : received (ack,q, rp)] then

41: R-Broadcast (decide,p, rp, estimatep)
42: upon receive m from q do
43: if (m.rq < n) then {message from the fast mode}
44: wait until [phase 1 and phase 2 of the fast mode are complete] {Until fastp and firstcp are evaluated}
45: if [m = (estimate,q, rq, estimateq , tsq) and (!fastp)] then
46: send (abort,p, rq) to q
47: if [m = (newestimate,q, rq, estimateq , tsq) and (!firstcp)] then
48: send (nack,p, rq) to q
49: when R-Deliver (decide, q, rq, estimateq)
50: if (statep = undecided) then decide(cn, estimateq); statep ← decided

51: procedure rotate()
52: upon initialisation: next←Min(countp)-1 {return the first index with the minimum element}
53: r ← next; next←Max{next + 1, n}; return (r, r mod n + 1)

54: task Transform
55: repeat forever
56: for (q ∈ ✸S.suspected) do
57: countp[q]← countp[q] + 1
58: send (fd, countp) to all
59: upon receiving (fd,countq) from q do
60: countp ←Max(countp, countq) {Element-wise maximum of the two arrays}

Figure 4: FastCT algorithm in a crash-stop model

9



Proof. There are two cases to consider. First, round l is a f-round and assume p is the
corresponding coordinator. Therefore, fastp is true at p in round l and false in all other
rounds at all processes (at most once leasing property of lease). So k cannot be a f-round.
However, k is an interesting round, hence k is a n-round. Second, round l is a n-round ; thus,
l ≥ n, and k > l ≥ n. So round k is a n-round. ✷

Lemma 6. (Agreement) No two processes decide differently.

Proof. If no process ever decides then the lemma is trivially true. If a process decides then
it must r-deliver a decide message. By the uniform integrity property of reliable broadcast, a
coordinator has r-broadcast this message. By the algorithm of Figure 4, this coordinator has
received a majority of ack messages in phase 4. Let r be the smallest round number in which a
majority of ack messages were sent to the coordinator in phase 3. Let c denote the coordinator
of round r, i.e., c = (r mod n)+1. Let estimatec be the estimate of process c, at the end of
phase 2 in round r. By the algorithm of Figure 4, c must have sent a newestimate message,
and hence, round r is an interesting round.

We then claim that for all rounds r′ ≥ r, if r′ is an interesting round then estimatecr′ =
estimatec, where cr′ is the coordinator of round r′. We prove this claim by induction on round
numbers. The claim trivially holds for r′ = r. Let k (> r) be an interesting round and let us
assume that the claim holds for all r′ such that r ≤ r′ < k (induction hypothesis). Let ck be
the coordinator of round k. Since r is an interesting round and r < k, from lemma 5, k is a
n-round.9 So, ck must have received estimate messages from a majority of processes in phase
2N. Thus, there is a process p, such that (i) p sent an (ack,p, r) message to c in phase 3 of round
r, and (ii) (estimate,p, k,estimatep, tsp) belongs to msgck

[k] in phase 2 of round k (line 27).

From the algorithm of Figure 4, tsp = r after round r (since p sent (ack,p, r) message in
round r). Since tsp is non-decreasing, tsp ≥ r in round k. Thus, if t is the highest timestamp
in msgck

[k], then r ≤ t < k. Since there exists a process that has a timestamp equal to
t, t is an interesting round. From the induction hypothesis and r ≤ t < k, it follows that
estimatect = estimatec. Since ck adopts estimatect as its estimate, estimateck

= estimatec.
Hence, the claim is proved by induction. So, whenever a round is interesting, the estimate of the
coordinator of that round at the end of phase 2 is estimatec. From the algorithm of Figure 4, a
decision message can only be sent in an interesting round. So, no process can decide differently
from estimatec. ✷

Lemma 7. (Termination) Every correct process eventually decides some value.

Proof. There are two possible cases. First, some correct process p decides, then p r-broadcasts
a decide message, and by the agreement property of reliable broadcast every correct process
r-delivers that decide message and decides. Second, no correct process decides. We claim
that no correct process remains blocked forever at one of the wait statements. The proof is by
contradiction. Let r be the smallest round number in which some correct process gets blocked
forever at one of the wait statement. We only consider here fast mode, i.e., the first round of
the consensus and r < n. If r ≥ n then the case is similar to the [CT96] consensus algorithm.
For phase 1, it is trivial since there are no wait statements. For phase 2, there is no blocking,
since r < n, indeed a process executes phase 2F and there are no wait statements in phase 2F
and the lease invocation is wait-free (see lemma 2). Therefore, the wait statement in line 44 is
non-blocking since phase 1 and 2 of fast mode are non-blocking. For phase 3, a process may
possibly get blocked forever while waiting for newestimate or abort messages. Let p be a
correct process that waits for a newestimate or an abort message from the coordinator k in

9Note that proving k is a n-round is crucial. Otherwise, if k is an f-round, ck would not have waited for
estimate messages from other processes.

10



round r, i.e., r < n and k = (r mod n)+1. There are two cases to consider, (i) k crashes: due
to the strong completeness property of the failure detector ✸S, p suspects k and terminates the
wait statement, and (ii) k is correct, there are again two sub-cases to consider:

1. The fast mode at process k has a round number r′ (< n), different from r. Process k
does not trust itself to be the coordinator of the first round (k = (r mod n)+1 �= (r′ mod n)+1).
Thus, k does not execute phase 2F and variable fastk at k is always false. Process k eventually
receives an estimate message from p and sends an abort message in reply. Since both (p
and k) are correct, p eventually receives this abort message and does not block at the wait
statement.

2. The first round at process k has a round number r. Indeed, k trusts itself as a coordinator
of the fast mode and executes phase 2F. There are further two sub-cases:

2.1. Process k acquires the lease for this consensus. Process k sends a newestimatemessage
with round r to p. When p receives such message, it terminates the wait statement.

2.2. Process k fails to acquire the lease for this consensus. Variable fastk at k is false,
therefore k sends an abort message in reply to the estimate message from p. Thus, p does
not block at the wait statement.

For phase 4, assume that p is a correct process that waits for ack or nack messages from a
majority of processes in phase 4 (of the first round). The correct processes that trust p as the
coordinator of the fast mode sends ack or nack messages to p in phase 3 of the fast mode
(since no correct process waits forever in phase 1-2). The correct processes for which p is not the
coordinator in the first round (firstcp �= p) eventually receives a newestimate message sent
by p in phase 2. So, they reply with a nack message to p (line 47-48). Thus, p receives ack
or nack messages from every correct process, i.e., a majority of correct processes. Therefore, p
eventually terminates the wait in phase 4. ✷

Proposition 8. The algorithm of Figure 4 solves consensus in an asynchronous system aug-
mented with ✸S, and a majority of correct processes.

Proof. From the algorithm of Figure 4, it is clear that no process decides more than once
(integrity). It is also clear that a coordinator receives only estimatemessages that are proposed
values (validity). The agreement and termination properties follow from lemmata 6 and 7. ✷

4.3 Fast Atomic Broadcast

Atomic broadcast is a useful primitive in distributed computing that ensures total order delivery
of messages among processes. Intuitively, processes do not only agree on the set of messages
they deliver, as with reliable broadcast, they also agree on the sequence of messages they de-
liver [HT93]. [CT96] gives an atomic broadcast algorithm based on consensus as an underlying
building block. Basically, the processes execute a sequence of consensus instances, each instance
being used to agree on a batch of messages: the processes use the same deterministic function
to deliver messages within the same batch.

By plugging our FastCT consensus algorithm into the atomic broadcast algorithm of [CT96]
(instead of the [CT96] consensus algorithm), we obtain a faster atomic broadcast algorithm,
which we denote here FastCT atomic broadcast. To simplify reading, the atomic broadcast
based on the [CT96] consensus algorithm is denoted [CT96] atomic broadcast. We first define the
notion of stable period and then describe the conditions under which FastCT terminates in fast
mode.10 We then compare the performance of our FastCT consensus algorithm (resp. FastCT

10I.e., a decide message is r-broadcast in fast mode.

11



atomic broadcast) with the [CT96] consensus algorithm (resp. [CT96] atomic broadcast).

Stable period. We define a stable period as a period where (i) no process crashes or recovers,
(ii) a process p is up, and (iii) every process that invokes propose() trusts p as the coordinator
of the fast mode. If a FastCT instance is launched in a stable period, then all participating
processes start with the same coordinator (and hence, the same round number) in fast mode.
Furthermore, if the coordinator succeeds in acquiring the lease, then the FastCT algorithm
terminates in fast mode.

Consensus performance. If our FastCT algorithm terminates in fast mode, the algorithm
requires five communication steps: two steps for acquiring the lease, one step for sending and
receiving the newestimate message, one step for sending and receiving ack messages, and
one final step for the reliable broadcast. Whereas the [CT96] consensus algorithm requires four
communication steps.11 Thus, our FastCT algorithm is less efficient than the [CT96] consensus
algorithm for stand-alone consensus.

Atomic broadcast performance. As our FastCT consensus algorithm exports the same
primitive (propose()) and satisfies the same properties of the [CT96] consensus algorithm, we can
use exactly the same atomic broadcast algorithm given in [CT96] that transforms consensus into
atomic broadcast. We now give a simple sketch explanation of the following claim. If there are
always new messages being broadcast (and hence, new FastCT instances are launched), eventually
all new FastCT instances terminate in fast mode. Since (i) eventually only correct processes
are up, and (ii) task Transform emulates the failure detector Ω, then Min(countp) eventually
outputs the same correct process pc at all correct processes. Process pc is then trusted as the
coordinator of the fast mode by all correct processes. Therefore, pc is the only process that
requests new leases and succeeds in acquiring them. Process pc sends a newestimate message
to all processes. Since all correct processes trust pc, pc eventually receives ack messages from
every correct process (a majority) and r-broadcasts a decide message. Thus FastCT terminates
in fast mode.

Recall the discussion about the Lease status variable from Section 4.2, it is sufficient to
invoke lease() once per λ number of FastCT instances.12 In runs of atomic broadcast where
there are a large number of consensus instances and a value of λ large enough, the number
of communication steps required for acquiring the lease is insignificant. This can be further
illustrated by the following example that compares the performance of FastCT and [CT96]
atomic broadcast. We assume runs with a stable period, 100 consensus instances and different
values of λ for the FastCT atomic broadcast implementation. Note that we do not count
the number of communication steps required outside the consensus abstraction but used by
atomic broadcast, e.g., the R-Broadcast inside atomic broadcast, since these messages are equal
in number for both cases. Figure 5 summarises the performance communication-step wise of
the FastCT (resp. [CT96]) atomic broadcast implementation. The number of communication
steps for [CT96] atomic broadcast is always 400 since 4 communication steps are required per
consensus instance (4 ∗ 100 = 400 communication steps). The number varies for FastCT atomic
broadcast, since 3 communication steps are mandatory per consensus instance. The reminder
comes from the lease invocation (2 communication steps). We divide the number of consensus
instances (100) by λ to find out the number of lease invocations, e.g., for λ = 10, 10 invocations
are mandatory (100/λ = 10). The total number of communication steps for FastCT atomic
broadcast with λ = 10 is (3 ∗ 100) + (2 ∗ 10) = 320 communication steps. Note, in Figure 5,
the dramatic decrease in the number of communication steps between λ = 1 and λ = 10. Note

11Three steps for sending and receiving the following messages estimate, newestimate, ack/nack, and one
step for the R-Broadcast of the decide message.

12λ is the default lease interval in Figure 4.

12



also that for λ = 20 and up, the gain in the number of communication steps is not important
compared to the possible drawback in case the coordinator of the fast mode crashes or the
system becomes unstable.

FastCT Atomic Broadcast

400

1 10

CT96 Atomic Broadcast

500

λ

400

320

20

400

310

50

400

304

100

400

302

Figure 5: Impact of λ on the number of communication steps for 100 consensus instances in a stable
period

5 A Practical Remark

The algorithm of FastCT presented in Figure 4 has a hard-coded lease interval, i.e., the interval
does not change depending on the state of the system. Choosing a suitable lease interval λ is
an optimisation problem and dependent on the network parameters. Selecting a large λ has the
advantage of decreasing the number of lease invocations and thus increasing the performance of
the atomic broadcast in stable periods. However, if a process crashes after acquiring a lease with
a large interval, the optimisation of FastCT cannot be applied anymore until the end of this
interval which is not efficient at all. Indeed, a prudent approach is to select a variable interval.
An algorithm that selects λ should follow these simple observations.

• A priori, one cannot determine whether a process is correct or not. Thus, a lease should
not be acquired for a infinite duration, i.e., there should be a finite maximum size for λ,
e.g., λmax.

• Eventually, all runs of atomic broadcast reach a stable period. Therefore, λ should even-
tually be equal to λmax.

• A process should start with λ = λmax/2. To avoid a race condition when acquiring leases,
a process should decrease its λ once a lease invocation returns false. Subsequently, λ
should be gradually increased once lease invocations start returning true. Note that an
optimistic algorithm could start with λ = λmax if it is a known fact that the system is
stable at initialisation.

References

[ACT00] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery
model. Distributed Computing, 13(2):99–125, May 2000.

[Chu98] F. Chu. Reducing Ω to �W. Information Processing Letters, 67(6):289–293, September 1998.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

[GC89] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for distributed file cache
consistency. In Proceedings of the Twelfth ACM Symposium on Operating Systems Principles,
pages 202–210, 1989.

13



[Her91] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 13(1), January 1991.

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In S. Mullen-
der, editor, Distributed Systems, ACM Press Books, chapter 5, pages 97–146. Addison-Wesley,
second edition, 1993.

[Lam89] L. Lamport. The part-time parliament. Technical Report 49, Systems Research Center, Digital
Equipement Corp, Palo Alto, September 1989. A revised version of the paper also appeared in
TOCS vol.16 number 2.

[Lam96] B. Lampson. How to build a highly available system using consensus. In Proceedings of the
10th International Workshop on Distributed Algorithms (WDAG-10), pages 1–15, Bologna,
Italy, 1996.

14


