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Abstract

The Paxos part-time parliament protocol of Lamport provides a very practical way to implement a fault-tolerant

deterministic service by replicating it over a distributed message passing system. The contribution of this paper is

a faithful deconstruction of Paxos that preserves its efficiency in terms of forced logs, messages and communication

steps. The key to our faithful deconstruction is the factorisation of the fundamental algorithmic principles of Paxos

within two abstractions: weak leader election and round-based consensus, itself based on a round-based register

abstraction. Using those abstractions, we show how to reconstruct, in a modular manner, known and new variants of

Paxos. In particular, we show how to (1) alleviate the need for forced logs if some processes remain up for sufficiently

long, (2) augment the resilience of the algorithm against unstable processes, (3) enable single process decision with

shared commodity disks, and (4) reduce the number of communication steps during stable periods of the system.
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∗The Island of Paxos used to host a great civilisation, which was unfortunately destroyed by a foreign invasion. A famous archaeologist reported

on interesting parts of the history of Paxons and particularly described their sophisticated part-time parliament [11]. Paxos legislators maintained

consistent copies of the parliamentary records, despite their frequent forays from the chamber and the forgetfulness of their messengers. Although

recent studies explored the use of powerful tools to reason about the correctness of the parliament protocol [12, 16], our desire to better understand

the Paxon civilisation motivated us to revisit the Island and spend some time deciphering the ancient manuscripts of the legislative system. We

discovered that Paxons had precisely codified various aspects of their parliament protocol which enabled them easily adapt the protocol to specific

functioning modes throughout the seasons. In particular, during winter, the parliament was heated and some legislators did never leave the chamber:

their guaranteed presence helped alleviate the need for expensive writing of decrees on ledgers. This was easy to obtain precisely because the

subprotocol used to “store and lock” decrees was precisely codified. In spring, and with the blooming days coming, some legislators could not stop

leaving and entering the parliament and their indiscipline prevented progress in the protocol. However, because the election subprotocol used to

choose the parliament president was factored out and precisely codified, the protocol could easily be adapted to cope with indisciplined legislators.

During summer, very few legislators were in the parliament and it was hardly possible to pass any decree because of the lack of the necessary

majority. Fortunately, it was easy to modify the subprotocol used to store and lock decrees and devise a powerful technique where a single legislator

could pass decrees by directly accessing the ledgers of other legislators. Fall was a protest period and citizens wanted a faster procedure to pass

decrees. Paxons noticed that, in most periods, messengers did not loose messages and legislators replied in time. They could devise a variant of the

protocol that reduced the number of communication steps needed to pass decrees during those periods. This powerful optimisation was obtained

through a simple refinement of the subprotocol used to propose new decrees.
†This work was partially supported by the Swiss National Fund grant No. 510 207.

1



1 Introduction

The Paxos Algorithm

The Paxos part-time parliament algorithm of Lamport [11] provides a very powerful way to implement a highly-

available deterministic service by replicating it over a system of non-malicious processes communicating through

message passing. Replicas follow the state-machine pattern (also called active replication) [19]. Each correct replica

computes every request and returns the result to the corresponding client which selects the first returned result. Paxos

maintains replica consistency by ensuring total order delivery of requests. It does so even during unstable periods of

the system, e.g., even if messages are delayed or lost and processes crash and recover. During stable periods, Paxos

rapidly achieves progress.1 As pointed out in [12, 16] however, Paxos is rather tricky and it is difficult to factor out

the abstractions that comprise the algorithm. Deconstructing the algorithm and identifying those abstractions is an

appealing objective towards specific reconstructions and practical implementations of it.

In [12, 16], Lampson, De Prisco and Lynch focused on the key issue in the Paxos algorithm used to agree on a total

order for delivering client requests to the replicas. This agreement aspect, factored out within a consensus abstraction,

is deconstructed into a storage and a register part. As pointed out in [12, 16], one can indeed obtain a pedagogically

appealing state machine replication algorithm as a straightforward sequence of consensus instances, but faithfully

preserving the efficiency of the original Paxos algorithm goes through opening the consensus box and combining

some of its underlying algorithmic principles with non-trivial techniques such as log piggy-backing and leasing. The

aim of our paper is to describe a faithful deconstruction top to bottom, of the entire Paxos replication algorithm. Our

deconstruction is faithful in the sense that it relies on abstractions that do no need to be opened in order to preserve

the efficiency of the original Paxos replication scheme.

The Faithful Deconstruction

A key to our faithful deconstruction is the identification of the new notion of round-based consensus, which is in a

sense, finer-grained than consensus.2 This new abstraction is precisely what allows us to preserve efficiency without

sacrificing modularity. Our deconstruction of the overall Paxos state machine replication algorithm is modular, and

yet it preserves the efficiency of the original algorithm in terms of forced logs, messages and communication steps.

We use round-based consensus in conjunction with a leader election abstraction, both as first class citizens at the level

of the replication algorithm. Round-based consensus allows us to expose the notion of round up to the replication

scheme, as in the original Paxos replication algorithm (but in a more modular manner) and merge all forced logs of the

round at the lowest level of abstraction. Round-based consensus also allows a process to propose more than once (e.g.,

after a crash and a recovery) without implying a forced log. Having the notion of leader as a first class abstraction at
1In fact, the liveness of the algorithm relies on partial synchrony assumptions whereas safety does not: Paxos is “indulgent” in the sense of [6].

In a stable period where the leader communicates in a timely manner with a majority of the processes (most frequent periods in practice), two
communication steps (four if the client process is not leader) and one forced log at a majority of the processes are enough to perform a request and
return a reply.

2The round-based consensus is actually strictly weaker than consensus: it can be implemented with a majority of correct processes and does
not fall within the FLP impossibility, yet it has a meaningful liveness property. Roughly speaking, round-based consensus is the abstraction that we
obtain after extracting the leader election from consensus.
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the level of the replication algorithm (and not hidden by a consensus box) enables the client to send its request directly

to the leader, which can process several requests in a row.

Effective Reconstructions

Not only do our abstractions of leader election and round-based consensus help faithfully deconstruct the original

Paxos replication algorithm, they also enable us to straightforwardly reconstruct known and new variants of it by only

modifying the implementation of one of our abstractions. For example, we show how to easily obtain a modularisation

of the so-called Disk Paxos replication algorithm [5], where progress is ensured with a single correct process and a

majority of correct disks, by simply modifying a component in round-based consensus (its round-based register). 3 We

also show how to cleanly obtain the “Fast” Paxos variant by integrating the “lease-based” tricky optimisation, sketched

in [11] and pointed out in [12]. This optimisation makes it possible in stable periods of the system (where “enough”

processes communicate in a timely manner) for any leader to determine the order for a request in a single round-trip

communication step.

We also construct two new variants of Paxos. The first one is more resilient than the original one in the sense that

it copes with unstable processes, i.e., processes that keep on crashing and recovering forever. (The original Paxos

replication algorithm might not achieve progress in the presence of such processes.) Our second variant alleviates

the need for stable storage and relies instead on some processes being always up. This variant is more efficient

than the original one (stable storage is usually considered a major source of overhead) and intuitively reflects the

practical assumption that only part of the total system can be down at any point in time, or indirectly, that the system

configuration has a “large” number of replicas. 4 We point out that further variants can be obtained by mixing the

variants we present in the paper, e.g., a Fast Disk Paxos algorithm or a Fast Paxos algorithm than handles unstable

processes.

Thanks to our modular approach, we could implement Paxos and its variants as a framework. We give here practical

implementation measures of the various replication algorithms in this framework.

Roadmap

The rest of the paper is organised as follows. Section 2 describes the model and the problem specification. Section 3

gives the specification of our abstractions. We show how to implement these specifications in a crash-stop model in

Section 4, and how to transpose the implementation in a more general crash–recovery model in Section 5. Section 6

describes four interesting variants of the algorithm. Section 7 discusses related work. Appendix A gives some perfor-

mance measurements of our framework implementation. Appendix B gives an implementation of the failure detector

Ω in a crash-recovery model with partial asynchrony assumptions.
3This typically makes sense if we have shared hard disks (some parallel database systems use this approach for fail-over when they mount each

others disks) or if we have some notion of network-attached storage.
4Note that such a configuration does not preclude the possibility of process crash-recovery. There is here a trade-off that reflects the real-world

setting: fewer processes + forced logs vs more processes without forced logs.
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2 Model

2.1 Processes

We consider a set of processes Π = {p1, p2, ..., pn}. At any given time, a process is either up or down. When it is

up, a process progresses at its own speed behaving according to its specification (i.e., it correctly executes its program).

Note that we do not make here any assumption on the relative speed of processes. While being up, a process can fail

by crashing; it then stops executing its program and becomes down. A process that is down can later recover; it then

becomes up again and restarts by executing a recovery procedure. The occurrence of a crash (resp. recovery) event

makes a process transit from up to down (resp. from down to up). A process p i is unstable if it crashes and recovers

infinitely many times. We define an always-up process as a process that never crashes. We say that a process p i is

correct if there is a time after which the process is permanently up. 5 A process is faulty if it is not correct, i.e., either

eventually always-down or unstable.

A process is equipped with two local memories: a volatile memory and a stable storage. The primitives store and

retrieve allow a process that is up to access its stable storage. When it crashes, a process loses the content of its

volatile memory; the content of its stable storage is however not affected by the crash and can be retrieved by the

process upon recovery.

2.2 Link Properties

Processes exchange information and synchronise by sending and receiving messages through channels. We assume

the existence of a bidirectional channel between every pair of processes. We assume that every message m includes

the following fields: the identity of its sender, denoted sender(m), and a local identification number, denoted id(m).

These fields make every message unique throughout the whole life of the process, i.e., a message cannot have the

same id even after the crash and recovery of a process. Channels can lose or drop messages and there is no upper

bound on message transmission delays. We assume channels that ensure the following properties between every pair

of processes pi and pj:

No creation: If pj receives a message m from pi at time t, then pi sent m to pj before time t.

Fair loss: If pi sends a message m to pj an infinite number of times and pj is correct, then pj receives m from pi

an infinite number of times.

These properties characterise the links between processes and are independent of the process failure pattern occurring

in the execution. The last property is sometimes called weak loss, e.g., in [14]. It reflects the usefulness of the com-

munication channel. Without the weak loss property, any interesting distributed problem would be trivially impossible

to solve. By introducing the notion of correct process into the fair loss property, we define the conditions under which

a message is delivered to its recipient process. Indeed, the delivery of a message requires the recipient process to be

running at the time the channel attempts to deliver it, and therefore depends on the failure pattern occurring in the

execution. The fair loss property indicates that a message can be lost, either because the channel may not attempt to
5In practice, a process is required to stay up long enough for the computation to terminate. In asynchronous systems however, characterising the

notion of “long enough” is impossible.
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deliver the message or because the recipient process may be down when the channel attempts to deliver the message

to it. In both cases, the channel is said to commit an omission failure.

We assume the presence of a discrete global clock whose range ticks τ is the set of natural numbers. This clock

is used to simplify presentation and not to introduce time synchrony, since processes cannot access the global clock.

We will indeed introduce some partial synchrony assumptions (otherwise, fault-tolerant agreement and total order are

impossible [4]), but these assumptions will be encapsulated inside our weak leader election abstraction and used only

to ensure progress (liveness). We give the implementation (with some details on the partial synchrony model) of the

failure detector on which is based our weak leader election in Appendix B. Finally, we define a stable period when (i)

the weak leader election returns the same process p l at all processes, (ii) there is a majority of processes that remains

up, and (iii) no process or link crashes or recovers. Otherwise, we say that the system is in an unstable period.

3 Abstractions: Specifications

Our deconstruction of Paxos is based on two main abstractions: a weak leader election and a round-based consen-

sus, itself based on a round-based register (sub)abstraction. These “shared memory” abstractions export operations

that are invoked by the processes implementing the replicated service. As in [10], we say that an operation invocation

inv2 follows (is subsequent to) an operation invocation inv1, if inv2 was called after inv1 has returned. Otherwise,

the invocations are concurrent.

Roughly speaking, Paxos ensures that all processes deliver messages in the same order. The round-based consensus

encapsulates the subprotocol used to “agree” on the order; the round-based register encapsulates the subprotocol

used (within round-based consensus) to “store” and “lock” the agreement value (i.e., the order); and the weak leader

election encapsulates the subprotocol used to eventually choose a unique leader that succeeds in storing and locking a

final decision value in the register. We give here the specifications of these abstractions, together with the specification

of the problem we solve using these abstractions, i.e., total order delivery. (Implementations are given in the next

sections.) The specifications rely on the notion of process correctness: we assume that processes fail only by crashing,

and a process is correct if there is a time after which the process is always-up (i.e., not crashed). 6

3.1 Round-Based Register

Like a standard register, a round-based register is a shared register that has two operations: read(k) and write(k, v).

These operations are invoked by the processes in the system. Unlike a standard register, the operation invocations of a

round-based register (1) take as a parameter an integer k (i.e., a round number), and (2) may commit or abort. Note that

the notion of round is the same for round-based register and round-based consensus: it corresponds to the notion of

ballots in the original Paxos. The commit/abort outcome reflects the success or the failure of the operation. More pre-

cisely, the read(k) operation takes as input an integer k. It returns a pair (status, v) where status ∈ {commit, abort}
and v ∈ V represents the set of possible values for the register; ⊥∈ V is the initial value of the register. If read(k)

returns (commit, v) (resp. (abort, v)), we say that read(k) commits (resp. aborts) with v. The write(k, v) operation
6Note that the validity period of this definition is the duration of a protocol execution, i.e., in practice, a process is correct if it eventually remains

up long enough for the protocol to terminate.
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takes as input an integer k and a value v ∈ V . It returns status ∈ {commit, abort}. If write(k, v) returns commit

(resp. abort), we say that write(k, v) commits (resp. aborts).7 Intuitively, when a read() invocation aborts, it gives

information about what the process itself has done in the past (e.g., before it crashed and recovered), whereas when

a write() invocation aborts, it gives to the process information about what other processes are doing. A round-based

register satisfies the following properties:

• Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.

• Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ > k.

• Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with k′ ≤ k

and no subsequent write(k ′′, ∗) can commit with k′′ < k.8

• Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with

k′ < k.

• Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,

then any read(k′′) that commits, commits with v if k ′′ > k.

These properties define the conditions under which the operations can abort or commit. Indirectly, these conditions

relate the values read and written on the register. We first describe the condition under which an invocation can abort.

Roughly speaking, an operation invocation aborts only if there is a conflicting invocation. Like in [11], the notion of

“conflict” is defined here in terms of round numbers associated with the operations. Intuitively, a read() that commits

returns the value written by a “previous” write(), or the initial value ⊥ if no write() has been invoked. A write()

that commits forces a subsequent read() to return the value written, unless this value has been overwritten.

The read-abort and write-abort conditions capture the intuition that a read(k) (resp. a write(k, v)) conflicts with

any other operation (read(k ′) or write(k′, v)) made with k′ ≥ k (resp. k′ > k). The read-write commit condition

expresses the fact that, to commit an operation, a process must use a round number that is higher than any round

number of an already committed invocation. The read-commit condition captures the intuition that no value can be

read unless it has been “previously” written. If there has not been any such write, then the initial value ⊥ is returned.

The write-commit condition captures the intuition that, if a value is (successfully) written, then, unless there is a

subsequent write, every subsequent successfully read must return that value. Informally, the two conditions (read-

commit, write-commit) ensure that the value read is the “last” value written.

To illustrate the behaviour of a round-based register, consider the example of Figure 1. Three processes p 1, p2 and

p3 access the same round-based register. Process p1 invokes write(1, X) before any process invokes any operation

on the register: operation write(1, X) commits and the value of the register is X : p 1 gets commit as a return value.

Later, p2 invokes read(2) on the register: the operation commits and p2 gets (commit, X) as a return value. If p3

later invokes write(1, Y ), then the operation aborts: the return value is abort (because p 2 has invoked read(2)). The

register value remains X . If p3 later invokes write(3, Y ), the operation commits: the new register value is then Y .
7Note that even if a write() aborts, its value might be subsequently read, i.e., the write() operation is not atomic.
8Note that we deliberately do not restrict the case where different processes perform invocations with the same round number. Paxos indeed

assumes round number uniqueness as we will see in Section 4.
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p1

p2

p3

write(1,X)

commit

 read(2)

commit,X

write(1,Y)

abort

write(3,Y)

commit

Figure 1. Round-based register example

3.2 Round-Based Consensus

We introduce below our round-based consensus abstraction. This abstraction captures the subprotocol used in

Paxos to agree on a total order. Our consensus notion corresponds to a single instance of total order, i.e., one batch of

messages. To differentiate between consensus instances, i.e., batch of messages, we index the consensus instances with

an integer (L). We represent our consensus notion in the form of a shared object with one operation: propose(k, v) [9].

This operation takes as input an integer k (i.e., a round number which is the same one used in the round-based register)

and an initial value v in a domain V (i.e., a proposition for the consensus). It returns a status in {commit, abort} and

a value in V . We say that a process pi proposes a value initi for round k when pi invokes function propose(k, initi).

We say that pi decides v in round k (or commits round k) when p i returns from the function propose(k, initi) with

commit and v. If the invocation of propose(k, v) returns abort at p i, we say that pi aborts round k. Round-based

consensus has the following properties:

• Validity: If a process decides a value v, then v was proposed by some process.

• Agreement: No two processes decide differently.

• Termination: If a propose(k, ∗) aborts, then some operation propose(k ′, ∗) was invoked with k′ ≥ k; if

propose(k, ∗) commits, then no operation propose(k ′, ∗) can subsequently commit with round k ′ ≤ k.

The agreement and validity properties of our round-based consensus abstraction are similar to those of the traditional

consensus abstraction [9]. Our termination property is however strictly weaker. If processes keep concurrently propos-

ing values with increasing round numbers, then no process might be able to decide any value. In a sense, our notion

of consensus has a conditional termination property. In comparison to [12], the author presents a consensus that does

not ensure any liveness property. As stated by Lampson, the reason for not giving any liveness property is to avoid the

applicability of the impossibility result of [4]. Our round-based consensus specification is weaker than consensus and

does not fall into the impossibility result of [4], but nevertheless includes a liveness property. In the rest of the paper,

when no ambiguity is possible, we shall simply use the term consensus instead of round-based consensus.

In Figure 2, process p2 commits consensus with value Y for round 2. Process p1 then triggers consensus by invoking

propose(1, X) but aborts because process p2 proposed with a higher round number and prevents p 1 from committing.

Process p1 then proposes with value X for round 4, and this time p 1 commits. Process p3 aborts when it proposes with

value Z for round 3.
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p1

p2

p3

propose(1,X)

 abort

propose(2,Y)

commit

propose(4,X)

commit

propose(3,Z)

abort

Figure 2. Round-based consensus example

3.3 Weak Leader Election

Intuitively, a weak leader election abstraction is a shared object that elects a leader among a set of processes. It

encapsulates the subprotocol used in Paxos to choose a process that decides on the ordering of messages. The weak

leader election object has one operation, named leader(), which returns a process identifier, denoting the current

leader. When the operation returns pj at time t and process pi, we say that pj is leader for pi at time t (or pi elects

pj at time t). We say that a process pi is an eventual perpetual leader if (1) pi is correct, and (2) eventually every

invocation of leader() returns pi. Weak leader election satisfies the following property: Some process is an eventual

perpetual leader.

It is important to notice that the property above does not prevent the case where, for an arbitrary period of time,

various processes are simultaneously leaders.9 However, there must be a time after which the processes agree on

some unique correct leader. Figure 3 depicts a scenario where every process elects process p 1, and then p1 crashes;

eventually every process elects then process p2.

p1

p2

p3
 leader()

 p3

 leader()

 p1

 leader()

 p2

 leader()

 p1

 leader()

 p1

 leader()

 p1

 leader()

 p2

 leader()

 p2

 leader()

 p1

 leader()

 p2

crash

Figure 3. Weak leader election example

3.4 Total Order Delivery

The main problem solved by the actual Paxos protocol is to ensure total order delivery of messages (i.e., requests

broadcast to replicas).10 Total order broadcast is defined by two primitives: TO-Broadcast and TO-Deliver. We say

that a process TO-Broadcasts a message m when it invokes TO-Broadcast with m as an input parameter. We say that

a process TO-Delivers a message m when it returns from the invocation of TO-Deliver with m as an output parameter.

Our total order broadcast protocol has the following properties:

• Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually TO-

Delivers m.
9In this sense our weak leader election specification is strictly weaker then the notion of leader election introduced in [18].

10In fact, Paxos also deals with causal order delivery of messages, but we do not consider that issue here.
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• Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.

• Validity: For any message m, (i) every process p i that TO-Delivers m, TO-Delivers m only if m was previously

TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.

• Total order: Let pi and pj be any two processes that TO-Deliver some message m. If p i TO-Delivers some

message m′ before m, then pj also TO-Delivers m′ before m.

It is important to notice that the total order property we consider here is slightly stronger from the one introduced in [8].

In [8], it is stated that if any processes pi and pj both TO-Deliver messages m and m′, then pi TO-Delivers m before

m′ if and only if pj TO-Delivers m before m′. With this property, nothing prevents a process p i from TO-Delivering

the sequence of messages m1; m2; m3 whereas another (faulty) process TO-Delivers m1; m3 without ever delivering

m2. Our specification clearly excludes that scenario and more faithfully captures the (uniform) guarantee offered by

Paxos [11].

4 Abstractions: Implementations

In the following, we give wait-free [9] implementations of our three abstractions and show how they can be used to

implement a simple variant of the Paxos protocol in the particular case of a crash-stop model (following the architecture

of Figure 4). We will show how to step to a crash-recovery model in the next section.

Weak Leader 
Election Round-Based

Register

 Round-Based
Consensus

Communication

Paxos

Figure 4. Architecture

We simply assume here that messages are not lost or duplicated and processes that crash halt their activities and

never recover. We also assume that a majority of the processes never crash and, for the implementation of our weak

leader election abstraction, we assume the failure detector Ω introduced in [2].

4.1 Round-Based Register

The algorithm of Figure 5 implements the abstraction of a round-based register. The algorithm works intuitively

as follows. Every process pi has a copy of the register value, denoted by v i, and initialised to ⊥. A process reads or

writes a value by accessing a majority of the copies with a round number. According to the actual round number, a

process pi might “accept” or not the access to its local copy vi. Every process pi has a variable readi that represents

the highest round number of a read() “accepted” by p i, and a variable writei that represents the highest round number

of a write() “accepted” by pi. The algorithm is made up of two procedures (read() and write()) and two tasks that

handle READ and WRITE messages. Each task is executed in one atomic step to avoid mutual exclusion problems for
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1: procedure register() {Constructor, for each process pi}
2: readi ← 0 {Highest read() round number accepted by pi}
3: writei ← 0 {Highest write() round number accepted by pi}
4: vi ← ⊥ {pi’s estimate of the register value}
5: procedure read(k)
6: send [READ,k] to all processes
7: wait until received [ackREAD,k,*,*] or [nackREAD,k] from �n+1

2 � processes
8: if received at least one [nackREAD,k] then
9: return(abort, v) {read() is aborted}

10: else
11: select the [ackREAD,k, k′, v] with the highest k′

12: return(commit, v) {read() is committed}
13: procedure write(k, v)
14: send [WRITE,k, v] to all processes
15: wait until received [ackWRITE,k] or [nackWRITE,k] from �n+1

2 � processes
16: if received at least one [nackWRITE,k] then
17: return(abort) {write() is aborted}
18: else
19: return(commit) {write() is committed}
20: task wait until receive [READ,k] from pj

21: if writei ≥ k or readi ≥ k then
22: send [nackREAD,k] to pj

23: else
24: readi ← k
25: send [ackREAD,k, writei, vi] to pj

26: task wait until receive [WRITE,k, v] from pj

27: if writei > k or readi > k then
28: send [nackWRITE,k] to pj

29: else
30: writei ← k
31: vi ← v {A new value is “adopted”}
32: send [ackWRITE,k] to pj

Figure 5. A wait-free round-based register in a crash-stop model

the common variables. We assume here that a task is implemented as a thread in Java TM.

Lemma 1. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.

Proof. Assume that some process pj invokes a read(k) that returns abort (i.e., aborts). By the algorithm of Figure 5,

this can only happen if some process pi has a value readi ≥ k or writei ≥ k, which means that some process has

invoked read(k′) or write(k′) with k′ ≥ k. ✷

Lemma 2. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ > k.

Proof. Assume that some process pj invokes a write(k) that returns abort (i.e., aborts). By the algorithm of Figure 5,

this can only happen if some process pi has a value readi > k or writei > k, which means that some process has

invoked read(k′) or write(k′) with k′ > k. ✷

Lemma 3. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with

k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.

Proof. Let process pi be any process that commits read(k) (resp. write(k, ∗)). This means that a majority of the

processes have “accepted” read(k) (resp. write(k, ∗)). For a process pj to commit read(k′) with k′ ≤ k (resp.

write(k′′) with k′′ < k), a majority of the processes must “accept” read(k ′) (resp. write(k′′, ∗)). Hence, at least one

process must “accept” read(k) (resp. write(k, ∗)) and then read(k ′) with k′ ≤ k (resp. write(k′′, ∗) with k′ < k)

which is impossible by the algorithm of Figure 5: a contradiction. ✷
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Lemma 4. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with

k′ < k.

Proof. By the algorithm of Figure 5, if some process p j commits read(k) with v 
=⊥, then (i) some process pi must

have sent to pj a message [ackREAD,k, writej, v] and (ii) some process pm must have invoked write(k ′, v) with

k′ < k. Otherwise pi would have sent [nackREAD,k] or [ackREAD,k, 0,⊥] ✷ to p j .

Lemma 5. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,

then any read(k′′) that commits, commits with v if k′′ > k.

Proof. Assume that some process pi commits write(k, v), and assume that no subsequent write(k ′, v′) has been

invoked with k′ ≥ k and v′ 
= v, and that for some k ′′ > k some process pj commits read(k′′) with v′. Assume by

contradiction that v 
= v ′. Since read(k′′) commits with v′, by the read-commit property, some write(k ′′, v′) was

invoked before round k ′′. However, this is impossible since we assumed that no write(k ′, v′) operation with k′ ≥ k

and v′ 
= v has been invoked, i.e., vi remains unchanged to v: a contradiction. ✷

Proposition 6. The algorithm of Figure 5 implements a round-based register.

Proof. Directly from lemmata 1, 2, 3, 4 and 5. ✷

Proposition 7. With a majority of correct processes, the implementation of Figure 5 is wait-free.

Proof. The only wait statements of the protocol are the guard lines that depicts the waiting for a majority of replies.

These are non-blocking since we assume a majority of correct processes. Indeed, a majority of correct processes

always send a message to the requesting process either of type [ackREAD, nackREAD], or of type [ackWRITE, nack-

WRITE]. ✷

4.2 Round-Based Consensus

The algorithm of Figure 6 implements a round-based consensus object that relies on a wait-free round-based regis-

ter. The basic idea of the algorithm is the following. For a process p i to propose a value for a round k, p i first reads

the value of the register with k, and if the read(k) operation commits, p i invokes a write(k, v) (or pi’s initial value

instead of v if no value has been written). If the write(k, v) operation commits, then the process decides the value

written (i.e., returns this value). Otherwise, pi aborts and returns abort (line 7).

Lemma 8. Validity: If a process decides a value v, then v was proposed by some process.

Proof. Let pi be a process that decides some value v. By the algorithm of Figure 6, either (a) v is the value proposed by

pi, in which case validity is satisfied, or (b) v has been read by p i in the register. Consider case (b), by the read-commit

property of the register, some process pj must have invoked some write() operation. Let p j be the the first process

that invokes write(k0, ∗) with k0 equal to the smallest k ever invoked for write(k, v). By the algorithm of Figure 6,
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1: procedure consensus() {Constructor, for each process pi}
2: v ← ⊥; reg← new register()
3: procedure propose(k, initi )
4: if reg.read(k) = (commit, v) then
5: if (v =⊥) then v ← initi

6: if (reg.write(k, v) = commit) then return(commit, v)
7: return(abort, initi )

Figure 6. A wait-free round-based consensus using a wait-free round-based register

there are two cases to consider: either (a) v is the value proposed by p j , in which case validity is ensured, or (b) v

has been read by pj in the register. For case (b), by the read-commit property of the register, for p j to read v, some

process pm must have invoked write(k ′, v) with k′ < k0: a contradiction. Therefore, v is the value proposed by p j

and validity is ensured. ✷

Lemma 9. Agreement: No two processes decide differently.

Proof. Assume by contradiction that two processes p i and pj decide two different values v and v ′. Let pi decides

v after committing propose(k, v) and pj decides v′ after committing propose(k ′, v′). Assume without loss of gen-

erality that k′ ≥ k. By the algorithm of Figure 6, pj must have committed read(k ′) before invoking write(k ′, v′).

By the read-abort property, k ′ > k and by the write-commit property pj commits read(k′) with v and then invokes

write(k′, v). Even if write(k′, v) aborts, pj tries to write v and not v′ 
= v. Therefore, the next time pj commits

write(k′, v′), then v′ = v, i.e., decides v: a contradiction. ✷

Lemma 10. Termination: If a propose(k, ∗) aborts, then some operation propose(k ′, ∗) was invoked with k′ ≥ k; if

propose(k, ∗) commits, then no operation propose(k ′, ∗) can subsequently commit with round k ′ ≤ k.

Proof. For the first part, assume that some operation propose(k, ∗) invoked by p i aborts. By the algorithm of Figure 6,

this means that pi aborts read(k) or write(k, ∗). By the read-abort property, some process must have proposed in a

round k′ ≥ k. Consider now the second part. Assume that some operation propose(k, ∗) invoked by p i commits. By

the algorithm of Figure 6 and the read-write-commit property, no process can subsequently commit any read(k ′) with

k′ ≤ k′. Hence no process can subsequently commit a round k ′ ≤ k. ✷

Proposition 11. The algorithm of Figure 6 implements a wait-free round-based consensus.

Proof. Termination, agreement and validity follows from lemmata 8, 9 and 10. The implementation of round-based

consensus is wait-free since it is based on a wait-free round-based register and does not introduce any “wait” statement.

✷

4.3 Weak Leader Election

Figure 7 describes a simple implementation of a wait-free weak leader election. The protocol relies on the assump-

tions (i) that at least one process is correct and (ii) the existence of failure detector Ω [2]: Ω outputs (at each process)

a trusted process, i.e., a process that is trusted to be up. Failure detector Ω satisfies the following property: There is a
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time after which exactly one correct process pl is always trusted by every correct process.11 Our weak leader election

relies on Ω in the following way. The output of failure detector Ω at process p i is denoted by Ωi. The function simply

returns the value of Ωi.

1: procedure leader() {For each process pi}
2: return(Ωi)

Figure 7. A wait-free weak leader election with Ω

Proposition 12. With failure detector Ω and the assumption that at least one process is correct, the algorithm of

Figure 7 implements a wait-free weak leader election.

Proof. Follows from the property of Ω [2]. ✷

4.4 A Simple Variant of Paxos

The algorithm of Figure 9 can be viewed as a simple and modular version of Paxos in a crash-stop model (whereas

the original Paxos protocol considers a crash-recovery model - see next section). The algorithm uses a series of

consecutive round-based consensus (or simply consensus) instances: each consensus instance being used to agree on

a batch of messages. Every process differentiates consecutive consensus instances by maintaining a local counter (L):

each value of the counter corresponds to a specific consensus instance and is indexed to the propose() operation.

Consensus instances are triggered according to the output of the weak leader election protocol: only leaders trigger

consensus instances.

We give here an intuitive description of the algorithm. When a process p i TO-Broadcasts a message m, pi consults

the weak leader election protocol and sends m to leader p j . When pj receives m, pj triggers a new consensus instance

by proposing all messages that it received (and not yet TO-Delivered) and set the round number to the process id. Note

that in order to decide on a batch of messages, more than one consensus round might be necessary; various invocation

consensus for the same batch (L) are differentiated with round number k. Due to round number uniqueness, no process

can propose twice for the same round k. 12 In fact, pj starts a new task propose (Lth) that keeps on trying to commit

consensus for this batch (L), as long as pj remains leader. If consensus commits, pj sends the decision to every

process. Otherwise, task propose periodically invokes consensus with the same batch of messages but increases its

round number by n, unless pj stops being leader or some consensus instance for the same batch commits. When p i

elects another process pk, pi sends to pk every message that pi received, and not yet TO-Delivered. By the weak leader

election property, eventually every correct process elects the eventual perpetual leader p l, and sends its messages to pl.

By the round-based consensus specification, eventually p l commits consensus and sends the decision to every process.

Once pi receives a decision for the Lth batch of messages, pi stops task propose for this batch. Process pi TO-Delivers

this batch of messages only if it is the next one that was expected, i.e., if p i has already TO-Delivered messages of
11It was shown in [2] that Ω is the weakest failure detector to solve consensus and total order broadcast in a crash-stop system model. Failure

detector Ω can be implemented in a message passing system with partial synchrony assumptions [3].
12Allowing two processes to propose for the same round could violate agreement. For example, process p1 invokes propose(1, v) and commits,

and process p2 invokes propose(1, v′). The termination property of consensus allows p2 to commit: agreement would indeed be violated.
However, if pi invokes propose(1, v), crashes and recovers, p1 can then invoke propose(1, v) or even propose(1, v′) without violating the
properties of round-based consensus.
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(d) p1 first elects p3, then p2 and finally p5

Figure 8. Execution schemes

batch L-1. If it is not the case, pi waits for the next expected batch (nextBatch) to respect total order. Within a batch

of messages, processes TO-Deliver messages using a deterministic ordering function.

Note that an array of round-based registers is used in the total order broadcast protocol: each round-based register

corresponds to the “store and lock” of a given consensus instance. Finally, note that a process p i instantiates a round-

based register when (i) pi instantiates a round-based consensus, or (ii) p i receives for the first time a message for the

Lth consensus, i.e., Lth register of the array.

Figure 8 depicts four typical execution schemes of the algorithm. We assume for all cases that (i) process p 1

TO-Broadcasts a message m, (ii) process p5 is the eventual perpetual leader, and (iii) L =1. (prop(∗) stands in the

figures for propose(∗).) In Figure 8(a), p1 elects itself, triggers a new consensus instance by invoking propose(1, m),

commits, and sends the decision to all. In Figure 8(b), p1 elects p5 and sends m to p5. Process p5 then invokes

propose(5, m), commits, then sends the decision to all. In Figure 8(c), p1 first elects p3 and sends m to p3. In this

case however, p3 does not elect itself and therefore does nothing. Later on, p 1 elects p5 and then sends m to p5. As

for case (b), p5 commits consensus and sends the decision to every process. Note that p 3 could have sent m to p5 if p3

had elected p5. Finally, in Figure 8(d), p1 elects p3 (which does not elect itself), then p1 elects p2, which elects itself

and invokes propose(2, m) but aborts. Finally, p1 elects p5, and, as for case (c), p5 commits consensus and sends the

decision to all.

Precise description. We give here more details about the algorithm of Figure 9. We first describe the main data

structure, and then the main parts of the algorithm. Each process p i maintains a variable TO delivered that contains
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the messages that were TO-Delivered. When pi receives a message m, pi adds m to the set Received which keeps

track of all messages that need to be TO-Delivered. Thus Received - TO delivered, denoted TO undelivered, contains

the set of messages that were submitted for total order broadcast, but are not yet TO-Delivered. The batches that have

been decided but not yet TO-Delivered are put in the set AwaitingToBeDelivered. The variable nextBatch keeps track

of the next expected batch in order to respect the total order property.

There are four main parts in the protocol: (a) when a process receives some message, task launch starts 13 task

propose if the process pi is leader, or if pi is not leader, sends the messages it did not yet TO-Delivered to the leader;

(b) task propose keeps on starting round-based consensus while p i is leader, until a decision is reached; (c) primitive

receive handles received messages, and stops task propose once p i receives a decision; and (d) primitive deliver TO-

Delivers messages. Each part is described below in more details. Initially, when a process p i TO-Broadcasts a message

m, pi puts m into the set Received which has the effect of changing the predicate of guard line 15.

• In task launch, process pi triggers the upon case when the set TO undelivered contains new messages or whether

pi elects another leader (line 15). Note that the upon case is executed only once per received message to avoid

multiple consensus instances of the exact same batch of messages. If the upon case is triggered by a leader

change, pi jumps directly to line 26 and sends to the leader all the messages it did not yet TO-Delivered.

Otherwise, before starting a new consensus instance, p i first verifies at line 16 if (i) it already received the

decision for this batch of messages, or (ii) it already TO-Delivered this batch of messages. Process p i verifies

then if it is a leader, and if so, pi increments the batch number to initiate a consensus for a new batch of messages

(L+1), i.e., pi starts task propose with TO undelivered as the batch of messages and the round number set to the

id of pi. If pi is not leader, then pi sends the messages it did not yet TO-Delivered to the leader.

• In task propose, a process pi periodically invokes consensus (proposes) if p i is leader. By the property of weak

leader election, one of the correct processes (p l) will be the eventual perpetual leader. Once p l is elected by

every correct process, pl receives all batches of messages from every correct process, proposes and commits

consensus (line 31) and then sends the decision to all (line 34). Note that in this primitive, p i proposes the same

batch of messages but with an increasing round number.

• In the primitive receive, when process pi receives the decision of consensus (line 36), p i first stops task proposeL:

pi does not stop other batches (task propose) - i.e., this could influence the result of some other consensus

instances (line 37). Process pi then verifies that the decision received is the next decision that was expected

(nextBatch). Otherwise, there are two cases to consider: (i) p i is ahead, or (ii) pi is lagging. For case (i), if pi

is ahead (i.e., receives a decision from a lower batch), p i sends to pj an UPDATE message for each batch that pj

is missing (line 40). For case (ii), if pi receives a future batch, pi buffers the messages of the batch in the set

AwaitingToBeDelivered and pi also sends to pj an UPDATE message with nextBatch-1 in order for p j to update

itself (pi) when pj receives this “on purpose lagging” message. Process p i waits until it gets the next expected

batch in order to satisfy the total order property.
13When we say that a new task is started, we mean a new instance of the task with its own variables (since there can be more than one batch of

messages being treated at the same time). Moreover, the variable TO delivered means the union of all arrays TO delivered[L].
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• In the primitive deliver, process pi TO-Delivers only the messages that were not already TO-Delivered (line 9

or 12) following the same deterministic order. We assume that p i removes all messages that appear twice in the

same batch of messages.

We assume here a system model where messages keep being broadcast indefinitely. This assumptions is precisely

what enables us to ensure the uniformity of agreement without additional forced logs and communication steps.

Lemma 13. If the eventual perpetual leader proposes a batch of messages, it eventually decides.

Proof. Assume by contradiction that process p i is the eventual perpetual leader that proposes a batch of messages and

never decides. By the algorithm of Figure 9, p i keeps incrementing round number k (line 33). Let k 0 be the smallest

round number reached by p i such that no process else than pi ever invokes any operation. By the algorithm of Figure 9,

such round number exists because, unless it is leader, no other process invokes any operation on the consensus. By the

termination property of consensus and since the implementation of consensus is wait-free, p i commits propose(k0, ∗),
which means that pi decides a value: a contradiction. ✷

Lemma 14. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually

TO-Delivers m.

Proof. Suppose by contradiction that a process p i TO-Broadcasts a message m but never TO-Delivers m. Remember

that every time pi elects a new process, pi sends m to this new leader. By the weak leader property, eventually p i

elects the eventual perpetual leader process p l and pi sends m to pl. By lemma 13, pl proposes, decides and sends the

decision to all processes. There are now two cases to consider: (a) p l does not crash, or (b) pl crashes. For case (a), by

the properties of the channels, pi receives the decision from pl and TO-Delivers m: a contradiction. For case (b), if p l

crashes, pl was not an eventual perpetual leader: a contradiction. ✷

Lemma 15. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.

Proof. Suppose by contradiction that a process p i TO-Delivers m and let pj be any correct process that does not

TO-Deliver m. Process pi must have received the decision from some process pk (pk could be pi). There are two

cases to consider: (a) pk is a correct process, or (b) pk is a faulty process. For case (a), since pk TO-Delivered m, by

the reliable properties of the channels, every correct process receives the decision and TO-Delivers m: a contradiction.

For case (b), since we assume that new messages keep coming, the eventual perpetual leader p l TO-Delivers m and

therefore sends at some time the decision to every correct process: a contradiction. As explained earlier, due to round

number uniqueness, no two processes can propose for the same round, therefore every correct process decides the

same value for consensus. ✷

Lemma 16. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was

previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.

Proof. For the first part (i), suppose by contradiction that some process p i TO-Delivers a message m that was not

TO-Broadcast by any process. For a message m to be TO-Delivered, by the algorithm of Figure 9, m must be decided
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through round-based consensus. By the validity property of consensus, m has to be proposed (line 24). In order to be

proposed, m has to be in the set TO undelivered (line 20); then to be in the set TO undelivered, m has to be in the set

Received (line 46). Finally, for m to be in set Received, m has to be TO-Broadcast or sent (lines 6 & 26). Ultimately,

for m to be sent, m must be TO-Broadcast: a contradiction. For the second part (ii), p i cannot TO-Deliver more than

once a message m. This is impossible since line 8 removes all the messages that have been already TO-Delivered. Of

course, we assume that pi distinguishes all messages that appear twice in the variable msgSet. ✷

Lemma 17. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers

some message m′ before m, then pj also TO-Delivers m′ before m.

Proof. Suppose by contradiction that p i TO-Delivers a message m before a message m′ and pj TO-Delivers m′ before

m. There are two cases to consider: (a) m and m ′ are in the same message set, and (b) m and m ′ are in different mes-

sage sets. For case (a), since every process delivers messages following the same deterministic order, m is delivered

before m′ on both processes: a contradiction. For case (b), suppose that m is part of msgSet L and m′ ∈ msgSetL
′

where L < L′. For m to be TO-Delivered, msgSetL has to be received as a DECIDE or UPDATE message (line 36).

If pi TO-Delivers m before m′, then pj cannot TO-Deliver m′ before m since the predicate of guard line 38 forbids

pj to TO-Deliver batches of messages out of order: a contradiction. Nevertheless, p j could receive the L′th batch of

messages before the Lth batch of messages, but the batch would be put in the set AwaitingtoBeDelivered. ✷

Proposition 18. The algorithm of Figure 9 satisfies the termination, agreement, validity and total order properties.

Proof. Directly from the lemmata 14, 15, 16 and 17. ✷

5 A Faithful Deconstruction of Paxos

This section describes a faithful and modular deconstruction of Paxos [11]. It is modular in the sense that it builds

upon our abstractions: the specifications of these are not changed, only their implementations are slightly modified. It

is faithful in the sense that it captures the practical spirit of the original Paxos protocol: it preserves the efficiency of

Paxos and tolerates temporary crashes of links and processes. Just like with the original Paxos protocol, we preclude

the possibility of unstable processes: either processes are correct (eventually always-up), or they eventually crash and

never recover. We will come back to this assumption in the next section.

To step from a crash-stop model to a crash-recovery model, we mainly adapt the round-based register and slightly

modify the global protocol to deal with recovery (in shade in Figure 10(a), therefore we only present these abstractions

in this section). Every process performs some forced logs so that it can consistently retrieve its state when it recovers.

To cope with temporary link failures, we build upon a retransmission module, associated with two primitives s-send

and s-receive: if a process pi s-sends a message to a correct process pj and pi does not crash, the message is eventually

s-received.
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1: For each process pi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[]← ∅; start task{launch}
4: TO undelivered← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; nextBatch← 1
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered
9: atomically deliver all messages in TO delivered[nextBatch] in some deterministic order {TO-Deliver}

10: nextBatch← nextBatch +1
11: while AwaitingToBeDelivered[nextBatch] �= ∅ do
12: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliver TO delivered[nextBatch]
13: nextBatch← nextBatch+1
14: task launch {Upon case executed only once per received message}
15: upon Received - TO delivered �= ∅ or leader has changed do {If upon triggered by a leader change, jump to line 26}
16: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
17: K ← K+1
18: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
19: deliver(AwaitingToBeDelivered[K])
20: TO undelivered← Received− TO delivered
21: if leader()= pi then
22: while proposeK is active do
23: K ← K+1
24: start task proposeK (K, i, TO undelivered); K ← K+1
25: else
26: send(TO undelivered) to leader()
27: task propose(L, l, msgSet) {Keep on proposing until consensus commits}
28: committed← false; consensusL← new consensus()
29: while not committed do
30: if leader()= pi then
31: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet) then
32: committed← true
33: l ← l+n
34: send(DECISION,L, returnedMsgSet) to all processes
35: upon receive m from pj do

36: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj

,TO delivered[Kpj
]) then

37: if task proposeKpj
is active then stop task proposeKpj

38: if Kpj
�= nextBatch then {pj is ahead or behind}

39: if Kpj
< nextBatch then {pj is behind}

40: for all L such that Kpj
< L < nextBatch: send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}

41: else
42: AwaitingToBeDelivered[Kpj

] = msgSet
Kpj ; send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}

43: else
44: deliver(msgSet

Kpj )
45: else
46: Received← Received ∪msgSetT O undelivered {Consensus messages are added to the consensus box}

Figure 9. A modular crash-stop variant of Paxos
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5.1 Retransmission Module

We describe here a retransmission module that encapsulates retransmissions issues to deal with temporary crashes

of communication links. The primitives of the retransmission module (s-send and s-receive) preserve the no creation

and fair loss properties of the underlying channels, and ensures the following property: Let p i be any process that

s-sends a message m to a process pj , and then pi does not crash. If pj is correct, then pj eventually s-receives m.

Figure 11 gives the algorithm of the retransmission module. All messages that need to be retransmitted are put in the

variable xmitmsg. Messages in xmitmsg are erased but the Paxos layer stops retransmitting messages except for the

DECISION or UPDATE messages once a decision has been reached. The no creation and fair loss properties are trivially

satisfied.

1: for each process pi:
2: procedure initialisation:
3: xmitmsg[]← ∅; start task{retransmit}
4: procedure s-send(m) {To s-send m to pj}
5: if m �∈ xmitmsg then {Ensure that m is not added to xmitmsg more than once}
6: xmitmsg← xmitmsg ∪m
7: if pj �= pi then
8: send m to pj

9: else
10: simulate s-receive m from pi

11: upon receive(m) from pj do
12: s-receive(m)
13: task retransmit {Retransmit all messages received and sent}
14: while true do
15: for all m ∈ xmitmsg do
16: s-send(m)

Figure 11. Retransmission module

Proposition 19. Let pi be any process that s-sends a message m to a process pj , and then pi does not crash. If pj is

correct, then pj eventually s-receives m.

Proof. Suppose that pi s-sends a message m to a process pj and then does not crash. Assume by contradiction that p j

is correct, yet pj does not s-receive m. There are two cases to consider: (a) p j does not crash, or (b) pj crashes and

eventually recovers and remains always-up. For case (a), by the fair loss properties of the links, p j receives and then

s-receives m: a contradiction. For case (b), since process p i keeps on sending m to pj , there is a time after which pi

sends m to pj and none of them crash afterwards. As for case (a), by the fair loss property of the links, p j eventually

receives m, then s-receives m: a contradiction. ✷

5.2 Round-Based Register

We give in Figure 12 the implementation of a round-based register in a crash-recovery model. The main differ-

ences with our crash-stop implementation given in the previous section are the following. As shown in Figure 10(b),

a process logs the variables readi, writei and vi, in order to be able to recover consistently its precedent state after a

crash. A recovery procedure re-initialises the process and retrieves all variables. The send (resp. receive) primitive is
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1: procedure register() {Constructor, for each process pi}
2: readi ← 0
3: writei ← 0
4: vi ← ⊥
5: procedure read(k)
6: s-send [READ,k] to all processes
7: wait until s-received [ackREAD,k,*,*] or [nackREAD,k] from �n+1

2 � processes
8: if s-received at least one [nackREAD,k] then
9: return(abort, v)

10: else
11: select the [ackREAD,k, k′, v] with the highest k′

12: return(commit, v)
13: procedure write(k, v)
14: s-send [WRITE,k, v] to all processes
15: wait until s-received [ackWRITE,k] or [nackWRITE,k] from �n+1

2 � processes
16: if s-received at least one [nackWRITE,k] then
17: return(abort)
18: else
19: return(commit)
20: task wait until s-receive [READ,k] from pj

21: if writei ≥ k or readi ≥ k then
22: s-send [nackREAD,k] to pj

23: else
24: readi ← k; store{readi} {Modified from Figure 5}
25: s-send [ackREAD,k, writei, vi] to pj

26: task wait until s-receive [WRITE,k, v] from pj

27: if writei > k or readi > k then
28: s-send [nackWRITE,k] to pj

29: else
30: writei ← k
31: vi ← v; store{writei, vi} {Modified from Figure 5}
32: s-send [ackWRITE,k] to pj

33: upon recovery do {Added procedure to Figure 5}
34: initialisation
35: retrieve{writei, readi, vi}

Figure 12. A wait-free round-based register in a crash-recovery model

also replaced by the s-send (resp. s-receive) primitive.

Proposition 20. With a majority of correct processes, the algorithm of Figure 12 implements a wait-free round-based

register.

Lemma 21. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.

Lemma 22. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with

k′ > k.

Lemma 23. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with

k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.

Lemma 24. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with

k′ < k.

Lemma 25. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,

then any read(k′′) that commits, commits with v if k′′ > k.

The proofs for lemmata 21 through 25 are similar to those of lemmata 1 through 5 since: (a) if p i invokes a read()

or a write() operation and then does not crash, by the property of the retransmission module, p i keeps on sending

messages (e.g., READ messages for the read() operation) until it gets a majority of replies (e.g., ackREAD or nack-

READ); (b) since all variables are logged before sending any positive acknowledgement messages, a process does

not behave differently if it crashes and recovers. If a process crashes and recovers, it recovers its precedent state and
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therefore acts as if it did not crash.

5.3 Weak Leader Election

The implementation of the weak leader election does not change in a crash-recovery model. However, the failure

detector Ω has only been defined in a crash-stop model [2]. Interestingly, its definition (there is a time after which

exactly one correct process pl is always trusted by every correct process) does not change in a crash-recovery model

(the notion of correctness changes though). We give in Appendix B an implementation of the failure detector Ω in a

crash-recovery model with partial synchrony assumptions.

5.4 Modular Paxos

Figure 10(b) shows that compared to a crash-stop version, the total order broadcast protocol adds (i) a recovery

procedure, and (ii) one forced log to store the set TO delivered and the variable nextBatch. We now say that a process

TO-Delivers a message m when the process logs m. In a stable period, a process can TO-Deliver a message after

three forced logs and two round trip communication steps (if the leader is the process that broadcasts the message).

Section 6.4 introduces a powerful optimisation that requires only one forced log at a majority of processes and one

round-trip communication step (if the requesting process is leader).

Proposition 26. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of

Figure 13 ensures the termination, agreement, validity and total order properties in a crash-recovery model without

unstable processes.

Lemma 27. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually

TO-Delivers m.

Lemma 28. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.

Lemma 29. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was

previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.

Lemma 30. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers

some message m′ before m then pj also TO-Delivers m′ before m.

The proofs for lemmata 27 through 30 are identical to those of from lemmata 14 to 17 since: (a) if p i TO-Broadcasts

m and then does not crash; by the property of the retransmission module, p i keeps on sending m to the leader, therefore

the predicate at line 17 of Figure 13 becomes true at the eventual perpetual leader; (b) by the weak leader election

property, one of the correct processes will be an eventual perpetual leader p l that decides; by its definition, pl is

eventually always-up, and then eventually keeps on sending the decision to all processes, therefore all correct processes

s-receive the decision (even those that crash and recover); (c) the implementation is build on a wait-free round-based

register and on a wait-free round-based consensus that are tolerant to crash-recovery (without unstable processes); (d)

when a process crashes and recovers, it retrieves its precedent state by retrieving TO delivered and nextBatch; (e) when
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1: For each process pi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[]← ∅; start task{launch}
4: TO undelivered[]← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; nextBatch← 1
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered;
9: atomically deliver all messages in TO delivered[nextBatch] in some deterministic order

10: store{TO delivered,nextBatch} {TO-Deliver, added to Figure 9}
11: nextBatch← nextBatch +1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
12: while AwaitingToBeDelivered[nextBatch] �= ∅ do
13: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliver TO delivered[nextBatch]
14: store{TO delivered,nextBatch} {Stop retransmission module ∀ messages of nextBatch except DECIDE or UPDATE}
15: nextBatch← nextBatch+1
16: task launch {Upon case executed only once per received nessage}
17: upon Received - TO delivered �= ∅ or leader has changed do {If upon triggered by a leader change, jump to line 28}
18: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
19: K ← K+1
20: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
21: deliver(AwaitingToBeDelivered[K])
22: TO undelivered← Received− TO delivered
23: if leader()= pi then
24: while proposeK is active do
25: K ← K+1
26: start task proposeK (K, i, TO undelivered); K ← K+1
27: else
28: s-send(TO undelivered) to leader()
29: task propose(L, l, msgSet) {Keep on proposing until consensus commits}
30: committed← false; consensusL← new consensus()
31: while not committed do
32: if leader()= pi then
33: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet) then
34: committed← true
35: l ← l+n
36: s-send(DECISION,L, returnedMsgSet) to all processes
37: upon s-receive m from pj do

38: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj

,TO delivered[Kpj
]) then

39: if task proposeKpj
is active then stop task proposeKpj

40: if Kpj
�= nextBatch then {pj is ahead or behind}

41: if Kpj
< nextBatch then {pj is behind}

42: for all L such that Kpj
< L < nextBatch: s-send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}

43: else
44: AwaitingToBeDelivered[Kpj

] = msgSet
Kpj ; s-send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}

45: else
46: deliver(msgSet

Kpj )
47: else
48: Received← Received ∪msgSetT O undelivered {Consensus messages are treated in the consensus box}
49: upon recovery do {Added procedure to Figure 9}
50: initialisation
51: retrieve{TO delivered, nextBatch}; K ← nextBatch; nextBatch← nextBatch+1; Received← TO delivered

Figure 13. A modularisation of Paxos
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recovering, Received is set to TO delivered otherwise the predicate of line 17 would never be false and would keep on

proposing messages; and (f) since processes keep on broadcasting messages, the leader process eventually updates a

process that has crashed and recovered with all lagging messages.

6 The Four Seasons

This section presents four interesting variants of the Paxos protocol. Subsection 6.1 describes a variant of the

protocol that alleviates the need for stable storage under the assumption that some processes never crash. This is

obtained mainly by modifying the implementation of our round-based register. Subsection 6.2 describes a variant of

the protocol that copes with unstable processes through a modification of our weak leader election implementation.

Subsection 6.3 describes a variant of the protocol that guarantees progress even if only one process is correct. This

is obtained through an implementation of our round-based register that assumes a decoupling between disks and

processes, along the lines of [5]. Subsection 6.4 describes an optimised variant (Fast Paxos) of the protocol that is

very efficient in stable periods. These variants are orthogonal, except 6.1 and 6.3 (because of their contradictory

assumptions).
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Round-Based
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 Round-Based
Consensus

Paxos
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Communication
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Figure 14. Modified (in shade) modules from a crash-recovery variant

6.1 Winter: Avoiding Stable Storage

Basically, we assume here that some of the processes never crash and, instead of stable storage, we store the crucial

information of the register inside “enough” processes (in main memory). The protocol assumes that the number of pro-

cesses that never crash (na) is strictly greater than the number of faulty processes: nf .14 As depicted by Figure 14(a),

the weak leader election and the round-based consensus remain unchanged. We mainly change the round-based regis-

ter implementation and we add to the Paxos protocol a recovery procedure that relies on initialisation messages instead

of stable storage. Basically, a recovered process pi asks all other processes to return the set of messages that they have

TO-Delivered and pi initialises its state using those messages.

Round-Based Register. The trick in the round-based register implementation is to ensure that the register’s value is

“locked” in at least one process that never crashes. Intuitively, any read() or write() uses a threshold that guarantees
14Note that na is not known while nf is.
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this property, as we explain below. (The idea is inspired by [1].) When a process recovers, it stops participating in

the protocol, except that it periodically broadcasts a RECOVERED message. When a process p i receives such message

from a process pj , pi adds pj to a set Ri of processes (known to have recovered). This scheme allows any process to

count the number of recovered processes. While collecting ackREAD or ackWRITE messages, if p i detects that a new

process pk has recovered (Ri 
= PrevRi), pi restarts the whole procedure of reading or writing. For p i to commit a

read() (resp. write()) invocation), pi must receive max(nf+1, n-nf -|Ri|) ackREAD (resp. ackWRITE) messages.

1: seqrd (resp.seqwr) distinguishes the phases when pi has restarted to s-send READ (resp. WRITE) messages because pi received a RECOVERED message
2: procedure register() {Constructor, for each process pi}
3: readi ← 0
4: writei ← 0
5: vi ← ⊥
6: Ri ← ∅; PrevRi ← ∅ {Added to Figure 5}
7: seqrdpi

← 0; seqwrpi
← 0 {Variable use to distinguish retrial, added to Figure 5}

8: procedure read(k)
9: repeat {Added to Figure 5}

10: PrevRi ← Ri; seqrdpi
← seqrdpi

+ 1

11: s-send [READ,k, seqrdpi
] to all processes

12: wait until s-received [ackREAD,k, seqrdpi
,*,*] or [nackREAD,k, seqrdpi

] from max(nf +1, n-nf -|Ri|)processes
13: until Ri = PrevRi {Added to Figure 5}
14: if s-received at least one [nackREAD,k, seqrdpi

] then
15: return(abort, v)
16: else
17: select the [ackREAD,k, seqrdpi

, k′, v] with the highest k′

18: return(commit, v)
19: procedure write(k, v)
20: repeat {Added to Figure 5}
21: PrevRi ← Ri; seqwepi

← seqwrpi
+ 1

22: s-send [WRITE,k, seqwrpi
, v] to all processes

23: wait until s-received [ackWRITE,k, seqwrpi
] or [nackWRITE,k, seqwrpi

] from max(nf +1, n-nf -|Ri|)processes
24: until Ri = PrevRi {Added to Figure 5}
25: if s-received at least one [nackWRITE,k, seqwrpi

] then
26: return(abort)
27: else
28: return(commit)
29: task wait until s-receive [READ,k, seqrdpj

] from pj

30: if writei ≥ k or readi ≥ k then
31: s-send [nackREAD,k, seqrdpj

] to pj

32: else
33: readi ← k
34: s-send [ackREAD,k, seqrdpj

, writei, vi] to pj

35: task wait until s-receive [WRITE,k, seqwrpj
, v] from pj

36: if writei > k or readi > k then
37: s-send [nackWRITE,k, seqwrpj

] to pj

38: else
39: writei ← k
40: vi ← v
41: s-send [ackWRITE,k, seqwrpj

] to pj

42: upon s-receive RECOVERED from pj do {Added procedures to Figure 5}
43: Ri ← Ri ∪ pj

44: upon recovery do
45: initialisation; readi ←∞; writei ←∞ {Do not reply to READ or WRITE msg}
46: s-send RECOVERED to all processes

Figure 15. A wait-free round-based register in a crash-recovery model without stable storage

Proposition 31. The algorithm of Figure 15 implements a wait-free round-based register in a crash-recovery model

without stable storage assuming that na > nf .

Lemma 32. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.

Lemma 33. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with
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k′ > k.

Lemma 34. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with

k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.

Lemma 35. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with

k′ < k.

Lemma 36. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,

then any read(k′′) that commits, commits with v if k′′ > k.

The proofs for lemmata 32 through 36 are identical to those of lemmata 21 through 25. They are based on the

following aspects: (a) we assume that na > nf ; (b) when a process crashes and recovers, it keeps on sending RE-

COVERED messages which ensures that a recovered process is never considered correct; and (c) since a process waits

for the maximum between nf +1 and n-nf -|Ri|, the register’s value is always locked into at leastone always-up process.

The Paxos Variant. Figure 16 presents a Paxos variant for a crash-recovery model without stable storage.

Proposition 37. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of

Figure 16 ensures the termination, agreement, validity and total order properties in a crash-recovery model (without

any stable storage) assuming that na > nf .

Lemma 38. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually

TO-Delivers m.

Lemma 39. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.

Lemma 40. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was

previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.

Lemma 41. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers

some message m′ before m, then pj also TO-Delivers m′ before m.

The proofs for lemmata 38 through 41 are identical to those of lemmata 27 through 30 since the recovery procedure

requests every participant to s-send back their state when they s-receive a RECOVERED message. A process that crashes

and recovers receives the “latest state” from at least one always-up process.

6.2 Spring: Coping with Unstable Processes

We discuss here a Paxos variant that copes with unstable processes, i.e., processes that keep crashing and recovering

forever. We adapt our modular protocol by simply changing the implementation of our weak leader election protocol

as depicted in Figure 14(b). All our other modules remain unchanged.

Intuitively, the issue with unstable processes is the following. Consider an unstable process p i (i.e., pi keeps

on crashing and recovering), and suppose that its Ω i module permanently outputs pi, whereas the correct processes

permanently consider some other correct process p j as leader. This is possible since Ω “only” guarantees that some

correct process is always trusted by every correct process. For instance, an unstable process is free to permanently

elect itself. The presence of two concurrent leaders can prevent the commitment of any consensus decision and hence
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1: For each process pi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[]← ∅; start task{launch}
4: TO undelivered[]← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; k← 0; nextBatch← 1
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered;
9: atomically deliver all messages in TO delivered[nextBatch] in some deterministic order {TO-Deliver}

10: nextBatch← nextBatch +1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
11: while AwaitingToBeDelivered[nextBatch] �= ∅ do
12: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliver TO delivered[nextBatch]
13: nextBatch← nextBatch+1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
14: task launch {Upon case executed only once per received message}
15: upon Received - TO delivered �=⊥ or leader has changed do {If upon triggered by a leader change, jump to line 26}
16: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
17: K ← K+1
18: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
19: deliver(AwaitingToBeDelivered[K])
20: TO undelivered← Received− TO delivered
21: if leader()= pi then
22: while proposeK is active do
23: K ← K+1
24: start task proposeK (K, i, TO undelivered); K ← K+1
25: else
26: s-send(TO undelivered) to leader()
27: task propose(L, l, msgSet) {Keep on proposing until consensus commits}
28: committed← false; consensusL← new consensus()
29: while not committed do
30: if leader()= pi then
31: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet) then
32: committed← true
33: l ← l+n
34: s-send(DECISION,L, returnedMsgSet) to all processes
35: upon s-receive m from pj do

36: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj

,TO delivered[Kpj
]) then

37: if task proposeK is active then stop task proposeK

38: if Kpj
�= nextBatch then {pj is ahead or behind}

39: if Kpj
< nextBatch then {pj is behind}

40: for all L such that Kpj
< L < nextBatch: s-send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}

41: else
42: AwaitingToBeDelivered[Kpj

] = msgSet
Kpj ; s-send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}

43: else
44: deliver(msgSet

Kpj )
45: else
46: Received← Received ∪msgSetT O undelivered {Consensus messages are treated in the consensus box}
47: upon recovery do {Added procedure to Figure 9}
48: initialisation; s-send(UPDATE,0,∅) to all processes

Figure 16. A variant of Paxos in a crash-recovery model without stable storage
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prevent progress. We basically need to prevent unstable processes from being leaders after some time. We modify

our new leader election protocol as follows: (a) every process p k exchanges the output value of its Ωk with all other

processes, and (b) the function leader() returns p l only when a majority of processes thinks that p l is leader. The

latter step is required to avoid the following case. Imagine an unstable process p u that invokes leader() which returns

pu, then crashes, recovers and keeps on doing the same scheme forever. Process p u always trusts itself which violates

the Ω property. By waiting for a majority of processes, we ensure that the values (Ω i) of at least one correct process

belongs to the set Ω[]. Therefore, pu cannot trusts itself forever (or any unstable processes) since its epoch number is

eventually greater than any correct process. This idea, inspired by [7], assumes a majority of correct processes. Note

that this assumption is now needed both in the implementation of the register and in the implementation of the leader

election protocol.

We give the implementation of this new weak leader election in Figure 17 and it is easy to verify that the imple-

mentation is wait-free under the assumption that a majority of processes are correct. Now, the weak leader election

exchanges the output of Ω between every process. However, this exchange phase can be piggy-backed on the I-

AM-ALIVE messages in the implementation of Ω (see Appendix B). Thus, the exchange phase does not add any

communication steps.

1: initialisation: Ω[]← ⊥; start task EXCHANGE

2: procedure leader() {Modified from Figure 7, for each process pi}
3: wait until pl ∈ �n+1

2 � Ω[k]
4: return(pl)
5: task exchange {Added task to Figure 7}
6: periodically send Ωpi

to all processes
7: upon receive Ωpj

from pj do
8: Ω[j]← Ωpj

Figure 17. A wait-free weak leader election with Ω and unstable processes

Proposition 42. The algorithm of Figure 17 ensures that some process is an eventual perpetual leader.

Proof. Suppose, by contradiction, there are more than one eventual perpetual leader or there is no eventual perpetual

leader. Consider the first case, suppose that there are forever two eventual perpetual leaders. This contradicts the

definition of an eventual perpetual leader. Now, consider the second case where there is no eventual perpetual leader.

By the property of Ω failure detector, eventually all correct processes trust only one correct process p l. By line 3

of Figure 17, it is impossible for any process to elect forever a process other than p l. The leader() function is non-

blocking since there is a majority of correct processes. So eventually the invocation of leader() at every process

returns in a bounded time (or the process crashes) and always returns p l, so there is one eventual perpetual leader p l:

a contradiction. ✷

6.3 Summer: Decoupling Disks and Processes

The Paxos protocol ensures progress only if there is a time after which a majority of the processes are correct.

The need for this majority is due to the fact that a process cannot decide on a given order for any two messages,

unless this information is “stored and locked” at a majority of the processes. If disks and processes can be decoupled,
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which is considered a very reasonable assumption in some practical systems [5], a process might be able to decide on

some order as long as it can “store and lock” that information within a majority of the disks. We simply modify the

implementation of our round-based register (Figure 14(c)) to obtain a variant of Paxos that exploits that underlying

configuration.

In this Paxos variant, we assume that disks can be directly (and remotely) accessed by processes, and failures

of disks and processes are separated. Every process has an assigned block on each disk, and maintains a record

dblock[pi] that contains three elements: readi, writei and vi; disk[dj ][pk] denotes the block on disk dj in which

process pk writes dblock[pk]. We denote by readd() (resp. writed()) the operation of reading (resp. writing) on a

disk. As in [5], we assume that every disk ensures that (i) an operation write d(k, ∗) cannot overwrite a value of an

earlier round k ′ < k, and (ii) a process must wait for acknowledgements when performing a write d() operation, and

(iii) writed() and readd() are atomic operations.

The round-based register protocol works as follows. For the read() operation, a process p i tries to writed on each

disk pj its dblock[pi] (∀pj disk[pj][pi]). After writing, pi readsd for any pj and any pk: disk[pj][pk]. If pi readsd

a block with a round that is lower than the round of the highest write i, the read() operation aborts. Otherwise, the

read() commits and returns the value associated with the highest write i. A similar scheme is used for the write()

operation. Note that the round-based register implementation is simpler than the previous round-based register due to

the usage of disks.

1: procedure register() {Constructor, for each process pi}
2: The operation writed() stores the whole block into disk. For presentation clarity, we have put as a parameter the value that is actually modified.
3: procedure read(k)
4: writed(k) {readi = k}
5: readd() {Wait for a majority of disk block}
6: if (received a block with readj ≥ k or writej ≥ k) then return(abort, initi )
7: choose vmax from the block with highest writej ; return(commit, vmax) {vmax =⊥ if writej = 0}
8: procedure write(k, v)
9: writed(k, v) {writei = k, vi = v}

10: readd() {Wait for a majority of disk block}
11: if (received a block with readj > k or writej > k) then return(abort, v) else return (commit, v)
12: upon recovery do
13: readd(); readi ← MAX(readreceived); writei ← MAX(writereceived) {Read all blocks}
14: vi ← dblock[].vwritei

{Take v from the block with the highest vi}

Figure 18. A wait-free round-based register built on commodity disks

Lemma 43. Read-abort: If read(k) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with k′ ≥ k.

Proof. Assume that some process pj invokes a read(k) that returns abort (i.e., aborts). By the algorithm of Figure 18,

this can only happen if some process pi has a value readi ≥ k or writei ≥ k (line 6), which means that some process

has invoked read(k′) or write(k′) with k′ ≥ k. ✷

Lemma 44. Write-abort: If write(k, ∗) aborts, then some operation read(k ′) or write(k′, ∗) was invoked with

k′ > k.

Proof. Assume that some process pj invokes a write(k, ∗) that returns abort (i.e., aborts). By the algorithm of Fig-

ure 18, this can only happen if some process p i has a value readi > k or writei > k (line 11), which means that some

process has invoked read(k ′) or write(k′) with k′ > k. ✷
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Lemma 45. Read-write-commit: If read(k) or write(k, ∗) commits, then no subsequent read(k ′) can commit with

k′ ≤ k and no subsequent write(k ′′, ∗) can commit with k′′ < k.

Proof. Remember that we assume that a writed(k′, ∗) cannot overwrited a writed(k, ∗) with k′ < k. In the algorithm

of Figure 18, pi invokes writed() in both procedures, therefore p i cannot commit read(k′) with k′ ≤ k (line 6) or

commit write(k′, ∗) with k′ < k (line 11). ✷

Lemma 46. Read-commit: If read(k) commits with v and v 
=⊥, then some operation write(k ′, v) was invoked with

k′ < k.

Proof. By the algorithm of Figure 18, if some process p j commits read(k) with v 
=⊥, then some process pi must

have writed to some disk since vi is only modified in the write() operation. Otherwise vmax would be equal ⊥. ✷

Lemma 47. Write-commit: If write(k, v) commits and no subsequent write(k ′, v′) is invoked with k′ ≥ k and v′ 
= v,

then any read(k′′) that commits, commits with v if k′′ > k.

Proof. Assume that some process pi commits write(k, v), and assume that no subsequent write(k ′, v′) has been

invoked with k′ ≥ k and v′ 
= v, and that for some k ′′ > k some process pj commits read(k′′) with v′. Assume by

contradiction that v 
= v ′. Since read(k′′) commits with v′, by the read-commit property, some write(k ′′, v′) was

invoked before or at the same round k ′′. However, this is impossible since we assumed that no write(k ′, v′) operation

with k′ ≥ k and v′ 
= v has been invoked, i.e., vi remains unchanged to v: a contradiction. ✷

Proposition 48. The algorithm of Figure 18 implements a wait-free round-based register.

Proof. Directly from lemmata 43, 44, 45, 46 and 47 and the fact that we assume a majority of correct disks. ✷

6.4 Fall: Fast Paxos

In Paxos, when a process pi TO-Broadcasts a message m, pi sends m to the leader process pl. When pl receives

m, pl triggers a new round-based consensus instance by proposing a batch of messages. A round-based consensus is

made up of two phases, a read phase and a write phase. The read phase figures out if some value was already written,

while the write phase either writes a new value (if the register contained ⊥) or rewrites the last written value. In the

specific case of k = 1 (i.e., the first round), p1 can safely invoke the write(1, ∗) operation without reading: indeed, if

any other process has read or written any value, the write(1, ∗) invocation of p 1 aborts. In this case, consensus (if it

commits) can be reached significantly faster than in a “regular” scenario.

Interestingly, this optimisation can actually be applied whenever the system stabilises (even if processes do not know

when that occurs). Indeed, the key idea behind that optimisation is that p 1 knows that writing directly at round 1 is

safe because in case of any other write, p1’s write would be automatically aborted. In fact, once a leader gets elected

and commits a value, the leader can send a new message to all processes indicating that, for the subsequent consensus

instances, only this process can try to directly write onto the register. This new message can be piggy-backed onto the

messages of the write() primitive, thus avoiding any additional communication steps. Moreover, the last decision is
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piggy-backed onto the next consensus invocation, thus saving one more communication step.

Hence, the optimised protocol goes through two modes. Whenever a leader p i commits consensus (in the initial

regular mode), it switches to the fast mode and tries to directly impose its value for next consensus. If the system is sta-

ble, pi succeeds and hence needs only one forced log and one communication round trip. We introduce here a specific

fastpropose() operation that invokes write() directly and ensures that only one process can invoke fastpropose()

per consensus, i.e., per batch of messages (independently of the round number). A fastpropose() invokes write()

with a round number range between 1 and n, while for propose(), i.e., regular write(), the round number range starts

at n+1. This way, a process can differentiate a write() from a propose() or a fastpropose(). If the fastpropose()

does not succeed, pi goes back to the regular mode. We implement this mode switching by refining our round-based

consensus and round-based register abstractions. We give here the intuition.

TO-Broadcast m

p1

p2

p4

p5

p3

 m

prop(1,m) Round-Based Consensus

p1 is leader

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

TO-Deliver m

Decision

Fast
Round-Based 
Consensus

TO-Broadcast m’

 m’

fastprop(1,m’)

precedent
decision+
imposition m’ 

Regular pattern (L) Fast pattern (L+1)

Figure 19. Communication steps for a regular followed by a fast communication pattern

Basically, we change the initialisations of our round-based consensus and round-based register abstractions. We

use, in their constructors, a boolean variable fast that is set to true (resp. false) to distinguish the two cases. We

add one specific operation fastpropose() to the interface of round-based consensus. Our modular Paxos protocol is

also slightly modified to invoke the fastpropose() operation. Figure 19 depicts the different communication steps

schemes; for clarity, we omit forced logs. Process p1 executes a regular communication pattern for message m and

then a fast communication pattern for the next consensus (message m ′). First, p3 elects p1 and sends m to p1. When

p1 commits consensus for batch L and with the permission to allow the next batch to be performed in a fast mode,

p1 switches to the fast mode for batch L+1. When p5 TO-Broadcasts m′, p5 elects p1 and sends m′ to p1. Process

p1 then imposes the decision for batch L+1 and piggy-backs the last decision (L) on the same consensus invocation

(L+1). The L+1 batch of messages is decided but will be TO-Delivered only with the next batch of messages (L+2).

Fast Round-Based Register. The fast round-based register has similar read() and write() operations than a regular

round-based register. A variable permission is added to the returned values of the write() primitive: permission is set

to true if the variable v from the current and the next consensus are empty, otherwise it is set to false. The variable

permission indicates to the upper layer that the process can directly invoke Fast Paxos for the next consensus. If a
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process pi receives a nackWRITE message, it returns (abort,false). If p i gathers only ackWRITE message, then it

returns (commit,true) only if pi received only ackWRITE messages with permission set to true, otherwise p i returns

(commit,false). Note that if vi is modified and stored after permission is set, indeed only one process can perform a

Fast Paxos per consensus. Fast round-based register has a different constructor since it extracts (if there is any) the

decision that is piggy-backed from the invocation and simulates the reception of a DECIDE message. Note also that

line 32 of Figure 20 prevents the violation of the agreement property. 15

1: procedure register() {Constructor, for each process pi}
2: readi ← 0
3: writei ← 0
4: vi ← ⊥
5: if any, extract msgSet and Kpj

and simulate the receive of a message (DECIDE,Kpj
,msgSet) {Added from Figure 12}

6: permission← false {Added from Figure 12}
7: procedure read(k)
8: s-send [READ,k] to all processes
9: wait until received [ackREAD,k,*,*] or [nackREAD,k] from �n+1

2 � processes
10: if received at least one [nackREAD,k] then
11: return(abort, v)
12: else
13: select the [ackREAD,k, k′, v] with the highest k′

14: return(commit, v)
15: procedure write(k, v) {Modified from Figure 12}
16: s-send[WRITE,k, v] to all processes
17: wait until received [ackWRITE,k,*] or [nackWRITE,k] from �n+1

2 � processes
18: if received at least one [nackWRITE,k] then
19: return(abort,false)
20: else
21: if received at least one [ackWRITE,k,false] then return(commit,false) else return (commit,true)
22: task wait until receive [READ,k] from pj

23: if writei ≥ k or readi ≥ k then
24: s-send [nackREAD,k] to pj

25: else
26: readi ← k; store{readi}
27: s-send [ackREAD,k, writei, vi] to pj

28: task wait until received [WRITE,k, v] from pj {Modified from Figure 12}
29: if writei > k or readi > k then
30: s-send [nackWRITE,k] to pj

31: else
32: if k ≤ n then writei ← n+ 1

2 else writei ← k
33: permission← ((vi = ⊥) and (vi+1 = ⊥))
34: vi ← v; store{writei, vi}
35: s-send [ackWRITE,k,permission] to pj

36: upon recovery do
37: initialisation
38: retrieve{writei, readi, vi}

Figure 20. Wait-free fast round-based register

Fast Round-Based Consensus. Fast round-based consensus has a parameterised constructor: fast indicates if the

mode is fast or not, and the new constructor instantiates a new register using the fast parameter. Fast round-based con-

sensus exports the primitive propose() of a regular round-based consensus (augmented with the return value nextFast).

The variable nextFast is a boolean that indicates if the next batch of messages can be executed in a fast manner. Its

value is set to the return value of the fast round-based register (permission). Moreover, nextFast is set in such way

that for a particular batch L, it returns true only once independantly of the number of invocation of propose() or

fastpropose(). A process pi can perform Fast Paxos for batch L+1 only if p i commits consensus (either by propose()

or fastpropose()) for batch L with nextFast set to true. The fast round-based consensus also exports a new primitive
15Variable writei is set to a value between n and n+1. If set to n+ 1, the invocation of write(n+1) would abort and hence require an added

round. If write is set to n, then the agreement property can be violated since two fast write can occur, e.g., write(1), write(n).
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fastpropose() that takes as input an integer and an initial value v (i.e., a proposition for the fast consensus). It returns

a status in {commit, abort}, a value v′ and a boolean value nextFast. The fastpropose() primitive is a propose()

primitive that satisfies the validity and agreement properties of the regular propose() primitive plus the following Fast

Termination property if fastpropose() is invoked only with round number n ≥ k ≥ 1:

• Fast Termination: If some operation fastpropose(∗, ∗) aborts, then some operation fastpropose(−,−) was

invoked; if fastpropose(∗, ∗) commits then no different operation fastpropose(−,−) can commit.

In fact, the fastpropose() primitive is straightforward to implement since it only invokes the write() primitive

with round number between 1 and n of the fast round-based register.

1: procedure consensus(fast) {Constructor, for each process pi, modified from Figure 6}
2: v ← ⊥; reg← new register(); writeRes← abort; nextFast← false {Initialisation,modified from Figure 6}
3: procedure propose(k, initi )
4: if reg.read(k) = (commit, v) then
5: if (v =⊥) then v ← initi

6: (writeRes,nextFast)← reg.write(k, v)
7: if writeRes=commit then return(commit, v,nextFast) else return(abort, initi ,nextFast)
8: return(abort, initi ,false)
9: procedure fastpropose(k, initi) {Added from Figure 6}

10: (writeRes,nextFast)← reg.write(k, initi)
11: if writeRes=commit then return(commit, initi ,nextFast) else return(abort, initi ,nextFast)

Figure 21. Wait-free fast round-based consensus

Lemma 49. Fast Termination: If some operation fastpropose(∗, ∗) aborts, then some operation fastpropose(−,−)

was invoked; if fastpropose(∗, ∗) commits then no different operation fastpropose(−,−) can commit.

Proof. We assume here that processes invoke fastpropose() only with round number n ≥ k ≥ 1. There are two

cases to consider: (i) two different processes invoke fastpropose() for the same consensus, or (ii) a process invokes

fastpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that two different pro-

cesses pi and pj invoke fastpropose(). Assume moreover that pi returns from fastpropose(), by line 32 of Figure 20,

when pj tries to invoke fastpropose(), by the algorithm of Figure 20, p j cannot succeed since writei is already set

to n+ 1
2 : a contradiction. Now consider case (ii). Assume that p i invokes fastpropose() twice for the same consen-

sus number, since writei is stored, pi cannot commit twice fastpropose() with nextFast set to true: a contradiction.✷

Proposition 50. If fastpropose() is invoked only once, then Figure 21 implements a wait-free fast round-based

consensus in a crash-recovery model.

Proof (sketch). The proof is based on lemma 49 and the fact that the proofs of the validity and agreement properties

are similar to the proofs of lemmata 8 and 9. ✷

Fast Paxos. Intuitively, once a process p i returns from propose() or fastpropose() with nextFast set to true for batch

L, it implies that a process has the permission to execute a fast consensus, i.e., invoke fastpropose() for batch L+1.

We slightly modify the Paxos algorithm by adding an array fast[] that is set to false initially. When a process p i

decides for batch L (in the regular mode), p i sends the decision to every process and sets the variable fast[L+1] to true
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if fastpropose() or propose() returns with nextFast set to true (changes from a regular to a fast mode for the next

consensus). The next time pi invokes a new consensus (fast[L] is true), pi (i) piggy-backs the last decision (if there

is any) to the new instantiation of consensus, and (ii) invokes fastpropose(). This invocation has a different impact

on the round-based register as explained earlier. When p i commits fastpropose(), pi (a) does not need to send the

decision to every process since the decision is piggy-backed onto the next consensus invocation, and (b) sets fast of

the next consensus to true so that pi can perform again a Fast Paxos. When pi aborts fastpropose(), pi sets fast back

to false since pi cannot force the decision for this consensus, i.e., the communication pattern becomes regular again.

Note that it is necessary in the fast mode that the last decision (if there is any) to be piggy-backed onto the invocation

of the constructor of our round-based register. Otherwise, the process that creates the round-based register will not be

able to TO-Deliver the last decision. Since there can be concurrent executions of consensus, when a process commits a

regular consensus for batch L, the next fast consensus will not always be batch L+1. Consider the following example,

if a process pi starts three consensus for batch number L=1,2, and 3; when p i commits batch number L=1, pi sets

fast to true for batch number 2 and not 4 (only the subsequent batch number of L is set to true and not the last batch

number started). Note also that the last decision piggy-backed is TO deliver[L-1] but it can be empty. In this case,

the last decision piggy-backed is the latest decision that p i has, e.g, AwaitingToBeDelivered[latestDecisionReceived]

or TO delivered[lastestTODelivered]. Note that we assume here that lines 24 and 25 are executed atomically.

Lemma 51. There can be only one invocation of fastpropose() per consensus.

Proof. By the algorithm of Figure 22, processes invoke fastpropose() only with round number n ≥ k ≥ 1. There

are two cases to consider: (i) two different processes invoke fastpropose() for the same consensus, or (ii) a pro-

cess invokes fastpropose() twice for the same consensus. Consider case (i), let us assume by contradiction that

two different processes pi and pj invoke fastpropose() for consensus number L+1. For both processes, to invoke

fastpropose() for consensus L+1, fast[L+1] must be set to true, which requires a process to perform a successful

propose() (or fastpropose()) which returns nextFast as true for consensus L. Assume that p i returns from propose()

(or fastpropose()) with nextFast to true: a majority of processes have returned with permission set to true (hence

vL = ⊥ at a majority of processes) and no process has returned with permission set to false. When p j invokes

propose() or fastpropose(), by the algorithm of Figure 20, p j has to return with nextFast to false since two majori-

ties will always intersect: a contradiction. Now consider case (ii). Assume that p i invokes fastpropose() twice for

the same consensus number L+1, by the algorithm of Figure 22, p i must have crashed and recovered between the two

invocations of fastpropose(). When pi recovers, fast[L+1] is reset to false (initialisation). To invoke fastpropose()

after having recovered, pi has to perform a successful propose() (or fastpropose()) with nextFast set to true for

consensus L. This is impossible because a majority of processes have already their vL 
= ⊥: a contradiction. ✷

Proposition 52. With a wait-free round-based consensus, and a wait-free weak leader election, the algorithm of

Figure 22 ensures the termination, agreement, validity and total order properties in a crash-recovery model.

Lemma 53. Termination: If a process pi TO-Broadcasts a message m and then pi does not crash, then pi eventually

TO-Delivers m.

Lemma 54. Agreement: If a process TO-Delivers a message m, then every correct process eventually TO-Delivers m.
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1: For each process pi:
2: procedure initialisation:
3: Received[]← ∅; TO delivered[]← ∅; fast[]←{false,..} {Modified from Figure 13}
4: TO undelivered← ∅; AwaitingToBeDelivered[]← ∅; K ← 1; nextBatch← 1; start task{launch}
5: procedure TO-Broadcast(m)
6: Received← Received ∪ m
7: procedure deliver(msgSet)
8: TO delivered[nextBatch]← msgSet - TO delivered;
9: atomically deliver all messages in TO delivered[nextBatch] in some deterministic order

10: store{TO delivered,nextBatch}
11: nextBatch← nextBatch +1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
12: while AwaitingToBeDelivered[nextBatch] �= ∅ do
13: TO delivered[nextBatch]← AwaitingToBeDelivered[nextBatch]- TO delivered; atomically deliver TO delivered[nextBatch]
14: store{TO delivered,nextBatch}
15: nextBatch← nextBatch+1 {Stop retransmission module ∀ messages of nextBatch-1 except DECIDE or UPDATE}
16: task launch {Upon case executed only once per received message}
17: upon Received - TO delivered �= ∅ or leader has changed do {If upon triggered by a leader change, jump to line 28}
18: while AwaitingToBeDelivered[K+1] �= ∅ or TO delivered[K+1] �= ∅ do
19: K ← K+1
20: if K = nextBatch and AwaitingToBeDelivered[K] �= ∅ and TO delivered[K] = ∅ then
21: deliver(AwaitingToBeDelivered[K])
22: TO undelivered← Received− TO delivered
23: if leader()= pi then
24: while proposeK is active do
25: K ← K+1
26: start task proposeK (K, i, TO undelivered); K ← K+1
27: else
28: s-send(TO undelivered) to leader()
29: task propose(L, l, msgSet) {Modified from Figure 13}
30: committed← false
31: if fast[L] then {Added from Figure 13}
32: piggy-back TO delivered[L-1] (if not empty) otherwise latest decision onto next instantiation and invocation of consensus
33: consensusL← new consensus(true)
34: if consensusL.fastpropose(l, msgSet) = (commit, returnedMsgSet,nextFast) then
35: if L = nextBatch then deliver(returnedMsgSet) else AwaitingToBeDelivered[L] = returnedMsgSet; committed← true
36: fast[L]← false; fast[L+1]← nextFast
37: if consensusL = ⊥ then consensusL ← new consensus(false)
38: while not committed do
39: l← l + n
40: if leader()= pi then
41: if consensusL.propose(l, msgSet) = (commit, returnedMsgSet,nextFast) then
42: committed← true; s-send(DECISION,L, returnedMsgSet) to all processes; fast[L+1]← nextFast
43: else
44: fast[L+1]← false
45: upon s-receive m from pj do

46: if m = (DECISION,nextBatch,msgSet
Kpj ) or m = (UPDATE,Kpj

,TO delivered[Kpj
]) then

47: if task proposeKpj
is active then stop task proposeKpj

48: if Kpj
�= nextBatch then {pj is ahead or behind}

49: if Kpj
< nextBatch then {pj is behind}

50: for all L such that Kpj
< L < nextBatch: s-send(UPDATE,L,TO delivered[L]) to pj {If pj �= pi}

51: else
52: AwaitingToBeDelivered[Kpj

] = msgSet
Kpj ; s-send(UPDATE,nextBatch-1,TO delivered[nextBatch-1]) to pj {If pj �= pi}

53: else
54: deliver(msgSet

Kpj )
55: else
56: Received← Received ∪msgSetT O undelivered {Consensus messages are treated in the consensus box}
57: upon recovery do
58: initialisation
59: retrieve{TO delivered, nextBatch}; K ← nextBatch; nextBatch← nextBatch+1; Received← TO delivered

Figure 22. Fast Paxos in a crash-recovery model
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Lemma 55. Validity: For any message m, (i) every process pi that TO-Delivers m, TO-Delivers m only if m was

previously TO-Broadcast by some process, and (ii) every process p i TO-Delivers m at most once.

Lemma 56. Total order: Let pi and pj be any two processes that TO-Deliver some message m. If pi TO-Delivers

some message m′ before m, then pj also TO-Delivers m′ before m.

By lemma 51, the proofs for lemmata 53 through 56 are identical to those of lemmata 27 through 30 since (a) the

properties of the fastpropose() primitive are more restrictive than the propose() primitive; and (b) the properties of

the regular propose() remain the same.

7 Related Work

The contribution of this paper is a faithful deconstruction of the Paxos replication algorithm. Our deconstruction

is faithful in the sense that it preserves the efficiency of the original Paxos algorithm. This promotes the implemen-

tation of the algorithm in a modular manner, and the reconstruction of variants of it that are customised for specific

environments.

In [12, 16], the authors focused on the consensus part of Paxos with the aim of either explaining the algorithm and

emphasising its importance [12] or proving its correctness [16]. In [12, 16], the authors discussed how a state machine

replication algorithm can be constructed as a sequence of consensus instances. As they pointed out however, that

might not be the most efficient way to obtain a replication scheme. Indeed, compared to the original Paxos protocol,

additional messages and forced logs are required when relying on a consensus box. This is in particular because the

very nature of traditional consensus requires every process to start consensus, i.e, adds messages compared to Paxos,

and, in a crash-recovery model, every process needs to log its initial value. Considering a finer-grained and round-

based consensus abstraction, separated from a leader election abstraction, is the key to our faithful deconstruction

of the Paxos replication algorithm. Our round-based consensus allows a process to propose more than once without

implying a forced log, and allows us to merge all logs at the lowest abstraction level while exporting the round number

up to the total order broadcast layer.

Our round-based consensus abstraction is somehow similar to the “weak” consensus abstraction identified by Lamp-

son in [12]. There are two fundamental differences. “Weak” consensus does not ensure any liveness property. As stated

by Lampson, the reason for not giving any liveness property is to avoid the applicability of the impossibility result of

[4]. Our round-based consensus specification is weaker than consensus and does not fall into the impossibility result

of [4], but nevertheless includes a liveness property. The termination property of our round-based consensus coupled

with our leader election property is precisely what allows us to ensure progress at the level of total order broadcast.

In [5], a variant of Paxos, called Disk Paxos, decouples processes and stable storage. A crash-recovery model is

assumed and progress requires only one process to be up and a majority of functioning disks. Thanks again to our

modular approach, we implement Disk Paxos by only modifying the implementation of our round-based register. The

algorithm of Section 6.3 is faithful to Disk Paxos in that both have the same number of forced logs, messages and

communication steps.16 Note that our leader election implementation that copes with unstable processes can be used
16Variables bal, mbal and inp in [5] correspond to writei, readi and vi in our case, while a ballot number in [5] corresponds to a round number
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with Disk Paxos to improve its resilience.

Independently of Paxos, [15] presented a replication protocol that also ensures fast progress in stable periods of the

system: our Fast Paxos variant can be viewed as a modular version of that protocol. In [13], a new failure detector,

✸C, is introduced. This failure detector, which is shown to be equivalent to Ω, adds to the failure detection capabil-

ity of ✸S [3] an eventual leader election flavour. Informally, this flavour allows every correct process to eventually

choose the same correct process as leader and eventually ensure fast progress. We have shown that Ω can be directly

used for that purpose, and we have done so in a more general crash-recovery model. Finally, [17] have given a total

order broadcast in a crash-recovery model based on a consensus box [3]. As we pointed out, by using consensus as

a black box, all processes need to propose an initial value which, in a crash-recovery model, means that they all need

a specific forced log for that (this issue was also pointed in [17]). Precisely because of our round-based consensus

abstraction, we are able to alleviate the need for this forced log.
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A Optional Appendix. Performance measurements

We have implemented our abstractions on a network of Java machines as a library of distributed shared objects. We

give here some performance measurements of our modular Paxos implementation in different configurations. These

measurements were made on a LAN interconnected by Fast Ethernet (100Mb/s) on a normal working day. The LAN

consisted of 60 UltraSUN 10 (256Mb RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.7, and

our implementation was running on Solaris Java HotSpot TM Client VM (build 1.3.0 01, mixed mode). The effective

message size was of 1Kb and the performance tests consider only cases where as many broadcasts as possible are

executed. In all tests, we considered stable periods where process p0 was the leader and one process was running per

machine.
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Figure 23. Broadcast performance

Figure 23(a) depicts the throughput difference between Regular Paxos and Fast Paxos. Not surprisingly, Fast Paxos

has a higher throughput. The overall performance of both algorithms decreases since the leader has to send and receive

messages from an increasing number of processes.

Figure 23(b) depicts the performance of Fast Paxos when the number of broadcasting processes increases. We

considered four cases, (i) only the leader broadcasts, (ii) one process other than the leader broadcasts, (iii) all processes

except the leader broadcast, and (iv) all processes broadcast. Distributing the load of the broadcasting processes to a

larger number of processes improves the average throughput. As expected, the throughput is lower when the leader

is the unique broadcasting process, since it is the most overloaded. Case (iii) has a better throughput than case (iv)

after 12 processes since the leader does not broadcast and can allow more processing power than case (iv). This shows

that broadcasting messages slows down a process, and this is also verified by the increased throughput when another

process than the leader (case ii) is broadcasting.17

Figure 24 compares Fast Paxos in two different modes: (i) concurrent consensus instances are started, and (ii)

only consecutive consensus instances are launched. Not to overwhelm the process with context switching, Paxos is

implemented using a thread pool that is limited to ten, i.e., at most ten concurrent consensus run at each process. The
17When increasing the number of processes, the performances come close to each other because the capacity of Paxos is reached.
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Figure 24. Concurrent vs consecutive (Fast Paxos)
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throughput in both modes decreases as the number of protocol instances increases. At first, the concurrent version

gives better performance, but this diminishes as the number of broadcast increases. In fact, the increasing computation

needed (in the task launch) impedes the performance of the concurrent version, i.e., performance degrades. The results

show that the more process a system has, the less difference there is in throughput between consecutive and concurrent

executions, i.e, when there are more processes in the system, there are less consensus instances that are launched.

Figure 25 depicts the broadcast rate at which the best throughput can be achieved from 4 to 10 processes. For

all cases, the throughput increases (approximately) linearly until a certain point, e.g., up to 10 broadcast/sec/process

for a six processes system and then the throughput falls suddenly linearly. Above the breakpoint, the leader again

becomes the bottleneck, its task receive is overwhelmed by the number of broadcasts it has to handle, thus delaying

new protocol instances.
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Figure 25. Best throughput (Fast Paxos)

Figure 26(a) depicts the impact of forced logs for the Fast Paxos algorithm. When forced logs are removed, the

increased performance is minimal since the algorithm is fine-tuned and waits for a certain number of broadcast mes-

sages before launching a consensus. The TO-Delivery rate is by far better when a consensus is launched for a certain
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number of messages rather than starting a consensus for each single broadcast message. The number of consensus

becomes too big and slows down the algorithm. Due to this optimisation, there are few instances of consensus per

second and hence few stable storage access per second. Therefore, upon removal of stable storage, the performance

improvement is not drastic as one might think. This result shows that the winter season protocol is not really useful

for a practical system.18 However, Figure 26(b) shows that forced logs have an impact on performance. If Fast Paxos

launches a large number of consensus per second, i.e., a consensus is started consecutively for each single broadcast

message. (There are no other consensus instance running in parallel, but there can be many consensus instances per

second.) In this case, the impact of forced logs is quite significant, as shown in Figure 26(b).
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Figure 26. Comparison between forced logs and no stable storage (Fast Paxos)

Finally, Figure 27 gives the recovery time required by a process depending on the number of messages retrieved

from the stable storage. The number of retrieved messages is proportional to the number of reads from the disk, thus

increasing the recovery time.
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Figure 27. Recovery time

18Moreover, Note that for a long-lived application, this model is not really practical, since every process is likely to crash and recover at least
once during the life of the application.
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B Optional Appendix. Implementation of Ω in a Crash-Recovery Model with partial syn-

chrony

Figure 28 gives the implementation of the failure detector Ω in a crash-recovery model with partial synchrony

assumptions. We assume that message communication times are bound by an unknown period but hold after some

global stabilisation time. Intuitively, the algorithm works as follows. A process p i keeps track of the processes that it

trusts in a set denoted trustlist. A process pi keeps on sending I-AM-ALIVE messages to every process. Periodically,

pi removes of its trustlist the processes from which it did not receive, within a certain threshold, any I-AM-ALIVE

message. When pi receives an I-AM-ALIVE message from some process pj and if pj was not part of the trustlist, pi

then adds pj to its trustlist and increments pj’s threshold. However, an unstable process can be trusted, therefore the

algorithm counts the number of times that a process crashes and recovers. This scheme allows a process to detect

when a process crashes and recovers, an unstable process has an unbouded epoch number at a correct process, while

a correct process has an epoch number that stops increasing. When p i crashes and recovers, pi sends a RECOVERED

message to every process (line 8). When pj receives a RECOVERED message from pi, pj updates the epoch number

of pi at line 21 and pj adds pi to its trustlist. Variable Ω.trustlist contains the process, within the trustlist, that has the

lowest epoch number (line 15), and if several of these exist, select the one with the lowest id.

Processes exchange their epoch number and take the maximum of all epoch numbers to prevent the following case.

Assume that processes p2, p3, p4 never crash and that process p1 crashes and recovers. When p1 recovers, assume that

every process except p1 receives the RECOVERED message from p1. Therefore, p1 has epochp1 = 0, 0, 0, 0, while the

other processes have epochp2,3,4 = 1, 0, 0, 0. Each process has the same trustlist, indeed Ωp1 outputs p1 and Ωp2,3,4

outputs p2 which violates the property of Ω, exchanging their epoch number and taking the maximum such case is

avoided. Therefore, when receiving the trustlist, p i also takes the maximum between its epoch number and the one it

received from pj . Note that the MIN function gives the first index that realises the minimum.

Proposition 62. The algorithm of Figure 28 satisfies the following property in a crash-recovery model with partial

synchrony assumptions: There is a time after which exactly one correct process is always trusted by every correct

process.

Proof. There is a time after which every correct process stops crashing and remains always-up. Therefore, every cor-

rect process keeps on sending I-AM-ALIVE message to every process. Thanks to the partial synchrony assumptions,

we know that after some global stabilisation time, a message does not take longer than a certain period of time to go

from one process to another. Eventually, every process guesses this period of time by incrementing ∆ pi at line 19.

By the fair loss property of the links, every correct process then receives an infinite number of times I-AM-ALIVE

messages. Therefore, every correct process eventually has the same set trustlist and epoch list, indeed they output all

the same process. Eventually, this process is correct since the algorithm chooses the process with the lowest epoch

number (remember that an unstable process has a non decreasing epoch number at a correct process). ✷
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1: for each process pi:
2: upon initialisation or recovery do
3: Ω.trustlist← ⊥; trustlistpi

← Π

4: for all pj ∈ Π do
5: ∆pi

[pj ]← default time-out interval
6: epochpi

[pj ]← 0
7: start task{updateD}
8: if recovery then send(RECOVERED) to all
9: task updateD

10: repeat periodically
11: send (I-AM-ALIVE,epochpi

) to all processes
12: for all pj ∈ Π do
13: if pj ∈ trustlistpi

and pi did not receive I-AM-ALIVE from pj during the last ∆pi
[pj ] then

14: trustlistpi
← trustlistpi

\ {pj}
15: Ω.trustlist←MIN(pk ∈ trustlistpi

| pk = MIN(epochpi
))

16: upon receive m from pj do
17: if m = (I-AM-ALIVE,epochpj

) then
18: if pj �∈ trustlistpi

then
19: trustlistpi

← trustlistpi
∪ {pj}; ∆pi

[pj ]← ∆pi
[pj ] + 1

20: for all pk ∈ Π do
21: epochpi

[pk]←MAX(epochpj
[pk], epochpi

[pk])

22: else if m = RECOVERED then
23: epochpi

[pj ]← epochpi
[pj ] + 1; trustlistpi

← trustlistpi
∪ {pj}

Figure 28. Implementing Ω in a crash-recovery model with partial synchrony assumptions
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