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Abstract

A large number of products implementing aggregate buffering and scheduling mech-
anisms have been developed and deployed, and still more are under development. With
the rapid increase in the demand for reliable end-to-end QoS solutions, it becomes in-
creasingly important to understand the implications of aggregate scheduling on the
resulting QoS capabilities. This paper studies the bounds on the worst case delay in a
network implementing aggregate scheduling. We derive an upper bound on the queuing
delay as a function of priority traffic utilization and the maximum hop count of any
flow, and the shaping parameters at the network ingress. Our bound explodes at a cer-
tain utilization level which is a function of the hop count. We show that for a general
network configuration and larger utilizaion utilization an upper bound on delay, if it
exists, must be a function of the number of nodes and/or the number of flows in the
network.

Keywords: delay, jitter, aggregate scheduling, FIFO, priority queueing, Guaranteed
Service, Diffserv

1 Introduction and Background

In the last decade, the problem of providing end-to-end QoS guarantees in Integrated Ser-
vices networks has received a lot of attention. Omne of the major challenges in providing
hard end-to-end QoS guarantees is the problem of scalability. Traditional approaches to
providing hard end-to-end QoS guarantees, which involve per flow signalling, buffering and
scheduling, are difficult, if not impossible, to deploy in large ISP networks. As a result,
methods based on traffic aggregation have recently become widespread. A notable example
of methods based on aggregation has been developed in the Differentiated Services Working
group of IETF. In particular, RFC 2598]1] defines Expedited Forwarding per Hop Behavior
(EF PHB), the underlying principle of which is to ensure that at each hop the aggregate
of traffic requiring EF PHB treatment receives service rate exceeding the total bandwidth
requirements of all flows in the aggregate at this hop. Recently, a lot of practical implemen-
tations of EF PHB have emerged where all EF traffic is shaped and policed at the backbone
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ingress, while in the core equipment all EF traffic shares a single priority FIFO or single
high-weight queue in a Class-Based Fair Queuing scheduler. Since these implementations
offer a very high degree of scalability at comparatively low price, they are naturally very
attractive.

Sufficient bandwidth must be available on any link in the network to accommodate
bandwidth demands of all individual flows requiring end-to-end QoS. One way of ensuring
such bandwidth availability is by generously over provisioning the network capacity. Such
over provisioning requires adequate methods for measuring and predicting traffic demands.
While a lot of work is being done in this area, there remains a substantial concern that
the absence of explicit bandwidth reservations may undermine the ability of the network to
provide hard QoS guarantees. As a result, approaches based on explicit aggregate bandwidth
reservations using RSVP aggregation are being proposed [2]. The use of RSVP aggregation
allows the uncertainty in bandwidth availability to be overcome in a scalable manner. As
a result, methods based on RSVP aggregation can provide hard end-to-end bandwidth
guarantees to individual flows sharing the traffic aggregate with a particular aggregate RSVP
reservation.

However, regardless of whether bandwidth availability is ensured by over provisioning,
or by explicit bandwidth reservations, there remains a problem of whether it is possible to
provide not only bandwidth guarantees but also end-to-end latency and jitter guarantees for
traffic requiring such guarantees, in the case when only aggregate scheduling is implemented
in the core.

An important example of traffic requiring very stringent delay guarantees is voice. A
popular approach to supporting voice traffic is to use EF PHB and serve it at a high priority.
The underlying intuition is that as long as the load of voice traffic is substantially smaller
than the service rate of the voice queue, there will be no (or very little) queueing delay
and hence very little latency and jitter. However, little work has been done in quantifying
exactly how much voice traffic can actually be supported without violating stringent end-
to-end delay budget that voice traffic requires.

Another example when a traffic aggregate may require a stringent latency and jitter
guarantee is the so-called Virtual Leased Line (VLL) [1]. The underlying idea of the VLL
is to provide a customer with an emulation of a dedicated line of a given bandwidth over
the IP infrastructure. One attractive property of the real dedicated line is that a customer
who has traffic with diverse QoS requirements can perform local scheduling based on those
requirements and local bandwidth allocation policies, and the end-to-end QoS experienced
by his traffic will be entirely under the customers control. One way to provide a close
emulation of this service over IP infrastructure could be to allocate a queue per each VLL
in a WFQ scheduler at each router in the network. However, since there could be a very
large number of VLLs in the core, per-VLL queueing and scheduling presents a substantial
challenge. As a result, it is very attractive to use aggregate queueing and scheduling for
VLL traffic as well. However, aggregate buffering scheduling introduces substantially more
jitter than per-VLL scheduling. This jitter results in substantial deviation from the hard
pipe model of the dedicated link, and may cause substantial degradation of service as seen
by delay-sensitive traffic inside a given VLL. Hence, understanding just how severe the
degradation of service (as seen by delay sensitive traffic within a VLL) can be with aggregate
scheduling is an important problem that has not been well understood.

One of the goals of this document is to quantify the service guarantees that can be



achieved with aggregate scheduling. There are two approaches that can be taken in pursuit
of this goal. One is to analyze statistical behavior of the system and to quantify ”statistical
guarantees”. While a large amount of work has been done in this area, there is still
an uncertainty about what the appropriate traffic model should be. In this respect, an
interesting approach is presented by Brichet et. al. in [3], where it is conjectured that
the statistical behavior of periodic traffic entering a network of deterministic servers is
"better” than the behavior of Poisson traffic. If this conjecture is true, then the implication
would be that the queueing delay and resulting jitter of strictly periodic traffic would be no
worse that the behavior of a tandem of M/D/1 servers. Another approach to quantifying
delay guarantees it to analyze the deterministic worst case performance. Such analysis is of
immediate importance in the context of providing end-to-end Guaranteed Service [4] across
a network with aggregate scheduling, such as a Diffserv cloud implementing EF PHB. Since
GS definition requires availability of a meaningful mathematical delay bounds, the ability
to provide a deterministic delay bound across a Diffserv cloud would enable supporting
end-to-end Guaranteed Service to a flow even if its path traverses a Diffserv domain.

Understanding worst case delay bounds in a Diffserv cloud is also important in the
context of supporting VoIP applications over a Diffserv network. Encoded voice traffic is
periodic by nature, and voice generated by devices such as VoIP PBXs using hardware
coders synchronized to network SONET clocks can additionally be highly synchronized.
The consequence of periodicity is that if a bad pattern occurs for one packet of a flow, it
is likely to repeat itself periodically for packets of the same flow. Therefore, it is not just
a random isolated packet that can be affected by a bad pattern, making it very unlikely
that more than a very small number of packets of any given flow will be affected (and hence
justifying the assumption that the users will never notice such a rare event) - rather, it is a
random flow or set of flows that may see consistently bad performance for the duration of
the call. As the amount of VoIP traffic increases, every now and then a bad case will happen,
and even if does not happen that frequently, when it does occur, a set of users are most
certainly likely to suffer potentially severe performance degradation. These considerations
provide motivation to take a closer look at the worst case behavior. On the other hand,
the temporary nature of voice traffic (e.g. conversations starting and ending) disrupts strict
periodicity of voice traffic. Furthermore, in practice it should be expected that aperiodic
traffic may be sharing the same aggregate queues with periodic traffic, (e.g. mission critical
medical application sharing the same EF queue with voice flows). Hence, basing worst case
results on the assumption of strict periodicity may yield erroneous results.

There is a widespread belief, based largely on intuition, that as long as the utilization
on any link is kept small enough (such as less than 50%), the worst case delay through the
network will be very small. Unfortunately, this intuition leads to erroneous conclusions.
Prior analytical work on studying the delay bounds in a network with aggregate scheduling
indicates that networks with aggregate scheduling may have unbounded queueing delay even
with aggregate output shaping [10]. On the other side of the spectrum, several researchers
demonstrate that the ability to provide good delay bounds may depend on complex global
conditions [11], [12]. In particular, this work assumes that individual flows are shaped at
the network entry in such a way that the spacing between packets is at least equal to the
so-called route interference number (RIN)!. It is shown that in this case the end-to-end

IRIN is defined as the number of occurrences of a flow joining the path of some other flow.



result is bounded by the time to transmit a number of packets equal to the RIN.

The contribution of this paper is twofold. First we show that for sufficiently low enough
utilization factors, deterministic delay bounds can be obtained as a function of the bound
on utilization of any link and the maximum hop count of any flow. Second, we argue that
for larger utilization, for any given values of delay, hop count and utilization it is possible
to construct a network in which the queuing delay exceeds the chosen delay value. This
implies that for large enough utilization, either the bound does not exist at all, or if it does
exist it must be a function of the size and possibly topology of the network.

2 Model, Assumptions and Terminology

We assume that all nodes in the network are output-buffered devices implementing aggregate
class-based strict Priority Scheduling?. Traffic enters the network at some nodes (referred
to as ingress edge) and exits at some other nodes (referred to as egress edge). We consider
at least 2 classes of edge-to-edge (e2e) flows, where a flow is some collection of packets with
the common ingress and egress edge pair. We will refer to one of the classes as priority
class. At each node in the network packets belonging to the priority class are queued in
a separate priority queue which is served at strict non-preemptive priority over any other
queue. The total traffic of all priority flows sharing a particular link is refereed to as a
priority aggregate. We assume that each e2e priority flow F' is shaped to conform to a leaky
bucket with parameters (Rr, Br) when it arrives at the ingress edge. Note that the flow
can itself consist of a number of microflows sharing the same ingress-egress edge pair, but
no assumption is made on how those microflows are shaped. Our model further allows that
the aggregate of all flows entering at a given ingress point, regardless of their egress edge,
can be additionally aggregately shaped, but our results do not depend on such aggregate
shaping.

Let S(I) denote the set of all priority flows constituting the priority aggregate on link I.
We assume that the amount of priority traffic on any link does not exceed a certain ratio
0 < a <1 of the capacity of any link. More specifically we require that for any link [ in the
network > ey e < aC(l) where C(1) is the capacity of link . We also require that we
can bound the sum of the token bucket depths burst at any link relative to the link capacity,
namely we can express some parameter 7 such that for all links [ ). S@) Br <7C(l). In
many cases, the depth of the leaky bucket of a flow depends linearly on the rate of the flow,
such that Bp < t7gRp for every flow F and for some 7g. In such cases we set 7 = atg. This
paper makes no assumptions about the exact mechanism ensuring the conditions above — it
can be based on explicit reservations such as described in [2], or some reliable provisioning
technique. In addition, we assume that the route of any flow in the network traverses at
most h nodes (also referred to as hops). Finally, we assume that there exists a bound on
the size of any packet in the network, denoted MTU.

20ur results easily extend to class-based WFQ schedulers as well.



3 A Delay Bound for A General Topology

We can abstract our node description by saying that the priority aggregate at link [ is
guaranteed a service curve equal to o;(t) = (tC(l) — MTU)* [5, 6, 7, 8]. Also call T'(])
a bound on the peak rate of all incoming high priority traffic at link [. If we have no
information about this peak rate, then I'(l) = +o00. For a router with large internal speed
and buffering only at the output, T'(I) is the sum of the bit rates of all incoming links.
The delay bound is better for a smaller I'(l). Also, define u(l) = rﬂ(z%%% Note that

u(l) increases with I'(l), and if I'(l) = 400, then w(l) = 1. Finally, let v = max; u(l) and

MTU
A = max; o

. (1
Theorem 1 If a < min; (F(l)—C(l))((l?afl)—l—C(l)

priority traffic is

then a bound on the end-to-end delay for high

h

D:1—(h—1)ua(

A+ ur)

Proof The proof consists in showing separately that (1) if a finite bound exists, then the
formula in Theorem 1 is true and (2) that a finite bound exists.

(Part 1) We assume that a finite bound exists. Call D’ the worst case delay across any
node. Let ap(t) = tRp + Bp be the arrival curve for the fresh traffic of flow F at the
network entry. Consider a buffer at some link {. An arrival curve for the aggregate traffic
at the input of link [ is

a(t) = min (#0(1), Y ap(t+(h—1)D")
Fes(l)

The former part in the formula is because the total incoming bit rate is limited by I'(1); the
latter is because any flow reaching that node has undergone a delay bounded by (h —1)D’.
Thus

a(t) < d'(t) = min (tT'(1),taC(l) + b')

with ¥ = 7C(1)+aC(l)(h—1)D’. A bound on the delay at our node is given by the horizontal
deviation between the arrival curve a’(t) and the service curve o;(t) = (tC(l) — MTU)*

[5, 6, 7, 8]. After some algebra, this gives a bound on the delay as %ﬂ. Now D’

is the worst case delay; pick [ to be a node where the worst case delay D’ is attained. We
must have D’ < %ﬁ. Thus, we must have

D' <A+ur+ (h—1)uaD’
or equivalently

(1—(h—1ua)D' <A+ur (1)



| a ] 0.04 [ 0.0 [ 0.12 | 0.16 [ 0.20 |

D(I'(l) = +oo) 16.88 | 7429 | +o00 | 400 | 400
D (T(l) = 2C(1)) | 12.75 | 32.67 | 71.50 | 186.00 | +o00

Table 1: The bound D (in ms) in this paper for h = 10. By = 100B for all flows, Rp =
32kb/s for all flows, C(I) = 149.760Mb/s and I'(l) = 400 or I'(l) = 2C(1).

The condition on a means that a < ﬁ Equation (1) implies then that
A+ut
D<Di=—~——
=TT (h—1ua

The end-to-end delay is thus bounded by hD;, which after some algebra provides the re-
quired formula.

(Part 2) We now prove that a finite bound exists. We use the time-stopping method in
[13]. For any time ¢ > 0, consider the virtual system made of the original network, where all
sources are stopped at time t. This network satisfies the assumptions of part 1, since there
is only a finite number of bits at the input. Call D’(¢) the worst case delay across all nodes
for the virtual network indexed by ¢. From the above derivation we see that D’(t) < D, for
all t. Letting t tend to +o0o shows that the worst case delay at any node remains bounded
by _D1 !

Discussion: If I'(l) = 400, namely if we have no information about the sum of the bit

rates of all incoming links, then the condition becomes a < ;=5 and the bound is
A+T
D=h———
1-(h—1a

For finite values of T'(l), the bound is smaller. Table 1 illustrates the value of our bound on
r(

one example. Our bound explodes when a tends to min; 0= C(l))((% E=EOR which is very
unfortunate. It is not clear whether the delay does become unbounded in all cases where
our bound is infinite. Explosion of bounds for aggregate scheduling is not new, and has been
encountered for example in [9, 10]. In [10], an example network is given where the worst case
delay becomes unbounded for a value of « close to 1. Note that if I'(1) is close to C(1) for all
I, then w is close to 0. This is the case for a high speed add-drop ring network, where the bit
rate is much higher for the ring than for the input links. In that case, D = h(A +u7)+o(u)
and the explosion does not take place. It is also known that, in practice, if some restriction
on the topology, routes or rates are imposed, better worst case delays for FIFO networks
can be obtained. For example, it can be shown that for some topologies, such as multistage

networks, the worst case delay is given by £1JF—QL(“—I’*"“ + A), where byax and Ry, are
the upper bound on the token bucket depth and the lower bound on the rate of all ingress
leaky bucket shapers [14]. In this case the explosion does not take place. It is shown in
[11, 12], that if individual flows are shaped at network entry in such a way that the spacing
between packets is at least equal to the route interference number (RIN) of the flow (see
footnote 1 p.4), then the end-to-end delay is bounded by the time to transmit a number
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Figure 1: The iteratitive network topology of iteration ¢ for h = 5. Black circles represent
networks constructed at iteration ¢ — 1. Only 3 out of kh black circles are shown per each
node n(i,7). The output of node n(i,4) in iteration ¢ — 1 denoted by the arrow point is
connected to the input of one of the black circles of iteration i.

of packets equal to the RIN. This usually results in much smaller bounds than the bounds
here, albeit at the expense of more restrictions on the routes and the rates.

4 Delay With Larger Utilization

We will now argue that if utilization factor o > ﬁ, then the worst case delay bound, if
it exists, must depend on some network parameter describing the size of the network or
its topology. More precisely, it will be shown that for any value of the delay D, and for
any o > ﬁ%, there exists a large enough network such that the delay of some packet
can exceed D, even if the maximum hop count of any flow never exceeds h. Since k can
be chosen to be arbitrarily large, this implies that for any o > ﬁ, and for any value of
delay D, there exists a network with maximum hop count h where the delay of some packet
exceeds D.

To see how this network can be built, consider the following iterative construction, shown
in Figure 1. The basic building block of the construction is a chain of h — 1 nodes. The
nodes are indexed n(i, ), where ¢ is the iteration count and j is the count of the nodes in
the chain. At any iteration ¢, there is a source s(é,0) which is attached directly to node
n(i,1). Each of the nodes n(i,j),j = 1,2,...h — 2 also have kh input links each, and all
nodes n(i,7),7 = 2,...h — 1 have hk output links. Each of the kh input links of iteration ¢
are connected to node n(i—1, h—1) of a network constructed at iteration ¢ —1 (the networks
constructed at iteration ¢ — 1 are denoted S(i — 1, j,m), where j is the index of the node
in the chain, and m is the index of the input to node n(, 7). Each of the kh output links
corresponding to each node n(i, j) is connected to kh destination nodes, denoted D(i, j,m).

At iteration ¢ = 1, each of the networks S(0, j,m) (i.e. each of the black circles) is just
a single source node. Assume that all packets are the same size, and that all the sources
in the network are leaky bucket constrained with rates r = #ﬁl and burst (depth) equal
to one packet. Assume that a flow originating at source S(0, 7, m) enters at node n(1,j) of



the chain, traverses a single hop of the chain and exits at node n(i,j + 1) to destination
D(0,j + 1,m). Assume further that a flow originating at source s(1,0) traverses the whole
chain. Note that the utilization of any link in the chain does not exceed o . Assume that
the propagation time of any link is negligible (it will become clear that this assumption does
not lead to any loss of generality). Assume also that all links are of the same speed, and
that the time to transmit the packet at link speed is chosen as unit of time.

At iteration ¢ = 1 at time ¢ = 0 we make a single packet fully arrive to node n(1,1) from
each of the sources S(1,1,m). Let’s color these packets blue. Assume also that at time zero
a red packet started its transmission from node S(1,0) and fully arrived to n(1,1) at time
t; = 1. By this time one blue packet of the hk blue packets which arrived at time ¢ = 0
has departed from n(i, 1), and therefore the red packet has found a queue of length kh — 1
blue packets ahead of it. By time to = t1 + kh the red packet will be fully transmitted from
node n(1,1). Assume that at time ¢t — 1 a single blue packet fully arrives from each of the
nodes S(1,2,m), so that the red packet finds a queue of size kh — 1 at the second node in
the chain as well (recall that all the blue packets from the previous node exit the network
at node n(1,2).

Repeating this process at each of the nodes in the chain, it is easy to see that the red
packet will suffer the total queueing delay of (h — 1)(hk — 1) packet-times at link speed as
it traverses the chain. Since the rate of the red flow is r = k‘,ﬁl > ’;Z:& T (hfl)?khfl)’ it
means that in (h —1)(hk — 1) packet times at link speed C at least one more red packet can
be transmitted from the source S(1,0). Since there are no other blue packets arriving to the
chain by construction?®, the second red packet will catch up with the first red packet, and
hence the burst of two red packets will accumulate at the exit of node n(1,h — 1). Assume
that the red flow at the first iteration just sends two packets and exits.

The next step of the iterative construction will take (h—1)hk of the networks constructed
in step 1 and connect the output of node n(1,h — 1) of each of these networks (node n(1,4)
in Fig. 1) to one of the nodes n(2, j) of the second iteration. That is, node n(i — 1,h — 1)
becomes the source S(i — 1,7, m) of the chain at the next iteration. Let T'(1) be the time
it takes to accumulate the two-packet burst at the exit from node n(1,h — 1) at iteration
1. Let then T'(1) be also the time when the first bit of the two-packet burst arrives at node
n(2,1) from each of the nodes S(1,1,m) at iteration 2. Let’s recolor all those packets blue.
If the source S(2,0) emits a red packet at time t; = T'(1) + 1, then it fully arrives at node
n(2,1) at time t = T(1) + 2, and finds the queue equal to 2hk — 1 blue packets (since 2hk
packets have arrived and one has left in the previous time slot. That means that the last
bit of the red packet will leave node n(2,1) at time T'(1) + 2 4 2kh. Assume now that the
level-1 networks connected to node n(2,2) are started at time 2kh, instead of at time zero.
This means that by the time the last bit of our red packet in the second iteration arrives to
node n(2,2), a two-packet (blue) burst will arrive to node n(2,2) from each of the networks
S(1,2,m), and so the red packet will again find the queue of size 2kh — 1 blue packets.
Repeating this process for all 2 —1 nodes in the chain at iteration 2, we make the red packet
delayed by (2kh —1)(h — 1) > 2(kh — 1)(h — 1) packet times. During this time 2 more red
packets will catch up, resulting in a 3-packet burst. Assume that at iteration 2 the red flow

3Note that the fact that blue sources are leaky bucket constrained with rate r does not prevent the
possibility that they are sending at rate slower than r. In particular, each blue source can send just a single
packet and then stop without violating any of the constraints.



sends 3 packets and exits.

Repeating this process as many times as necessary, with the red flow sending i+ 1 packets
at iteration ¢ and accumulating the burst of size i + 1, we can grow a burst of red packets at
least by one at each new iteration. Therefore, for any value of the delay D, we can always
build a network of enough iterations, so that the burst B accumulated by the red flow over
h — 1 hops is such that B/C > D. Hence, taking one more iteration, it is easy to see that
the red packet at the next iteration will be delayed by more than D at the first hop.

We emphasize that at each iteration the red flow traverses h — 1 hop, and then one more
hop as it is recolored blue in the next iteration. Hence, no flow in the network ever traverses
more than h hops.

An interesting implications of this example is that the delay of a packet of a flow may
be affected by flows which do not share any links in common with the given flow, and what
is even more surprising, those flow had exited the network long before the flow to which the
packet belongs has entered.

5 Discussion

The main difficulty in obtaining hard delay bounds for an arbitrary topology arises from
the fact that in the case of aggregate scheduling, delay experienced by a single packet
depends not only on the behavior of the flows that share at least one queue with the packet
in question, but also on the behavior and arrival pattern of flows in the entire network,
potentially much before the flow to which our packet belongs enters the network. As shown in
the example in the previous section, a packet can encounter accumulated bursts of traffic that
was initially ideally smooth at the entry, which in turn causes further burst accumulation
of the considered flow. In turn, the new burst may contribute to further cascading jitter
accumulation of other flows whose packets it encounters downstream. Intuitively, the lower
the utilization factor and the shorter the route of the flow, the fewer chances a packet of
that flow has in encountering other bursts, accumulating its own, and adversely affecting
other traffic downstream. Our work has provided some quantification of this intuition.

The ability to provide hard delay bounds in a general topology network with aggregate
scheduling must rely on cooperation of all devices in the cloud, as well as strict constraints
on the traffic entering the cloud. It has been demonstrated that the global control of the
following parameters global to the network is essential for the ability to provide strict queuing
delay guarantees in such a network:

1. limited number of hops of any flow across the network

2. low (bounded) ratio of the load of priority traffic to the service rate of the priority
queue on any link in the network

3. strict constraints on the quality and granularity of ingress shaping

While this has been intuitively understood for a long time, our contribution is to quantify
exactly how these parameters affect the delay bound. In particular, barring new results on
delay bounds, our results imply that in the absence of any other constraints on the topology
or routes, priority traffic utilization must be much lower than previously assumed if strong



delay and jitter guarantees are required. For the typical case of leaky bucket constrained
flows our delay bound is linear in the bound on the ratio %F’—' across all priority flows
that are individually shaped at the ingress. Hence, there is an immediate implication
that the smaller this ratio, the better the bounds can be provided. While Br depends
primarily on the accuracy of the shaper, Rr depends on the granularity of shaped flows.
In the case of microflow shaping, the minimal rate of the microflow can be quite small,
resulting in a large delay bound. There is a substantial advantage therefore in aggregating
many small microflows into an aggregate and shaping the aggregate as a whole. While in
principle there is a range of choices for aggregation, there are two natural choices: edge-
to-edge aggregates or edge-to-everywhere aggregates. Edge-to-edge shaping is natural for
explicit bandwidth reservation techniques. In this case Rp and By relate to the rate and
token bucket depth of the edge-to-edge flow aggregates. As discussed above, shaping the
total edge-to-edge aggregates allows reducing the delay bound linearly with the degree of
aggregation. Edge-to-everywhere aggregate shaping is frequently assumed in conjunction
with bandwidth provisioning.

The effect of this choice on delay bounds depends on exactly how provisioning is done.
One possibility for provisioning the network is to estimate the edge-to-edge demand matrix
for priority traffic and ensure that there is sufficient capacity to accommodate this demand,
assuming that the traffic matrix is accurate enough. Another option is to make no assump-
tion on the edge-to-edge priority traffic matrix, but rather to admit a certain amount of
priority traffic at each ingress edge, regardless of the destination, and provision the network
in such way that even if all traffic from all sources happens to pass through a single bottle-
neck link, the capacity of that link is sufficient to ensure that priority traffic utilization does
not exceed a. Depending on which of the two choices for provisioning is chosen, shaping of
the edge-to-everywhere aggregate has the opposite effect on the delay bound. In the case of
”edge-to-edge provisioning”, the bandwidth of any link may be sufficient to accommodate
the actual load of priority traffic while remaining within the target utilization bound. Hence,
it is the minimal rate and the maximum burst size of the actual edge-to-edge aggregates
sharing any link that effect the delay bound. However, aggregate edge-to-all shaping may
result in individual substream of the shaped edge-to-everywhere aggregate being shaped to
a much higher rate than the expected rate of that substream. When the edge-to-everywhere
aggregate splits inside the network into different substreams going to different destinations,
each of those substreams may have in the worst case substantially larger token bucket depth
than that of the aggregate edge-to-everywhere stream®. This results in substantial increase
of the worst case delay over the edge-to-edge shaping model. Moreover, in this case the
properties of ingress shapers do not provide sufficient information to bound the worst case
delay, since it is the burst tolerance of the substreams inside the shaped aggregates that is
needed, but is unknown.

In contrast, if the ”"worst case” provisioning is assumed, the network is provisioned in
such a way that each link can accommodate all the traffic even if all edge-to-everywhere
aggregates end up sharing this link. In this case the shaping parameters of the edge-to-
everywhere aggregate are appropriate for the delay bound. Intuitively, in this case the

aggregate burst tolerance on any link can only be smaller than in the worst case °.

1This is because a low-rate substream of a high-rate shaped aggregate may be shaped to a much larger
rate than its own.
5Note that the "worst case” provisioning model targeting a particular utilization bound results in sub-

10



6 Summary

We have discussed the delay bounds which can be obtained in a network with aggregate
priority FIFO scheduling for priority traffic. Our main result is the delay bound for an
arbitrary topology which is obtained as a function of priority traffic utilization and the
maximum hop count. Unfortunately, this bound is valid only for reasonably small utilization.
We have argued that for larger utilization the bound either does not exist, or must depend
on some other constraints on the topology or routes. Our results imply that at least for
small utilization and hop count, it is possible to provide strict delay guarantees even if only
aggregate scheduling is employed in the network. We have argued that the delay bound
can be improved by using appropriate aggregate shaping policies at the network ingress. It
remains unclear whether the use of some additional network parameters characterizing the
size of the network might yield reasonable delay bounds at larger utilization for a general
topology. Understanding this issue appears to be an important area of future work both
from the analytical and practical standpoints.
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