
EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE – LAUSANNE
POLITECNICO FEDERALE – LOSANNA
SWISS FEDERAL INSTITUTE OF TECHNOLOGY – LAUSANNE

Communication Systems Department
Laboratory for Audiovisual Communications ÉC O L E P O L Y T E C H N I Q U E

FÉ DÉR A L E D E L A U S A N N E

Progressive Meshes in an Operational Rate-Distortion Sense with Application
to Terrain Data

submitted to IEEE Transactions on Visualization and Computer Graphics

L. Balmelli and J. Kovačević and M. Vetterli
April 19th 2000

DSC Technical Report - DSC/2000/019

Abstract

This paper presents an efficient simplification method for regular meshes obtained with a binary subdivision scheme. Our
mesh connectivity is constrained with a quadtree data structure. We propose a quadtree built especially for this class of meshes
having a constant-time traversal property. We introduce a rate-distortion (RD) framework to decimate the mesh and build a
progressive representation for the model. We propose to achieve the RD-optimal solutions for our quadtree-restricted setting:
to obtain the optimal solutions, we show how to find the vertex in the quadtree yielding the best RD trade-off and then perform
optimizations at variable rate, where the rate is given by a cost function (for example the number of triangles). All previous
methods are restricted to constant rate optimization only. We compare the optimal approach to its greedy counterpart. We
give computationally optimal formulations for all our algorithms on the quadtree. We apply our technique to a large dataset of
terrains and give extensive experimental results.

Index terms: meshing, decimation, optimality, rate-distortion, terrain data, quadtree, regular subdivision
scheme, progressive meshes.

Contents

1 Introduction 2
1.1 Simplification of meshes with application to terrain data . 2
1.2 State of the art . 3
1.3 Problem formalization and approach . 4
1.4 Contribution . 4
1.5 Outline of the paper . 5

2 Mesh connectivity and storage 5
2.1 Binary subdivision scheme . 5
2.2 Z-ordering of the quadtree nodes . 6
2.3 Efficient storage of the mesh . 8

3 Algorithm 8
3.1 Introduction . 8
3.2 Preserving the spatial continuity of the mesh . 8
3.3 Greedy against optimal decimation . 9
3.4 Rate-distortion optimization . 10

4 Analysis and complexity 11
4.1 Preliminaries . 11
4.2 Mesh decimation and update . 13

4.2.1 Computing the restricted quadtree in optimal time . 13
4.2.2 Updating the errors of the mesh . 13
4.2.3 Complexity . 14

4.3 Optimality . 15

5 Experimental results 16
5.1 Terrain dataset and metric . 16
5.2 Progressive decomposition . 17
5.3 Average and maximum gain . 17
5.4 Conservation of monotonicity . 18
5.5 Timings . 18

6 Conclusion and future work 19

A Appendix 21
A.1 Recurrence equations for the relative level distance . 21
A.2 Proof of Theorem 1 . 21
A.3 Constant-time navigation . 22
A.4 Dealing with arbitrary geometric relations . 23
A.5 Proof of Proposition 1 . 24
A.6 Example of non-monotonicity in 1D . 24
A.7 Proof of Theorem 2 . 24
A.8 Proof of Proposition 3 . 29
A.9 Proof of Proposition 4 . 29

1 Introduction

1.1 Simplification of meshes with application to terrain data

Highly detailed models in computer graphics require extensive resources to be rendered. Researchers have been
looking for simplification algorithms to reduce the quantity of model information while attempting to preserve
its geometric features as well as possible. We present a framework to decompose a model into a progressive
mesh using a quadtree data structure. Although this approach has already been taken in [10], the novelty of our
solution is that the optimization is done at variable rate in an operational rate-distortion (RD) framework (see
below), where the rate is given by a cost function (for example the number of triangles). We apply our method
to Digital Elevation Terrain Data (DETD) which are usually large datasets requiring extensive computational
resources to be processed. This type of dataset is central to Geographical Information System (Figure 1). Let us

Figure 1: Rendered DETD using a quadtree triangulation counting 6000 triangles.

define our approach more formally: we consider a set of N vertices obtained from a parametric representation
f [x; y] (as in DTEDs) stored in a quadtree data structure. We use a so-called quadtree triangulation as in [16] for
the connectivity of the mesh1. Our method also applies to sets of vertices in R3 if the connectivity is conserved. In
this case, a remeshing technique (see for example [15]) is applied if no parameterization is given for the vertices.
We propose an RD-optimal �(N log2N) algorithm to decimate the vertices in the mesh, or equivalently to prune
the quadtree.

The fundamental difference between our operational RD framework and previous solutions is that at each
optimization step, the algorithm chooses to decimate the vertex in the tree hierarchy giving the best trade-off
between rate and distortion. The rate is defined as a cost for the approximation and the distortion as a distance
with the original model (i.e. full resolution). Namely, each simplification maximizes the decrease in rate while
minimizing the increase in distortion. In previous works [5, 19], candidate vertices were restricted to lie in leaf
nodes. In [17], the author give the same refinement algorithm as in [16], but claim a better selection threshold
for the vertex. In our case, each optimization step ends up pruning a set of nodes in the quadtree 2, therefore each
simplification is represented by a set of subtrees. Decimating any vertex in the quadtree raises two questions:
how to insure the spatial continuity of the mesh and how to efficiently recompute the error of the vertices after
the simplification? A subtree representing an approximation is known as a restricted quadtree [18]. Such a tree
represents a spatially continuous mesh, in the sense that all triangle edges are coplanar. This problem has also
been mentioned as the coplanarity problem by Samet in [18]. While several researchers have proposed to solve
the problem, the solutions were either for particular cases [5, 19] or computationally suboptimal [17]. We propose
a computationally optimal algorithm to solve the problem of computing a restricted quadtree. As for updating the

1More formally, our mesh connectivity is obtained with a binary subdivision scheme.
2Consider the case where the vertex giving the best trade-off is not in a leaf node, then additional vertices have to be decimated jointly in

order to conserve the tree hierarchy.

errors of the mesh in minimal computational time, to the authors knowledge no solution to the general case has
been given. We explain then how to find the minimal set of vertices for which the simplification changes the error
and give a computationally optimal algorithm to update the mesh characteristics.

The vertices in the quadtree are iteratively decimated to decompose the model, yielding a set of embedded
subtrees. Therefore, a progressive mesh is computed in the sense that the original model is split between a base
mesh (represented by the root of the quadtree) and a set of detail meshes. Each detail mesh is represented by the
set of subtrees pruned at each simplification step. Note that the quadtree constrains the dataset since it imposes a
hierarchy on the vertices. Our RD-optimal solutions are given for this restricted setting. In contrast, the general
problem of selecting the K “best” vertices3 without imposing a hierarchy is NP-hard [1]. Our algorithm has
the following interesting property: the decrease in distortion is quasi-monotonic 4 across rates in the progressive
representation. We show that this property cannot be guaranteed by a greedy algorithm as in [5, 6, 10, 11, 16].
Finally, the computational efficiency of our framework relies on our linear quadtree data structure [14], which has
a constant-time traversal property. This property, based on a node indexing scheme that we named z-ordering,
allows browsing of the data-structure in minimal time and yields computationally optimal implementations for
all optimization steps. Our solution provides a fast simplification algorithm as well as an efficient data structure
and is therefore suited for processing large datasets. We compare our algorithm to its greedy counterpart (which
considers only vertices in leaf nodes) and give results for a large database of DETDs. Note that even our greedy
version is novel compared to previous works using the same connectivity [5, 16] since our update mechanism
allows to recompute the errors of the mesh after a decimation in minimal computational time.

1.2 State of the art

Simplification algorithms and complexities Given a model of N vertices, an approximation is constructed by
selecting a subset of K < N vertices representing the original model as accurately as possible. Strategies to
achieve this task vary as research gains momentum. Two main optimization approaches exist: decimation and
refinement. The former consists in removing vertices from the mesh whereas the latter inserts vertices in a coarse
approximation. Two related techniques on the quadtree triangulation were presented by Lindstrom et al. [16]
and Duchaineau et al.[5]: the former consists in an �(K logN) algorithm to refine the mesh. Any vertex can be
inserted, eventually requiring additional triangle forced-split to conserve the mesh continuity, and their algorithm
is in fact the refinement counterpart of our algorithm. The later provides a dynamic mesh representation based
on an equivalent formulation on a binary tree (like in [2]). An �(K logN) algorithm is proposed to insert and
decimate vertices in the model. Two priority queues are used for this purpose, but their ordering require the
distortion measure to be monotonic preventing to use the l 2 or l1 norm. Only vertices in the tree leaves are
inserted or decimated, therefore each optimization split or merge two triangles. Methods for semi-regular and
irregular meshes were presented by Gross et al.[8], Garland et al.[6] and Hoppe et al.[10, 11]. Their algorithms
have complexities �(N 2), �((K +N) logK) and �(N logN) respectively.

Key issues Besides [16], all above methods support only a constant increase or decrease in triangles at each
optimization step. However in [16], the optimization algorithm does not take into account forced-splits to choose
the best vertex to insert. For TINs [6, 10, 11], the lack of hierarchy in the model requires to add or remove a fixed
number of triangles at each optimization step. The above review led us to identify a set of basic ingredients for
an efficient mesh simplification framework: having an efficient data structure is essential, since many processing
steps strongly rely on the ability to efficiently query the dataset. Examples include the recomputation of the
connectivity and the update of the errors after a simplification step. An efficient data structure must then provide:
information on the spatial orientation of the model, fast and simple access to the dataset and minimal storage.
Moreover, the efficiency of the data structure is tightly coupled with the mesh connectivity. For example, a mesh
with regular connectivity lowers the storage complexity and allows to better design data access mechanisms.
A mesh with simple connectivity does not usually achieve the quality of irregular triangulations, but provides
a more flexible framework in terms of optimization and efficiency. The processing of large meshes requires
scalable algorithms, as described in [11], with low computational complexity. The algorithm must also be able to
handle multiple error metrics. Usually, a simplification algorithm evaluates the error as a displacement of vertices
either in world-space or in screen-space. However, more sophisticated error metrics including, for example, the

3The mesh built on theses vertices minimizes the distortion criterion.
4The monotonicity is conserved at best.

attributes of the vertices (such as color, shading, texture) should be considered. Our framework is built under
these considerations.

1.3 Problem formalization and approach

We propose an optimal decimation algorithm for quadtree-based meshes optimizing the model in an operational
RD framework. Decimation approaches as in [8, 10, 11] yield better approximation quality than refinement
algorithms [5, 6, 16] as reported in [2, 11]. Refinement algorithms are classified as greedy and cannot in general
achieve optimal solutions (see [7] for more details). The connectivity of our model is given by the quadtree
triangulation, which is obtained with a binary subdivision scheme as used in [5, 16]. We represent a simplified
mesh M simply by a set of vertices (possibility having attributes), since the connectivity is implicit for our class
of meshes5. The set M0 (i.e. original mesh) contains information about all the vertices forming the mesh. Our
approach states the simplification of the mesh as an optimization problem as follows: we start with the original
mesh M0 built on N vertices, or M0 = fv0; : : : ; vN�1g. A simplified model M is denoted jM j < jM0j since
it contains less vertices than the original model. We define mesh functionals u as functions u : M ! R.
We use two mesh functionals: a cost functional C and a distortion functional D. The vector-valued function
u(M) = (C(M); D(M)) represents the cloud of all possible simplified models in the RD plane. The operational
RD function

DT (C) = min
jMj�jM0j

fD(M)jC(M) � Cg (1)

specifies the optimal trade-off between rate and distortion in the restricted setting. For a cost budget C, the
solution (C(M); D(M)) returned by DT (C) satisfies the constraint at minimal incurred distortion. The set of
optimal meshes jBj < : : : < jM1j < jM0j, where B denotes to the base mesh, corresponds to a series of
embedded restricted subtrees. Each optimal configuration is represented by a couple (C(M i); D(Mi)) on the
curve bounding the convex hull of all configurations (Figure 2). This curve is called the constrained operational
rate-distortion curve.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

λmin

B()

()u M2

M1u()

M0()u

u

Figure 2: Mesh simplification in the RD plane: each possible simplified model is represented by a point in the plane. The
optimal configurations are on the curve bounding the convex hull.

1.4 Contribution

This section gives an overview of our contributions and the characteristics of our framework.

Operational rate-distortion framework Our models are optimized in an operational rate-distortion frame-
work. At each optimization step, the optimal algorithm chooses to decimate the vertex giving the best trade-off
between rate and distortion. Namely, the vertex maximizing the decrease in rate while minimizing the increase in
distortion is decimated and optimizations at variable rate are performed.

Progressive description A mesh is decomposed into a base mesh and a set of detail meshes. Our algorithm
ensures at best that the distortion decreases monotonically through successive refinements of the model.

5Although we use the converse and more efficient solution to store the mesh: for datasets with implicit parameterization, it suffices to store
one float per vertex and spend a few bits on the connectivity to describe the mesh univocally (see [9]).

Optimal solutions in an operational rate-distortion sense Our algorithm returns the optimal approximations
in an operational RD sense and outperforms greedy approaches. We compare our algorithm with its greedy
counterpart and explain the advantages of our approach.

Efficient data structure Our framework takes advantage of our efficient linear quadtree data structure having a
constant-time traversal property. This feature allows to access and process the dataset in minimal computational
time.

Computationally optimal update algorithm We state and implement a computationally optimal algorithm to
update the errors of the mesh after a simplification step. This mechanism can also be used in [5, 16].

Compact representation A property of regular meshes is the compactness of the representation: for models
having implicit parametric information (as for DETD), the vertices can be expressed with a single float and few
bits are spent on encoding the connectivity.

Low complexity and scalable algorithm The complete optimal decomposition in a progressive mesh is com-
puted in �(N log2N) time and an approximation of K vertices is obtained in �(K log2N). We compare our
algorithm to its greedy counterpart which has complexities �(N logN) and �(K logN) respectively. The low
computational complexity allows us to process large datasets.

Spatial continuity Each simplification step must preserve the spatial continuity of the mesh, or equivalently
the subtree corresponding to the approximation must be restricted. We give the size of the problem of computing
such a tree and solve it in optimal computational time using our quadtree data structure.

Support of multiple simplification metrics The simplification metric can be selected by the user according to
the application. We show that our framework only requires the cost functional to be monotonically increasing
with the tree size, while the distortion functional can be arbitrary.

1.5 Outline of the paper

This paper is organized as follows: in Section 2.1 we briefly introduce the quadtree triangulation, or binary
subdivision scheme. In Section 2.2 and 2.3, we explain how the constant-time traversal property is obtained for
the tree and how the mesh characteristics can be stored without redundancy. We present then our operational
RD framework in Section 3 and give an RD-optimal algorithm to obtain the solutions minimizing the distortion
criteria. Section 4 analyses the algorithm properties and the optimality of the solutions is discussed in Section 4.3.
In Section 5, we present experimental results for a large database of DETD. Finally, in Section 6, we comment
our results and propose future investigations.

2 Mesh connectivity and storage

2.1 Binary subdivision scheme

The connectivity of our meshes is obtained with a binary subdivision scheme (BSS) like in [5, 16]. Four steps
of the subdivision scheme, each denoted l, are depicted in Figure 3. Assume that d = 2l, then after l steps the
mesh contains n = 2 � 4d triangles. This construction naturally maps the amplitude matrix of a DETD, where
the parameterization is implicit. The successive meshes generated by recursive subdivision are embedded, in the
sense that we can obtain any mesh from a coarser approximation by simply splitting some of the triangles, which
leads to the following definition:

Definition 2.1 (Embedding)
Given two meshes obtained with a BSS Mi and Mj , we say that Mj is embedded in Mi iff jMj j < jMij and
Mj �Mi. Note that when Mi �M0, the inclusion is not necessary.

a.

l=1 l=4l=3l=2l=0

b. c. d. e.

Figure 3: Binary subdivision scheme: (a) the base is represented by a square formed by two triangles. At each subdivision
step l, (b)-(e) each triangle is subdivided in two.

This class of regular meshes are commonly stored in a quadtree [16] and also known as quadtree triangulations.
In Figure 4, we depict the quadtree-mesh correspondence. To have a clear representation of the quadtree in the
figure, we link together only the nodes having a common father, and located at the same level.

Figure 4: Quadtree structure storing a mesh obtained with a binary subdivision scheme. To have a clear representation of the
quadtree in the figure, we link together only the nodes having a common father, and located at the same level. The arrows link
nodes to their corresponding regions in the mesh.

2.2 Z-ordering of the quadtree nodes

A quadtree like the one in Figure 4 can be spatially organized by assigning a spatial location for the child nodes
with respect to their father. Figure 5a shows a possible spatial organization for the child node indices, whereas
Figure 5b shows an alternate one, named z-ordering (see solid arrows). We organize a quadtree node p and
its children as in Figure 5b. This particular ordering has the property that the difference between any pair of
horizontal nodes is 1, whereas the difference between any pair of vertical nodes is 2 (see dashed arrows).

a. b.

c.

+3

+1

+1

+1

4p+4

4p+1

p

4p+2

4p+3

+2

+1

+2

+1

p

4p+3

4p+1 4p+2

4p+4

+1

+5-19

+1 -5

+2

+2

+6

-1

+2

-1 -1 -1 -1+5

+6

+220

12

34

5 6

7 8

9 10

11 12

13 14

15 16

23 27

29

3132

34

3536

3738

3940

42

4546

4748

50

52

53

5556

5758

5960

61

6364

6566

6768

6970

7172

7374

7576

82

8384

77

80 79

78 81 62

2019

17 18

51

54

28

33

252621

3049

244344

41 22

+6

+2

+2

+2

+2

-3

-13

+10+42

Figure 5: Spatial organization of the nodes: (a) Example. (b) z-ordering. (c) Spatial index organization using the z-ordering
for a quadtree of depth 4. The index differences Æ are given on top of the arrows. The dashed arrows represent the distances
assuming a toroidal structure (see Theorem 1).

We construct the indexing using the ordering of Figure 5b for the odd quadtree levels, and a vertically mirrored
version for the even levels. Figure 5c shows the resulting indexing for a quadtree of depth 4.

Once recursively applied, the z-ordering yields the following key property: the horizontal/vertical difference
between the indices of neighboring pairs is constant for a particular column/row. In Figure 5c, the index differ-
ences, denoted Æ, are given on top of the arrows. Call now the relative level distance (RLD) the distance r between
two neighbor nodes p1 and p2 at the same level in the quadtree evaluated as the number of levels to traverse to
find their common father, as depicted in Figure 6. Given two such nodes, this distance is obtained with

1 2 3

4

r = 1 r = 1

r = 1

r = 2

Figure 6: Illustration of the relative level distance (RLD) between two neighbor nodes at the same level in the quadtree. The
value r on the arrows gives the number of levels to traverse in order to find a common father for the two neighbors.

bp1 � 1

4r
c = bp2 � 1

4r
c: (2)

We can now derive equations expressing the vertical and horizontal differences Æ between the node indices in
Figure 5c as a function of r. Moreover, a similar difference (see the dashed arrows in the figure) can be computed
for the border nodes with their opposite neighbors, which is equivalent to assume that the quadtree has a toroidal
structure. In Appendix A.1, we show that r is obtained with a simple recurrence equation. Theorem 1 give the
differences Æ and the proofs are given in Appendix A.2.

Theorem 1 (z-ordering)
The horizontal/vertical difference between the indices of neighboring pairs having a relative level distance r is
constant for a particular column/row. The horizontal differences are

Æh(r) =
6

5
4r +

1

5
(�1)r+1; (3)

Æht(r) =
1

5
4r+1 +

1

5
(�1)r: (toroidal) (4)

The vertical differences are

Æv(r) =
4

3
4r +

2

3
; (5)

Ævt(r) =
2

3
4r+1 � 2

3
: (toroidal) (6)

The recursive nature of the quadtree allows us to compute and store vectors for the solution to (2). We obtain then
one vector per quadtree level. Then, (3)-(6) are evaluated on these vectors yielding two vectors per level (one per
orientation) to compute all index differences in the quadtree. The z-ordering yields a constant-time node traversal
(CNT) property for the linear quadtree (see Appendix A.3). The index difference between two arbitrary nodes
(not necessarily at the same level) can be obtained by combining (3)-(6), as shown in Appendix A.4.

The CNT property naturally extends to the navigation of a forest of quadtrees. It suffices to use (4) and (6)
to traverse nodes between quadtrees. Therefore, any mesh can be subdivided into tiles, each stored in a separate
quadtree. The partitioning of the mesh allows us to perform block-based simplification as in [11], and meshes of
arbitrary size can be handled (Figure 7a). Also, meshes with more complex topologies can be constructed in this
framework: the simplest example is the storage of a subdivided octahedron 6 using two quadtrees (Figure 7b).

6A subdivided octahedron is used to obtain a tessellation for the sphere.

vtδ+

htδ-

p1

p2

q2

q3

p4

q4

p3

vtδ-htδ+ 1q

a. b.

Southern hemisphereNorthern hemisphere

Figure 7: Data structure scalability: (a) Navigation of a quadtree forest. The starting node is pi and the destination qi,
i = 1 : : : 4. The index difference Æ is the value to add to pi to obtain qi, i.e. qi = pi + Æ. (b) Storage of a subdivided
octahedron. Each hemisphere is represented by a separate mesh, and the octahedron is obtained by merging them one on top
of the other using the border vertices. The vertices stored for each hemisphere are represented with a white dot.

2.3 Efficient storage of the mesh

In the quadtree, each node can potentially describe the characteristics (i.e. value and connectivity) of five vertices.
However, since neighbor squares share common vertices on their edges, such a description would be highly
redundant. Lindstorm et al. pointed out this problem in [16]. Their quadtree storage requires to duplicate shared
vertices information leading to expensive storage even for small meshes. To avoid redundancy, we store only the
description of three vertices in the nodes (the central vertex and two adjacent border vertices). Therefore each
node stores 3 floats plus 3 bits (each bit checks the vertex availability) to completely encode the vertices and the
connectivity. The quadtree is sufficient to store all descriptions but the ones of the rightmost and bottommost
vertices. It suffices to use two additional binary trees to store the characteristics of the remaining vertices. Then
each node in the binary tree stores one float plus one bit. In the case of the storage of a subdivided octahedron,
no binary tree is required since two quadtrees suffice to store the information of all vertices without redundancy
(Figure 7b).

3 Algorithm

3.1 Introduction

In this section, we present an �(N log2N) algorithm to find the solutions to (1) for the full range of possible
constraints (leading to a progressive description). Our algorithm is derived from the g-BFOS algorithm [4], an
optimal tree pruning algorithm used as an optimization tool in compression [13]. Namely, determining D(C) is
a discrete convex programming problem, and the algorithm minimizes the functional J(M) = D(M) + �C(M)
over all simplified models M of M0. The Lagrangian multiplier � corresponds to the slope bounding the convex
hull at the optimal setting (C(Mi); D(Mi)) (Figure 2). We present now the constraints incurred when decimating
an arbitrary vertex in the tree hierarchy. These constraints must be satisfied for each approximation in order to
obtain a restricted quadtree, or equivalently a spatially continuous mesh.

3.2 Preserving the spatial continuity of the mesh

A simplified mesh M is obtained by removing vertices from the original set. Once a vertex is removed, the two
triangles originally split by this vertex during the BSS are merged. This constraint insures that, in the series of
successive approximations, we can always construct a mesh from a coarser approximation by simply splitting
some of the triangles. In other words, the tree structure is conserved through the simplification process and a
progressive decomposition is given by a set of embedded subtrees. The above assertion implies that, after the
decimation of a particular vertex, additional vertices will likely be decimated jointly in order to conserve the mesh
spatial continuity. In Figure 8a, we represented the merging of the two triangles originally split by vertex v (Figure
3d), however the mesh is not spatially continuous at this point since the merged triangle edges share vertices with

smaller neighboring triangles. In Figure 8b, additional vertices are removed jointly such that the resulting mesh
is continuous.

a. b.

V

Figure 8: Vertex decimation: (a) The vertex v is removed and the two triangles originally split by this vertex (see Figure 3d)
are merged, but the mesh is not yet spatially continuous. (b) Then, additional vertices are decimated jointly yielding a spatially
continuous mesh.

We say that each vertex defines a merging domain, which is formed by the vertices to be removed jointly with
this one. In Figure 9a, the white vertices depict the merging domain of vertex v (the vertex at the center of the set),
whereas the black ones connect the support of the domain. The support is defined as the minimal set of triangles
covering the domain when all the vertices inside the merging domain have been decimated (Figure 9b). In Figure
9c, we show the influence, on a rendered mesh, of decimating a vertex in a quadtree node close to the root.

Consider a vertex v and denote by Mv the merging domain attached to the vertex (Figure 9a). The error
incurred when decimating vertex v must be evaluated on its merging domain. This consideration is also valid
when computing the error incurred by the insertion of a vertex. In [16], the error is only evaluated on v and
further variations of the global error caused by the forced splits are not taken into account. The problem of
computing the merging domain of a vertex is equivalent to find a restricted quadtree [18], which defines a tree
corresponding to a continuous mesh.

v

a. b. c.

Figure 9: Merging domain: (a) The white vertices represent the merging domain Mv of vertex v. (b) After decimating v (i.e.
jMv j = 0), only the black vertices connecting the support of Mv in M remain. (c) The effect of decimating a vertex close to
the root in a rendered mesh.

3.3 Greedy against optimal decimation

Although it would be much simpler to decimate only vertices described by the leaf nodes (like in [5, 19]), as in
this case the merging domain is trivial to compute, consider the following extreme case: assume that the input
mesh of N vertices is totally flat, and would therefore be represented with no increase in distortion by the two
initial triangles (Figure 3a). An algorithm considering only the tree leaves still performs N simplification steps
in this case. However, the optimal algorithm chooses to decimate the merging domain M v of the unique vertex
v inserted at step l = 1 (Figure 3b) and the whole mesh is simplified to a model of two triangles in a single
iteration because removing all vertices is the best rate-distortion trade-off. Being able to decimate any vertex in
the hierarchy allows to perform optimizations at variable rate 7 and allows to obtain the optimal configurations in
the RD plane (Figure 10). We compare our optimal algorithm to its greedy counterpart, namely by forcing the
algorithm to decimate vertices located in tree leaves. In other words, the greedy version performs optimizations at
fixed cost. A greedy algorithm only considers the short term effects of inserting or decimating a single vertex, that

7Generally defined as the number of triangles.

is, it only considers what happens with the addition or deletion of a pair of triangles in the current mesh. In the
next section, we explain how to evaluate the best trade-off between rate and distortion to find the optimal vertex.

3.4 Rate-distortion optimization

Recall that we defined a mesh functional u(�) as a real-valued function on the set of vertices, or u : M ! R. Note
that u(�) is also defined for a singleton set, i.e. whenMv contains only one vertex. We further define the variation
of a mesh functional as �u(Mv) = u(Mv)�u(�Mv), where u(Mv) is the value of the functional evaluated on the
vertices of the merging domain (these vertices are depicted in Figure 9a) and �Mv is the merging domainMv when
all vertices have been decimated, i.e. �Mv = ; (Figure 9b). Recall that we use two mesh functionals: the cost C
of an approximation and its distortion D with respect to the original model. Then, the variation �C(M v) is the
change in cost and �D(Mv) is the change in distortion when v is decimated. We now present the simplification
algorithm.

The algorithm takes a mesh stored in the quadtree as input. For each vertex v, the tuple f�C(M v);�D(Mv); �(v)g
is stored. In each quadtree node, an additional �(vmin) stores the minimal value �(v) for the subtree rooted at
this node. The output of the algorithm is a progressive set of approximations B � : : : � M 1 � M0 (see defini-
tion 2.1), where B denotes the base mesh of two triangles (Figure 3a). For all approximations M i, the distortion
value D(Mi) is minimized for the cost C(Mi). The algorithm decomposes the mesh until a minimal cost Cmin

is reached. To obtain the full decomposition, we set Cmin = C(B). For example, when the cost is defined as
the number of triangles, then Cmin = 2 (Figure 3a). We give below the pseudo-code for the algorithm. Each
important step refers either to a later section or its computational complexity is given (see the marginal notes on
the right hand-side). Note that our formulation assumes that the cost function C is monotonically increasing with
the tree size. This point will be discuss later in Section 4.2.

ALGORITHM

. Input: THE FULL RESOLUTION MESH M0 .

/ Output: A PROGRESSIVE SET OF APPROXIMATIONS B � : : : �M1 �M0

� Initialization:

1 FOR ALL VERTICES v, COMPUTE �(v) =
��D(Mv)

�C(Mv)
. Section 4.2.3

2 M �M0

3 while C(M) > Cmin

4 SEARCH THE OPTIMAL VERTEX v
?
= arg min

v2M
�(v). �(logN)

5 DECIMATE Mv? , I.E. COMPUTE M �M �Mv? . Section 4.2.1

6 UPDATE THE ANCESTORS a OF Mv? , I.E. 8v 2Mv? , Section 4.2.2

� �u(Ma) � �u(Ma)��u(Mv), WHERE a IS A FATHER VERTEX OF v.

� RECOMPUTE �(a).

7 STORE Mv? .

8 end

At the initialization phase (line 1), the magnitude �(v) = ��D(Mv)

�C(Mv)
of the slope for every configurations

obtained by decimating Mv is computed (Figure 10a). The value �(v) represents the trade-off between cost and
distortion. In contrast, a greedy algorithm which only considers the decimation of one single vertex (i.e. in a leaf
node) actually imposes �C(Mv) = c, where c is a constant given by the cost functional. At each step, the optimal
vertex v? with minimal slope �min is found (line 4) and Mv? is decimated (line 5), as depicted in Figure 10b. At
the end of each iteration, we search for a set of ancestors AMv?

of v?, defined as the vertices in the mesh which
error has been modified after the simplification step. Recall that an efficient aspect of our algorithm is its ability to
find these vertices and update their characteristics in the simplified mesh, therefore for each ancestor a 2 AMv?

,

its value �u(Ma) is updated as �u(Ma) � �u(Ma)��u(Mv), where a is a father vertex of v and v 2Mv?

(line 6). Two categories of ancestors for Mv? are identified: the father vertices, i.e. the vertices a such that
Mv? �Ma, and the neighbor vertices, i.e. the vertices a such that Mv? \Ma 6= ;. After the decimation of Mv? ,
only the error of the father and neighbor vertices have been modified. We explain how to find the ancestors of
Mv? in Section 4.2.2. Finally, line 7 records the simplification step to reconstruct the progressive model after the
decomposition. Figures 10b-d depict three iterations of the algorithm. In Section 4, we prove that the total cost to
compute the complete decomposition is �(N log2N).

a. b. d.c.
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

1

2

3

4

5

6

7

M0()u M0()u

M1u()

λmin

M0()u

M1u()

()u M2

λmin

M0()u

M1u()

λmin

()u M2

B()u

Figure 10: Algorithm iterations: (a) initialization (line 1), (b)-(d) the algorithm iterates to find the vertices on the convex hull
(lines 4-7).

4 Analysis and complexity

This section analyses the algorithm and validates our results. We examine each step in detail and compute the
total computational complexity. Then, we address the optimality of the solutions.

4.1 Preliminaries

Polynomial algorithm Once Mv? has been decimated, we need to find a set of ancestor vertices AMv?
to

update the errors of the mesh. The set of ancestors can be seen as the vertices which merging domains intersect or
contain the one of the decimated vertex (i.e. their characteristics have been modified by the decimation of M v?).
From a quadtree point a view, the father vertices are located in the branches toward the root, whereas the neighbor
vertices are distributed in the neighborhood of the decimated vertex. This neighborhood is composed of nodes
at the same level, as well as nodes of lower branches. Figure 11a unveils the quadtree structure storing a part of
the mesh: intuitively, the mesh layer has been replaced by its corresponding quadtree. The dark region depicts
the nodes influenced by the decimation of Mv? . The arrows represent a proportion of the extensive traversal
required in the quadtree to visit the neighbor vertices. Therefore jAMv?

j can only have polynomial size if Mv?

remains local around v? in a mesh of increasing size. Figure 11b represents the merging domain of vertex v ? by
its support 8. In a mesh of increasing size, the domain converges to the irregular octagon represented by the dark
shape. Proposition 1 states that Mv? remains concentrated around v? which implies that jAMv?

j has polynomial
size since there is a finite number of merging domains intersecting and containingM v? . The proof of the property
is purely geometric and aims at expressing the growth of the octagonal support as a pair of geometric series (one
per radius), see Appendix A.5 for more details. Using this property, we can conclude that the problem of updating
the vertex characteristics has polynomial computational complexity as well.

Proposition 1 (Limit surface of the merging domain)
The domain covered by Mv? in a mesh of increasing size is bounded by the irregular octagon with dimensions
rmax =

p
2 and rmin = 3

2
in Figure 11b.

8In the figure, vertex v? is only represented for clarity, although it is not part of the mesh anymore.

b.a.

rmin

rmax

v*

Figure 11: (a) The figure unveils the quadtree structure storing a part of the mesh. The dark region represents the nodes
influenced by the decimation of a vertex contained in the central node. The arrows illustrate the extensive traversal required to
visit the neighbor vertices. (b) Limit surface of the merging domain of vertex v?: the white region represents the support for
the actual mesh density, whereas the dark region shows the limit surface in mesh of infinite density.

Error metric Although a perceptual metric for the error would be preferable, the l 2 and l1 norms are commonly
used distortion measures to compute the distance between an approximation and the original model. In [11],
Hoppe et al. conclude that the use of the l2 norm is inadequate. However in [6], Garland et al. find the l 2 norm to
be a better measure of approximation than the l1 norm because it leads to steadier RD curves. Actually, Garland’s
conclusion on stability is related to the monotonicity of the norms: both l 2 and l1 norms are nonmonotonic
distortion functionals. Although it is a well-known fact in compression, the monotonicity issue is rarely addressed
in computer graphics. Practically, a norm is nonmonotonic when an approximation with K vertices has a smaller
distortion than an approximation with L > K vertices which can happen when the vertex locations cannot be
modified. The added value of preserving the monotonicity for a progressive decomposition is that it insures that
each refinement of the model will decrease the distortion. The fact cannot be guaranteed by a greedy algorithm.
In Appendix A.6, we give an example of nonmonotonicity in 1D.

Evaluation of a mesh functional A mesh functional is evaluated on a merging domain M v. The size of the
merging domain can be given in term of vertices, denoted jM vj or in term of triangles forming the support, denoted
jMvj4. During the simplification process, the size of Mv varies since vertices are decimated from the original
mesh M0. We give the size in two cases: first, when the domain is complete (i.e. no vertex has been decimated) or
equivalently when the domain is fully triangulated (Figure 9a). Then, we give the size when all vertices have been
decimated. In this case, only jMvj4 is non null and the support is obtained (Figure 9b). The sizes of M v are given
in term of triangles and the two cases are respectively denoted max jMvj4 (fully triangulated) and min jMvj4
(support). Their asymptotical behavior gives important clues about the complexity of the algorithm.

A mesh of N vertices, where
p
N = 2d + 1, has n = 2 � 4d triangles, where d is the depth of the quadtree. N

and n are linked by

n = (N � 1)(
1

2
+

1

2d
)�1: (7)

The size of Mv is a function of the total number of triangles n in the mesh and the step l of the BSS at which
the vertex was inserted (Figure 3a-e). The asymptotical sizes max jMvj4 and min jMvj4 are given by Theorem
2. The proof of this theorem is given in Appendix A.7. The theorem below gives the sizes in the worst case and
in expectation. The worst case is computed by considering only the unique vertex inserted at step 1 of the BSS
(Figure 3b) in an unbounded and infinitely dense mesh. This case is only important theoretically, however we
are more interested in the expected case: the values in expectation are computed as the average sizes over all the
vertices in the tree. The computational complexity obtained in practice is given by the expected cases.

Theorem 2 (Asymptotical size of the merging domain)
Consider a mesh containing n = 2 � 4d triangles with d > 0. The maximum and minimum numbers of triangles
covering the merging domain are given by

max jMvj4(n) 2 �(n); (8)

min jMvj4(n) 2 �(
p
n) (9)

in the worst case and

E[max jMvj4(n)] 2 �(logn); (10)

E[min jMvj4(n)] 2 �(c) (11)

in expectation.

4.2 Mesh decimation and update

4.2.1 Computing the restricted quadtree in optimal time

We explain now how to decimate a vertex v? and its merging domain Mv? . In the greedy case where only the
vertices in the leaves are considered, we have Mv? = fv?g. In the optimal case (where we can have jMv? j > 1),
we must ensure that after the decimation of Mv? the mesh is still spatially continuous, or equivalently that the
quadtree is restricted. As depicted in Figure 11a, computing the restricted quadtree requires extensive navigation.
However, our framework provides a data structure having a constant-time traversal property. Since each vertex
in Mv? has to be visited, the cost of the computationally optimal algorithm is �(logN) (Theorem 2). By using
Theorem 1, we construct an algorithm to solve the problem exactly in this size. The computational complexity to
visit the entire domain and compute the restricted quadtree is therefore �(logN). Note that in the greedy case,
the complexity is simply �(1).

4.2.2 Updating the errors of the mesh

After each decimation, the characteristics �u of the mesh have to be recomputed. In this section, we explain an
efficient update mechanism to achieve this task. Recall that AMv?

denotes the ancestor vertices of v? and that this
set corresponds to the vertices a which �u(Ma) have been modified by the decimation of Mv? . To update the
mesh in the general decimation case, we need therefore to find AMv?

as defined below:

Definition 4.1 (Ancestor vertices of Mv?)
The vertices a such that �u(Ma) is modified after the decimation of M ?

v are given by

AMv?
=
[

v2M?

v

Av ; (12)

where Av = fa j v 2 Mag are the father vertices of v. In particular, Av? is called the set of father vertices of
Mv? and

8a 2 Av? ;Mv? �Ma; (13)

whereas for all v 2Mv? with v 6= v?, the vertices in the sets Av are called neighbor vertices of Mv? and

8a 2
[

v2Mv? ;v 6=v?
Av ; Mv? \Ma 6= ;: (14)

We give now an algorithm to computeAv. The set AMv?
is simply found by iterating the algorithm for all vertices

v 2Mv? , as stated in the above definition.

Construction of the set of father vertices Av We give now an algorithm to compute Av : consider a vertex v
inserted at step l of the BSS, then in M0, there are at most two vertices a1; a2 inserted at step l � 1 such that
Mv � Ma1 and Mv � Ma2 . This key fact is a consequence of the BSS and is the essence of the constraints
to solve in order to update the mesh characteristics. Note that, for a vertex located on the border, only one such
vertex exists. The set of father vertices is therefore built recursively from v until the root vertex (i.e. the unique
vertex inserted at step 1, see Figure 3a) is reached. The construction is illustrated in Figure 12a. The algorithm
requires extensive navigation (Figure 12b) in the quadtree and can be written efficiently using the constant-time
traversal property given by Theorem 1. Finally, since the size of the bottom up traversal has �(logN) steps, we
have that jAv j 2 �(logN). Therefore considering Definition (4.1) and (10) in Theorem 2, we have therefore that

jAMv?
j 2 �(logN)�(logN) 2 �(log2N); (15)

in the general decimation case where jMv? j > 1.

a. b.

4

p
2

p

0
p

1
p

3
p

a6 a
7

a1

2a
a3a4

a5

a
8

a9

a
10

v

Figure 12: (a) The father path for vertex v is given by the vertices ai, i = 1; : : : ; 10. (b) The algorithm on the quadtree
constructing the father set Av achieves a bottom-up traversal of the data structure.

Update of the set of ancestor vertices AMv?
The decimation of Mv? has to be done according to the hierarchy

imposed on the vertices by the BSS. Otherwise, the update of the ancestor vertices will be redundant and incorrect,
as shown in the following example: consider v1; v2 2 Mv? , then for v1; v2 6= v? we have in general that (Figure
13a) Mv1 \ Mv2 6= ;. Assume now that v1 and v2 have a common ancestor a, then the update �u(Ma) �
�u(Mv1)��u(Mv2) is not redundant if and only if for all the vertices s such that M s �Mv1 and Ms � Mv2

we have Ms = ;, i.e. �u(Mv1) and �u(Mv2) have already been updated. For example, consider v 1 and
v2 in Figure 13a and 13b inserted at step l = 2d � 1. Then both vertices have 4 vertices (the vertices s and
the vertex w in the figure) which merging domain is contained in M v1 or Mv2 . So in the example we have
Mv1 \Mv2 = fwg. The intersection of Mv1 and Mv2 is represented by the light gray region in the figure. If
the update of �u(Ma) is carried on before the update of �u(Mv1) and �u(Mv2), then the value of �u(Mw)
will be subtracted twice to �u(Ma). A correct update is achieved as follow: �u(Mv1) and �u(Mv2) are first
updated (the update is depicted by the arrows in Figure 13a), followed by the update of �u(M a) (Figure 13b).
The following proposition summarizes the procedure to correctly update the mesh:

a

s

s s

s

s s a

s

s s

s

s s

ww1v 2v
1 2v v

a. b.

Figure 13: Avoiding redundant updates: (a) the merging domains Mv1 and Mv2 intersects at vertex w. To update �u(Ma)

without redundancy, �u(Mv1) and �u(Mv2) are first updated, (b) followed by the update of �u(Ma).

Proposition 2 (Update of the mesh)
Consider a vertex v inserted at step l of the BSS, then an update of �u(Mv) is not redundant if and only if for all
vertices s inserted at step l + 1 such that Ms �Mv, �u(Ms) has been updated.

4.2.3 Complexity

Initialization It is easy to evaluate the complexity of the initialization step using Theorem 2. For all N vertices,
we need to compute the value of the slope �(v) = ��D(Mv)

�C(Mv)
. This operation requires to evaluate both operators

C(�) and D(�) on the merging domain of all vertices. This operation takes N � E[max jM vj4(n)], which proves
that the initialization has order �(N logN).

Decimation and update Assume that v? is the optimal vertex to decimate, then we have shown that jAMv?
j

has size �(log2N) is expectation. Note that it makes sense to use the expected size for max jMvj4 since the

worst case exists only for the unique vertex inserted at step 1 of the BSS (Figure 3b) and the complexity must
be evaluated for a complete decimation of the tree. Therefore, the computational complexity to decimate and
update the mesh for one iteration has order �(log2N) for the optimal algorithm. For the greedy algorithm, where
jMv? j = 1, then this cost is simply �(logN)

Total complexity Both algorithms are executed in �(N) steps. In the case of the greedy algorithm, exactly N
steps are completed, whereas in the optimal case less steps can be executed since the optimal trade-off might not
be obtained with a vertex in a leaf node. In the optimal case, �(log 2N) operations are performed for each step,
compared to �(logN) in the greedy case. Therefore, the algorithm complexities in general are �(N log 2N) for
the optimal algorithm and �(N logN) for the greedy algorithm, to obtain the complete decomposition of a mesh
of N vertices.

4.3 Optimality

In this section, we first discuss the conservation of the monotonicity through the simplification process, then
address the optimality of the solutions.

Monotonicity Assume two vertices v0 and v1 such that v1 2 Mv0 (then �C(Mv1) < �C(Mv0)) and that
�D(Mv1) > �D(Mv0). Such case exists with the l2 or the l1 norms since both are nonmonotonic. Consider
now that v1 is decimated before v0, then the slope �(v0) will change sign after the update (see Section 3.4). In the
optimal algorithm, the choice of the vertex having the minimal slope � implicitly translates into the condition given
by Proposition 3. To be candidate for decimation, a vertex must fulfill this condition. We give the proposition
below and prove it in Appendix A.8.

Proposition 3
Consider two vertices v0 and v1 inserted respectively at step l and l+1 of the BSS and that v1 2Mv0 . Assuming
that the cost functional C is monotonically increasing (i.e. �C(Mv) � 0), then the merging domain Mv1 is
decimated before Mv0 if and only if

�D(Mv0)

�D(Mv1)
> Æ > 1; (16)

where Æ = �C(Mv0)=�C(Mv1). When v0 does not meet condition (16), then Mv0 is called a nonmonotonic
merging domain.

Following our initial example, the above proposition ensures that vertex v 0 will be chosen before v1 since it results
in a better RD tradeoff. We examine now the property requirements for the mesh functionals: Proposition 4 states
that the monotonicity of the cost functional is sufficient to insure the monotonicity of the rate-distortion curve.
Recall that this assumption was made in the pseudo code of the algorithm. The proof is given in Appendix 88.

Proposition 4 (Monotonicity of the RD Curve)
Assume an iteration of the algorithm where 8v, �C(Mv) � 0 and �D(Mv) is arbitrary, then given a vertex v?

with �(v?) = min
v2M

�(v) and the set of ancestor AMv?
, for all updated vertices a 2 AMv?

we have �(a) > �(v?).

Let us now complicate slightly our initial example: consider that an ancestor a 2 AMv0
is decimated before

v0 and unfortunately v1 2 Ma (Figure 14). Then the update �D(Mv0) � �D(Mv1) will take place and the
nonmonotonicity will not be avoided. Therefore Proposition 4 can only be proved under the assumption that no
such vertex exists. By the following example, we have shown that because of the overlapping of the domains,
nonmonotonicities cannot be technically avoided even in the general decimation case. However, the above situ-
ation is rare in practice because: the sets AMv

are small compared to the total number of vertices (15) and the
datasets (i.e. the vertices) are locally smooth in general. Our experiments will show that the optimal RD curve is
still very stable compared to the greedy one, even in very “chaotic” situations like the one depicted in Figure 19.

v1v0 a

Figure 14: Suboptimal case of the algorithm: v1 2Ma \Mv0 and Mv0 is a nonmonotonic merging domain (see Proposition
3). Decimating Ma before Mv0 will provoke a nonmonotonicity of the RD curve if �D(Mv1) > �D(Mv0).

Optimality of the solutions Our algorithm is derived from an optimal tree pruning algorithm given in [4]. The
authors give an algorithm to optimally prune trees without restrictions, i.e. a tree does not have to be restricted
to be a valid solution. In our case, we considered only the solutions given by a restricted quadtree to insure the
spatial continuity of the mesh. The optimality of their algorithm has been proven in [4]. The example given in the
previous section gives us clues whether the optimal solutions achieved in the quadtree-restricted case. We have
seen that the overlapping between domains prevented to make the optimal choice in some rare cases. Therefore,
we conclude that most of the time the optimal solutions are obtained, however the overlapping can lead to slightly
suboptimal solutions in some particular situations.

5 Experimental results

5.1 Terrain dataset and metric

In this section, we compare our optimal and greedy algorithms using a large set of DETD. Our dataset repre-
sents the southwest region of Switzerland (the Alps) and is composed of 388 terrains of size 257 � 257. For
the experiments, we use the squared l2 norm as a measure of distance between the original mesh and the ap-
proximations (Figure 15a). When using this norm, each amplitude z i is projected in the triangle reconstruct-
ed when the vertex is decimated. For example, z 01 is obtained by projecting z1 in the triangle formed by ver-
tices (x5; y5; z5); (x6; y6; z6); (x9; y9; z9), as depicted in Figure 15b. The error for each vertex is then given
by Æi = jzi � z0ij2. To evaluate the error D(�Mv?), all the vertices in the merging domain (Figure 9a) are
projected in the support once Mv? is decimated (Figure 9b). The distortion functional is therefore defined by
D(�Mv?) =

P
v2Mv?

Æv . We evaluate the cost of an approximation in term of triangles.

z6

z7
z 8

z 9

a. b.

cδδq1

δq3

δq2

δq4

z2

z3

z4

z5

z’1

z’3

z’4

z’5z’2 z1

(x1,y1)

(x4,y4)

(x8,y8)(x3,y3)

(x2,y2) (x5,y5)

(x1,y1) (x9,y9)(x6,y6)

Figure 15: Computation of the error in squared l2 norm for a triangulated cell stored in a quadtree node. (a) Side view, (b)
top view.

Consider emax the maximum error obtained by decimating all the vertices in the mesh and e r the error mea-
sured between an approximation of rate r and M0. We compute the peak-to-signal noise ratio, or PSNR between
the two meshes. The error, denoted Er, is given in dB and is defined as

Er = 10 log10(
emax

er + 1
): (dB) (17)

For section 5.4, we use an alternate definition given by

Er = �10 log10(er + 1): (dB) (18)

a c.b.

e. d. f.

Figure 16: Progressive refinement of a terrain model: (a) a coarse resolution of the mesh is generated with 200 triangles
(PSNR 14.9 dB), successively refined to (b) 400 (PSNR 18.46 dB), (c) 800 (PSNR 22.2 dB), (d) 1600 (PSNR 25.914 dB), (e)
3200 (PSNR 29.81 dB) and finally (f) 6400 triangles (PSNR 33.8 dB). Each approximation minimizes the global squared l2
error for each triangle budget. The mesh in f. contain 5% of the total number of triangles n = 131072.

5.2 Progressive decomposition

We first give an example of progressive refinement using an optimal decomposition of a 257 � 257 DETD.
Figure 16a-f shows its progressive refinement starting from a coarse approximation of 200 triangles (Figure 16a),
successively refined to 400 (Figure 16b), 800 (Figure 16c), 1600 (Figure 16d), 3200 (Figure 16e) and finally 6400
triangles (Figure 16f). Each approximation minimizes the global error. The final approximation uses 5% of the
total number of triangles and achieves a PSNR of 33 dB. The individual PSNRs for each approximation are given
in the figure caption. In Figure 17a-d, we give the RD curves obtained with the optimal and the greedy algorithms
for the mesh in Figure 16a-f for the corresponding rate range. In each figure, the top curve is the greedy RD curve,
whereas the bottom curve is the optimal RD curve. Also, the rate is given by the magnitude d of the mesh density
n = 2 � 4d and the error is computed using (17). Figure 17a shows the global error at low rate. We can see here
that the greedy RD curve is highly nonmonotonic, whereas the optimal RD curve is quasi-monotonic across rates.
The nonmonotonicity obtained with the optimal curve illustrates the example in Section 4.3. Figure 17b-c depicts
the error at increasing rate respectively.

5.3 Average and maximum gain

Table 1: Gain comparison for the optimal versus the greedy algorithm using 257 � 257 terrain tiles

ranges in triangles max. gain (dB) rate (tri.) max. expected gain (dB) expected rate (tri.)
100 - 2600 2.805 203 0.983 439

2600 - 26300 0.73 25106 0.254 16822
26.3k - 130k 3.68 110942 1.154 102991

We compare now the greedy and optimal approaches on the full dataset of 388 terrains. For each terrain, a full
decomposition is generated using the greedy and the optimal algorithms. We compare the performances in three
cases: at low rate (between 0.1% and 2% of n), at average rate (between 2% and 20% of n) and finally at high
rate (between 20% and 99.9% of n). Since each terrain have different characteristics, their approximation error is
normalized by the maximum error emax (obtained at minimal rate r = 2). We fix the maximum gain to 50 dB, then

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=

lo
g 4(n

/2
)

20 22 24 26 28 30

4

4.2

4.4

4.6

4.8

5

5.2

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=

lo
g 4(n

/2
)

30 32 34 36 38 40

5.4

5.6

5.8

6

6.2

6.4

6.6

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=l

og
4(n

/2
)

10 12 14 16 18 20

2.6

2.8

3

3.2

3.4

3.6

3.8

4

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=

lo
g 4(n

/2
)

b.a.

c. d.

Figure 17: Rate-distortion curves for the decomposition of the model in Figure 16. In each figure, the top curve is the greedy
RD curve, whereas the bottom curve is the optimal RD curve. The rate is given by the magnitude d of the mesh density
n = 2 �4d: (a) 0 < d < 2:5 (i.e. 2 < n < 64), (b) 2:6 < d < 4 (i.e. 73 < n < 512), (c) 4 < d < 5:3 (i.e. 512 < n < 3104),
(d) 5:4 < d < 6:7 (i.e. 3565 < n < 21618).

the normalized errors are further multiplied by 105. Consider Er as defined in (17), then we have 0 � Er � 50
for all terrain measurements 0 � er � emax. The normalization allows to compare the decomposition of all the
terrains in the database. In Table 1, we give for each rate range: the maximum gain observed and the maximum
expected gain of the optimal decomposition over the greedy approach. For each value, we give respectively the
rate and the expected rate for which these values were obtained. Figure 18a-c show the average optimal and greedy
rate-distortion curves obtained for each rate range. In each figure, the optimal and greedy curves are respectively
represented by the bottom and top curves.

5.4 Conservation of monotonicity

We show now that the error of the successive approximations given by the greedy algorithm is rarely monoton-
ically decreasing (see Garland et al for more examples [6]). In Figure 19a, the top and bottom curves show
respectively the optimal and greedy RD curves obtained for the decomposition of the terrain in Figure 19b. The
curves are shown for rates lower than 450 triangles (horizontal axis in the graph), and the error on the vertical axis
is given by (18). The error curve given by the greedy algorithm is frequently unstable at low rates, which is mainly
due to shortsighted optimizations. The optimal algorithm conserves much more efficiently the monotonicity of
the curve, as shown in the figure. Other common norms like l1 are also been reported as unstable [6].

5.5 Timings

We give now the timings obtained to fully decompose a mesh into a progressive representation with the optimal
algorithm using a C++ implementation running on an Intel Pentium III at 500 Mhz. We give both the time spent on
the initialization and the time spent on the decomposition of the mesh. Recall that the initialization step consists
in computing for each vertex the global error variation incurred when the vertex is decimated and that this step
has cost �(N logN). The optimal algorithm to decompose the model has magnitude�(N log 2N). Table 2 gives
the measured values.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=

lo
g 4(n

/2
)

30 32 34 36 38 40 42
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=

lo
g 4(n

/2
)

42 43 44 45 46 47 48 49
6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

global error in l2 norm (dB)

m
ag

ni
tu

de
 o

f m
es

h
de

ns
ity

 d
=

lo
g 4(n

/2
)

a. b. c.

Figure 18: Average rate-distortion curve for the optimal and greedy algorithm: curves for rate (a) between 100 - 2600
triangles, (b) between 2600 - 26300 triangles, and (c) between 26.3k - 130k triangles. In each figure, the optimal and greedy
curves are respectively represented by the bottom and top curves.

0 50 100 150 200 250 300 350 400 450
−108.9

−108.8

−108.7

−108.6

−108.5

−108.4

−108.3

−108.2

−108.1

−108

cost in triangles

gl
ob

al
 l2

 e
rr

or
 (

dB
)

a. b.

Figure 19: Example of nonmonotonicity of the greedy algorithm at low rate. (a) The top curve is given by the optimal
algorithm whereas the bottom one is given by the greedy decimation. (b) The DETD used to generate the RD curves.

6 Conclusion and future work

We presented a scalable simplification framework for meshes obtained with a binary subdivision scheme. We
proposed a compact and efficient quadtree data structure and optimized meshes in an operational RD sense. we
explained how the RD-optimal solutions could be achieved by performing optimizations at variable rate as well
as how to update the errors of the mesh after a simplification step at minimal computational cost. Our solution
have several advantages:

� the optimal algorithm always outperforms the greedy optimization, i.e. the optimal solutions achieve the
lowest distortion at few additional cost,

� the variable-rate optimization approach allows to conserve at best the monotonicity of the distortion across
rates,

� minimal requirements for the specification of the cost and distortion functionals provide high flexibility for
the user to target their definition according to the application,

� the functionals are only evaluated during the initialization stage, allowing to keep their utilization apart
from the optimization process using an efficient update mechanism,

� our framework is computationally efficient and can handle large datasets.

We delineate now future areas of investigation that could take advantage of our framework:

Table 2: Timings measured for a C++ implementation of the optimal algorithm

p
N N logN N log2 N mesh density (tri.) init. time (s) decomposition time (s)

33 1 1 2048 0.003 0.057
65 4.6 5.5 8192 0.011 0.30

129 21.2 29.5 32766 0.05 1.7
257 96 153 131072 0.24 11.4
513 431 770 524288 1.07 48
1025 1913 3792 2097152 4.81 238

sophisticated metrics Computer graphics models are usually heterogenous sources of informations. For exam-
ple, often textures are defined additionally to the mesh. An interesting area of research would be the development
of metrics to optimize jointly the mesh and its attributes in order to control their contribution to the overall quality
of the approximation.

compression Recently, compression techniques for regular subdivision schemes have shown promising [12]. A
compression scheme taking advantage of our variable-rate optimization method as well as our hierarchical data
structure would provide a mean to encode meshes in an operational RD sense.

References
[1] P.K. Agarwal and P.K. Desikan. An efficient algorithm for terrain simplification. Proceedings ACM-SIAM Sympo. Discrete Algorithms,

pages 139–147, 1997.

[2] L. Balmelli, S. Ayer, and M. Vetterli. Efficient algorithms for embedded rendering of terrain models. Proceedings of IEEE Int. Conf.
Image Processing (ICIP), 2:914–918, October 1998.

[3] G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman-Hall, 1996.

[4] P. Chou, T. Lookabaugh, and R. Gray. Optimal pruning with application to tree-structured source coding and modeling. IEEE Transac-
tions on Information Theory, 35(2):299–315, March 1989.

[5] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and M. B. Mineev-Weinstein. Roaming terrain: Real-time optimally
adapting meshes. Proceedings of IEEE Visualization, 1997.

[6] M. Garland and P.S. Heckbert. Fast polygonal approximation of terrain and height fields. Internal Report CMU-CS-95-181, September
1995.

[7] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers, 1992.

[8] M.H. Gross, O.G. Staadt, and R.Gatti. Efficient triangular surface approximation using wavelets and quadtree data structure. IEEE
Transactions on Visualization and Computer Graphics, 2(2):1–13, June 1996.

[9] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. to appear in proceedings of SIGGRAPH, 2000.

[10] H. Hoppe. Progressive meshes. Proceedings of SIGGRAPH, pages 99–108, 1996.

[11] H. Hoppe. Smooth view-dependent level-of-detail control and its application to terrain rendering. Proceedings of IEEE Visualization,
pages 35–42, October 1998.

[12] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression. to appear in proceedings of SIGGRAPH, 2000.

[13] K.Ramchandran and M.Vetterli. Best wavelet packet bases in a rate-distortion sense. IEEE Transactions on Image Processing, 2(2):160–
175, April 1993.

[14] L.Balmelli, J.Kovačević, and M. Vetterli. Quadtree for embedded surface visualization: Constraints and efficient data structures. Pro-
ceedings of IEEE Int. Conf. Image Processing (ICIP), 2:487–491, October 1999.

[15] A.W.F. Lee, W. Swelden, P. Schröder, L. Cowsar, and D. Dobkin. Maps: Multiresolution adaptive parametrization of surfaces. Proceed-
ings of SIGGRAPH, pages 95–104, 1998.

[16] P. Lindstrom, D. Koller, W. Ribarsky, L.F. Hodges, N. Faust, and G.A. Turner. Real-time continous level of detail rendering of height
fields. Proceedings of SIGGRAPH, pages 109–118, 1996.

[17] R. Pajarola. Large scale terrain visualization using the restricted quadtree triangulation. Proceedings of IEEE Visualization, 1998.

[18] H. Samet. Application of Spatial Data Structures: Computer Graphics, Image Processing and GIS. Addison-Wesley Publishing
Company, 1990.

[19] M. Tamminen and F.W. Jansen. An integrity filter for recursive subdivision meshes. Computer Graphics 9, 4(1):351–363, 1985.

A Appendix

A.1 Recurrence equations for the relative level distance
To use (3)-(6), we need to provide the RLD r. The RLD is depicted in Figure 6 and is found for a pair of nodes p1, p2 solving (2). The
regular structure of the quadtree allows to find a closed-form expression for the RLD. Call ri the RLDs for level i (for example the series
ri; i = 1; : : : ; 4 in Figure 6), then we have

r
1
=
�
0 �1 0

�
; �1 =

�
0
�
; (19)

r
i
=

�
i� 1 �i i� 1

�
; �i =

�
�i�1 i� 1 �i�1

�
: (20)

It suffices to compute one vector par level and evaluate (3)-(6) on this vector: call �i
h
(r
i
) and �i

v(r
i
) the vectors giving the index differences

for pairs of horizontal and vertical neighbor nodes respectively, then (3)-(6) are evaluated as follows:

�
1
h(r

1
) =

�
Æht(0) �Æh(0) Æht(0)

�
; �1 =

�
�Æh(0)

�
; (21)

�
i
h(r

i
) =

�
Æht(i� 1) �i Æht(i� 1)

�
; �i =

�
��i�1 �Æh(i� 1) ��i�1

�
; (22)

�
1
v(r

1
) =

�
�Ævt(0) Æv(0) �Ævt(0)

�
; �1 =

�
Æv(0)

�
; (23)

�
i
v(r

i
) =

�
�Ævt(i� 1) �i �Ævt(i� 1)

�
; �i =

�
�i�1 Æv(i� 1) �i�1

�
: (24)

For example, for �1
h

, �2
h

and �
3
h

we have respectively

�
1
v =

�
+1 �1 +1

�
; (25)

�
2
v =

�
+3 +1 �5 +1 +3

�
; (26)

�
3
v =

�
+13 �1 +5 �1 �19 �1 +5 �1 +13

�
; (27)

whereas for �1
v , �2

v and �3
v we have respectively

�
1
v =

�
�2 +2 �2

�
; (28)

�
2
v =

�
�10 +2 +6 +2 �10

�
; (29)

�
3
v =

�
�42 +2 +6 +2 +22 +2 +6 +2 �42

�
; (30)

as depicted in Figure 5c.

A.2 Proof of Theorem 1
The index differences in the quadtree are proved by induction. For each proofs, we show that the case r = 0 correspond to the distance in
Figure 5 and then prove the equation in the general case.

For Æh , we have: Æh(0) = 1 which corresponds to the horizontal distance between two nodes having the same father. Equation (3) can
be can be rewritten

Æh(r) = 4
r
+

r�1X
n=0

4
n
(�1)n+r+1: (31)

Using the induction step

Æh(r) = 4Æh(r � 1) + (�1)r�1; (32)

we show that

Æh(r) = 4(4
r�1

+

r�2X
n=0

4
n
(�1)n+r) + (�1)r�1

=
6

5
4
r
+

1

5
(�1)r+1;

(33)

For Æv , we have: Æh(0) = 2 which corresponds to the horizontal distance between two nodes having the same father. Equation (5) can
be can be rewritten

Æv(r)

2
= 4

r �
r�1X
n=0

4
n
: (34)

Using the induction step

Æv(r) = 4Æv(r � 1) � 2; (35)

we show that

Æv(r)

2
= 4(4

r�1 �
r�2X
n=0

4
n
) + 1

=
2

3
4
r
+

1

3

(36)

For Æth, we have: Æth(0) = 1 which is the index difference between two horizontal nodes assuming a torus structure. Equation (4) can
be rewritten as

Æth(r) =

rX
n=0

4
n
(�1)n+r : (37)

Using the induction step

Æth(r) = 4Æth(r � 1) + (�1)r ; (38)

we show that

Æth(r) = 4(

r�1X
n=0

4
n
(�1)n+r�1) + (�1)r

=
1

5
4
r+1

+
1

5
(�1)r;

(39)

Finally for Ævh , we have: Ætv(l = 0) = 2 which is the index difference between two vertical nodes assuming a torus structure. Equation
(6) can be rewritten as

Ætv(r) = 2

rX
n=0

4
n
: (40)

Using the induction step

Ætv(r) = 4Ætv(r � 1) + 2; (41)

we show that

Ætv(r) = 8(

r�1X
n=0

4
n
) + 2;

=
2

3
4
r+1 �

2

3
;

(42)

which concludes the proof.
p

A.3 Constant-time navigation
We explain now how to use the results in the previous sections to achieve constant-time navigation. Assume knowing the index of a node
ps in the tree and need to access pt from this node. Nodes ps and pt are further called the starting node and the target node respectively.
Constant-time traversal is achieved whenever we can find � such that

pt = ps +�; (43)

with ps and pt arbitrary. The difference � is a function of ps and a geometric relation G(ps; pt) between both nodes. Examples of geometric
relations are depicted in Figure 20. In Theorem 1, we gave a mean to implement G0 (i.e. horizontal) and G1 (i.e. vertical) in Figure 20. Then,

G0

G1

G2

3G

Figure 20: Geometric relations between pair of nodes

in Appendix A.1, we explained how to use these relations for a pair of nodes given their RLD. The geometric relations are additive, then in
Figure 20 we have

G2 = G0 � G1; (44)

where � denotes the successive application of G0 and G1 . Similarly, G3 and G4 can be implemented with a series of relations G0 and G1.
Note that for G3 and G4, we also need to traverse levels in the tree.

Consider first the relation G0 and G1 . To find � as a function of ps, we proceed as follows: each level 0 � i � d � 1 in the quadtree
can be seen as a 2i � 2

i grid of nodes. Consider a node p at level i, we can compute a position [gh; gv] for the node on the level grid. Then,
the coordinates gh and gv are used to access �i

h
and �

i
v respectively. Note that �i

h
and �i

v have both size 2i + 1. Therefore, for ps

� its western neighbor is given by pt = ps ��
i
h
[gh],

� its eastern neighbor is given by pt = ps +�
i
h
[gh + 1],

� its northern neighbor is given by pt = ps ��
i
v[gv],

� its southern neighbor is given by pt = ps +�
i
v[gv + 1].

Finding the coordinates [gh; gv] The coordinates are found by expressing the local index of ps in the level grid in base 4, named
qword of ps. Then, we define a coordinate system for the grid and find the location [gh; gv] in this system with a simple sum of 2�2 matrices.
Setting the origin to the top leftmost node leads the following four matrices

F0 = 0; F1 =

�
1 0

0 0

�
; F2 =

�
0 0

0 1

�
; F3 = I2; (45)

where each matrix corresponds to a coefficient in base 4. The qword, denoted qps = fqi�1; : : : ; q0g has length i and is computed with
p
0
s = ps � 1

3
(4
i � 1), i.e. the local index of ps in the grid at level i. In Section 2.2, we explained that the z-ordering is flipped between odd

and even levels. Therefore, (46) depicts the transformation � to apply to odd bits qi in qps :

q : 0
������! 1;

q : 1
������! 0;

q : 2
������! 3;

q : 3
������! 2:

(46)

Then [gh; gv] is given by �
gh

gv

�
=

X
(Fq2i + 2 � F�(q2i+1))

�
4
i

4
i

�
: (47)

Consider the following example: node 8 is located at level 2 and has local index 3. Hence, its qword is q = f0; 3g. Therefore,

�
gh

gv

�
= (F3 + 2 � F�(0))

�
1

1

�
;

�
gh

gv

�
= (F3 + 2 � F1)

�
1

1

�
=

�
3

1

�
:

(48)

Finally using (29), for node 8

� its western neighbor is pt = 8��
2
h
[3] = 7,

� its eastern neighbor is pt = 8 +�
2
h
[4] = 11,

� its northern neighbor is pt = 8��
2
v[1] = 6,

� its southern neighbor is pt = 8 +�
2
v[2] = 14,

as it can be verified in Figure 5c. Note that a eastern neighbor is found assuming a toroidal structure for the quadtree.

A.4 Dealing with arbitrary geometric relations
In the previous section, we show how to achieve constant-time navigation for simple geometric relations such as G0 and G1 . We show now
how to deal with relations like G2 and G3 using additivity: a straightforward way to achieve arbitrary traversals is to apply G0 and G1
iteratively until reaching the target node. However, for each step of the traversal, we would need to recompute (47). A much efficient way
is to compute [gh; gv] only for ps, and then deduce the coordinates of the subsequent nodes in the traversal path. For example, given node
ps at level i having coordinates [gh; gv], its northern neighbor has coordinates [gh; gv � 1], its north-eastern child node has coordinates
[2gh + 1; 2gv], etc... Therefore, G2 is simply implemented as

pt = ps +�
i
h[gh + 1]��

i
v[gv]; (49)

whereas G3 is given by

pt = 4 � ps + k +�
i+1
h

[2gh + 2]��
i+1
v [2gv]; (50)

where k = 1; 2 whether i is odd or even respectively (see Figure 5b). We give a example for (50): assume that ps = 12 (level 1), then G3
leads to pt = 24 (Figures 20 and 5c). Namely we have [gh; gv] = [1; 1] and

pt = 4 � 12 + 1 +�
3
h[4]��

3
v[2] = 49� 19 � 6 = 24: (51)

Finally, note that equations such as (3)-(6) in Theorem 1 can be found to directly implement relations such as G2 . In this case, (49) is
implemented using a single addition instead of the two obtained using additivity. However, this case is more limiting to implement arbitrary
geometric relations.

A.5 Proof of Proposition 1
The support of Mv? in Figure 11 grows like a geometric series along the radiuses rmin and rmax . Denote by i each step of such series, then
the triangles at step i are twice smaller than the triangles at the preceding step i� 1. Series rmin and rmax have common ratio 1

2i
and 1p

2

respectively. Therefore the dimension of the octagon are given by

rmin = lim
n!1

1

2
+

nX
i=1

1

2i
=

3

2
(52)

and

rmax = lim
n!1

1
p
2

+

nX
i=1

1

2
i+ 1

2

=

p
2 (53)

p

A.6 Example of non-monotonicity in 1D
Consider the 1D function M0 of Figure 21a. The simplification is constrained by the tree in Figure 21b, in the sense that the decimation
of vertex v0 requires the decimation of vertices v1 and v2 , or equivalently, the 1D merging domain of v0 is Mv0 = fv0; v1; v2g. Recall
that the border vertices are not decimated such that the successive approximations conserve the same support. This scheme is similar to the
constraints imposed on the dataset by the quadtree in our problem. In this example, the cost functional C computes the number of segments of
the approximation, whereas the distortion functional D computes the distance in l2 norm between the approximation and the original model.
We first consider a greedy algorithm decimating only vertices located in leaf nodes. In this case, the algorithm will successively decimate the
vertices v1 , v2 and v0 . Note that the order between v1 , v2 can be exchanged since they provoke the same increase in distortion. At the bottom
of Figure 21a, we show the approximation M3 and M2 and Figure 21c shows the corresponding vertices (C(�); D(�)) in the rate-distortion
plane given by

(C(M0); D(M0)) = (4; 0); (C(M2); D(M2)) = (2; 8); (C(M3); D(M3)) = (1; 6): (54)

By only considering the leaf nodes, the greedy algorithm cannot avoid the nonmonotonicity occurring between M2 and M3 as shown in the
top curve of Figure 21b. The optimal algorithm will decimate the vertex giving the best trade-off between rate and distortion. This trade-off is

given by �(v) = ��D(Mv)

�R(Mv)
. For the first iteration, we have then the following values

�(v0) =
3
3
= 1, �(v1) =

4
2
= 2, �(v2) =

4
2
= 2. (55)

Therefore, decimating v0 represents the best trade-off and avoids the nonmonotonicity. The convex hull corresponding to the optimal solutions
is represented by the bottom curve in Figure 21c.

2

4

6

M 0

M2

M1

M 3

M 0

M 3 M2

b. c.

8

D

1 2 R43

a.

optimal curve

greedy curve

1

0

2v

v

v

-1

-2

1

1 2

0

v v

v

D(v1) D(v2)

Figure 21: Example of nonmonotonicity in 1D: (a) M 0 is the initial function, whereas M2 and M3 are two
approximations. (b) The binary tree constraining the dataset. (c) The top curve is the greedy RD curve obtained
by successively decimating v2,v1 and v0, whereas the bottom curve is the optimal curve.

A.7 Proof of Theorem 2
The proof is organized as follows: we first explain how the regular grid naturally mapped by the BSS can be split into a quincunx and a
Cartesian grid. We will use this fact to study the asymptotical behavior of the merging domain sizes, i.e. the size of the support (Figure 9a)
and the size of the fully triangulated domain (Figure 9b). Then, we calculate the number of the triangles in a support of increasing size. For
this task, we consider the support as a planar triangulated graph and use its dual representation [3], i.e. a scaffolding tree where each node
represents a triangle. We can then compute min jMvj4 by simply counting the number of nodes, whereas a weighted evaluation of the same
tree leads max jMvj4. Both sizes are given in closed-form. Then, we show how an asymptotical analysis of the sizes can be achieved to
derive the result of Theorem 2.

Quincunx and Cartesian grid The BSS induces a natural hierarchy on the vertices inM . We illustrate it by splitting the regular grid

 into the so-called quincunx and Cartesian grids (Figure 22a and 22b). The sets are denoted Q and C respectively. Since two subdivision
steps are necessary for the mesh to map a uniform grid, we have d =

l
2

with l even. The total size of each grid after d � 0 subdivisions is
respectively given by

jQjd =
1

6
4
d+1

+ 2
d+1 �

8

3
and jCjd =

1

12
4
d+1 �

1

3
: (56)

In Figures 22a and 22b, the number next to a vertex in the grid indicates at which step of the BSS this vertex is inserted. Note that the four
vertices with l = 0, forming the two initial triangles (Figure 3a), are actually not inserted since they are used to construct the initial base
mesh. Thus we have jM jd = jQjd + jCjd + 4, where d denotes the number of subdivision steps. Finally, note that the quincunx grid is just
a rotation of the Cartesian one by �

4
and their superposition results in the uniform grid
 (Figure 22c).

c.a.

1

3 3

33

5 5

55

5 5

5 5 5

5 5

5

5

55

5

0 0

0 0
b.

4

2

4

6

6

6

6

2

2

2

4 4

4

4

4

4

4

4

4

4

6

6

6

6

6

6 6 6

6

6

6

6

6666

6

6

6

6
6

6

6

6

6

6

6

6

66

66

6

6

6

6

Figure 22: Vertex hierarchy: a. Cartesian grid. b. Quincunx grid. c. Superposition of both grids. In a. and b. the label next
to each vertex corresponds to the step at which the vertex is inserted during the BSS.

Scaffolding of the support In Figure 23a-e, we depict a support of increasing size as well as the scaffolding tree representing the
dual graph. We first compute the number of triangles min jMvj4(i) as a parameter of the support size i. To do this, it suffices to evaluate the
number of nodes in the tree.

a. b. c. d. e.

����
����
������������

����
����
����

����
����
����
����
��������

2

3

4

5

8

11

10

6

7

14

15

12 13

9 16

1718

19

Figure 23: Support of increasing size and its dual graph (scaffolding): support at size (a) i = 2, (b) i = 3, (c) i = 4, (d) i = 5,
(e) i = 8.

In the series of supports in Figure 23a-e, the tree is balanced (i.e. each node has the same number of child nodes) until i = 4. In
Figure 23d, some nodes have only one child node. We need then to understand how the tree is unbalanced to compute min jMvj4(i). We
further denote min jMvj4b and min jMvj4u the number of triangles in the balanced and unbalanced part of the tree respectively. For
min jMvj4b(i), we immediately have that

min jMvj4b(i) =
iX

m=1

2
m � 2 = 2

i+1 � 2: i � 4 (57)

We explain how to find min jMvj4u below.
In Figure 24, we represent the scaffolding from node 4 in Figure 23e and enlightened the unbalanced part in the dark zone. We further

define j = i� 4 and compute min jMvj4u(j). Observe that

� At level 2j � 1 with j > 0, we have 2j nodes with two children and 2
j+1 � 2 nodes with one child node and

� for every level 2j with j > 0, there are 2j+1 nodes with two children and 2j+1 � 2 nodes with one child node.

Consider now that l and k denote respectively the number of odd and even indices. In other words, l = j � bj
2
c and k = b j

2
c. For clarity,

1

2
3
4
5
j��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
��
��
��

��
��
��
��
�� ���

�
�
�

�����
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
������

��
��
��
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������
��
��
��
��
��
��
��
��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����

������������ ����������������
��
��
��
��
����
�
�
�
�
��
��
��
��
��
��
��
��

����
�
�
�
�

��
�
�
�
�
��
��
��
��
��
�
�
�
�

�� �� �����
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�

8 9

16 17 18 19

4

Figure 24: Portion of the tree scaffolding the support from node 4 in Figure 23e.

we compute two separate sums: one for j odd, denoted by o(l), and one for j even, denoted by e(k). We have then

o(l) =

lX
m=1

(2
m+2 � 2) = 2

l+3 � 2l � 8; (58)

e(k) =

kX
m=1

(2
m+2

+ 2
m+1 � 2) = 2

k+3
+ 2

k+2 � 2k � 12: (59)

To select between (58) and (59) for j arbitrary, we replace l and k in their respective equation and sum (58) and (59), then

o(j) + e(j) = 2
j�b j

2
c+3 � 2(j � b

j

2
c) + 2

b j
2
c+3

+ 2
b j
2
c+2 � 2b

j

2
c � 20;

= 8(2
j�b j

2
c
+ 3 � 2b

j

2
c�1

)� 2j � 20:

(60)

Therefore, for i > 4 we have

min jMvj4u(i) = min jMvj4b(4) + 4 � (o(i � 4) + e(i� 4)); (61)

= 32(2
i�b i�4

2
c�4

+ 3 � 2b
i�4

2
c�1

) � 8i� 18: (62)

Finally, we obtain min jMvj4(i) by gathering (57) and (61):

min jMvj4(i) =

(
2
i+1 � 2 1 � i � 4;

32(2
i�b i�4

2
c�4

+ 3 � 2b
i�4

2
c�1

)� 8i� 18 i > 4:
(63)

Weighting of the tree To find max jMvj4, we need to weight each node of the tree with the density of triangles contained in
the triangle represented by the node. Figure 25a-b represents the support and the fully triangulated domain respectively. Again, we split
max jMv j4 into a sum max jMvj4b for the balanced part and a sum max jMvj4u for the unbalanced part of the tree. For max jMvj4b,
we weight (57) with w(m) = 2

i�m+1 , and have

max jMvj4b(i) =
iX

m=1

2
m � 2i�m+1 � 2 = i � 2i+1 � 2: i � 4 (64)

For max jMvj4u, we reuse (58) and (59) and use the weights:

wo(m) = 2
l+k�2m+2

; we(m) = 2
l+k�2m+1

; (65)

for o(l) and e(k) respectively. Then,

woo(l) + wee(k) =

lX
m=1

(2
m+2 � 2)wo(m) +

kX
m=1

(2
m+2

+ 2
m+1 � 2)we(m);

= 24 � 2l+k +
8

3
2
k�l � 16 � 2k � 12 � 2l +

4

3
2
l�k

:

(66)

Again, we successively replace l, k, j and gather (64) and (66) to obtain:

max jMvj4(i) =

8<
:

i � 2i+1 � 2; i � 4;

128 � c2 + 4(c2 � (24 � 12 � c�11 +
4
3
c
�2
1)

+
8
3
c
�1
2 c

2
1 � 16 � c1); i > 4;

(67)

where c1 = 2
b i�5

2
c and c2 = 2

i�5 .

a. b.

Figure 25: Weighting of the scaffolding tree: (a) the scaffolding covers the support. (b) Each triangle represented by a node
in the tree is weighted by the density of triangles.

Expressions as a function of n and l To compute the sizes in M0, we new to express (63) and (67) as a function of the complexity
n of the mesh and the step l of the BSS at which the vertex was inserted. The parameters n, l and i are linked by

2
i
= n � 2�l: (68)

We give now an intuitive argument for (68): for simplicity, consider that l = 1 (which is equivalent to assume a scaffolding for the support
of the root vertex). Then each time two levels of nodes are added to the scaffolding, the mesh complexity increases by four. Recall that

n = 2 � 4d , then replacing n in (68) yields 4
i

2 = 4
d , which proves (68). We replace then i = 2 � log4 n� l in (63) and (67) to obtain:

max jMvj4(l; n) =

8<
:

(2 log4 n� l)2
1�l

n; l > 2log4
n
2
� 4;

128 � c2 + 4(c2 � (24 � 12 � c�11 +
4
3
c
�2
1)

+
8
3
c
�1
2 c

2
1 � 16 � c1); l � 2log4

n
2
� 4;

(69)

where c1(l; n) = 2
blog4 n�

l+4

2
c and c2(l; n)) = 2�ln

16
. The number of triangles min jMvj4(l; n) is given by

min jMvj4(l; n) =

8<
:

2
1�l

n� 2; l > 2log4
n
2
� 4;

32(2
�(l+4)

n � c�11 +
3
2
� c1)

�16(log4 n�
l
2
)� 18; l � 2log4

n
2
� 4;

(70)

with c1 as in (69). In both cases, l satisfies 0 < l � 2d. In Figure 26a, we depict max jMvj4 (middle curve) and min jMvj4 (bottom curve)

0 10 20 30 40
0

5

10

15

20

25

30

35

step l of the subdivision process

do
m

ai
n

si
ze

 in
 tr

ia
ng

le
s

(lo
g)

10
0

10
5

10
10

10
15

10
0

10
5

10
10

10
15

mesh density (log)

do
m

ai
n

si
ze

 in
 tr

ia
ng

le
s

(lo
g)

a. b.

Figure 26: Asymptotical behavior of the merging domain: (a) Merging domain sizes as a function of l (n = 2 � 420). The top
constant value depicts the mesh size. The middle and bottom curves represent max jMvj4 and min jMv j4 respectively. (b)
Merging domain size as a function of n (l = 1). The top curve represent the mesh complexity n, whereas the middle and the
bottom curves are given for max jMv j4 and min jMvj4 respectively.

as a function of the subdivision step l posing n = 2 � 420 . The top curve represents the constant mesh size n. Note that since the mesh is
bounded, the maximum value at l = 1 is greater than n. Figure 26b shows the asymptotical behavior of max jMvj4 and min jMvj4 (posing
l=1) for n ! 1. The top curve represents the mesh size, whereas the middle and the bottom curves are given respectively by max jMvj4
and min jMvj4.

Asymptotical sizes of max jMvj4 and min jMv j4 We give now one more result necessary to derive the asymptotical behavior
of max jMvj4 and min jMvj4 theoretically.

For both min jMvj4 and max jMvj4, the following properties are obtained from the BSS:

jMvj4(2
i+1 � 1; n) = jMvj4(1;

n

4i
); (71)

jMvj4(2
i+1

; n) = jMvj4(2;
n

4i
); (72)

where (71) holds for all vertices of the Cartesian grid (i.e. l is odd) and (72) holds for all vertices of the quincunx grid (i.e. l is even).

We derive now the asymptotical behavior of max jMvj4(l; n) and min jMvj4(l; n) or equivalently their size when n ! 1 (Figure
26b). We first compute the size in the worst case (posing l = 1). We use the short-cuts max jMvj4(n) and min jMvj4(n) to denote
respectively max jMvj4(1; n) and min jMvj4(1; n). We have

max jMvj4(n) =

�
(2 log4 n� 1)n; n < 128;

7n+
1024
3

c
2
1 � 64c1 � 3

2
c
�1
1 +

1
6
c
�2
1 ; n � 128;

(73)

and

min jMvj4(n) =

�
2
1�l

n� 2; n < 128;

n � c�11 + 48 � c1 � 16 log4 n� 26; n � 128;
(74)

with c1(n) = 2
blog4 n�

5
2
c. We need now to bound the term c1(n), thus

1

8

r
n

2
� c1(n) �

1

4

r
n

2
: (75)

Immediately, we can conclude for (73) that

max jMvj4(n) 2 �(n); (76)

since n is the dominant term. Using (75), we can now lower bound (74) to obtain:

min jMvj4(n) � 4
p
n+ 3

p
2
p
n� 16 log4 n� 26;

2
(
p
n):

(77)

Similarly, we upper bound (74):

min jMvj4(n) � 2
7
2

p
n+ 6

p
2
p
n� 16 log4 n� 26;

2 O(
p
n):

(78)

Using (77) and (78) we have that

min jMvj4(n) 2 �(
p
n) (79)

Both results (76) and (79) are given in the worst case and are confirmed by Figure 26b.

We compute now the complexities in expectation. To do so, we proceed as follow: 1. we compute the merging domain size for each l
and n ! 1, 2. we calculate their weighted sum using the quantity of vertices (56) inserted at each subdivision step l. Finally, the sum is
averaged by the total number of vertices N . For the first task, we simply use (71) and (72) which allows to restrict us to two cases, namely
l = 1 (Cartesian) and l = 2 (quincunx) and we vary the complexity n of the mesh instead. This twist allows us to reuse the results (76) and
(79). For the second task, we weight the merging domain sizes using the approximation 4

i for the vertices quantities, with i = 1 : : : d where
is d = log4(n)�

1
2

, since 4i is the dominant term in (56). Finally, using (7) we have that

lim
d!1

n

N
= lim

d!1

(N � 1)(
1
2
+

1

2d
)
�1

N
= 2: (80)

Therefore n
2

is a good asymptotical value for the number of vertices in the mesh. For E[max jMvj4(n)] we have

E[max jMvj4(n)] =
2

n
(

d�1X
i=0

4
i+1

m(1;
n

4i
) +

d�1X
i=0

4
i+1

m(2;
n

4i
));

=
2

n
(

d�1X
i=0

4
i+1

�(
n

4i
) +

d�1X
i=0

4
i+1

�(
n

4i
));

=
2

n
(

d�1X
i=0

4
i+1

b1 �
n

4i
+

d�1X
i=0

4
i+1

b2 �
n

4i
);

= 16(b1 + b2)(d � 1);

= 16(b1 + b2)(log4 n�
3

2
)

(81)

which proves that

E[max jMvj4(n)] 2 �(log n) (82)

Similarly, for E[min jMvj4(n)] we have

E[min jMvj4(n)] =
2

n
(

d�1X
i=0

4
i+1

m(1;
n

4i
) +

d�1X
i=0

4
i+1

m(2;
n

4i
));

=
2

n
(

d�1X
i=0

4
i+1

�(

r
n

4i
) +

d�1X
i=0

4
i+1

�(

r
n

4i
));

=
2

n
(

d�1X
i=0

4
i+1

b1 �
r

n

4i
+

d�1X
i=0

4
i+1

b2 �
r

n

4i
);

= 4(b1 + b2)
2
d+ 3

2

n

d�1X
i=0

4
i

2 ;

=
4(b1 + b2)

n
2
d+ 3

2 (2
d � 1)| {z }

(?)

:

(83)

Finally, we compute the order of the term (?) by replacing d

2
d+ 3

2 (2
d � 1) =

p
2n� 2

p
n 2 �(n); (84)

yielding

E[min jMvj4(n)] 2
�(n)

n
2 �(c): (85)

which proves that min jMvj4(n) has constant size in expectation.
p

A.8 Proof of Proposition 3
For Mv1 to be pruned before Mv0 , we need to have

�D(Mv0)�C(Mv1) > �D(Mv1)�C(Mv0): (86)

Since C is monotonically increasing, we can write

�C(Mv0) = Æ�C(Mv1); (87)

with Æ > 1. Then, replacing (87) in (86) yields

�D(Mv0) > Æ�D(Mv1); (88)

which proves the proposition.
p

A.9 Proof of Proposition 4
Assume that @a 2 AM

v?
such that Ma is nonmonotonic (in the sense of Proposition 3) and v 2 Ma \ Mv? such that �D(Ma) <

�C(Mv), then we have to show that �(v?) is a lower bound for f�(v)gv2M . We only have to consider the updated vertices (i.e. a 2 AM
v?

).
Moreover, v? satisfies Proposition 3, then we have for a:

�(a) =
�D(Ma)��D(Mv?)

�C(Ma)��C(Mv?)
>

��D(Mv?) ��D(Mv?)

��C(Mv?) ��C(Mv?)
;

>
(�� 1)�D(Mv?)

(� � 1)�C(Mv?)
>

�D(Mv?)

�C(Mv?)
> �(v

?
);

(89)

which ends the proof.
p

