
A Polynomial-Time Universal Security Ampli�er in the Class of Block

Ciphers

John O. Pliam�

EPFL-DSC Technical Report No. DSC/2000/013

March 23, 2000

Abstract

We demonstrate the existence of an eÆcient block cipher with the property that whenever it is composed with
any non-perfect cipher, the resulting product is strictly more secure, against an ideal adversary, than the original
cipher. We call this property universal security ampli�cation, and note that it holds trivially for a one-time pad (a
stream cipher). However, as far as we are aware, this is the �rst eÆcient block cipher with this property. Several
practical implications of this result are considered.

Keywords: product ciphers, cascade ciphers, security ampli�cation, guessing entropy.

1 Introduction

It is often asked in cryptography whether the product of two ciphers might be more or less secure than one of

the ciphers by itself. An ampli�cation of security doesn't happen in general and important counterexamples have

been identi�ed. For example, if the permutations of a block cipher form a group (or more precisely, are uniformly

distributed on a subgroup of the symmetric group on the set of message blocks), then two-key double encryption is

no better than single encryption. Thus, it has been seen as important to rule out this pathology in the case of DES

[4]. Furthermore, the security of a product can actually be less than that of the second cipher when the plaintext

statistics are ill-behaved with respect to the permutations of the �rst cipher [12]. Nevertheless, depending on how

security is measured and how the ciphers are modeled, other aÆrmative results have been advanced [18, 8, 1].

In this paper, we take a novel approach to this problem, raising a strong existence question about the security of

product ciphers. Speci�cally, we ask: Is there an eÆcient block cipher which ampli�es the security, against an ideal

adversary, of every non-perfect cipher with which it is composed? By construction, we answer this question in the

aÆrmative. The constructed cipher, as presented, would not be widely viewed as \practical" because it requires a

variable length key which grows with the amount of plaintext encrypted (much like a one-time pad). Furthermore,

the computation time for encrypting a single message block { though polynomial in the inputs { is slower than what

has become expected in the modern arena of fast encryption. On the other hand, it may be possible to accelerate

bulk encryption through parallelization techniques, and if a cryptographically strong substitute for the key were used

(such as a key schedule, hash, or pseudo-random function), then a negation of our claim of security ampli�cation

would imply that an attacker had defeated the arti�cial keying mechanism.

There are other practical implications of our result. First of all, the techniques used here could facilitate the

construction of computationally eÆcient S-boxes with provably strong security properties. More generally, if we

are to understand, in more than purely heuristic terms, the security convergence of modern iterated cryptosystems,

then our result establishes new limits on what can be accomplished in polynomial-time. Our construction might be

modi�ed and compromised to obtain faster ciphers with complementary security results.

�with the Security and Cryptography Laboratory (LASEC), Swiss Federal Institute of Technology, Lausanne (EPFL), E-mail:
john.pliam@epfl.ch.

1

2 Preliminaries

A basic familiarity with random variables and probability spaces [10] is assumed. Some group theory [17] is also

assumed, but in the next subsection, we shall review some important terminology about permutation groups [7].

2.1 Permutation Groups

Let X be any set. The collection of all invertible functions on X forms the symmetric group SX . Any subgroup

G � SX is called a permutation group, and we also say that G acts on X and that X is a G-set. The subgroup of

G which �xes a point x 2 X is called the (point) stabilizer of x, and is given by StabG(x) = fh 2 G jhx = xg .

When studying n-bit block ciphers, the �nite set M = f0; 1gn of all n-bit binary strings (or equivalently the

integers f0; 1; : : : ; 2n� 1g) is the most natural G-set for some permutation group G � SM . But additionally for this

paper, we will often consider two other actions of G on related sets. ByM (`) we mean the set of tuples of size ` with

distinct elements inM , G acting elementwise. If p = (p1; : : : ; p`) 2M
(`), the point stabilizer StabG(p) is sometimes

written StabG(p1; : : : ; p`). ByM
fmg we mean the set of subsets ofM of size m, where g 2 G acts on S 2M fmg by

taking S 7! gS. The point stabilizer of S 2M fmg is sometimes written StabGfSg.

2.2 Shannon's Model and Product Ciphers

Following Shannon [18], we model an n-bit block cipher as a SM -valued random variable. If a cipher X only takes

values in a subgroup G � SM , then X may be called a G-cipher. We may model a stream cipher in the same

spirit (cf. [13]). Let f0; 1g� denote the (in�nite) set of �nite binary strings, and let H � Sf0;1g� be the subgroup of

length-preserving permutations. We shall call an H-valued random variable a stream cipher1. By a cipher we mean

either a block cipher or a stream cipher.

Given two independent ciphers X and Y acting on the same message space, the cipher XY is called a product

cipher, Y is called its �rst component and X is called its second component. The distribution of the product of two

block ciphers is given by the convolution,

P [XY = g] = x � y(g)
4
=
X
h2G

x(gh�1)y(h); (1)

where x(g) = P [X = g] and y(g) = P [Y = g]. This representation of a product cipher will prove useful in the sequel.

The cipher U which is uniformly distributed on SM is called the perfect cipher. For any subgroup G � SM

the G-cipher UG which is uniformly distributed on G is called the uniform G-cipher. Given a in�nite sequence of

independent and uniformly random bits, z0; z1; : : :, we may form a simple stream cipher, called the one-time pad, by

mapping plaintext word m into zjmj �m, where zjmj is the word z0 � � � zjmj.

2.3 The Computational Model

Shannon's model is a purely probabilistic one; it says very little about how a computer might transform plaintext into

ciphertext and back. For a cipher X to be practical, there should be e�ective procedures for encryption (computing

the action of X on plaintext) and decryption (computing the action of X�1 on ciphertext).

One natural choice for the computational model is the standard Turing machine model [9]. Informally, we have an

encryption algorithm Enc, which has as input arguments the plaintext m and the random key k, and which outputs

ciphertext c. The corresponding decryption algorithm Dec is similarly de�ned. Formally in this model, we require

a pair of deterministic Turing machines E and D, such that (under suitable encoding) m = D(k;E(k;m)), for all

m and k. Notice that under this model, all randomness enters as an argument to the encryption and decryption

algorithms, or equivalently as input data on the Turing machine tapes. Our view is that this model of computation

1In practice, a stream cipher will typically also have consistent block pre�x action, i.e. for some integer n, it will be con�ned to
permutations h 2 H such that when juj = ju0j 2 nZ, h(uw) = u0w0 implies that for all v of length jwj, h(uv) = u0v0 for some v0.

2

is unnecessarily restrictive, because it fails to capture the simple idea that some ciphers (like the one-time pad)

are \computationally eÆcient" even though they may require impractical amounts of key material to encrypt every

possible plaintext.

Alternatively, we consider encryption and decryption algorithms which access key material as an auxiliary sub-

routine call. Formally, such a subroutine call is idealized by an oracle function f : f0; 1g� �! f0; 1g, and we are

thus invoking the computational model of an oracle Turing machine (OTM) [9]. An OTM is a deterministic Turing

machine augmented by an oracle tape and additional logic so that that at any time, the oracle tape with input

� written on it can, in one step of computation, be transformed to have f(�) written on it. An OTM M with

speci�c oracle function f will be denoted by Mf , and its time complexity is computed in the usual way (with oracle

evaluation counting as one step). We may model uncertainty about the oracle function by treating it as an instance

of a random oracle function F : f0; 1g� �! f0; 1g.

The next two de�nitions capture our intuitive notion of eÆcient encryption/decryption for block and stream

ciphers, respectively.

De�nition 1 (EÆcient Block Ciphers) A ensemble of block ciphers fXngn2N will be called computable in

polynomial-time if there exists a random oracle function F and a pair of polynomial-time OTM's, E and D, such

that for each n 2 N: (i). for each p 2 f0; 1gn, p = DF (EF (p)), and (ii). the distribution of EF , restricted to strings

of length n, identical to that of Xn, and (iii). the distribution of DF , restricted to strings of length n, is identical to

that of X�1
n . 2

By a mild but common abuse of notation, a block cipher X acting on f0; 1gn will be called computable in polynomial-

time if it is one of an ensemble of such ciphers, and any important properties hold for each representative.

De�nition 2 (EÆcient Stream Ciphers) A stream cipher X will be called computable in polynomial-time

if there exists a random oracle function F and a pair of polynomial-time OTM's, E and D, such that: (i). for each

p 2 f0; 1g�, p = DF (EF (p)), and (ii). the distribution of EF is identical to that of X, and (iii). the distribution of

DF is identical that of X�1. 2

Note that by Defs. 1 and 2, both the one-time pad and the Luby-Racko� construction [13] are eÆcient. In fact,

each is computable in linear time. Notice also that being computable in polynomial-time does not preclude that

exponentially many bits may be necessary to completely describe the cipher's action on the entire message space.

For example, each round of the Luby-Racko� construction (a Feistel cipher with a perfectly random function acting

on half-words) takes on one of �
2
n
2

�2n2
distinct permutations of an n-bit message space. Thus, for the common 3-round version of the construction, there

must be 3n2(
n�2
2) bits to entirely describe it.

However, neither the one-time pad nor the Luby-Racko� construction meets our objective. The one-time pad is

not a block cipher. Furthermore, every permutation of the Luby-Racko� construction is even and hence is con�ned

to a proper subgroup (the alternating group, AM � SM), and we shall see from Lemma 1 below that it cannot be

an universal security ampli�er.

2.4 Optimal Chosen Plaintext Attacks

We now introduce the measure of security in terms of which strict security inequalities will be derived. Informally,

it is just the average cost of the optimal (non-adaptive) chosen plaintext attack for an adversary in possession of

an oracle which will answer the question, \is X = g?". There are two stages to the optimal strategy. First the

adversary discards all permutations which are inconsistent with the acquired plaintext-ciphertext pairs. Then among

the remaining permutations, he queries the oracle for the exact permutation in order of non-increasing probability.

The adversary will obviously choose the plaintexts such that the average cost of this strategy is minimized. The

diÆculty of this attack is a direct and meaningful measure of the cipher's security.

3

To formally quantify this attack against a G-cipher X , G � SM , let us assume that the adversary has collected

` plaintexts and their corresponding ciphertexts into tuples p; c 2 M (`), respectively. The ciphertext tuple c is an

instance of the random variable C` = Xp, whose uncertainty is due exclusively to uncertainty about X . Now for

any random variable Z the average cost of guessing its value is called the guesswork2 of Z and is given by

W (Z)
4
=

mX
i=1

p[i]i; (2)

where Z takes on m values, and where the probabilities of Z have been arranged according to p[i] � p[j] for all i < j.

For �xed p and c, the conditional guesswork W (X jc; p) is the guesswork of X as in Equation (2) after discarding

all permutations g 2 G such that c 6= gp, and then rearranging and rescaling the probabilities accordingly. Now we

must still account for the uncertainty about C`. Evidently, for a particular choice of plaintext tuple p, the cost of

the attack must be weighted by the a posteriori probabilities !(cjp) = P
�
C` = c j p

�
, yielding

W (X jC`; p) =
X

c2M (`)

W (X jc; p)!(cjp): (3)

The minimum value of W (X jC`; p) is the optimal chosen plaintext attack work factor, which will be denoted

�`(X) = min
p2M (`)

W (X jC`; p): (4)

For continuity we take �0(X) to be W (X).

3 The Main Result

3.1 The Existence Theorem

We shall prove by construction the following theorem.

Theorem 1 There is a cipher X, computable in polynomial-time, such that for each 0 � ` � 2n and every indepen-

dent cipher Y , �`(XY) � �`(Y). Furthermore, equality holds i� �`(Y) = �`(U).

It is easily seen (see e.g. [15]) that no non-perfect cipher Y can have �`(Y) = �`(U), for all `. Thus this theorem

tells us in a very meaningful way, that every non-perfect cipher is brought closer to the the perfect cipher by left

multiplication by X .

The proof of Thm. 1 relies on three lemmas which treat di�erent aspects of the problem. To express these lemmas

succinctly, we introduce some additional terminology. First, the support of aG-cipher (or indeed any random variable)

may be de�ned as supp(X)
4
= fg 2 G jP [X = g] 6= 0g . Second, it is useful to denote the size of the smallest `-message

stabilizer of a group by MG(`)
4
= minp2M (`) jStabG(p)j. It is easily seen that �`(UG) =

1
2 [1 +MG(`)].

The �rst lemma from [15] treats the case ` = 0 but is also useful in establishing the other results.

Lemma 1 Given G � SM , let X be a G-cipher. Every independent non-uniform G-cipher Y satis�es W (XY) >

W (Y), i� for each g 2 G and each subgroup H 6= G, supp(X) 6� gH.

The next lemma provides suÆcient conditions for nearly universal ampli�cation (` > 0) for ciphers in any permutation

group.

Lemma 2 For a permutation group G � SM , let X be a G-cipher such that supp(X) = G. Then for each 1 � ` � 2n

and every independent G-cipher Y , �`(XY) � �`(Y). Furthermore, equality holds i� �`(Y) = �`(UG).

The �nal lemma asserts the existence of a cipher suitable to translate Lemmas 1 and 2 into Thm. 1.

2Guesswork has sometimes been called guessing entropy, cf. [16] and [3].

4

Lemma 3 There is a cipher X, computable in polynomial-time, with supp(X) = SM .

Assuming the validity of the above lemmas, the proof of Thm. 1 is immediate.

The proof of Lemma 2 is rather involved and is sketched in Sect. 4.4. Most of the rest of this paper is devoted to

the construction of X and the proof of Lemma 3. Before diving into the precise details in Sect. 4, let us �rst take a

slightly more informal look at the ideas underlying this construction.

3.2 An Intuitive Glimpse at the Construction

The symmetric group on the message space is truly enormous. It's size is approximated by

log log(2n!) � n+ log(n) = O(n):

Because it takes two logarithms to bring 2n! down to the polynomial n, our construction will exhibit two distinct

sources of algorithmic eÆciency:

1. Recursion: The cipher X will be recursively de�ned as the product of simpler ciphers. More precisely, the

encryption algorithm Enc will itself be recursive but will also call another recursive algorithm invSort. The

decryption algorithm Dec will be similarly de�ned. The time complexity and recursion depth of each algorithm

will be a polynomial in n.

2. Oblivious Action3: The cipher X will be representable as the product of a large number of random powers of

transpositions (i.e. permutations of message blocks two at a time). Then Enc and Dec, the de�ning algorithms

of X , will make use of polynomially many transpositions for every block encrypted.

Let G � SM be any permutation group. There are many ways to construct a product cipher PQ which achieves

every permutation in G, even though both P and Q are sparse on G. Indeed for any subgroup H � G, we may take

Q which achieves every permutation in H and P which achieves one permutation in every left coset of H in G. It

is easy to see that PQ achieves every permutation in G. For many large groups, it is possible to �nd subgroups

satisfying jGj � jH j and jGj � [G :H]. Formally, we have an ampli�cation of support: jsupp(PQ)j � jsupp(P)j,

and jsupp(PQ)j � jsupp(Q)j. Thus by exploiting the algebraic structure of the group, we may construct a densely

distributed cipher as a product of very sparsely distributed ciphers.

Let's try to carry this idea even further. Consider a chain of subgroups of G

f1g = H0 � H1 � � � � � Hm = G;

and for each i, an Hi-cipher Pi which contains one permutation in every left coset of Hi�1 in Hi. Then by simple

induction, the product cipher Pm � � �P2P1, would have complete support on G. For example in the symmetric group

on 2n symbols, consider the subgroups Hi = Stab(1; : : : ; 2n � i), 0 � i � 2n. On the one hand, this choice of

subgroups is promising because the number of cosets in S2n of the largest proper subgroup is the polynomial n.

Unfortunately however, there are 2n subgroups in this chain, and so the number of terms in the product Pm � � �P2P1

grows exponentially with n. If we are to employ this technique, it may be inconvenient to use a chain of subgroups

which �x collections of words in M { either as tuples or as sets { because any hierarchy of such collections would

typically be as large asM itself.

It thus makes more sense to de�ne subgroups which �x some feature of the words in M . To that end de�ne Ki

to be the subgroup consisting of the permutations of SM which preserve the �rst n� i bits of each message block.

We shall call Ki the (n� i)-bit pre�x stabilizer subgroup of SM , and as i ranges from 0 to n these form the chain of

subgroups

f1g = K0 � K1 � � � � � Kn = SM : (5)

3We borrow this term from [14] where it is used in the same context.

5

We will construct, for each 1 � i � n, a Ki-cipher Pi which contains one permutation in every left coset of Ki�1 in

Ki. Then the cipher of Lemma 3 will be de�ned as

X = Pn � � �P2P1: (6)

But let us compute the minimal support required of Pn. That is to say let us count the number of left cosets of

Kn�1 in SM . Since Kn�1 permutes all but the most signi�cant bit of words in M , the left cosets of Kn�1 are

characterized by the rearrangements of M with distinct patterns of the most signi�cant bit. There are precisely

[SM :Kn�1] =

2n

2n�1

!

of these rearrangements. Observe that while we have reduced the number of permutations by a large number (by

(2n�1!)2 in fact), on a doubly logarithmic scale we still have

log log

2n

2n�1

!
� n+ 1 = O(n):

It may appear that we are right back where we started, yet we have transported the problem onto very fertile new

ground.

The eÆciency in our algorithms for Pi has its heritage in the closely related problem of card shu�ing. In fact,

both the security of a product cipher [15] and the fairness of a shu�ed deck of cards [2, 6] is related to the uniformity

of convolutions as in equation (1). In their now famous analysis ri�e shu�es, Aldous and Diaconis remarked that

\the lovely new idea here is to consider shu�ing as inverse sorting." [2, Remark (a), p. 344]. Indeed it is quite

natural to consider encryption as inverse sorting because the rearrangements ofM which characterize the left cosets

of Kn�1 � SM correspond precisely with the permutations which would be used in the �rst step of the obvious

recursive sorting algorithm. In the reverse order, we may achieve all permutations of M by �rst achieving all

rearrangements of the most signi�cant bit, and then proceeding recursively with the less signi�cant bits. What

we claim is that sorting and inverse sorting on the most signi�cant bit can be done in polynomial-time using both

recursion and the oblivious action of transpositions. The rest is gravy.

Let us demonstrate this eÆciency in a simple example with n = 3 and thus M = f0; 1; : : : ; 7g. We start

with a random arrangement (6; 3; 5; 0; 7; 1; 4; 2) of the elements of M , and attempt to sort this tuple on the most

signi�cant bit by the application of n = 3 rounds of involutions (recall that every involution is a product of disjoint

transpositions). For reasons of eÆciency we shall restrict ourselves to transpositions of the form (j; j � 2i), with i

constant for every round. The allowable round involutions are (01)b1(23)b2(45)b3(67)b4 , (02)b5(13)b6(46)b7(57)b8 and

(04)b7(15)b9(26)b10(37)b11 , for rounds 0, 1 and 2, respectively. Table 1 below shows that we can indeed sort on the

most signi�cant bit of 2n integers by carefully choosing the powers bi in only only n rounds.

To overcome the limitations of having so few permutations, our strategy is as follows: the goal at the end of

round 1, is to collect integers with leading 1 into the lowest part of the bottom half (those positions � 3), and to

collect integers with leading 0 into the lowest part of the top half (those positions � 4). Then the powers of the

transpositions in the �nal round (round 2) are determined by the sorting requirement. We claim that this strategy

will work for all n.

4 The Construction Details

In the next two subsections we present the detailed construction of the cipher X of Lemma 3. In the following two

subsections we prove Lemma 3 and sketch the proof of Lemma 2, respectively.

6

round (transp./arrangemnt.)
0 1 2

7 2 = 010 (67) 100 () 100 () 100
6 4 = 100 (67) 010 (46) 111 () 111
5 1 = 001 () 001 () 001 (15) 101
4 7 = 111 () 111 (46) 010 (04) 110
3 0 = 000 (23) 101 (13) 011 () 011
2 5 = 101 (23) 000 () 000 () 000
1 3 = 011 () 011 (13) 101 (15) 001
0 6 = 110 () 110 () 110 (04) 010

Table 1: A randomly chosen arrangement of f0; 1; : : : ; 7g is sorted with respect to the most signi�cant bit after
the application of only 3 rounds of disjoint transpositions. The �rst two columns indicate the initial arrangement
(position, value). The next three columns give, for each round, the transposition a�ecting the value at that position
and subsequent arrangement.

4.1 Algebraic Details

We may encrypt by inverting the sorting procedure described in the previous section. Formally, for any j, de�ne

R
(j)
i to be the product of independent and uniformly random powers of the 2n�1 distinct transpositions of the form

(k; k � 2i), with 0 � k � 2n � 1. Then let

Pi = R
(i)
0 R

(i)
1 � � �R

(i)
i�1;

and as before X = Pn � � �P2P1. Each random involution R
(j)
i corresponds to a \round" as shown in Fig. 1 below.

Note that while there is repetition (e.g. R
(j1)
i and R

(j2)
i are i.i.d. random variables), X is not a traditional iterated

cryptosystems because the speci�c sequence of rounds is carefully chosen.

0
1
2
3
4
5
6
7

| {z }
P1

| {z }
P2

| {z }
P3

Figure 1: The structure of the cipher X = P3P2P1 for n = 3. The rounds are applied left to right, and each
round corresponds to a random involution shown as a vertical column of butter
ies. Each butter
y in the diagram
represents a random transposition of the form (k; k�2i)b, where parallel lines indicate b = 0 and a crossover indicates
b = 1.

4.2 Algorithm Details

It is clear that we may recursively a�ect the actions of X and X�1 on any block, if we can carry out the rounds R
(j)
i in

the correct order and in such a way that the powers of all relevant transpositions are independent and equiprobable.

Moreover, if we encounter the the same butter
y in two di�erent executions, we must be able to reproduce the same

random power of the corresponding transposition. This is easily accomplished if we consider the random bits to be

indexed byM �Z. The resulting function f :M �Z�! f0; 1g is easily transformed into a random oracle function

F : f0; 1g� �! f0; 1g appropriate for Def. 1. We employ the convention that the power of any transposition (k; k�2i)

is f(m; r), where m = minfk; k � 2ig and r is the round. In other words, f is applied to the lower left hand corner

of every butter
y in Fig. 1.

7

The next algorithm implements encryption. To encrypt a single plaintext block, the computational complexity

will be n(n+ 1)=2 or O
�
1
2n

2
�
. For a block size of n = 128, this yields about 8; 256 operations.

Algorithm 1 De�nes recursive encryption functions Enc and invSort. The action of X = Pn � � �P2P1 on p 2M is

a�ected by (q; r) = Enc(p; n; 1), such that q = Xp. The action of Pi on p 2M is a�ected by (q; r) = invSort(p; i�1; �),

such that q = Pip.

function Enc(p; i; r):
if i > 1 then

(q; r) = Enc(p; i� 1; r).
endif
return invSort(q; i� 1; r).

function invSort(p; j; r):
q = p� 2j .
if p < q then
b = f(p; r).

else
b = f(q; r).

endif
if b = 0 then
q = p.

endif
if j > 0 then
return invSort(q; j � 1; r + 1).

else
return (q; r + 1).

endif

The decryption algorithm is easily obtained by performing the the transpositions in the reverse order. The necessary

modi�cations are immediate, and we shall call the \reverse" of inverse-sorting fwdSort.

Algorithm 2 De�nes recursive decryption functions Dec and fwdSort. The action of X�1 = P�1
1 P�1

2 � � �P�1
n on

p 2M is a�ected by (q; r) = Dec(p; n; 12n(n+ 1)), such that q = X�1p. The action of P�1
i on p 2M is a�ected by

(q; r) = fwdSort(p; i� 1; �), such that q = P�1
i p.

function Dec(p; i; r):
(q; r) = fwdSort(q; i� 1; r).
if i > 1 then
return Dec(q; i� 1; r).

else
return (q; r).

endif

function fwdSort(p; j; r):
if j > 0 then

(p; r) = fwdSort(p; j � 1; r).
endif
q = p� 2j .
if p < q then
b = f(p; r).

else
b = f(q; r).

endif
if b = 0 then
return (p; r � 1).

else
return (q; r � 1).

endif

Remark 1 Notice how the round information is explicitly carried by input/output argument r through the entire

recursion processed. During the execution of Enc, it is incremented, while during the execution of Dec it is decre-

mented. This is necessary because encryption and decryption must agree on the random bits f(p; r) which determine

the appropriate powers of the various transpositions involved. 2

4.3 The Proof of Lemma 3

To prove Lemma 3 we must �rst develop some terminology and prove some preliminary results. Recall that the

integers inM will have a dual role as n-bit strings. When treating pre�xes and other substrings it is useful to have

8

a padding function �i : Z �! f0; 1g
i taking j to the binary representation of j mod 2i padded up to i bits. Also

de�ne a pre�x truncation function �i : f0; 1g
� �! f0; 1gi taking binary word w to its �rst i bits (the most signi�cant

i bits).

It is natural for us to recursively partitionM into disjoint subsets which share the same pre�x. For example, let

S0 = fi 2M j �1(i) = 0g and S1 = fi 2M j �1(i) = 1g , so that M is the disjoint union S0 [S1. More generally, let

S�i(j) = fk 2M j �i(k) = �i(j)g with 1 � j � 2i � 1, and again we partitionM into disjoint subsets

M =

2i�1[
j=0

S�i(j):

The pre�x stabilizers are naturally expressed in terms of these subsets, for example clearly Kn�1 = StabKn
fS0g \

StabKn
fS1g, and more generally

Kn�i =

2i�1\
j=0

StabKn
fS�i(j)g:

The following proposition characterizes the left cosets of Kn�1 � Kn.

Proposition 1 A left coset of Kn�1 in Kn is completely determined by the image of S0 under the action of any left

coset representative.

Proof: First of all Kn�1 = StabKn
fS0g \ StabKn

fS1g = StabKn
fS0g, because anything which �xes S0 must also �x

S1. Now Kn = SM acts transitively on the setM f2n�1g of all subsets ofM of half its size. By standard group action

arguments [17, 7], the left cosets fgKn�1g are in one-to-one correspondence with the images fgS0g, in a well-de�ned

way. 2

We shall derive presently a similar characterization of the left cosets of Kn�i�1 in Kn�i. First let's agree that

whenever A � B we will consider SA to be a subgroup of SB . Recall [17] that if a group G factors into product

G = HK of normal subgroups H and K, with H \K = f1g, then G is a direct product of H and K (it is literally

isomorphic to the Cartesian product with the obvious group law). Clearly whenever B is a disjoint union of A1 and

A2, SB contains the direct product SA1SA2 . Visibly, Kn�1 = SS0SS1 , and if we write S�i(j) = SS�i(j)
, we also

have that Kn�i is the direct product

Kn�i =

2i�1Y
j=0

S�i(j):

Proposition 2 A left coset of Kn�i�1 in Kn�i is completely determined by the images of S�i(j)0, 0 � j � 2i � 1,

under the action of any left coset representative.

Proof: Because Kn�i is the direct product given above, a left coset gKn�i�1 factors into a product of left cosets

2i�1Y
j=0

gj

�
StabS�i(j)

fS�i(j)0g \ StabS�i(j)
fS�i(j)1g

�
:

However, we again have StabS�i(j)
fS�i(j)0g \ StabS�i(j)

fS�i(j)1g = StabS�i(j)
fS�i(j)0g. Finally, 2i invocations of

Prop. 1 obtains the desired result. 2

With this machinery in place, we may now prove Lemma 3.

Proof of Lemma 3: Recall that in order to facilitate the induction argument of Sect. 3.2, thereby establishing that

supp(X) = SM , we must show that (for each i) supp(Pn�i) contains a representative of each left coset of Kn�i�1 in

Kn�i.

9

What we'll actually show, by an inner induction argument, is that for every subset S �M contiguous on each

S�i(j) (0 � j � 2i � 1) and every possible image T of S under the action of Kn�i (i.e., every T of the form gS for

some g 2 Kn�i), supp(Pn�i) contains a permutation g taking S 7! T . Since each S�i(j)0 is trivially a contiguous

subset of S�i(j), we have the desired result by Prop. 2. Note also that if we can take an arbitrary contiguous set to

an arbitrary image, then we can also take an arbitrary complement of a contiguous set to an arbitrary image.

Induction Base: Clearly K1 is isomorphic to the direct product of 2n�1 symmetric groups on 2 elements (cyclic

groups of order 2), and thus has size jK1j = 22
n�1

. Since jsupp(P1)j = 22
n�1

also, the induction hypothesis holds

trivially.

Induction Step: Without loss of generality, we consider the case i = 0. By hypothesis, supp(Pn�1) contains

an element of Kn�1 taking any contiguous subset of S0 to a desired image (� S0, and of the same size), while

simultaneously taking any contiguous subset of S1 to a desired image (again � S1, and of the same size). Choose

arbitrary sets U � S0; V � S1, let T = U [V , and choose any contiguous set S � M of size jT j. Again without

loss of generality, we may assume that jS \ S0j � jU j (because otherwise jS \ S1j � jV j and a completely symmetric

argument applies). We must show that supp(Pn) = supp(Pn�1)supp(R
(n)
n�1) contains a g such that gS = T . Write

g = hk�, with h 2 SS0 ; k 2 SS1 , and where � is some product of transpositions of the form (j; j � 2n�1). Evidently

the real job of � is to send elements of S \ S0 in excess of jU j across the most signi�cant bit boundary into S1,

because h; k 2 StabKn
fS0g cannot do this later on. The transpositions in supp(R

(n)
n�1), which
ip the most signi�cant

bit, are perfect for this task. Let � be the product of the transpositions (j; j � 2n�1), with j 2 J , where J consists

of the highest jS \ S0j � jU j elements of S \ S0. We claim that (�S) \ S0 is a contiguous subset of S0, and that

(�S) \ S1 is either a contiguous subset or the complement of a contiguous subset of S1. Assuming that is true,

then by the induction hypothesis, we may choose h taking (�S) \ S0 7! U and k taking (�S) \ S1 7! V , so that

gS = hk(�S) = T .

Two cases naturally arise. (Case 1:) If S doesn't intersect with S1 then � takes J contiguously to some image in

the middle of S1, and � leaves S � J contiguously in the middle of S0. (Case 2:) On the other hand, if S intersects

non-trivially with S1, then because S is contiguous, J is precisely the highest jS \S0j� jU j elements of S0 itself, and

furthermore S\S1 consists of the lowest jS\S1j elements of S1 which are left �xed by �. Therefore (�S)\S1 consists

of the complement of a contiguous set (those elements between S \ S1 and �J). But again � leaves (S \ S0) � J

contiguously in the middle of S0. This completes the induction step for i = 0.

Applying this same argument within the appropriate direct product subgroups when i > 0 yields the inner

induction step and thus completes the proof. 2

Remark 2 The previous proof seems harrowing with 2 cases nested inside 2 w.l.o.g.'s nested inside of 2 layers of

induction. But, it is in essence just a rigorous form of the more intuitive sorting example given in the previous

section (which may have seemed simpler at �rst glance). 2

4.4 Sketch of the Proof of Lemma 2

In this section, we shall sketch the proof of Lemma 2 with the help of some preliminary results.

The following inequality from [15] is essentially the translation into guesswork terminology of a nice result at-

tributed to Day [5] about majorization for sums of real vectors (see [11] and [15]). Given anym vectors x(1); : : : ; x(m) 2

R
n
+ , m doubly stochastic n� n matrices D1; : : : ; Dm, and m positive real numbers !1; : : : ; !m, we have

W

mX
i=1

!iDix
(i)

!
�

mX
i=1

!iW (x(i)): (7)

Our technique for quantifying and comparing various performance values of the optimal chosen plaintext attack

typically starts with a �xed ` and �xed p 2M (`). We then proceed to study how the cipher's structure a�ects the

expression of equation (3). A simple but useful observation is that the conditional guessworkW (Y jc; p) is completely

determined by the distribution of Y on some coset of the stabilizerH = StabG(p). Let k = [G :H] and �x a set fgig
k
i=1

10

of left coset representatives of H in G. It is useful to treat the distribution y(g) = P [Y = g] as giant vector in RG

(the real vector space spanned by G) which decomposes into to a direct sum of left coset component vectors (i.e. one

component vector for each subspace of RG spanned by coset giH). For our purposes, a mathematically convenient

way to deal with y (especially when handling the complicated bookkeeping involved with product ciphers) is to

exploit the fact that each coset subspace RgiH is isomorphic (as a vector space) to RH . The resulting isomorphism

naturally takes the form a tensor product (of RH-modules) known as the induced representation from H to G by

RH :

RG �= RG
RH RH =

[G:H]M
i=1

gi
 RH; (8)

where the isomorphism takes gih 7! gi
 h, and

X
g2G

y(g)g 7! by = kX
i=1

gi
 y
(i): (9)

Note that fy(i)gki=1 are just the component distribution vectors of y(g) on the cosets H , only in this form they are

represented as vectors in RH . It follows directly from the de�nition that

W (Y jC`; p) =
kX
i=1

W (y(i)):

Now recall that the product Z = XY of two independent G-ciphers X and Y has distribution P [XY = g] =

x�y(g), which from equation (1) has the form of a matrix multiplication. Indeed using the direct sum decomposition

of the induced representation given in equation (8), we shall derive the block structure of this matrix. Using this

structure we shall compare the distribution within the appropriate cosets of H for XY vs. Y . The key is to represent

Y by by as in equation (9), but to leave X as a convex sum of the permutations in G weighted by x(g) = P [X = g].

We aim to derive the form of Z represented by bz 2 RG
RH RH , again as in equation (9).

Now any g 2 G acts by left multiplication on any gj
 v 2 RG
RH RH according to g(gj
 v) = gi
 hv, where

ggjH = giH , so that h 2 H is uniquely determined by ggj = gih. Thus we have that

bz =

kX
i=1

gi
 z
(i) =

0@X
g2G

x(g)g

1A0@ kX
j=1

gj
 y
(j)

1A =

kX
j=1

0@X
g2G

x(g)g

1A (gj
 y
(j)):

For any particular i we may collect together contributions to direct summand gi
 RH ,

gi
 z
(i) =

kX
j=1

X
g gjH=giH

x(g) g (gj
 y
(j))

=

kX
j=1

X
g2�ij

x(g)(gi
 hij(g)y
(j))

= gi

0@ kX
j=1

0@X
g2�ij

x(g)hij(g)

1A y(j)

1A ;

where �ij = fg 2 G j g gjH = giHg and hij(g) = g�1
i ggj . Thus,

z(i) =

kX
j=1

!ijDijy
(j); (10)

11

where

Dij =
X
g2�ij

x(g)

x(�ij)
hij(g); (11)

and where !ij = x(�ij). Notice that the sum in equation (11) is a convex sum of permutations in H , hence each Dij

takes the form of a doubly stochastic matrix under a suitable ordering of H (the basis vectors of RH). Furthermore,

it can easily be shown that the values of !ij are the elements of a doubly stochastic matrix [15]. Also note that

�ii = Hgi � G for each i. The true core of Lemma 2 is the following proposition.

Proposition 3 For a permutation group G � SM , let X and Y be independent G-ciphers such that supp(X) = G.

For any p 2 M (`) such that Y is non-uniform on at least one left coset of StabG(p), we have W (XY jC`; p) >

W (Y jC`; p).

Proof: Let p satisfy the assumption of the proposition, and let bz represent the distribution of the product Z = XY

as above. Let y(j) be non-uniform and consider Djjy
(j). That is to say, let us focus on this one submatrix block on

the diagonal of the larger doubly stochastic matrix representing the convolution z = x � y.

Since �jj = Hgj , we may rewrite Djj as

Djj =
X
g2�jj

x(g)

x(�jj)
gg

�1
j =

X
h2H

x(hgj)

x(Hgj)
h:

Thus we see that by scaling appropriately, Djjy
(j) has the form of a product of two independent H-ciphers eX eY , with

P

h eX = h
i
= P [X = hgj] =x(Hgj), and P

heY = h
i
= P [Y = gjh] =y(gjH). But since supp(X) = G and conjugation

by gj yields an isomorphism of H ! �jj , supp(eX) is not con�ned to any proper coset of H , and we may invoke

Lemma 1 to obtain W (eX eY) > W (eY) or more importantly for our purposes, W (Djjy
(j)) > W (y(j)).

Note that we may bound any W (z(i)) by the inequality of equation (7) as

W (z(i)) = W

kX

m=1

!imDimy
(m)

!
�

kX
m=1

!imW (y(m));

but by using W (Djjy
(j)) > W (y(j)) and equation (7) again, we may strictly bound W (z(j)) as follows

W (z(j)) = W

kX

m=1

!jmDjmy
(m)

!

�

kX
m=1

!jmW (Djmy
(m))

>

kX
m=1

!jmW (y(m)):

(Note that in both cases we have used, for doubly stochastic D, the inequality W (Dv) � W (v) which follows from

simple majorization arguments [15]). Combining these bounds on W (z(i)) we obtain a strict bound on W (ZjC`; p)

as follows

W (ZjC`; p) =

kX
i=1

W (z(i)) >

kX
i=1

kX
m=1

!imW (y(m))

=

kX
m=1

W (y(m))

kX
i=1

!im

=

kX
m=1

W (y(m)) = W (Y jC`; p);

12

which was to be proved. 2

Remark 3 Evidently, in the previous proposition, we could weaken the condition supp(X) = G to: For every

p 2 M (`), supp(X) \ StabG(p) is not con�ned to a proper coset of StabG(p). However, for our purposes in this

paper, it was not necessary to use the weaker condition. 2

The next proposition provides an important interpretation of the situation when a cipher is uniform on every

coset of an `-message stabilizer.

Proposition 4 Let Y be a G-cipher, for a permutation group G � SM . For any p 2 M (`), write H = StabG(p)

and we have

W (Y jC`; p) �
1 + jH j

2
;

with equality holding i� Y is uniform on each coset of H.

Proof: For c 2M (`) with !(cjp) 6= 0,

1 �W (Y jc; p) �
1 + jH j

2
;

because W (Y jc; p) is the guesswork on a coset of size jH j. Furthermore, equality in the upper bound is achieved i�

Y has constant probability on that particular coset [15]. Now since
P

c2M (`) !(cjp) = 1, the sum from equation (3)

W (Y jC`; p) =
X

c2M (`)

W (Y jc; p)!(cjp)

is convex and therefore achieves its maximum of 1
2 (1 + jH j) i� Y is constant on each coset of H (Y will of course

have the constant probability 0 on those cosets corresponding to !(cjp) = 0). 2

By tying together the previous two propositions, we may �nally prove Lemma 2.

Proof of Lemma 2: Again, let us write Z = XY . Suppose there is a p 2M (`) such that �`(Z) =W (ZjC`; p) and Y

is non-uniform on at least one coset of StabG(p). Then we may invoke Prop. 3 to obtain

�`(Z) =W (ZjC`; p) > W (Y jC`; p) � �`(Y):

On the other hand, suppose that for every p 2M (`) satisfying �`(Z) = W (ZjC`; p), Y is uniform on each coset

of StabG(p). Let H = StabG(p) for any such p. By equation (10), Z is uniform on each coset of H as well, and by

Prop. 4,

�`(Z) =W (ZjC`; p) =
1 + jH j

2

Now choose any bp with jStabG(bp)j =MG(`) and hence

�`(Z) =
1 + jH j

2
�W (ZjC`; bp) � 1 +MG(`)

2
;

forcing jH j = MG(`), and thus �`(Z) = �`(UG). Then, either �`(Y) 6= �`(UG), in which case �`(Z) > �`(Y), or

�`(Y) = �`(UG).

To summarize what we have proved thus far, �`(Z) � �`(Y) and if equality holds then �`(Y) = �`(UG). However

conversely, if �`(Y) = �`(UG), then �`(UG) � �`(Z) � �`(Y) = �`(UG), forcing equality �`(Z) = �`(Y), which

completes the proof. 2

13

5 Conclusion

The issue of security ampli�cation by product composition remains a complex one. In this paper, we have added

to the number of situations where a de�nite answer can be given. Speci�cally, Thm. 1 asserts that there exists

eÆcient cipher X such that the security of XY is strictly greater than Y unless Y is perfect. There is room for

further improvement in this result. For example, a more eÆcient cipher might be constructed which makes use of

a weakened form of Lemma 2 as discussed in Remark 3. Additionally, our implementation might be optimized for

bulk encryption.

The cipher we construct to prove Thm. 1 is costly in some ways but has other desirable properties. Unlike a

one-time pad, if the key were replaced by a pseudo-random source, a known plaintext-ciphertext block would not

trivially betray the key used for that block. This property could be useful in constructing provably secure practical

encryption systems. Also observe that our construction is not an iterated cryptosystem but rather a product of

independent rounds with a carefully chosen order. The techniques employed here might be a useful new paradigm

for practical cryptosystems with key schedules instead of a truly random source of key material.

Acknowledgments. I would like to thank Serge Vaudenay for his many insightful comments, and in particular for

suggesting the formal computational model of Sect. 2.

References

[1] W. Aiello, M. Bellare, G. Di Crescenzo, and R Venkatesan. Security ampli�cation by composition: The case of
doubly-iterated, ideal ciphers. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO '98, Berlin, 1998.
Springer-Verlag.

[2] David J. Aldous and Persi Diaconis. Shu�ing cards and stopping times. Amer. Math. Monthly, 93:333{348,
1986.

[3] Christian Cachin. Entropy Measures and Unconditional Security in Cryptography. PhD thesis, ETH Z�urich,
1997.

[4] Keith W. Campbell and Michael J. Wiener. DES is not a group. In Ernest F. Brickell, editor, Advances in
Cryptology - CRYPTO '92, pages 512{517, Berlin, 1992. Springer-Verlag.

[5] P. W. Day. Rearrangement inequalities. Canad. J. Math., 24:930{943, 1972.

[6] Persi Diaconis. Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hay-
ward, CA, 1988.

[7] John D. Dixon and Brian Mortimer. Permutation Groups. Springer-Verlag, New York, 1996.

[8] S. Even and O. Goldreich. On the power of cascade ciphers. ACM Transactions on Computer Systems, 3(2),
1985.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New York, 2nd edition, 1979.

[10] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University Press, Oxford, 2nd
edition, 1992.

[11] Albert W. Marshall and Ingram Olkin. Inequalities: Theory of Majorization and Its Applications. Academic
Press, San Diego, 1979.

[12] Ueli M. Maurer and James L. Massey. Cascade ciphers: The importance of being �rst. Journal of Cryptology,
6:55{61, 1993.

[13] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC
Press, Boca Raton, 1997.

14

[14] Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-Racko� revisited.
Journal of Cryptology, 12:29{66, 1999.

[15] John O. Pliam. Ciphers and their Products: Group Theory in Private Key Cryptography. PhD thesis, University
of Minnesota, July 1999.

[16] John O. Pliam. Guesswork and variation distance as measures of cipher security. In Selected Areas in Cryptog-
raphy - SAC'99, LNCS 1758, pages 62{77, Berlin, 2000. Springer-Verlag.

[17] Joseph J. Rotman. An Introduction to the Theory of Groups. Wm. C. Brown, Dubuque, IA, 3rd edition, 1988.

[18] Claude E. Shannon. Communication theory of secrecy systems. Bell System Tech. Jour., 28:656{715, 1949.

15

