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Abstract

Resource contention is widely recognized as having a major impact on the performance
of distributed algorithms. Nevertheless, the metrics that are commonly used to predict their
performance take little or no account of contention. In this paper, we define two performance
metrics for distributed algorithms that account for network contention as well as CPU con-
tention. We then illustrate the use of these metrics by comparing four Atomic Broadcast algo-
rithms, and show that our metrics allow for a deeper understanding of performance issues than
conventional metrics.

1 Introduction

Performance prediction and evaluation are a central part of every scientific and engineering activity
including the construction of distributed applications. Engineers of distributed systems rely heavily
on various performance evaluation techniques and have developed the necessary techniques for this
activity. In contrast, algorithm designers invest considerable effort in proving the correctness of
their algorithms (which they of course should do!), but often oversee the importance of predicting
the performance of their algorithms, i.e., they rely on simplistic metrics. As a result, there is a
serious gap between the prediction and the evaluation of performance of distributed algorithms.

Performance Prediction vs. Evaluation of Algorithms. When analyzing performance, one has
to make a distinction between prediction and evaluation. Performance prediction gives an indica-
tion of the expected performance of an algorithm, before it is actually implemented. Performance
prediction techniques give fairly general yet imprecise information, and rely on the use of various
metrics. Conversely, performance evaluation is an a posteriori analysis of an algorithm, once it has
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been implemented and run in a given environment (possibly a simulation). While the information
obtained is usually very accurate and precise, the results depend on specific characteristics of the
environment and thus lack generality. Performance prediction and evaluation are complementary
techniques. Performance prediction is used to orient design decisions, while performance evalua-
tion can confirm those decisions and allows the dimensioning of the various system parameters.

Definition of a Metric. In this paper, we focus on the problem of predicting and comparing the
performance of distributed algorithms. The goal is hence to investigate metrics that answer typical
questions such as choosing the best algorithm for a particular problem, or identifying the various
performance tradeoffs related to the problem. We define a metric as a value associated with an
algorithm, that has no physical reality and is used to define an order relation between algorithms.
A good metric should provide a good approximation of the performance of an algorithm, regardless
of the implementation environment. Even though some performance evaluation techniques are also
based on an abstract model of the system (e.g., analytical approaches, simulation), a metric must
be a computable value. This is clearly in contrast with simulation techniques that can model details
of the system and the environment, and thus use complex models.

Existing Metrics for Distributed Algorithms. As mentioned earlier, performance prediction
of distributed algorithms is usually based on two rather simplistic metrics: time and message
complexity. These metrics are indeed useful, but there is still a large gap between the accuracy of
the information they provide, and results obtained with more environment specific approaches.

The first commonly used metric, called time complexity, measures the latency of an algorithm.
There exist many definitions of time complexity that are more or less equivalent. A common way to
measure the time complexity of an algorithm (e.g., [1, 24, 21, 17, 13, 23]) consists in considering
the algorithm in a model where the message delay has a known upper bound Æ. The efficiency
of the algorithm is measured as the maximum time needed by the algorithm to terminate. This
efficiency is expressed as a function of Æ, and is sometimes called the latency degree. This metric
is latency-oriented, i.e., measures the cost of one execution of the algorithm.

The second metric, called message complexity, consists in counting the total number of mes-
sages generated by the algorithm [21, 13, 1]. This metric is useful when combined with time com-
plexity, since two algorithms that have the same time complexity can generate a different volume
of messages. Knowing the number of messages generated by an algorithm gives a good indication
of its scalability and the amount of resources it uses. Furthermore, an algorithm that generates a
large number of messages is likely to generate a high level of network contention.

Resource Contention. Resource contention is often a limiting factor for the performance of dis-
tributed algorithms. In a distributed system, the key resources are (1) the CPUs and (2) the network,
any of which is a potential bottleneck. The major weakness of the time and message complexity
metrics is that neither attaches enough importance to the problem of resource contention. While
the message complexity metric ignores the contention on the CPUs, the time complexity metric
ignores contention completely.

Contribution and Structure. In this paper, we define two metrics (one latency-oriented, the
other throughput-oriented) which account for resource contention, both on the CPUs and the net-
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work. The use of those metrics is then illustrated by comparing Atomic Broadcast algorithms. The
rest of the paper is structured as follows. Section 2 presents related work. In Section 3, we present
the system model on which our metrics are based. Section 4 presents a latency-oriented and a
throughput-oriented metric. We then compare some algorithms using our metrics in Section 5, and
discuss the results. Because of space constraints, the detailed analysis appears in the Appendix.
Finally, Section 6 concludes the paper.

2 Related Work

Resource Contention in Network Models. Resource contention (also sometimes called con-
gestion) has been extensively studied in the literature. The bulk of the publications about resource
contention describe strategies to either avoid or reduce resource contention (e.g. [14, 15]). Some
of this work analyze the performance of the proposed strategies. However, these analyses consist
in performance evaluation, and use models that are often specific to a particular network (e.g.,
[20]). Distributed algorithms are normally developed assuming the availability of some transport
protocol. A metric that compares these algorithms must abstract out details that are only relevant
to some implementations of a transport layer. In other words, it is necessary to relinquish precision
for the sake of generality.

Resource Contention in Parallel Systems. Dwork, Herlihy, and Waarts [11] propose a com-
plexity model for shared-memory multiprocessors that takes contention into account. This model
is very interesting in the context of shared memory systems but is not well suited to the message
passing model that we consider here. The main problem is that the shared memory model is a
high-level abstraction for communication between processes. As such, it hides many aspects of
communication that are important in distributed systems. Dwork, Herlihy, and Waarts associate
a unit cost based on the access to shared variables, which has a granularity too coarse for our
problem.

Computation Models for Parallel Algorithms. Unlike distributed algorithms, many efforts
have been directed at developing performance prediction tools for parallel algorithms. However,
the execution models are not adapted to distributed algorithms: for instance, the PRAM model
(e.g., [18]) requires that processors evolve in locksteps and communicate using a global shared
memory; the BSP model [28] requires that processors communicate using some global synchro-
nization operation; the LogP model [9] assumes that there is an absolute upper bound on the
transmission delay of messages. Hence, these models are not adequate to predict the perofrmance
of distributed algorithms. For instance, metrics developed in these models are too coarse grained
for many asynchronous distributed algorithms, such as group communication protocols.

Competitive Analysis. Other work, based on the method of competitive analysis proposed by
Sleator and Tarjan [26], has focused on evaluating the competitiveness of distributed algorithms [5,
6]. In this work, the cost of a distributed algorithm is compared to the cost of an optimal centralized
algorithm with a global knowledge. This work has been refined in [2, 3, 4] by considering an opti-
mal distributed algorithm as the reference for the comparison. This work assumes an asynchronous
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shared-memory model and predicts the performance of an algorithm by counting the number of
steps required by the algorithms to terminate. The idea of evaluating distributed algorithms against
an optimal reference is appealing, but this approach is orthogonal to the definition of a metric. The
metric used is designed for the shared-memory model, and still ignores the problem of contention.

3 Distributed System Model

The two metrics that we define in this paper are based on an abstract system model which intro-
duces two levels of resource contention: CPU contention and network contention. First, we define
a basic version of the model that leaves some aspects unspecified, but is sufficient to define our
throughput oriented metric (see Definition 5). Second, we define an extended version of the model
by lifting the ambiguities left in the basic version. This extended model is used in Sect. 4 to define
our latency oriented metric (see Definition 3).

3.1 Basic Model

The model is inspired from the models proposed in [25, 27]. It is built around of two types of re-
sources: CPU and network. These resources are involved in the transmission of messages between
processes. There is only one network that is shared among processes, and is used to transmit a
message from one process to another. Additionally, there is one CPU resource attached to each
process in the system. These CPU resources represent the processing performed by the network
controllers and the communication layers, during the emission and the reception of a message.
In this model, the cost of running the distributed algorithm is neglected, and hence this does not
require any CPU resource.
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Figure 1: Decomposition of the end-to-end delay (tu=time unit).

The transmission of a message m from a sending process pi to a destination process pj occurs as
follows (see Fig. 1):

1. m enters the sending queue1 of the sending host, waiting for CPUi to be available.
1All queues in the model use a FIFO policy (sending, receiving, and network queues).
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2. m takes the resource CPUi for � time units, where � is a parameter of the system model
(� � 0).

3. m enters the network queue of the sending host and waits until the network is available for
transmission.

4. m takes the network resource for 1 time unit.

5. m enters the receive queue of the destination host and waits until CPUj is available.

6. m takes the resource CPUj of the destination host for � time units.

7. Message m is received by pj in the algorithm.

3.2 Extended Model

The basic model is not completely specified. For instance, it leaves unspecified the way some
resource conflicts are resolved. We now extend the definition of the model so that to specify these
points. As a result, the execution of a (deterministic) distributed algorithm in the extended system
model is deterministic.

Network. Concurrent requests to the network may arise when messages at different hosts are si-
multaneously ready for transmission. The access to the network is modeled by the following
code (executed by the network):

i 1
loop

wait until one network queue is not empty
while network queue of CPUi is empty do

increment i (mod n)
end
m extract 1st msg from network queue of CPUi

wait 1 time unit
insert m into receiving queue of CPUdest(m)

increment i (mod n)
end loop

CPU. CPU resources also appear as points of contention between a message in the sending queue
and a message in the receiving queue. This issue is solved by giving priority on every host
to outgoing messages over incoming ones.

Send to all. Distributed algorithms often require to send a message m to all processes, using a
“send to all” primitive. The way this is actually performed depends on the model (see below).

Definition 1 (point-to-point) Model M(n; �) is the extended model with parameters n and �,
where n > 0 is the number of processes and � � 0 is the relative cost between CPU and network.
The primitive “send to all” is defined as follows: If p is a process that sends a message m to all
processes, then p sends the message m consecutively to all processes in the lexicographical order
(p1, p2, . . . , pn).
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Nowadays, many networks are capable of broadcasting information in an efficient manner, for
instance, by providing support for IP multicast [10]. For this reason, we also define a model that
integrates the notion of a broadcast network.

Definition 2 (broadcast) ModelMbr(n; �) is defined similarly to Definition 1, with the exception
of the “send to all” primitive, which is defined as follows: If p is a process that sends a message m
to all, then p sends a single copy of m, the network transmits a single copy of m, and each process
(except p) receives a copy of m.

3.3 Illustration

Let us now illustrate the model with an example. We consider a system with three processes
fp1; p2; p3g which execute the following simple algorithm. Process p1 starts the algorithm by
sending a message m1 to processes p2 and p3. Upon reception of m1, p2 sends a message m2 to p1
and p3, and p3 sends a message m3 to p1 and p2.

m1

m2

m3

m1,2 m1,3

m2,1 m2,3

m3,1 m3,2

m1,2 m1,3 m2,1 m2,3 m3,1 m3,2
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Figure 2: Simple algorithm in model M(3; 0:5) (mi;j denotes the copy of message mi sent to
process pj).

Figure 2 shows the execution of this simple algorithm in model M(3; 0:5). The upper part of
the figure is a time-space diagram showing the exchange of messages between the three processes.
The lower part is a more detailed diagram that shows the activity (send, receive, transmit) of
each resource in the model. For instance, process p3 sends a copy of message m3 to process p1
(denoted m3;1) at time 3. The message takes the CPU resource of p3 at time 3, takes the network
resource at time 4.5, and takes the CPU resource of p1 at time 5.5. Finally, m3 is received by p1 at
time 6.

4 Contention-Aware Metrics

4.1 Latency Metric

The definition of the latency metric uses the terms: “start” and “end” of a distributed algorithm.
These terms are supposed to be defined by the problem P that an algorithmA solves. They are not
defined as a part of the metric.
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Definition 3 (latency metric) LetA be a distributed algorithm. The latency metric Latency(A)(n; �)
is defined as the number of time units that separate the start and the end of algorithm A in
model M(n; �).

Definition 4 (latency metric (broadcast)) Let A be a distributed algorithm. The definition of the
latency metric Latency

br
(A)(n; �) is the same than Definition 3, but in model Mbr(n; �).

4.2 Throughput Metric

The throughput metric of an algorithm A considers the utilization of system resources in one run
of A. The most heavily used resource constitutes a bottleneck, which puts a limit on the maximal
throughput, defined as an upper bound on the frequency at which the algorithm can be run.

Definition 5 (throughput metric) Let A be a distributed algorithm. The throughput metric is
defined as follows:

Thput(A)(n; �)
def
=

1

maxr2Rn
Tr(n; �)

where Rn denotes the set of all resources (i.e., CPU1; : : : ;CPUn and the network), and Tr(n; �)
denotes the total duration for which resource r 2 Rn is utilized in one run of algorithm A in
model M(n; �).

Thput(A)(n; �) can be understood as an upper bound on the frequency at which algorithm A
can be started. Let rb be the resource with the highest utilization time: Trb = maxr2Rn

Tr. At the
frequency given by Thput(A)(n; �), rb is utilized at 100%, i.e., it becomes a bottleneck.

Definition 6 (throughput metric (broadcast)) Let A be a distributed algorithm. The definition
of the throughput metric Thputbr(A)(n; �) is the same than Definition 5, but in modelMbr(n; �).

Relation with Message Complexity. The throughput metric can be seen as a generalization of
message complexity. While our metric considers different types of resources, message complexity
only considers the network. It is easy to see that Tnetwork , the utilization time of the network in a
single run, gives the number of messages exchanged in the algorithm.

5 Comparison of Atomic Broadcast Algorithms

We now illustrate the use of our two metrics by comparing four different algorithms that solve the
problem of Atomic Broadcast. These examples show that our metrics yield results that are more
precise than what can be obtained by relying solely on time and message complexity. This clearly
confirms the observation that contention is a factor that cannot be overlooked.
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Figure 3: Communication patterns of Atomic Broadcast algorithms.

5.1 Atomic Broadcast Algorithms

Atomic Broadcast is fundamental problem in the context of distributed systems [13]. Informally,
the problem consists in broadcasting messages to other processes, in such a way that all messages
are delivered in the same order by all destination processes. The problem is defined in terms of the
two events A-Broadcast and A-Deliver. When a process wants to atomically broadcast a messagem
it executes A-Broadcast(m), and A-Deliver(m) executed by process q corresponds to the delivery
of message m by q. The latency of the algorithm with respect to message m is then defined as
follows. We consider a run in which no other message is A-Broadcast; the algorithm starts when a
process executes A-Broadcast(m) and ends when the last process executes A-Deliver(m).

We briefly describe four different Atomic Broadcast algorithms for a system with no failures,
and compare them using our metrics. Figure 3 shows the communication pattern associated with
the broadcast of a single message m for each of the four algorithms. Note that the communication
pattern is enough to compute our metrics. For this reason, we have omitted to give the details of
each algorithm.

Lamport. In Lamport [19], every message carries a logical time-stamp (see [19]). To atomically
broadcast a message m, the sender process first sends m to all other processes (see Fig. 3(a)).
Upon reception of m, a process p sends a time-stamped “null message” to all others, thus
informing them that it has no other message that may have to be delivered before m. These
null messages appear only when a process has nothing to broadcast.

Skeen. Skeen’s algorithm (described in [8, 12]) is a two-phase protocol that can use Lamport’s
logical clocks [19]. To atomically broadcast a message m, a process p first sends m to all
processes (see Fig. 3(b)). Upon reception of m, the processes send a time-stamped acknowl-
edgment message to p. Once p has received all acknowledgments, it takes the maximum of
the timestamps received, and sends this information to all processes. Processes deliver m
after they receive this message (the details of the delivery condition is irrelevant here).
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Token. In Rajagopalan and McKinley’s token-based algorithm [22], a token circulates in the sys-
tem and a process is allowed to broadcast messages only when it holds the token. To atomi-
cally broadcast a message m, a process p must first wait for the token2 (see Fig. 3(c)). When
it holds the token, p broadcasts m to the other processes and passes the token to the next pro-
cess. The message m can be delivered only after it has been acknowledged by all processes.
The acknowledgments of messages are carried by the token. So m is delivered by the last
process only after two round-trips of the token.

Sequencer. Many Atomic Broadcast algorithms are based on the principle that one process is
designated as a sequencer and constructs the order (e.g., [7, 16]). In the version that we
consider here (see Fig. 3(d)), a process atomically broadcasts a message m by sending m

to the sequencer. Upon reception of m, the sequencer attaches a sequence number to m

and sends it to all other processes. Messages are then delivered according to their sequence
number.

These algorithms are interesting to illustrate our metrics because they take contrasting approaches
to solve the problem of Atomic Broadcast. Although they all deliver messages according to some
total order, these algorithms actually provide varying levels of guarantees, and are hence not equiv-
alent. An actual comparison must of course take these issues into account.

5.2 Latency Metric

We now analyze the latency of the four Atomic Broadcast algorithms: Lamport, Skeen, Token, and
Sequencer. For each algorithm, we compute the value of the latency metric in modelM(n; �). The
results are summarized in Table 1 and compared in Fig. 4(a).3 Table 1 also shows the time com-
plexity of the algorithms. For time complexity, we use the latency degree [24]: roughly speaking,
an algorithm with latency degree l requires l communication steps.

Table 1: Latency metric: evaluation of Atomic Broadcast algorithms (in model M(n; �))
Algorithm A Latency(A)(n; �) Time complexity

Lamport

� 3(n� 1)�+ 1 if n � �+ 2
� 1

2n(n� 3) + 2�n+ 1
2�

2 � 3
2� if n � 2�+ 3

� 1
2n(n� 1) + 2�n+ �2 � 7

2�� 3 if n � 4�� 4
� n(n� 1) + �2 + �+ 5 otherwise

2

Skeen
� 3(n� 1) + 4� if � < 1
� (3n� 2)�+ 1 if � � 1

3

Token (2:5n� 1)(2�+ 1) +max(1; �)(n� 1) 2:5n� 1
Sequencer 4�+ 2 +max(1; �)(n� 2) 2

Figure 4(a) represents the results of the comparison between the four algorithms with respect to
the latency metric. The area is split into three zones in which algorithms perform differently with
respect to each other (e.g., in Zone I, we have Sequencer > Lamport > Skeen > Token, where >

2In our analysis, we take the average case where the token is always halfway on its path toward p.
3For reasons of clarity, we give approximate values for Latency(Lamport)(n; �) and Latency(Skeen)(n; �). The

expressions given for these two algorithms ignore a factor that is negligible compared to the rest of the expression.
The exact expressions, as well as a description of the analysis are given in Appendix A.
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means “better than”). The latency metric and time complexity yield the same results for three of the
four algorithms: Token, Skeen, and Sequencer. Both metrics yield that Sequencer performs better
than Skeen, which in turn performs better than Token. For Lamport, time complexity suggests
that it always performs better than the other algorithms. This comes in contrast with our latency
metric which shows that the relative performance of Lamport are clearly dependent on the system
parameters n and �. The reason is that Lamport generates a quadratic number of messages and is
hence subject to network contention to a greater extent. Time complexity is unable to predict this
as it fails to account for contention.

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20
n

λ

Sequencer
> Lamport
> Skeen
> Token

Sequencer
> Skeen
> Lamport
> Token

Seq. > Skeen
> Token
> Lamport

Ι
ΙΙ

ΙΙΙ

(a) Latency(A)(n; �)

0

1

2

3

4

5

2 3 4 5 6 7 8 9 10
n

λ
Lamport > Token
> Sequencer > Skeen

Lamport > Sequencer > Token > Skeen

Lamport
> Token
> Skeen
> Sequencer

Ι

ΙΙ

ΙΙΙ

(b) Thput(A)(n; �)

Figure 4: Comparison of Atomic Broadcast algorithms (A > A0 means A “better than” A0).

5.3 Throughput Metric

We now analyze the throughput of the four algorithms. In a throughput analysis, one run of the al-
gorithm should not be considered in isolation. Indeed, many algorithms behave differently whether
they are under high load or not (e.g., Lamport does not need to generate null messages under high
load). For this reason, the throughput metric is computed by considering a run of the algorithm
under high load. We also assume that every process atomically broadcasts messages, and that
the emission is fairly distributed among them. For each algorithm, we compute the value of the
throughput metric in model M(n; �). The results are summarized4 in Table 2. The algorithms are
then compared in Fig. 4(b).

Figure 4(b) illustrates the relative throughput of the four algorithms. The graph is split into
three zones in which algorithms perform differently with respect to each other. The throughput
metric and message complexity both yield that Lamport performs better than Token which in turn
performs better than Skeen. However, the two metrics diverge when considering Sequencer. In-
deed, while message complexity suggest that Sequencer always performs better than Skeen and
Token, our throughput metric clearly shows that it is not always the case. In fact, Sequencer is

4The full description of the analysis is given in Appendix B.
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Table 2: Throughput metric: evaluation of Atomic Broadcast algorithms (in model M(n; �))
Algorithm A (Thput(A)(n; �))�1 Message complexity

Lamport (n� 1) �max
�
1; 2�

n

�
n� 1

Skeen 3(n� 1) �max
�
1; 2�

n

�
3(n� 1)

Token n �max
�
1; 2�

n

�
n

Sequencer
�
n� 1

n

�
�max(1; �) n� 1

n

more subject to CPU contention than the other three algorithms. This type of contention is espe-
cially noticeable in systems with large values of �. Message complexity fails to pinpoint this, as it
does not take CPU contention into account.

5.4 Latency and Throughput in Broadcast Networks

The analysis in model Mbr(n; �) are not much different. In fact, there are less messages and

Table 3: Latencybr(A)(n; �): evaluation of Atomic Broadcast algorithms.
Algorithm A Latencybr (A)(n; �)

Lamport 4�+ n

Skeen 6�+ 3 + (n� 2) �max(1; �)

Token
�
5n
2 � 1

�
(2�+ 1) +max(1; �)

Sequencer 4�+ 2

Table 4: Thputbr(A)(n; �): evaluation of Atomic Broadcast algorithms.
Algorithm A (Thputbr (A)(n; �))

�1 Msg complexity

Lamport max(1; �) 1

Skeen max
�
n+ 1; 4n+1

n
�
�

n+ 1

Token max
�
2; n+2

n
�
�

2

Sequencer 2n�1
n

max(1; �) 2� 1
n

less contention, and thus yields results that are a little less spectacular.5 Table 3 and Table 4 show
the results of the two metrics in a broadcast network (Latencybr(A)(n; �) and Thputbr(A)(n; �)).
Apart from the fact that these results are simpler than in a model with point-to-point communica-
tion, there are interesting differences.

According to the latency metric, for any “realistic” value6 of � and n, the algorithms are always
ordered as follows:

Sequencer > Lamport > Skeen > Token

Unlike the results obtained with Latency(A)(n; �), there is only one single zone with a broadcast
network. This zone corresponds to zone I depicted on Figure 4(a) but, in model Mbr(n; �), the
algorithms are not ordered differently as n increases. This is easily explained by the fact that
Lamport is quadratic in model M(n; �) while it is linear in model Mbr(n; �). The latency of the
three other algorithms is not so different because they are linear in both models.

5The full description of the analysis in modelMbr (n; �) is given in Appendix C.
6Realistic values for the parameters � and n are: � � 0 and n � 2.
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Figure 5: Comparison of the throughput of Atomic Broadcast algorithms in a broadcast network
(using Thput

br
(A)(n; �)). (A > A0 means A “better than” A0).

Similarly, Thputbr(A)(n; �) yields simpler results than Thput(A)(n; �). As shown in Fig-
ure 5, the parameter space is cut into two zones (instead of three for Thput(A)(n; �), as shown
on Fig. 4(b)). The difference between the two zones is the relative performance (throughput) of
Sequencer and Token. This yields that Token is better than Sequencer when the CPU is a limiting
factor. In fact, Sequencer is limited by the sequencer process which becomes a clear bottleneck.
Conversely, Token spreads the load evenly among all processes, and so none becomes a bottleneck.
Once again, both classical metrics (time and message complexity) fail to capture this aspect.

6 Conclusion

The paper proposes two metrics to predict the latency and the throughput of distributed algorithms.
Unlike other existing metrics, the two complementary metrics that we present here take account
of both network and CPU contention. This allows for more precise predictions and a finer grained
analysis of algorithms than what time complexity and message complexity permit. In addition,
our metrics make it possible to find out whether the bottleneck is the network or the CPU of one
specific process.

The problem of resource contention is commonly recognized as having a major impact on the
performance of distributed algorithms. Because other metrics do not take account of contention to
the same extent as ours, our metrics fill a gap that exists between simple complexity measures and
more complex performance evaluation techniques.
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— Appendix —

A Latency Analysis of the Total Order Broadcast Algorithms

In this section, we describe the latency analysis of some of the algorithms described in Sect. 5.1.
We start by the simple analysis of the Token algorithm, then we describe part of the analysis of
Skeen’s algorithm.

A.1 The Token Algorithm

This algorithm is rather simple to analyze. The reason is that only the process that has the token at
the given moment may send messages, i.e., there is no contention on the network (or at least, only
contention introduced by only one of the processes).

The execution of the Token algorithm can be seen as a sequence of phases. A phase starts when
a process pi receives the token and ends when the next process pj (j = (i + 1) mod n)) receives
the token. There are two types of phases: in the first type, pi broadcasts a message after receiving
the token; in the second type, it does not. We now analyze the latency of these phases.

� If pi does not want to broadcast, the token takes 2� + 1 time unit to travel from pi to pj.
(CPUi sends: �, the network transmits: 1, CPUj receives: � time units.)

� If pi also broadcasts, it receives the token, sends the broadcast message to all other processes,
then passes on the token. The token now takes 1 + 2� + max(1; �)(n� 1) time units from
pi to pj .

We now use the latencies of the phases to compute the overall latency of the Token algorithm.
Let p1 be the process that initiates A-Broadcast(m); m is the broadcast message.

We do not know where the token is at the time of A-Broadcast(m), since the token circulates
at all times, even if there is no message to broadcast. However, we can compute how much p1 has
to wait to obtain the token on the average. One round-trip takes n(2� + 1) time units, hence, on
average, p1 has to wait n

2
(2� + 1) time to get the token. The next step is that p1 broadcasts the

message and passes on the token (1 + 2� + max(1; �)(n� 1) time units). Let us now count how
many times the token is passed on until the last delivery. The token reaches p2, . . . , pn, then again
p1, . . . , pn�1 (see Fig. 3(c)); altogether, it is passed on 2(n� 1) times.7All this yields the following
latency for the Token algorithm:

Latency(Token)(n; �) =
�
n

2
(2�+ 1)

�
+ (1 + 2�+max(1; �)(n� 1)) + (2(n� 1) � (2�+ 1)) =

= (2:5n� 1)(2�+ 1) + max(1; �)(n� 1)

7At the end of the first round-trip, the token has the information that all have received m. Knowing this, processes
can safely deliver m in the second round-trip.
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Figure 6: The communication pattern of Skeen’s algorithm.
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Figure 7: Network utilization graph, showing how the network resource is utilized at any point in
time.

A.2 Skeen’s Algorithm

Let us first label the messages exchanged in one execution (see Fig. 6): Ai (i = 2; : : : ; n) denotes
the message sent from p1 to pi. The acknowledgment from pi is labeled Bi; Ci denotes the message
that p1 sends to pi after receiving all acknowledgments.

We now introduce a special type of graph to visualize algorithm executions, the network uti-
lization graph. The graph focuses on the activity on the network resource. It is a time axis, divided
into time intervals. Each of the intervals either corresponds to the transmission of a message or is
an interval when the network is idle. In the former case, the interval has the label of the transmitted
message. Such intervals are 1 time unit long, as transmitting a message always takes 1 time unit on
the network. In the latter case (when the network is idle) the interval is labeled with the duration
of idleness.

Figure 7 shows an example for the network utilization graph, for Skeen’s algorithm with n = 2
(� can be anything). CPU1 sends A2 during the first interval (� time units), then message A2 is
transmitted. CPU2 receives A2 and sends B2 during the third interval (�+� time units), then B2 is
transmitted. Now, CPU1 receives B2 and sends C2 (2� time units), and C2 is transmitted. Finally,
CPU1 receives C2 (� time units).

To analyze the algorithm, we start by examining how the network resource is utilized in exe-
cutions with different values for �, e.g., with the aid of network utilization graphs. This yields that
we have to distinguish 5 cases where the network utilization is fundamentally different:

� < 0:5; 0:5 � � < 1; 1 � � < 1:5; 1:5 � � < 2; � � 2

We only present the cases � < 0:5 and 1:5 � � < 2 in detail here. The other cases are similar
to either the one or the other, hence presenting them would offer no great additional benefit to
the reader. (However, all cases appear in the results at the end of this section.) Also, rather than
proving the results, we present the intuition behind the proof. We believe that this yields a more
valuable explanation.
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Figure 8: Network utilization graph of Skeen’s algorithm.

Case � < 0:5. Figure 8(a) shows the network utilization graph for this case. (The time axis is
too long to be represented to one line, so it was cut into smaller pieces which are connected by
dotted lines.) We can see that the graph is not fundamentally different for various values of n: the
only difference is that the repeating pattern starting with A2 and the one starting with C2 appear a
different number of times.

Computing the latency metric now only amounts to adding up the time intervals shown in the
network utilization graph. We obtain the following result:

Latency(Skeen)(n; �) = 3(n� 1) + 4�+

(
2� if n � 0 (mod2)
0 otherwise

(case� < 0:5)

Case 1:5 � � < 2. Figure 8(b) shows the network utilization graph for this case. (We assume
that n � 4. Executions with n = 2 and n = 3 have to be analyzed separately.) The graph shows
an unknown value (“?”) after the transmission of Bn. The reason is that CPU1 might not have
finished receiving B2; : : : ; Bn�1 at this point, and C2 is only sent after receiving B2; : : : ; Bn. We
now proceed with examining the utilization of CPU1.

Let us define the work function W(t) of CPU1. W(t) tells how much work CPU1 still has to do
to empty its sending and receiving queue, at time t. (Time 0 is the start of the algorithm.) W(t) is
thus the number of messages in these two queues times �, plus the time needed to finish processing
the message currently on CPU1. W(t) is important for us because it gives information about the
activity of CPU1: W (t) = 0 if and only if CPU1 is idle at time t.

We claim that CPU1 is not idle between time 0 and the end of the transmission of Bn. Let
t(M) denote the time when the transmission of message M finishes. An equivalent statement is
then that W (t) > 0 for all 0 � t � t(Bn). We now prove this equivalent statement.
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W(0) is (n � 1)�, as initially there are n � 1 messages in the sending queue. W(t) decreases
linearly with a slope of �1. When CPU1 is transmitted a message, W(t) increases by �. These
observations imply that W (t) has local minima at t(B2)� 0; t(B3)� 0; : : : ; t(Bn)� 0. Therefore
we only need to check W (t) > 0 for these t values. This computation is best done using the
network utilization graph; the result is

W (t(Bi)� 0) = (n� 1)�� (3�+ 2) + (i� 2) � (�� 2) (where 2 � i � n)

= (2n� 6)�� 2n + 2

� (2n� 6) � 1:5� 2n+ 2 = n� 7

AllW (t(Bi)�0) values are non-negative if n � 7. Thus we finished proving thatW (t) > 0 for
0 � t < t(Bn) if n � 7. (The cases n < 7 should be examined separately.) Hence we know that
CPU1 works without interruption until it processes all messages up to Bn. This takes 2(n � 1)�
time units, as we have 2(n � 1) messages until this point. Sending C2 takes � time units, thus
the transmission of C2 starts at time (2n � 1)�. One can then easily compute the latency of the
remaining part of the execution based on the network utilization graph. The overall latency of the
algorithm is as follows:

Latency(Skeen)(n; �) = (3n� 2)�+ 1 (case 1:5 � � < 2 andn � 7)

Final result. The latency analysis of all cases leads to the following result:

Latency(Skeen)(n; �) =

3(n� 1) + 4�+

8>>><
>>>:

2� if (� < 0:5 andn � 0 (mod2))
or (� � 0:5 andn � 2 (mod3))

2�� 1 if (� � 0:5 andn � 0 (mod3))
0 otherwise

9>>>=
>>>;

if � < 1

(3n� 2)�+ 1+

+

8>>>>>>>>>>><
>>>>>>>>>>>:

2 + (4� n)� if n � 4
max(0; 4� 2�) if n = 5
0 if n � 6 and� � 1:5

max

0
BBB@0;

8><
>:

�+ 1 if n � 0 (mod4)
2 if n � 1 (mod4)
3 otherwise

9>=
>;

�(n� 4)(2�� 2)

1
CCCA if n � 6 and� < 1:5

9>>>>>>>>>>>=
>>>>>>>>>>>;

if � � 1

The expression looks complicated. Fortunately, we do not need to use it in this form: as we
normally use the latency metric for comparing algorithms, it is perfectly enough if we can give
bounds for the expression. The resulting simplified form is shown below. (We exploit the fact that
the complicated parts in curly brackets are small compared to the whole expression.)

Latency(Skeen)(n; �) =

3(n� 1) + 4�+ c1 where 0 � c1 � 2� if � < 1
(3n� 2)�+ 1 + c2 where 0 � c2 � 2 + 2� if � � 1
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B Throughput Analysis of the Atomic Broadcast Algorithms

In this section, we compute the throughput metric (see Sect. 4.2) for the four Atomic Broadcast
algorithms of Sect. 5.1.

The steps are the same for each algorithm A. First we determine how the algorithm behaves
under high load (as defined in Sect. 5.3). We then count the number of send and receive operations
on all CPUs and the number of transmissions on the network. This yields the utilization times
(Tr(n; �)) for each resource r (taken from the set of all resourcesRn). The metric is then computed
using the formula

Thput(A)(n; �) =
1

maxr2Rn
Tr(n; �)

Lamport Because of the high load on the system, “null messages” are not needed. The only
messages generated per A-Broadcast(m) event are those of the initial broadcast, altogether
n� 1 messages.

Recall that every process generates A-Broadcast(m) events, thus the sender process is not
always the same. However, each process becomes a sender equally often. Therefore we must
take the average utilization time of the CPUs into account.

The remaining steps of the evaluation are summarized in the following table:

Resource r Activity of r T
r
(n; �)

CPU (sender) (n� 1) send (n� 1)�
CPU (recipients) 1 receive �

CPU (average) – (n� 1)2�
n

network n� 1 transmissions n� 1

The resulting throughput is

Thput(Lamport)(n; �) =
1

(n� 1) �max
�
1; 2�

n

�

Skeen The algorithm behaves the same under high and low load. Each A-Broadcast(m) results
in the messages depicted in Fig. 3(b). Just as with Lamport, we have to take the average
utilization time of the CPUs into account.

Resource r Activity of r T
r
(n; �)

CPU (sender) 2(n� 1) send, n� 1 receive 3(n� 1)�
CPU (recipients) 1 send, 2 receive 3�
CPU (average) – 3(n� 1)2�

n

network 3(n� 1) transmissions 3(n� 1)

The resulting throughput is

Thput(Skeen)(n; �) =
1

3(n� 1) �max
�
1; 2�

n

�
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Token Each process obtains the token, sends k broadcasts and passes on the token. (k is a pa-
rameter of the Token algorithm. Its purpose is to put a limit on the token holding time.) Let
k = 1 for simplicity. Then there are n messages generated per request. Once again, we take
the average utilization time of CPUs into account.

Resource r Activity of r Tr(n; �)

CPU (sender) n send n�

CPU (recipient following the sender) 2 receive 2�
CPU (other recipients) 1 receive �

CPU (average) – 2�
network n transmissions n

We obtain the following throughput:

Thput(Token)(n; �) =
1

n �max
�
1; 2�

n

�

Sequencer The utilization of CPUs is different in this algorithm. As before, every process be-
comes the sender equally often, but the sequencer is always the same process. We have
to take the (average) utilization time of the sequencer and that of the other processes into
account.

Resource r Activity of r T
r
(n; �)

CPU (sequencer and sender) n� 1 send (n� 1)�
CPU (sequencer, if different from sender) 1 receive, n� 1 send n�

CPU (sender, if different from sequencer) 1 send, 1 receive 2�
CPU (recipients) 1 receive �

CPU (sequencer, average) –
�
n� 1

n

�
�

CPU (others, average) –
�
1 + 1

n

�
�

network (average) n (or n� 1) transmissions n� 1

n

The resulting throughput is

Thput(Sequencer)(n; �) =
1�

n� 1

n

�
�max (1; �)

C Analysis for Broadcast Networks

In this section, we analyze the Atomic Broadcast algorithms of Sect. 5.1 using the metrics defined
for broadcast networks. The analyses are essentially similar to the analyses in the case of point-
to-point networks, therefore we choose to present them in a less detailed way. They are simpler,
though, as there are fewer messages and less contention in the algorithms under investigation.
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C.1 Lamport
Latency

Latencybr(Lamport)(n; �) = �+ 1 + 2�+ n� 1 + �

= 4�+ n

Throughput

Resource r Activity of r Tr(n; �)

CPU (sender) 1 send �

CPU (recipients) 1 receive �

CPU (average) - �

network 1 transmission 1

The resulting throughput is

Thputbr(Lamport)(n; �) =
1

max (1; �)

C.2 Skeen
Latency

Latency
br
(Skeen)(n; �) = �+ 1 + 2�+ 1 + (�n2)max(1; �) + 2�+ 1 + �

= 6�+ 3 + (n� 2)max(1; �)

Throughput

Resource r Activity of r T
r
(n; �)

CPU (sender) 2 send, (n� 1) receive (n + 1)�
CPU (recipients) 1 send, 2 receive 3�
CPU (average) - 4n�2

n
�

network n + 1 transmission n+ 1

The resulting throughput is

Thput
br
(Skeen)(n; �) =

1

max
�
(n+ 1); 4n+1

n
�
�

C.3 Token
Latency

Latency
br
(Token)(n; �) = n

2
(2�+ 1) + max(�; 1) + (2n� 1)(2�+ 1)

=
�
5n
2
� 1

�
(2�+ 1) + max(�; 1)
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Throughput

Resource r Activity of r Tr(n; �)

CPU (sender) 2 send 2�
CPU (recipient following sender) 2 receive 2
CPU (other recipients) 1 receive 1
CPU (average) - n+2

n
�

network 2 transmission 2

The resulting throughput is

Thput
br
(Token)(n; �) =

1

max
�
2; n+2

n
�
�

C.4 Sequencer
Latency

Latency
br
(Sequencer)(n; �) = � + 1 + 2�+ 1 + �

= 4�+ 2

Throughput

Resource r Activity of r Tr(n; �)
seq 6= sender CPU (sender) 1 send, 1 receive 2�

CPU (sequencer) 1 send, 1 receive 2�
CPU (recipients) 1 receive �

network 2 transmission 2
seq = sender CPU (sender, sequencer) 1 �

CPU (recipients) 1 receive �

network 1 transmission 1
average CPU (sequencer) - 2n�1

n
�

CPU (recipients) - n+1

n
�

network - 2n�1
n

The resulting throughput is

Thputbr (Sequencer)(n; �) =
n

(2n� 1)max(1; �)

The average for CPU(recipients) can be ignored because it is larger than CPU(coordinator) only
if n < 2. Then, this does not make sense because there can be no distinction between recipient and
sequencer in such a case.

C.5 Synopsis

C.5.1 Latency

Sequencer > Lamport > Skeen > Token
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C.5.2 Throughput

� � �

8<
:

max
�
1; 2n

2n�1

�
if n > 3

max
�
1; 2n

n+2

�
otherwise

Lamport < Sequencer � Token < Skeen

� otherwise Lamport < Token < Sequencer < Skeen
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